M odern Answer sheet for SFE Class Test |

Q.1 Any three
Draw the neat labelled diagram of spiral model and list two disadvantages of spiral

model.

Disadvantages:

. Can be a costly model

* Risk analysis requires highly specific expertise.

* Project’s success is highly dependenton the risk analysis phase.
e Doesn’twork well for smaller projects.

e Itisnotsuitable for low risk projects.

* May be hard to define objective, verifiable milestones.

« Spiralmay continue indefinitely.

Planning

eshimation

scheduling
risk analysis

Communication

Modeling
r_}flr,"r‘!‘
design

Deployment

Construction
delivery code

feedback

fes!

2.Describe any two core principles of software engineering.

The FirstPrinciple: The Reason It AIl Exists
A software system exists for one reason: To provide value to itsusers. All decisions

should be made with thisin mind. Before specifying a system requirement,beforenoting
a piece of system functionality, before determining the hardware platforms or

developmentprocesses,ask yourselfquestions such as: "Does this add real VALUE to
the system ?" If the answeris "no",don'tdo it. All other principlessupportthisone.

There are many factors to consider in any design effort. All design should be as simple
as possible,butno simpler.This facilitateshavinga more easily understood, and easily

m aintained system .

There are many factors to consider in any design effort. All design should be as simple

as possible,butno simpler.This facilitates havinga more easily understood, and easily

m aintained system .

The Third Principle: Maintain the Vision

A clear vision is essentialto the success of a software project. W ithoutone, a project
almostunfailingly ends up being "of two [or more] minds" aboutitself.

Compromising the architecturalvisionof a software system weakens and willeventually
break even the mostwell designed systems.Having an empowered Architectwho can
hold the vision and enforce compliance helpsensure a very successfulsoftware project.
The Fourth Principle: W hat You Produce, Others W ill Consume.

Seldom is an industrial-strength software system constructed and used in a vacuum . In
some way orother,someone else willuse, maintain,document,or otherwisedepend on
being able to understand your system. So, always specify, design, and implement

knowing someone else will have to understand what you are doing. The audience for any

productof software developmentis potentially large. Specify with an eye to the users.

Design, keeping the implementersin mind. Code with concern forthose that must

m aintain and extend the system .Someone may have to debug the code you write, and

that makes them a userof yourcode. M aking their job easieradds value to the system .

The Fifth Principle:Be Open to the Future

A system with along lifetime has more value.In today'scom putingenvironments,

where specificationschangeon a moment'snotice and hardware platformsare obsolete

when justa few months old, software lifetimesare typically measured in months instead

of years. However, true "industrial-strength" software systemsmustendure far longer.

To do thissuccessfully,these systemsmustbe ready to adaptto these and otherchanges.

System s thatdo thissuccessfully are those thathave been designed thisway from the

start.Never design yourselfinto a corner. Always ask "what if", and prepare for all

possible answers by creating system s thatsolve the general problem ,notjustthe specific

one. Thiscould very possibly lead to the reuse of an entiresystem .

The Sixth Principle: Plan Ahead for Reuse

Reuse savestime and effort. Achieving a high levelof reuse is arguably the hardestgoal

to accom plishin developing a software system .The reuse of code and designs has been

proclaimedas a majorbenefitofusing object-oriented technologies.However,the return

on this investment is not automatic. To leverage the reuse possibilities that OO

programming providesrequires forethoughtand planning. There are many techniquesto

realizereuse at every level of the system developmentprocess. Those atthe detailed

design and code level are well known and documented.New literature is addressing the

reuse of design in the form of software patterns. However, thisis justpartof the battle.

Communicatingopportunities forreuse to others in the organizationis paramount.How

can you reuse som ething thatyou don't know exists? Planning ahead forreuse reduces

the cost and increases the value of both the reusable componentsand the system s into

which they are incorporated.

Seventh Principle: Think!

This lastPrincipleis probably the mostoverlooked.Placing clear,com pletethought

before action almostalways produces betterresults. W hen you think about something,

you are more likely to do itright.You also gain knowledge about how to do itright

again. If you do think about something and still do it wrong, it becomes valuable

experience. A side effectof thinking is learning to recognize when you don t know

something,at which pointyou can research the answer. W hen clear thoughthas gone into

a system,value comesout. Applying the firstsix Principlesrequiresintense thought, for

which the potentialrewards are enormous.

Explain inputand output of dom ain analysis.

Input and Outputfor Domain Analysis:

The role of domain analyst is to discover and define reusable analysis patterns, analysis
classes and related inform ation thatm ay be used by many people working on similar

but notnecessarily the same applications.

Inputdomain refers to all methodologiesthatare useful for gathering inform ationof

system to get acquainted with system .Good Inputdomain analysisleads to better

understanding of system and ensure quality software developmentroadmap.

Outputdomainrefersto theresultof methodologiesthatare used in Input Dom ain

analysis. This gives a breakthrough fornextstep of SDLC in form ofreusing modules

Technicol Ineronee

Exvsting appicabions

o N\ Cos awonomis

\ Reute siondords

Sourcesof | - / Domoin
LS rveys .

gomoin . > Domm Functonal mode’s analysts

knowledge | Expert odvice \ analysis ol skl

Curment/*uhre requirements

[— en—

\ Oomain longuoges

4 W hatis

SRS?
A software requirements specification (SRS) is a complete
description of the behavior of the system to be developed. Itincludes

a setofuse cases describeallof the interactionsthatthe users will
have with the software.In addition to use cases,the SRS contains
functionalrequirementsand non functionalrequirements.Functional
requirementsdefine the internalworkings of the software: thatis, the

calculations,technicaldetails,data manipulationand processing, and
other specific functionality thatshows how the use cases are to be

satisfied. Non-functional requirements impose constraints on the
design or implementation (such as performancerequirements,quality
standards,or design constraints).

The purpose of SRS documentis providing a detailed overview of
software product,its parametersand goals. SRS documentdescribes
the project's target audience and its user interface, hardware and
software requirements.ltdefines how client,team and audience see

the productand its functionality.

Q.2any two

1 .Elaborate any six types of software considering the changing nature.

System Software: System Software is a collection of program s written to serve

other programs. Some system software (e.g.:- compliers, editors, and file

management utilities) processes com plex, but determ inate inform ation structures.

Other system applications (e.g. operating system components, drivers, networking

software, telecom munications processors) process largely indeterminate data. In

either case, the system s software area is characterized by heavy interaction with computer hardware; heavy usage
by multiple users; concurrent operation thatrequires scheduling, resource sharing,

and sophisticated process management; complex data structures; and multiple external interfaces

2. Application Software: Application Software consists of standalone program s that solve a specific
business need. Applications in this area process business or technical data in a way that facilities business
operations or management / technical decision making.

3.Engineering / Scientific Software: Formerly characterized by — num ber crunching algorithm s,
engineering and scientific software applications range from astronomy to volcano logy, from autom otive
stress analysis to space shuttle orbital dynamics, and from molecular biology to autom ated

manufacturing. Computer-aided design, system simulation, and other interactive applications have begun

to take on real-time and even system software characteristics.

4 Embedded Software: Embedded Software resides within a product or system and is used to implement
and control features and functions for the end-user and for the system itself. Embedded software

can perform limited and esoteric functions (e.g. keypad control for a microwave oven) or provide significant
function and control capability (e.g. digital functions in an automobile such as fuel control, dashboard displays,
braking systems, etc.)

5. Product-line Software: Designed to provide a specific capability for use by many different customers,
product-line software can focus on a limited & esoteric market place (e.g. — inventory control products) or
address mass consumer markets (e.g. — word processing, spread-sheets, and computer graphics, and
multimedia, entertainment, and database management, personal and business financial applications.)

6.W eb — applications: Web Apps,span a wide array of applications. W eb apps are evolving into

sophisticated com puting environments that not only provide standalone features, com puting functions, and
content to the end user, but also are integrated with corporate databases and business applications.
Artificial Intelligence Software: Al Software makes use of non—-numerical algorithm s to solve com plex
problem s that are not amenable to com putation or straightforward analysis. Applications within this area
include robotics, expert system s, pattern recognition (image and voice), artificial neural networks, theorem

proving, and game playing.

2.Explain principles of planning practices in software engineering (any four)

Principle 1. Understand the scope of the project. It’s im possible to use a road map if you don’t know

where you’re going. Scope provides the software team with a destination.

Principle 2. Involve stakeholders in the planning activity. Stakeholders define priorities and establish project

constraints. To accom modate these realities, software

3

Draw the usecase diagram for taking “photocopy of anshonks from mshte™

{{Note:-Anv other relevant diagram shall be considered}}

- Enroll

¥ Login

_yl Fill il Clin Form

= Canlirm Form r ol

I icdiaclirl T Sawver

& St PhEsteEy

Rawaludbon

A Changs Pagiwerd |

Q.3

l1.Draw and explain level 0 and levell Dataflow diagram for “O nline examination.

W inl17 of form fillingon M SBTE website”.
DFD Level 0 for Online Exam ination winl7 of form filling on M SBTE website

In level 0, the candidate specifies his/her request to Online Exam W 17 module.

The module transfers request to Database. The Database returns the status apnd

same will be transferred

Database

System

Candidate > 1
Cand_Input Exam W17 System_Res

g W ——
—_— e " . UsrDB
_— e
{ Enrcll e ~
TN
r ﬂ'. F
b’ .“‘:‘ —

g

/ g
Apply for™, g——""ra [Ty K
Eaiam) '\\“‘“"'uw

= 5 J i

L
yad “‘

Ill'l,\ Feen &
User { Y :!
- : A

Server

In DFD Levell,User/ Candidate can selectany of the available menus,like enrol

themselves,the module 2 allow them to apply forexam inationi.e.regularexam or

backlog exam .

In module 3 the candidate pays exam fees.In module 4 Studentcan get

Hall-ticketas per theirconvenience.In module 5 the studentcan perform any other

miscellaneoustask such as reportgeneration,change of password etc.

2 Difference between prescriptiveand agile process model,

Prescriptive Process M odel

Agile Process M odel

Product Oriented process.Process and

technology are crucial

People oriented process. Favors people

over technology

A traditional approach for software

productdevelopment

It is an recent approach for Project

M anagement

Traditional and modern approaches

using generic process framework

activitieswith medium to large cycle-

Time

Cycle-timereductionis mostimportant

Focus is on tasks, tools such as

estim ating, scheduling, tracking and

M odel focuses on modularity,iterative,

time bound, parsimony, adaptive,

incremental convergent, collaborative

Control
Approach
M odels include W aterfall,Incremental, Agile process modeluses the conceptof

Prototype, RAD and spiral

Extreme Programming

