
 

                                   MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION 

                                                                           (Autonomous) 

                                                          (ISO/IEC - 27001 - 2005 Certified) 

SUMMER-15  EXAMINATION 

Model Answer 
 

Subject Code: 17432                                             Subject Name:  Object Oriented Programming 
 

Page 1 of 42 

 

                                                                                                                           

Important Instructions to examiners: 

1) The answers should be examined by key words and not as word-to-word as given in  themodel answer      

     scheme. 

2) The model answer and the answer written by candidate may vary but the examiner may try  to assess the  

     understanding level of the candidate. 

3) The language errors such as grammatical, spelling errors should not be given more Importance (Not  

     applicable for subject English and Communication Skills). 

4) While assessing figures, examiner may give credit for principal components indicated in the figure. The  

     figures drawn by candidate and model answer may vary. The examiner may give  credit for any  

     equivalent figure drawn. 

5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may  

     vary and there may be some difference in the candidate‟s answers and  model answer. 

6) In case of some questions credit may be given by judgment on part of examiner of relevant answer based  

    on candidate‟s understanding. 

7) For programming language papers, credit may be given to any other program based on equivalent  

    concept. 

 

1. (A) Attempt any SIX of the following: MARKS 12 

 

 (a) State any four application of object oriented programming. 

    (Any four, each application-1Mark,) 

   [Note: Any relevant application can be considered] 

Ans: 

 Applications Object oriented programming are as follows: 

 Real time systems 

 Simulation and modeling 

 Object oriented databases 

 Hypertext, hypermedia and expertext 

 AI and expert systems 

 Neural networks and parallel programming 

 Decision support and office automation systems 

 CIM/CAM/CAD systems 

 

 

 

 

 



 

                                   MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION 

                                                                           (Autonomous) 

                                                          (ISO/IEC - 27001 - 2005 Certified) 

SUMMER-15  EXAMINATION 

Model Answer 
 

Subject Code: 17432                                             Subject Name:  Object Oriented Programming 
 

Page 2 of 42 

 

 

 (b) Define constructor. State any two type of constructor. 

  (Definition 1Mark, Any two types each-1/2 Mark) 

   

Ans: Definition- A constructor is a special member function whose task is to initialize the objects of its 

class. 

  Types of constructor:- 

 Default constructor 

 Parameterized constructor 

 Copy constructor 

 Constructor with default value 

 Multiple constructor 

 

 

 (c) State any two access specifier with example. 

  (Any two from following list, Each access specifier with example-1Mark) 

            [Note: any relevant example can be considered] 

 

Ans:  List of access specifiers:- 

 1. Private           2. Protected        3. Public 

   

 Example:- class student 

    { 

     private: 

     int roll_no; 

    protected: 

     int marks; 

    public: 

     void getdata(); 

    }; 

 

 

 

 

 

 

 

 



 

                                   MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION 

                                                                           (Autonomous) 

                                                          (ISO/IEC - 27001 - 2005 Certified) 

SUMMER-15  EXAMINATION 

Model Answer 
 

Subject Code: 17432                                             Subject Name:  Object Oriented Programming 
 

Page 3 of 42 

 

 (d) Define constructor overloading. 

            (Definition-2Marks) 

   

Ans: 

 Defining more than one constructor function in a class is called as constructor overloading. 

 

 

 (e) Give the types of inheritance for following diagram: 

            (Each correct identified inheritance type-1Mark) 

Ans: 

 

                                Student 

        

 

                (i)               Sport              (ii)                           

     

 

                                  Result 

 

 

(i) Multilevel Inheritance 

(ii) Hierarchical Inheritance 

 

 (f) What is pointer? Give any example. 

  (Pointer definition-1Mark, Example-1Mark) 

Ans:  

       Definition: - A pointer is a variable that stores address of another variable of similar data type. 

Example: -  int *ptr, a; 

   ptr=&a; 

 

(g) Write a syntax to create a pointer for object. 

 (State syntax-2 Marks) 

 

Ans:    Syntax: - class_name *pointer_variable; 

 

 

 

 

 



 

                                   MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION 

                                                                           (Autonomous) 

                                                          (ISO/IEC - 27001 - 2005 Certified) 

SUMMER-15  EXAMINATION 

Model Answer 
 

Subject Code: 17432                                             Subject Name:  Object Oriented Programming 
 

Page 4 of 42 

 

(h) State any two types of polymorphism. 

            (State any two each type-1Mark) 

 

 Ans: 

1. Compile Time Polymorphism 

2. Run Time Polymorphism 

 

 

(B)  Attempt any TWO of the following:       MARKS 08 

 

 (a) Explain any two visibility modes with example. 

  (Any two modes-each mode description 1Mark, Example 1Mark) 

Ans: 

  Visibility modes:- 

 Private: when a base class is privately inherited by a derived class, „public‟ and „protected‟ 

members of base class become „private‟ members of derived class and therefore the public and 

protected members of base class can be accessed by the member functions of the derived class. 

„Private‟ members of base class are not inherited in derived class. 

Example:-  

class base 

{ 

private: 

int a; 

protected: 

int n; 

public: 

int c; 

void accept() 

{ 

cin>>a; 

} 

}; 

class derived:private base 

{ 

private: 

int d; 

public: 

void getdata() 



 

                                   MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION 

                                                                           (Autonomous) 

                                                          (ISO/IEC - 27001 - 2005 Certified) 

SUMMER-15  EXAMINATION 

Model Answer 
 

Subject Code: 17432                                             Subject Name:  Object Oriented Programming 
 

Page 5 of 42 

 

{ 

accept(); 

cin>>b>>c>>d; 

} 

}d; 

void main() 

{ 

d.getdata(); 

} 

 

 Public: when a base class is publicly inherited by a derived class, „public‟ members of base 

class becomes „public‟ members of derived class and protected members of base class becomes 

protected members of derived class. „Private‟ members of base class are not inherited in derived 

class. 

Example:- 

class base 

{ 

private: 

int a; 

protected: 

int b; 

public: 

int c; 

void accept() 

{ 

cin>>a; 

} 

}; 

class derived:public base 

{ 

private: 

int d; 

public: 

void getdata() 

{ 

cin>>b>>c>>d; 

} 

}d; 



 

                                   MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION 

                                                                           (Autonomous) 

                                                          (ISO/IEC - 27001 - 2005 Certified) 

SUMMER-15  EXAMINATION 

Model Answer 
 

Subject Code: 17432                                             Subject Name:  Object Oriented Programming 
 

Page 6 of 42 

 

void main () 

{ 

d.accept(); 

d.getdata(); 

} 

 

 Protected: when a base class is inherited in derived class in protected mode, „protected‟ and 

„public‟ members of base class becomes protected members of derived class. „Private‟ members of 

base class are not inherited in derived class. 

Example:- 

 class base 

{ 

private: 

int a; 

protected: 

int n; 

public: 

int c; 

void accept() 

{ 

cin>>a; 

} 

}; 

class derived:protected base 

{ 

private: 

int d; 

public: 

void getdata() 

{ 

accept(); 

cin>>b>>c>>d; 

} 

}d; 

void main() 

{ 

d.getdata(); 

} 



 

                                   MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION 

                                                                           (Autonomous) 

                                                          (ISO/IEC - 27001 - 2005 Certified) 

SUMMER-15  EXAMINATION 

Model Answer 
 

Subject Code: 17432                                             Subject Name:  Object Oriented Programming 
 

Page 7 of 42 

 

 

 (b) Explain any two types of constructor with syntax and example. 

            (Any two types each type description-1Mark, Syntax-1/2 Mark, Example-1/2Mark) 

  

Ans: 

Types of constructor:- 

 Default constructor: - A constructor that does not accept parameters is called as default 

constructor. 

Syntax:- constrctor_name(); 

Example:- class account 

  { 

   int accno,bal; 

  public: 

   account() 

   { 

   accno=1; 

   bal=1000; 

   } 

  }; 

  

 Parameterized constructor: - A constructor that accepts parameters is called as parameterized 

constructor. 

Syntax:- constrctor_name(datatype parameter1, datatype parameter1,…, datatype  parameter n); 

Example:- class account 

  { 

   int accno,bal; 

  public: 

   account(int a,int b) 

   { 

   accno=a; 

   bal=b; 

   } 

  }; 

 

 Copy constructor:-A constructor that is used to declare and initialize an object from another 

object is called as copy constructor. 

  Syntax:- constructor_name(class_name &object_name); 

 Example:- class account 



 

                                   MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION 

                                                                           (Autonomous) 

                                                          (ISO/IEC - 27001 - 2005 Certified) 

SUMMER-15  EXAMINATION 

Model Answer 
 

Subject Code: 17432                                             Subject Name:  Object Oriented Programming 
 

Page 8 of 42 

 

  { 

   int accno, bal; 

  public: 

   account( ) 

   { 

    accno =10001; 

    bal = 5000; 

   } 

   account(account &a) 

   { 

   accno=a.accno; 

   bal=a.bal; 

   } 

  }; 

void main( ) 

 { 

  account b; // default constructor gets invoked; 

  account c =b; //copy constructor for c gets invoked 

 } 

 Constructor with default value:- A constructor that accepts parameters and in which some 

parameters can be declared with default value is called as constructor with default value. 

 Syntax:- constrctor_name(datatype parameter1, datatype parameter1=value); 

Example:- class account 

  { 

   int accno,bal; 

  public: 

   account(int a,int b=1000) 

   { 

   accno=a; 

   bal=b; 

   } 

  }; 

 

  

 

 

 

 



 

                                   MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION 

                                                                           (Autonomous) 

                                                          (ISO/IEC - 27001 - 2005 Certified) 

SUMMER-15  EXAMINATION 

Model Answer 
 

Subject Code: 17432                                             Subject Name:  Object Oriented Programming 
 

Page 9 of 42 

 

 

 (c) Explain the concept of destructor in a class with example. 

       (Description of destructor-2Marks, Example-2Marks) 

Ans: 

 Description:- 

 A destructor is used to destroy the objects that are created by a constructor. 

 It is member function whose name is same as the class name but proceeded by a tilde (~). 

 A destructor never takes parameters and it does not return any value. 

 It will be invoked by the compiler upon exit from the program (or block or function) to     

clean up storage that is no longer accessible. 

 

 

 Syntax:- ~destructor_name() 

  { 

  } 

  Example:- 

   class student 

   { 

   public: 

    student() 

    { 

     cout<<”object is initialized”; 

    } 

 

    ~student() 

    { 

     cout<<”object destroyed”; 

    } 

   }; 

  

 

 

 

 

 

 

 

 



 

                                   MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION 

                                                                           (Autonomous) 

                                                          (ISO/IEC - 27001 - 2005 Certified) 

SUMMER-15  EXAMINATION 

Model Answer 
 

Subject Code: 17432                                             Subject Name:  Object Oriented Programming 
 

Page 10 of 42 

 

2. Attempt any FOUR of the following: MARKS 16 

(a) Differentiate between OOP and POP. 

(Any four points for each point -1Mark)  

     [Note: any other relevant point can be considered] 

 

Ans: 

 

Object oriented programming Procedure oriented programming 

1. Focus is on data. 1. Focus is on procedure. 

2.  Programs are divided into multiple 

objects. 

2. Large programs are divided into 

multiple functions. 

       3. Data is hidden and cannot be accessed 

by external functions. 

3. Data move openly around the system 

from function to function. 

       4. Objects communicate with each other 

through function. 

4. Functions transform data from one 

form to another by calling each 

other. 

        5. Employs bottom-up approach in 

program design 

5. Employs top-down approach in 

program design. 

       6. Object oriented approach is used in 

C++ language. 

6. Procedure oriented approach is used 

in C language. 

 

 

(b) Write a program to create a class “student” having data member as name. roll no. and 

percentage to read and display details for 10 students. 

 (Declaration of class with proper members-2Marks, creating array of object and calling   

             functions- 2Marks) 

 

Ans: 

  #include<iosream.h> 

  class student 

  {  

  char name[10]; 

  int rollno; 



 

                                   MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION 

                                                                           (Autonomous) 

                                                          (ISO/IEC - 27001 - 2005 Certified) 

SUMMER-15  EXAMINATION 

Model Answer 
 

Subject Code: 17432                                             Subject Name:  Object Oriented Programming 
 

Page 11 of 42 

 

  float percentage; 

  public: 

  void getdata() 

  { 

  cin>>name>>rollno>>percentage; 

  } 

  void putdata() 

  { 

  cout<<name<<rollno<<percentage; 

  } 

  }; 

  void main() 

  { 

  student s[10]; 

  int i; 

  for(i=0;i<10;i++) 

  s[i].getdata(); 

  for(i=0;i<10;i++) 

  s[i].putdata(); 

  } 

 

(c) Explain: 

  (i) Static member function     (ii) Friend function 

 (Description of static member function-2Marks, description of friend function-2Marks) 

 

Ans: 

(i) Static member function: - a static member function can have access to only other static variable 

or functions declared in the same class. It can be called using the class name instead of object. It 



 

                                   MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION 

                                                                           (Autonomous) 

                                                          (ISO/IEC - 27001 - 2005 Certified) 

SUMMER-15  EXAMINATION 

Model Answer 
 

Subject Code: 17432                                             Subject Name:  Object Oriented Programming 
 

Page 12 of 42 

 

can be declared inside the class with static keyword placed before return type. 

     Syntax for declaration:- 

  static return_type function_name () 

  { 

  } 

  Syntax for calling static function:- class_name::function_name( ); 

 

(i) Friend function: - The private members of a class cannot be accessed from outside the class but 

in some situations two classes may need access of each other‟s private data. So a common 

function can be declared which can be made friend of more than one class to access the private 

data of more than one class. The common function is made friendly with all those classes whose 

private data need to be shared in that function. This common function is called as friend 

function. Friend function is not in the scope of the class in which it is declared. It is called 

without any object. The class members are accessed with the object name and dot membership 

operator inside the friend function. It accepts objects as arguments. 

Syntax:- friend return_type function_type(parameter1,parameter2,…,parameter n); 

  Syntax for calling friend function: - function_name(parameter1,parameter2,…,parameter n); 

 

 

(d) Write a program to search the given element in the entered array using pointer. 

  (Correct logic for searching an element using pointer -4Marks) 

[Note:- Array initialized at the time of declaration or accepting array elements without pointer       

can be considered] 

 

Ans: 

#include<iostream.h> 

#include<conio.h> 

void main() 

{ 



 

                                   MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION 

                                                                           (Autonomous) 

                                                          (ISO/IEC - 27001 - 2005 Certified) 

SUMMER-15  EXAMINATION 

Model Answer 
 

Subject Code: 17432                                             Subject Name:  Object Oriented Programming 
 

Page 13 of 42 

 

 int a[5], i,*ptr, no, flag=0; 

 clrscr(); 

ptr=&a[0]; 

 cout<<"\n enter array elements: \n"; 

  for(i=0; i<5; i++) 

   { 

   cin>>*ptr; 

   ptr++; 

   } 

cout<<"enter element to be searched:\n"; 

  cin>>no; 

  ptr=&a[0]; 

  for(i=0; i<5; i++) 

  { 

   if(*ptr==no) 

   { 

   flag=1; 

  break; 

                   } 

   ptr++; 

  } 

  if(flag == 0) 

  cout<<" number is not present in the array.\n";  

  else 

  cout<”number is present in the array”; 

getch(); 



 

                                   MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION 

                                                                           (Autonomous) 

                                                          (ISO/IEC - 27001 - 2005 Certified) 

SUMMER-15  EXAMINATION 

Model Answer 
 

Subject Code: 17432                                             Subject Name:  Object Oriented Programming 
 

Page 14 of 42 

 

} 

 

(e) Differentiate between compile time & run time polymorphism. 

           (Any four points for each point -1Mark) 

      [Note: any other relevant point can be considered] 

 

Ans: 

Compile time Polymorphism Runtime Polymorphism 

It means that an object is bound to its 

function call at compile time i.e. linking 

of function call to its definition at 

compile time. 

It means that selection of appropriate function 

is done at run time i.e. linking of function call 

to its definition at run time. 

Functions to be called are known well 

before 

Function to be called is unknown until 

appropriate selection is made. 

This does not require use of pointers to 

objects 

This requires use of pointers to object 

Function calls are faster Function calls execution are slower 

It is also referred as early binding or 

static binding. 

It is also referred as late binding or dynamic 

binding. 

e.g. overloaded function call 

It is implemented by function 

overloading or operator overloading 

e.g. virtual function 

It is implemented by virtual functions. 

 

 

 

 

 

 



 

                                   MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION 

                                                                           (Autonomous) 

                                                          (ISO/IEC - 27001 - 2005 Certified) 

SUMMER-15  EXAMINATION 

Model Answer 
 

Subject Code: 17432                                             Subject Name:  Object Oriented Programming 
 

Page 15 of 42 

 

(f) Write a program to show use of multilevel inheritance for following 

  diagram to calculate the gross salary. gs = bs + 0.5 * bs + 0.6 * bs; 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 (Employee class definition-1Mark ,Perks class definition-1Mark,Salary class definition-

1Mark,Main function-1Mark) 

            [Note: Any other correct implementation of multilevel inheritance can be considered.] 

Ans: 

#include<iostream.h> 

class employee 

{ 

char name [10], desig [10]; 

public: 

void getdata() 

{ 

cin>>name>>desig; 

} 

void showdata() 

{ 



 

                                   MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION 

                                                                           (Autonomous) 

                                                          (ISO/IEC - 27001 - 2005 Certified) 

SUMMER-15  EXAMINATION 

Model Answer 
 

Subject Code: 17432                                             Subject Name:  Object Oriented Programming 
 

Page 16 of 42 

 

cout<<name<<desig; 

} 

}; 

 

class Perks: public employee 

{ 

protected: 

int bs; 

public: 

void getp() 

{ 

cin>>bs; 

} 

void showp() 

{ 

cout<<bs; 

} 

}; 

 

class Salary: public Perks 

{ 

int gs; 

public: 

void clas() 

{ 

gs = bs + (0.5* bs) +( 0.6 * bs); 

} 

void shows() 

{ 

cout<<gs; 

} 

}; 

 

void main() 

{ 

Salary sa; 

sa.getdata(); 

sa.getp(); 

sa.clas(); 



 

                                   MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION 

                                                                           (Autonomous) 

                                                          (ISO/IEC - 27001 - 2005 Certified) 

SUMMER-15  EXAMINATION 

Model Answer 
 

Subject Code: 17432                                             Subject Name:  Object Oriented Programming 
 

Page 17 of 42 

 

sa.showdata(); 

sa.showp(); 

sa.shows(); 

} 

 

3. Attempt any FOUR of the following: MARKS 16 

(a) Explain structure of C++ program with example. 

  (Structure 1 Mark; Description -2 Marks; Example -1 Mark) 

Ans:  

General C++ program has following structure. 

 

INCLUDE HEADER FILES 

DECLARE CLASS 

DEFINE MEMBER FUNCTIONS 

DEFINE MAIN FUNCTION 

 

Description:- 

1. Include header files 

In this section a programmer include all header files which are require to execute given 

program. The most important file is iostream.h header file. This file defines most of the C++ 

statements like cout and cin. Without this file one cannot load C++ program. 

 

 

2. Declare Class 

In this section a programmer declares all classes which are necessary for given program. The 

programmer uses general syntax of creating class. 

 

3. Define Member Functions 

This section allows programmer to design member functions of a class. The programmer can 

have inside declaration of a function or outside declaration of a function.  

 

4. Define Main Functions 

This section the programmer creates object and call various functions writer within various class. 

 

Example: 

#include<iostream.h. 

#include<conio.h> 



 

                                   MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION 

                                                                           (Autonomous) 

                                                          (ISO/IEC - 27001 - 2005 Certified) 

SUMMER-15  EXAMINATION 

Model Answer 
 

Subject Code: 17432                                             Subject Name:  Object Oriented Programming 
 

Page 18 of 42 

 

class example 

 { 

  int mark1, mark2; 

 public: 

  void accept( ) 

  { 

   cout<<”Enter Marks for subject 1 and Subject 2”; 

   cin>>roll>>name; 

  } 

  void display( ) 

  { 

   cout<<”Roll Number is “<<roll; 

   cout<<”\nName is “<<name; 

  } 

 }; 

void main( ) 

 { 

example d; 

  clrscr( ); 

  d.accept( ); 

  d.display( ); 

  getch( ); 

 } 

 

 

 

(b) Explain syntax for declaring the function inside the class and outside the class with example. 

 

(Inside Declaration- 2 Marks; Outside Declaration- 2 Marks) 

Ans: 

 Syntax for Declaring Function Inside the class: - 

class class_name 

 { 

  public: 

  return_type function_name(argument(s) ) 

  { 

   Function body; 

  } 



 

                                   MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION 

                                                                           (Autonomous) 

                                                          (ISO/IEC - 27001 - 2005 Certified) 

SUMMER-15  EXAMINATION 

Model Answer 
 

Subject Code: 17432                                             Subject Name:  Object Oriented Programming 
 

Page 19 of 42 

 

  }; 

 In this method one simply declares and defines the function within a class. It does not require any 

special operator or explicit declaration. Entire function is written in a class. 

 

 Syntax for Declaring Function Outside the Class 

class class_name 

 { 

      public: 

      return_type function_name(argument(s));  //Declaring a Function in class 

}; 

  

return_type class_name :: function_name(argument(s))   //Defining a Function 

 { 

  Function body; 

 } 

 In this method a programmer declare as many functions as he wants depending upon the need of a 

program. Once done with it a programmer can then define those functions outside of a class using 

scope resolution operator i.e. (::). 

 Advantage of having outside declaration is to have as many functions as we want and we can 

define it anywhere in a program.  

 

 

 

 

(c) Explain the concept of parameterized constructor with example. 

 

(Description of parameterized constructor- 2 Marks; Example- 2 Marks; Syntax is optional; any 

one method shall be considered) 

Ans: 

Description 
Parameterized Constructor: - Constructor which accepts one or more value(s) as argument(s)/ 

parameter(s) is known as parameterized constructor. These constructors gets invoked when an 

object is created and this object shall be supplemented with appropriate numbers of arguments. 

Syntax for parameterized constructor is as follows. 

Syntax: -  

class class_name 

 { 

   Data member(s); 



 

                                   MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION 

                                                                           (Autonomous) 

                                                          (ISO/IEC - 27001 - 2005 Certified) 

SUMMER-15  EXAMINATION 

Model Answer 
 

Subject Code: 17432                                             Subject Name:  Object Oriented Programming 
 

Page 20 of 42 

 

  public: 

   class_name(arg1, arg2,… ) // parameterized constructor 

   { 

    …. 

    …. 

   } 

 }; 

Example:- 

class student  

 { 

   int roll_number; 

   float per; 

  public: 

   student(int r, float p ) 

   { 

    roll_number = r; 

    per = p; 

   } 

   void display( ) 

   { 

    cout<<”\n Roll Number is “<<roll_number; 

    cout<<”\n Percentage is “<<per; 

   } 

 }; 

void main( ) 

  { 

   student s(1, 75.00);  //Calling Parameterized Constructor 

   int r_no; 

   float per; 

   clrscr( ); 

  cout<<”\n Enter Value of roll Number and percentage”; 

  cin>>r_no>>per; 

  student s2(r_no,per);    //Passing user values to Constructor 

  s.display( ); 

  s2.display( ); 

  getch( ) 

} 

 

 



 

                                   MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION 

                                                                           (Autonomous) 

                                                          (ISO/IEC - 27001 - 2005 Certified) 

SUMMER-15  EXAMINATION 

Model Answer 
 

Subject Code: 17432                                             Subject Name:  Object Oriented Programming 
 

Page 21 of 42 

 

(d) Write a program to show use of single inheritance. 

 

(Defining Base Class -1 Mark, Defining Derived Class -2 Marks, Creating Object and using 

derived members of base class -1 Mark) 

Ans: 

 

#include<iostream.h> 

#include<conio.h> 

class base 

 { 

  int roll; 

  char name[25]; 

 public: 

  void accept( ) 

  { 

   cout<<”Enter Roll Number and Name”; 

   cin>>roll>>name; 

  } 

  void display( ) 

  { 

   cout<<”Roll Number is “<<roll; 

   cout<<”\nName is “<<name; 

  } 

 }; 

class derived : public base 

 { 

  int mark1, mark2; 

 public: 

  void accept_d( ) 

  { 

   cout<<”Enter Marks for subject 1 and Subject 2”; 

   cin>>roll>>name; 

  } 

  void display_d( ) 

  { 

   cout<<”Roll Number is “<<roll; 

   cout<<”\nName is “<<name; 

  } 



 

                                   MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION 

                                                                           (Autonomous) 

                                                          (ISO/IEC - 27001 - 2005 Certified) 

SUMMER-15  EXAMINATION 

Model Answer 
 

Subject Code: 17432                                             Subject Name:  Object Oriented Programming 
 

Page 22 of 42 

 

 }; 

void main( ) 

 { 

  derived d; 

  clrscr( ); 

  d.accept( ); 

  d.accept_d( ); 

  d.display( ); 

  d.display_d( ); 

  getch( ); 

 } 

 

 

(e) Write a program to find the length of string using pointer. 

(Creating pointer variable -1 Mark, Setting pointer variable to first position- 1 Mark, Finding 

length- 2 Marks) 

 

Ans: #include<iostream.h> 

#include<conio.h> 

void main( ) 

 { 

  char str[20], *p; 

  int len=0; 

  clrscr( ); 

  cout<<”\nEnter a String”; 

  cin>>str; 

  p=&str[0]; 

  while(*p!=‟\0‟) 

   { 

    len++; 

    p++; 

   } 

   cout<<”\nLength of a String “<<str<<” is “<<len; 

   getch( ); 

  } 

 

 

 

 



 

                                   MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION 

                                                                           (Autonomous) 

                                                          (ISO/IEC - 27001 - 2005 Certified) 

SUMMER-15  EXAMINATION 

Model Answer 
 

Subject Code: 17432                                             Subject Name:  Object Oriented Programming 
 

Page 23 of 42 

 

(f) Explain any four rules for virtual function. 

(For each rule-1 Mark) 

 

Ans: 

Rules for virtual functions 

When virtual functions are created for implementing late binding, we should observe some basic 

rules that satisfy the compiler requirements: 

1. The virtual functions must be members of some class. 

2. They cannot be static members. 

3. They are accessed by using object pointers. 

4. A virtual function can be friend of another class. 

5. A virtual function in a base class must be defined, even though it may not be used 

6. The prototype of the base class version of a virtual function and all the derived class versions must 

be identical. If two functions with the same name have different prototypes++ considers them as 

overloaded functions, and the virtual function mechanism is ignored. 

7. We cannot have virtual constructors, but we can have virtual destructors. 

8. While a vase pointer can point to any type of the derived object, the reverse is not true. That is to 

say, we cannot use a pointer to derived class to access an object of the base type. 

9. When a base pointer points to a derived class, incrementing or decrementing it will not make it to 

point to the next object of the derived class. It is incremented or decremented only relative to its 

base type. Therefore, we should not use this method to move the pointer to the next object. 

10. If a virtual function is defined in the base class, it need not be necessarily redefined in the derived 

class. In such cases, calls will invoke the base function. 

 

 

4. Attempt any FOUR of the following: MARKS 16 

 

(a) Write a program to evaluate the largest element in entered array using pointer 

(Creating pointer variable- 1 Mark, Setting pointer variable to first position- 1 Mark, Finding 

Largest Number -2 Marks) 

 

Ans: 

#include<iostream.h> 

#include<conio.h> 

void main() 

 { 

  int arr[50],*ptr, lar=0,n,i; 

  clrscr(); 



 

                                   MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION 

                                                                           (Autonomous) 

                                                          (ISO/IEC - 27001 - 2005 Certified) 

SUMMER-15  EXAMINATION 

Model Answer 
 

Subject Code: 17432                                             Subject Name:  Object Oriented Programming 
 

Page 24 of 42 

 

  cout<<"\nEnter number of elements in array"; 

  cin>>n; 

  cout<<"\nEnter Elements in array"; 

  for(i=0;i<n;i++) 

   { 

    cin>>arr[i]; 

   } 

  ptr=&arr[0]; 

  for(i=0;i<n;i++) 

   { 

    if(lar<*ptr) 

    { 

     lar = *ptr; 

    } 

    ptr++; 

   } 

  cout<<"\nLargest Element in Array is "<<lar; 

  getch(); 

 } 

 

 

 

 

(b) Explain hybrid inheritance with example. 

( Description -2 Marks, Example- 2 Marks; any other example/description can be considered; 

program is optional) 

 

Ans: 

Description: 

"Hybrid Inheritance" is a method where one or more types of inheritance are combined together and 

used. Hybrid Inheritance is combination of Hierarchical and Mutilevel Inheritance. It is also known 

as Virtual Inheritance. We can use any combination to form hybrid inheritance only single level 

inheritance cannot be combined with multi-level inheritance as it will result into multilevel 

inheritance. 

 

 

 

 



 

                                   MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION 

                                                                           (Autonomous) 

                                                          (ISO/IEC - 27001 - 2005 Certified) 

SUMMER-15  EXAMINATION 

Model Answer 
 

Subject Code: 17432                                             Subject Name:  Object Oriented Programming 
 

Page 25 of 42 

 

Example:- 

 
Above figure shows graphical representation of hybrid inheritance which combines hierarchical 

inheritance with multiple inheritance. 

Program:- 

#include <iostream.h>  

class mm 

{ 

protected: 

int rollno; 

public: 

void get_num(int a) 

{ rollno = a; } 

void put_num() 

{ cout << "Roll Number Is:"<< rollno << "\n"; } 

};  

class marks : public mm 

{ 

protected: 

int sub1; 

int sub2; 

public: 

void get_marks(int x,int y) 

{ 

sub1 = x; 

sub2 = y; 

} 

void put_marks(void) 



 

                                   MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION 

                                                                           (Autonomous) 

                                                          (ISO/IEC - 27001 - 2005 Certified) 

SUMMER-15  EXAMINATION 

Model Answer 
 

Subject Code: 17432                                             Subject Name:  Object Oriented Programming 
 

Page 26 of 42 

 

{ 

cout << "Subject 1:" << sub1 << "\n"; 

cout << "Subject 2:" << sub2 << "\n"; 

} 

}; 

class extra:public mm 

{ 

protected: 

float e; 

public: 

void get_extra(float s) 

{e=s;} 

void put_extra(void) 

{ cout << "Extra Score::" << e << "\n";} 

}; 

class res : public marks, public extra 

{ 

protected: 

float tot; 

public: 

void disp(void) 

{ 

tot = sub1+sub2+e; 

put_num(); 

put_marks(); 

put_extra(); 

cout << "Total:"<< tot; 

} 

}; 

int main() 

{ 

res std1; 

std1.get_num(10); 

std1.get_marks(10,20); 

std1.get_extra(33.12); 

std1.disp(); 

return 0; 

} 

 



 

                                   MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION 

                                                                           (Autonomous) 

                                                          (ISO/IEC - 27001 - 2005 Certified) 

SUMMER-15  EXAMINATION 

Model Answer 
 

Subject Code: 17432                                             Subject Name:  Object Oriented Programming 
 

Page 27 of 42 

 

(c) Explain copy constructor with example. 

   

(Explanation- 2 Marks, Example- 2 Marks) 

Ans 

The copy constructor is a constructor which creates an object by initializing it with an object of the 

same class, which has been created previously. The copy constructor is used to: 

 

 Initialize one object from another of the same type. 

 Copy an object to pass it as an argument to a function. 

 Copy an object to return it from a function. 

 

If a copy constructor is not defined in a class, the compiler itself defines one. If the class has pointer 

variables and has some dynamic memory allocations, then it is a must to have a copy constructor. 

The most common form of copy constructor is shown here: 

 

#include<iostream.h> 

 class Point 

{ 

private: 

    int x, y; 

public: 

    Point(int x1, int y1) { x = x1; y = y1; } 

  

    // Copy constructor 

    Point(Point &p2) {x = p2.x; y = p2.y; } 

  

    int getX()            {  return x; } 

    int getY()            {  return y; } 

}; 

  

 

 

 

int main() 

{ 

    Point p1(10, 15); // Normal constructor is called here 

    Point p2 = p1; // Copy constructor is called here 

     // Let us access values assigned by constructors 



 

                                   MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION 

                                                                           (Autonomous) 

                                                          (ISO/IEC - 27001 - 2005 Certified) 

SUMMER-15  EXAMINATION 

Model Answer 
 

Subject Code: 17432                                             Subject Name:  Object Oriented Programming 
 

Page 28 of 42 

 

    cout << "p1.x = " << p1.getX() << ", p1.y = " << p1.getY(); 

    cout << "\np2.x = " << p2.getX() << ", p2.y = " << p2.getY(); 

     return 0; 

} 

 

(d) Differentiate between multiple inheritance and multilevel inheritance. 

(Any four points of comparison each -1 Mark) 

Ans: 

Multiple inheritance: Multi-level 

Multiple inheritance refer to a class 

being derived from two or more classes. 

Multilevel inheritance refers to a class 

inheriting from a parent class which is itself 

derived from another class. 

A Class derived from at least more than 

one base class. 

A class Extends or Derived from exactly one 

class & derived class can act as base class for 

another class 

Multiple inheritances are supported by 

C++, but not by Java and C#.  

Multilevel inheritance is supported by all 

OOPs languages.  

Syntax in C++.  

class base1 

 { .... ... .... };   

class base2 

  { .... ... .... }; 

class derived : public base1, public 

base2 

 {.... ... ....}; 

In this example, class derived is derived 

from two base classes base1 & base2 

Syntax in C++.  

class A 

{ .... ... .... }; 

class B : public A 

{ .... ... .... }; 

class C : public B 

{ .... ... .... }; 

In this example, class B is derived from 

class A and class C is derived from derived 

class B. 

  



 

                                   MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION 

                                                                           (Autonomous) 

                                                          (ISO/IEC - 27001 - 2005 Certified) 

SUMMER-15  EXAMINATION 

Model Answer 
 

Subject Code: 17432                                             Subject Name:  Object Oriented Programming 
 

Page 29 of 42 

 

 

(e) Write a program to show use of passing object as a parameter to function showdata ( ) for 

a class “student” having data member as name and roll no. & member function as 

getdata ( ). 

(Creating class -1 Mark, Creating Functions- 1 Mark, Passing Object as Argument- 2 

Marks) 

(Note:- Any concept which justifies object as function argument shall be considered) 

Ans: 

#include<iostream.h> 

#include<conio.h> 

class student 

 { 

  int roll; 

  char name[25]; 

 public: 

  void getdata( ) 

  { 

   cout<<”Enter Roll Number and Name”; 

   cin>>roll>>name; 

  } 

  void showdata(student s1) 

  { 

   cout<<”Roll Number is “<<s1.roll; 

   cout<<”\nName is “<<s1.name; 

  } 

 }; 

 

void main () 

{ 

student wl,w2; 

wl.getdata(); 

w2.showdata(wl); //passing object as parameters 

return 0; 

} 

 

 

 

 



 

                                   MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION 

                                                                           (Autonomous) 

                                                          (ISO/IEC - 27001 - 2005 Certified) 

SUMMER-15  EXAMINATION 

Model Answer 
 

Subject Code: 17432                                             Subject Name:  Object Oriented Programming 
 

Page 30 of 42 

 

(f) Explain: 

            (i)Scope resolution operator      (ii)  Memory management operator  

(Scope resolution operator Explanation- 1Mark Example -1Mark) 

       (Memory management operator Explanation- 1Mark Example -1Mark) 

Ans: 

(i)Scope resolution operator       

In C, the global version of a variable cannot be accessed from within the inner block. C++ resolves this 

problem by introducing a new operator :: called scope resolution operator. This can be used to uncover a 

hidden variable. It takes the following form: 

 

 

This operator allows access to the global version of a variable.  

Example: 

int student :: roll_no;  // Using data members with the help of scope resolution operator 

or 

void student :: performance ( ) // Using member function with the help of scope resolution operator 

{  //Function Body   } 

 

 

(ii) Memory management operator 

 

There are two types of memory management operators in C++: 

 new 

 delete 

These two memory management operators are used for allocating and freeing memory block in 

efficient and convenient ways. 

 

New operator: 

The new operator in C++ is used for dynamic storage allocation. This operator can be used to create 

object of any type. 

 

General syntax of new operator in C++: 

The general syntax of new operator in C++ is as follows: 

 

pointer variable = new datatype; 

 

In the above statement, new is a keyword and the pointer variable is a variable of type datatype. 

:: variable-

name 



 

                                   MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION 

                                                                           (Autonomous) 

                                                          (ISO/IEC - 27001 - 2005 Certified) 

SUMMER-15  EXAMINATION 

Model Answer 
 

Subject Code: 17432                                             Subject Name:  Object Oriented Programming 
 

Page 31 of 42 

 

 

For example: 

int *a=new int; 

 

 

Delete operator: 

 The delete operator in C++ is used for releasing memory space when the object is no longer 

needed. Once a new operator is used, it is efficient to use the corresponding delete operator for 

release of  memory. 

 

General syntax of delete operator in C++: 

The general syntax of delete operator in C++ is as follows: 

 

delete  pointer_variable; 

 

#include <iostream> 

using namespace std;  

void main() 

{ 

 //Allocates using new operator memory space in memory for storing a integer datatype 

 int *a= new int; 

 *a=100; 

 cout << " The Output is:a= " << *a; 

 //Memory Released using delete operator 

 delete a; 

  

} 

 

   

5. Attempt any FOUR of the following: MARKS  16 

 (a) State any four features of object oriented programming. 

     (Any four each- 1Mark) 

Ans: 

 Emphasis is on data rather than procedure.  

 Programs are divided into what are known as objects 

 Data structure designed such that they characterize the objects.  

 Functions that operate on the data of an object are tied together in the data structure. 



 

                                   MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION 

                                                                           (Autonomous) 

                                                          (ISO/IEC - 27001 - 2005 Certified) 

SUMMER-15  EXAMINATION 

Model Answer 
 

Subject Code: 17432                                             Subject Name:  Object Oriented Programming 
 

Page 32 of 42 

 

 Data is hidden & cannot be accessed by external functions.  

 Objects may communicate with each other through functions.  

 New data and functions can be easily added whenever necessary. 

 Follows bottom-up approach in program designing. 

 

 (b) Explain memory allocation for object with example. 

(Explanation- 2Marks, Diagram- 2Marks) 

Ans:   

The memory space for object is allocated when they are declared & not when the class is specified. 

Actually, the member functions are created & placed in memory space only once when they are 

defined as a part of a class definition. Since all the objects belonging to that class use the same 

member functions, no separate space is allocated for member functions. When the objects are 

created only space for member variable is allocated separately for each object. Separate memory 

locations for the objects are essential because the member variables will hold different data values 

for different objects this is shown in fig 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

                                   MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION 

                                                                           (Autonomous) 

                                                          (ISO/IEC - 27001 - 2005 Certified) 

SUMMER-15  EXAMINATION 

Model Answer 
 

Subject Code: 17432                                             Subject Name:  Object Oriented Programming 
 

Page 33 of 42 

 

 

 (c) Explain various pointer arithmetic operations with examples. 

(Operations-2Marks,Suitable example- 2Marks. Note: Any relevant example shall be considered) 

  

Ans: Pointer arithmetic 

C++ allows pointers to perform the following arithmetic operations: 

 

1 A pointer can be incremented (++) or decremented (--) 

2 Any integer can be added to or subtracted from a pointer. 

3 One pointer can be subtracted from another. 

 

Eg: 

int a[6]; 

int *ptr; 

ptr=&a; 

ptr refers to the address of the variable a. 

ptr++ or ++ptr-This statement moves the pointer to the next memory address .similarly we can 

decrement the pointer variable as follows: 

Ptr-- or --ptr-This statement moves the pointer to the previous memory address. Also, if two pointer 

variables points to the same array can be subtracted from each other. 

 

Example: 

#include<iostream.h> 

#include<conio.h> 

Void main() 

{ 

Int num[5]={56,75,22,18,90},; 

Int ptr; 

Int i; 

Cout<<”array elements are::”; 

For(i=0;i<5;i++) 

Ptr=num; 

Cout<<”value of ptr::”<<*ptr; 

Cout<<”\n”; 

Ptr++; 



 

                                   MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION 

                                                                           (Autonomous) 

                                                          (ISO/IEC - 27001 - 2005 Certified) 

SUMMER-15  EXAMINATION 

Model Answer 
 

Subject Code: 17432                                             Subject Name:  Object Oriented Programming 
 

Page 34 of 42 

 

Cout<<”value  of ptr++::”<<*ptr; 

Cout<<”\n”; 

Ptr--; 

Cout<<”value  of ptr--::”<<*ptr; 

Cout<<”\n”; 

Ptr=ptr+2; 

Cout<<”value of ptr+2::”<<*ptr; 

Cout<<”\n”; 

Ptr=ptr-1; 

Cout<<”value of ptr-1::”<<*ptr; 

Cout<<”\n”; 

Ptr+=3; 

Cout<<”value of ptr+=3::”<<*ptr; 

Cout<<”\n”; 

getch() 

} 

 

 (d) Explain various rules for overloading operators. 

(Any four points each- 1Mark) 

Ans: 

1) Only existing operators can be overloaded. New operators cannot be created. 

2) The overloaded operator must have at least one operand that is of user-defined type. 

3) We cannot change the basic meaning of an operator. That is to say, we cannot redefine the plus 

(+) operator to subtract one value from the other. 

4) Overloaded operators follow the syntax rules of the original operators. They cannot be 

overridden. 

5) There are some operators that cannot be overloaded (see  table7.1) 

6) We cannot use friend functions to overload certain operators. (see table 7.2) However member 

functions can be used to overload them. 

7) Unary operators, overloaded by means of member function, take no explicit arguments and 

return no explicit values, but, those overloaded by means of a friend function, take one 

reference argument (the object of the relevant class). 

8) Binary operators overloaded through a member function take one explicit argument and those 

which are overloaded through a friend function take two explicit arguments. 



 

                                   MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION 

                                                                           (Autonomous) 

                                                          (ISO/IEC - 27001 - 2005 Certified) 

SUMMER-15  EXAMINATION 

Model Answer 
 

Subject Code: 17432                                             Subject Name:  Object Oriented Programming 
 

Page 35 of 42 

 

9) When using binary operators overloaded through a member function, the left hand operand 

must be an object of the relevant class. 

10) Binary arithmetic operators such as +,-,*, and / must explicitly return a value. They must not 

attempt to change their own arguments. 

 

 

 

 

 

 

 

 

 

 

 (e) Write a program to show use of virtual function. 

   (Correct program-4Marks ) 

Ans: 

           Virtual function 

                #include<iostream.h> 

               #include<conio.h> 

               class base 

               { 

                     public: 

                     void display() 

                     { 

                        cout<<”Display Base”; 

                      } 

                      virtual void show() 

                       {  

                          cout<<”Show Base”; 

                        } 



 

                                   MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION 

                                                                           (Autonomous) 

                                                          (ISO/IEC - 27001 - 2005 Certified) 

SUMMER-15  EXAMINATION 

Model Answer 
 

Subject Code: 17432                                             Subject Name:  Object Oriented Programming 
 

Page 36 of 42 

 

                   }; 

class derived: public base 

{ 

  public: 

  void display() 

  { 

     cout<<”Display Derived”; 

    } 

    void show() 

    { 

       cout<<”Show Derived”; 

     } 

}; 

void main() 

{ 

  base b1; 

  derived d1; 

  base *bptr; 

  bptr=&b1; 

  bptr->display(); 

  bptr->show(); 

  bptr=&d1; 

  bptr->display(); 

  bptr->show(); 

  getch(); 

} 

 

 

 (f) Define polymorphism. Explain any two types with example. 

  (Definition -1 Mark, Two types -3 Marks) 

Ans: 

Polymorphism- It is the ability to take more than one form. An operation may exhibit different 

behaviors in different instances. 

 

Types-    1) Compile time polymorphism 

     2) Run time polymorphism 

 



 

                                   MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION 

                                                                           (Autonomous) 

                                                          (ISO/IEC - 27001 - 2005 Certified) 

SUMMER-15  EXAMINATION 

Model Answer 
 

Subject Code: 17432                                             Subject Name:  Object Oriented Programming 
 

Page 37 of 42 

 

Compile time polymorphism: - It means a compiler is able to select the appropriate function for a 

particular function call at the compile time itself i.e. linking of function call to its definition at 

compile time. 

It can be achieved by function overloading & operator overloading. 

Function overloading- We can use the same function name to create functions that perform a 

variety of different tasks. i.e. same name functions may behave differently. 

Operator overloading: The ability to provide the operators with special meaning for a data type is 

known as operator overloading. 

 

Runtime polymorphism: - It means a selecting an appropriate member function for a particular 

function call at the run time i.e. linking of function call to its definition at run time. 

 It can be achieved by implementing virtual functions in a program. 

Virtual function: When base class and its derived class both contains same function name then the 

function in base class is declared as virtual using keyword virtual preceding its normal declaration. 

 

6. Attempt any TWO of the following: MARKS  16 

(a) Explain various types of inheritance with example. 

  (Any four types each- 2 Marks; syntax shall be considered as example) 

Ans: 

 

1.Single inheritance: It includes single base class which can allow only one derived class to inherit 

its properties. 

 

 
 

 

2.Multiple inheritance: In this inheritance, a single derived class can inherit properties of more than 

one base class 



 

                                   MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION 

                                                                           (Autonomous) 

                                                          (ISO/IEC - 27001 - 2005 Certified) 

SUMMER-15  EXAMINATION 

Model Answer 
 

Subject Code: 17432                                             Subject Name:  Object Oriented Programming 
 

Page 38 of 42 

 

 

3.Multi-level inheritance: A single class can be derived from a single base class. We can derive a 

new class from as already derived class. It includes different levels for defining class. A child 

class can share properties of its base class (parent class) as well as grandparent class 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.Hierarchical inheritance: In this inheritance, multiple classes can be derived from one single base 

class. All derived classes inherit properties of single base class 

 



 

                                   MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION 

                                                                           (Autonomous) 

                                                          (ISO/IEC - 27001 - 2005 Certified) 

SUMMER-15  EXAMINATION 

Model Answer 
 

Subject Code: 17432                                             Subject Name:  Object Oriented Programming 
 

Page 39 of 42 

 

 

 

 

 

 

 

 

 

 

 

 

5. Hybrid Inheritance: In this inheritance, it combines single inheritance, multiple inheritance, multi 

– level inheritance & hierarchical inheritance.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

                                   MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION 

                                                                           (Autonomous) 

                                                          (ISO/IEC - 27001 - 2005 Certified) 

SUMMER-15  EXAMINATION 

Model Answer 
 

Subject Code: 17432                                             Subject Name:  Object Oriented Programming 
 

Page 40 of 42 

 

(b) Write a program to create a class “employee” with data member as  name, designation and 

basic salary & gross salary. Create member functions as getdata () to read and showdata () to 

display details. Create sum () as friend function to calculate gross salary. 

 

 gs=bs+O.5*bs+9.O*bs; 

 

 (Class definition-2 Marks, Friend declaration-2 Marks, Friend definition-3Marks, Output -1 

Mark) 

Ans: 

 

 

#include<iostream.h> 

#include<conio.h> 

class employee 

{ 

private: 

char emp_name[10]; 

char designation[7]; 

float bas_sal; 

float gr_sal; 

public: 

void getdata() 

{ 

cout<<"enter employee name,designation and basic salary"; 

cin>>emp_name>>endl; 

cin>>designation>>endl; 

cin>>bas_sal>>endl; 

} 

void showdata() 

{ 

cout<<"Employee Name="<<emp_name<<endl; 

cout<<"Employee designation="<<designation<<endl; 

cout<<"Employee basic salary ="<<bas_sal<<endl; 

} 

friend void sum(employee e); 

}; 

void sum(employee e) 

{ 



 

                                   MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION 

                                                                           (Autonomous) 

                                                          (ISO/IEC - 27001 - 2005 Certified) 

SUMMER-15  EXAMINATION 

Model Answer 
 

Subject Code: 17432                                             Subject Name:  Object Oriented Programming 
 

Page 41 of 42 

 

gs_sal=e.bas_sal+(0.5*e.bas_sal)+(0.9*e.bas_sal); 

cout<<"Total gross salary of employee="<<gs_sal; 

} 

void main() 

{ 

employee e1; 

clrscr(); 

e1.getdata(); 

e1.showdata(); 

sum(e1); 

getch(); 

} 

 

(c) Create a class “Account” with data member as acct.no. and balance. Create member function 

as getdata () and showdata ().  Write a program to create a pointer for getdata ()  and 

showdata () function and access them using object of class “Account”. 

(Class  definition- 4 Marks, Main Function- 4 Marks) 

Ans: 

#include<iostream.h> 

#include<conio.h> 

class account 

{ 

private: 

int acct_no; 

float balance; 

public: 

void getdata() 

{ 

cout<<"Enter account number and balance::"; 

cin>>acct_no>>endl; 

cin>> balance >>endl; 

} 

void showdata() 

{ 

cout<<"Account number="<<acct_no<<endl; 

cout<<"balance="<< balance <<endl; 

} 

}; 



 

                                   MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION 

                                                                           (Autonomous) 

                                                          (ISO/IEC - 27001 - 2005 Certified) 

SUMMER-15  EXAMINATION 

Model Answer 
 

Subject Code: 17432                                             Subject Name:  Object Oriented Programming 
 

Page 42 of 42 

 

void main() 

{ 

account a; 

account *ptr; 

ptr=&a; 

ptr->getdata(); 

ptr->showdata(); 

getch(); 

} 


