
Object Oriented Modeling And
Designing(OOMD)

 Summary of all diagrams.

 for oral point of view.

Introduction

 The Unified Modeling Language(UML) is one of the

most exciting tools in the world of system
development today

 The UML enables system builder to create
blueprint that to capture their vision in standard,
easy-to- understand way and communicate them to
other

 System: It is combination of software and hardware
that provides a solution for business problem

Important Term

 Client: System development is the creation of a system
for a client, the person has the problem to be solved

 Analyst: An Analyst document the client’s problem and
relays it to developer

 Developer: Programmers who build the software that
solve the problem and deploy the software on
computer hardware

How the UML Came to be...

 The UML is the brainchild of Grady Booch , James
Rumbaugh and Ivar Jacobson

 They are worked in Separate organizations ,In 1994
they was came together in Rational Software
Corporation

 In 1997 they produced version 1.0 of UML and
submitted it to the OMG

 Then the UML has become de facto standard in the
software Industry and it continues to evolve

UML Diagram Classification

Working with Relationships

 Association: When classes are connected together
conceptually, that connection is called an association

 e.g.

 Plays for

Player Team

 Generalization: One class (the child class or
subclass) can inherit attributes and operations from
another (the parent class or super class).

 The parent class is more general than the child class.

 Object-orientation refers to this as Inheritance The
UML also refers to this as Generalization

 This type of connection stands for the phrase is a
kind of

 Aggregation: Sometimes a class consists of a number
of component classes. This is a special type of
relationship called an aggregation

 The components and the class they constitute are in a
part-whole association

 Example: Home Computer

 Composites: A Composite is a strong type of
aggregation. Each component in a composite can
belong to just one whole. The components of a coffee
table—the tabletop and the legs—make up a
composite. The symbol for a composite is the same as
the symbol for an aggregation except the diamond is
filled

Composition

 Dependency: One class uses another ,i.e. Change in
one class that affect change in another class

 E.g.

 Realization: The relationship between a class and
interface is called realization

 This is modeled as a dashed line with a large open
triangle adjoining and pointing to the interface

Use Case diagram
 The use case is a powerful concept for helping an analyst to

understand how a system should behave. It helps you gather
requirements from the users’ point of view

 it shows the boundary between the system and the outside world
Representing a Use Case Model:
 The actors, use cases, and interconnecting lines make up a use case

model
 Actor: An actor initiates a use case, and an actor (possibly the initiator,

but not necessarily) receives something of value from the use case.
 A stick figure represents an actor. The actor’s name appears just below

the actor
 Use Case: Use case is a collection of scenarios, and each scenario is a

sequence of steps. An ellipse represents a use case. The name of the
use case appears either inside the ellipse or just below it.

 An association line connects an actor to the use case, and represents
communication between the actor and the use case. The association
line is solid, like the line that connects associated classes.

Use Case Diagram:

 Actors are typically outside the system, whereas use cases are inside.

Visualizing Relationships Among Use Cases:

 Inclusion: Enables you to reuse one use case’s steps inside

 another use case. It is basic steps to execute the use case operation

 To represent inclusion, you use the symbol you used for dependency
between classes—a dashed line connecting the base use case with an
arrowhead pointing to the depended-on use case. Near the line, you
add the keyword «include»

 Extension: allows you to create a new use case by adding steps to an
existing use case

 Like inclusion, you visualize extension with a dependency line (dashed
line and arrowhead) along with a keyword. In this case the keyword is

 « extend» the base use case

Fig: Use Case dig for Soda machine

Activity Diagram
 The UML activity diagram is much like the flowcharts of old. It

shows steps (activities) as well as decision points and branches. It’s
useful for showing what happens in a business process or an operation.

 It’s an integral part of system analysis

Element of Activity Dig:

 Starting point: the activity diagram has a starting point represented
by a filled-in circle

 Activity: activity is represented by a rounded rectangle narrower and
more oval shaped than the state icon

 The processing within an activity goes to completion and then an
automatic transmission to the next activity occurs

 Transition: An arrow represents the transition from one activity to the
next

 Endpoint: endpoint represented by a bull's-eye

 Activity Diagram Representation

 Concurrent Paths: As you model activities, you’ll occasionally
have to separate a transition into two separate paths that run at
the same time (that is, concurrently) and then come together.

 To represent the Split(Fork), you use a solid bold line
perpendicular to the transition and show the paths coming out
of the line.

 To represent the Merge(Join), show the paths pointing at
another solid bold line

 Swimlanes: One of the handier aspects of the activity diagram is
its ability to expand and show who has the responsibility for each
activity in a process.

 you separate the diagram into parallel segments called
Swimlanes Each Swimlanes shows the name of a role at the top
and presents the activities of each role. Transitions can take
place from one Swimlanes to another

 Fig: Concurrent Paths

 An Activity dig for Business process of meeting a new client with
Swimlanes

Class Diagram
 A Class is a category or group of things that have the same

attributes and the same behaviors.

 A rectangle is the icon that represents the Class. It’s divided into three
areas. The uppermost area contains the name, the middle area holds
the attributes, and the lowest area holds the operations

 UML, a multiword class name has initial capital letters for all the
words and eliminates white space between each word (for
example, WashingMachine). Attribute names and Operation
names follow the same convention, but the first letter of the first
word isn’t capitalized (for example, acceptClothes()). A pair of
parentheses follows the name of each operation

 A class diagram consists of a number of these rectangle icons
connected by lines that show how the classes relate to one another at
developer side

 Class diagrams also help on the analysis side. They enable analysts to
talk to clients in the clients’ terminology to reveal important details
about the problem they want solved

 Class Representation

Object Diagram

 Object diagrams are derived from class diagrams so object diagrams
are dependent upon class diagrams

 Object diagrams represent an instance of a class diagram. The basic
concepts are similar for class diagrams . Object diagrams also represent
the static view of a system but this static view is a snapshot of the
system at a particular moment.

 It means the object diagram is more close to the actual system
behavior. The purpose is to capture the static view of a system at a
particular moment

 e.g. Taking snapshot of running Train

 Taking snapshot of running Movies

 The icon is a rectangle, just like the class icon, but the name is
underlined. In the icon on the left, the name of the specific instance is
on the left side of a colon, and the name of the class is on the right side
of the colon. The name of the instance begins with a lowercase letter

Package Diagram

 Sometimes ,you’ll find the need to organize the element of a
diagram into a group .you might want to show that a number of
classes or components are part of particular subsystem. to do this ,you
group them into a package

 Representation : you show a package using a rectangle with a tab
attached to the top left

 Importing : Importing grants a one way permission for the elements
in one package to access the element in another package

 In Uml you model an import relationship as dependency arrow with
stereotype import

 Exporting: the public part of package are called its exports and
represented by + sign. A package can only exports its public element
no permission for private(-) and protected (#) element

 Transitive property: Package A imports package B, and package B
imports package C but package A does not access package C

 Representation of package

Sequence Diagram

 Class diagrams and object diagrams represent static information.

 In a functioning system, however objects interact with one another,
and these interactions occur over time. The UML sequence diagram
shows the time-based dynamics of the interaction.

 The sequence diagram consists of objects represented in the usual
way (as named rectangles with the name underlined), messages
represented as solid-line arrows, and time represented as a vertical
progression.

 Objects: The objects are laid out near the top of the diagram from left
to right. They’re arranged in any order that simplifies the diagram.
Extending downward from each object is a dashed line called the
object’s lifeline

 Along the lifeline is a narrow rectangle called an activation .The
activation represents an execution of an operation the object carries
out. The length of the rectangle signifies the activation’s duration

 Sequence Diagram

 Messages: A message that goes from one object to another, goes from
one object’s lifeline to the other object’s lifeline.

 An object can also send a message to itself that is from its lifeline back
to its own lifeline

 UML represents a message as an arrow that starts at one lifeline and
ends at another. The shape of the arrowhead shows what type of
message it is.

 UML provides Three types of messages: Simple message,
Synchronous message and Asynchronous message

 Time : The diagram represents time in the vertical direction. Time
starts at the top and progresses toward the bottom. A message that’s
closer to the top occurs earlier in time than a message that’s closer to
the bottom

 Thus, the sequence diagram is two-dimensional. The left-to-right
dimension is the layout of the objects, and the top-to-bottom
dimension shows the passage of time

Collaboration Diagram
 Like the sequence diagram, the communication diagram shows how

objects interact. It shows the objects along with the messages that
travel from one object to another.

 Difference between Sequence dig & Communication dig: The sequence
diagram is arranged according to time, the communication diagram
according to space

 An object diagram shows objects and their relationships with one
another. A communication diagram is an extension of the object
diagram. In addition to the links among objects, the communication
diagram shows the messages the objects send each other.

 The object diagram is the snapshot: It shows how instances of classes
are linked together in an instant of time

 The communication diagram is the movie: It shows interactions
among those instances over time

 Collaboration Diagram

 Message :To represent a message, you draw an arrow near the link
between two objects.

• The arrow points to the receiving object. A label near the arrow shows
what the message is.

• The message typically tells the receiving object to execute one of its
(the receiver’s) operations.

• Arrowheads have the same meaning as in sequence diagrams.

State diagram
 One way to characterize change in a system is to say that its objects

change their state in response to events and to time

 E.g. When you throw a switch, a light changes its state from Off to On.

The Fundamental Symbol Set:

 The rounded rectangle that represents a state, along with the solid
line and arrowhead that represent a transition.

 The arrow head points to the state being transitioned into. The figure
also shows the solid circle that symbolizes a starting point and the
bull’s-eye that symbolizes an endpoint

Adding Details to the State Icon:

 The UML gives you the option of adding detail to these symbols.

 You can divide the state icon into two areas. The top area holds the
name of the state and the bottom area holds activities that take
place in that state

 State Diagram

Adding Details to the Transitions: Events and Actions

 You can also add some details to the transition lines. You can indicate
an event that causes a transition to occur (a trigger event) and the
computation (the action) that executes and makes the state change
happen.

 To add events and actions you write them near the transition line,
using a slash to separate a triggering event from an action.

 Sometimes an event causes a transition without an associated action,
and sometimes a transition occurs because a state completes an activity
This type of transition is called a trigger less transition

Guard condition: the condition responsible for state change and
represented by square bracket having condition’s name

 e.g.[is timeout]

Sub State: the states reside within a state, they’re called sub state
substates come in two varieties: sequential and concurrent

Sequential substates : As the name implies, sequential substates occur
one after the other.

Concurrent Substates: the two sequence running simultaneously

History States: The UML supplies a symbol that shows that a composite
state remembers its active sub states when the object transitions
out of the composite state.

• The symbol is the letter H enclosed in a small circle connected by a
solid line to the remembered sub states, with an arrowhead pointing
to that sub states

Component Diagram
 A software component is a modular part of a system. Because it’s the

software implementation of one or more classes,

 A component resides in a computer, not in the mind of an analyst. A
component provides interfaces to other components

 data files, tables, executables, documents, and dynamic link libraries
were defined as components

 A component is physical and replaceable and reusable software
part of system

 Representing a Component in UML

 the component diagram’s main icon is a rectangle that has two

 rectangles overlaid on its left side

Types of Component

Deployment component, which form the basis of executable system.eg

DLLs, Executable, ActiveX controls and Java Beans.

Work product Component, from which deployment component are
created e.g. Data files and source code files

Executable component, created as result of running system

Replacement and Reuse : Interfaces figure heavily into the important
concepts of component replacement and component reuse. You can
replace one component with another if the new component conforms
to the same interfaces as the old one

Representing Interfaces:

 A component and the interfaces it realizes can be represented in two
ways.

 The first shows the interface as a rectangle that contains interface-
related information. It’s connected to the component by the dashed
line and large open triangle that indicate realization.

 The second way. It’s iconic: You represent the interface as a small circle
connected to the component by a solid line

 A component provides interfaces that allow other components to access
it.

Deployment Diagram
 A deployment diagram shows how artifacts (component) are deployed

on system hardware, and how the pieces of hardware connect to one
another

 The name Deployment itself describes the purpose of the diagram.
Deployment diagrams are used for describing the hardware components
where software components are deployed. Component diagrams and
deployment diagrams are closely related.

 A node is main hardware item , a generic name for a computing resource.

 Two types of nodes

 A processor node : a node that can execute a component and

 A device node : a peripheral piece of hardware that doesn’t execute
components but typically interfaces in some way with the outside world

 A line joining two cubes represents a connection between two nodes.
you can use a stereotype to provide information about the connection.

 Basically connection between the node is Association type but you can
also use aggregation and dependency

 Deployment Diagram

