
Professional

Android™ Application Development

www.wrox.com

$44.99 USA
$48.99 CANADA

Wrox Professional guides are planned and written by working programmers to meet the real-world needs of programmers, developers,
and IT professionals. Focused and relevant, they address the issues technology professionals face every day. They provide examples,
practical solutions, and expert education in new technologies, all designed to help programmers do a better job.

Recommended
Computer Book

Categories

Programming Languages

Java

ISBN: 978-0-470-34471-2

Offering an open development environment, Android represents an exciting
new opportunity to write innovative applications for mobile devices. This book
provides you with a hands-on guide to building these applications using the
Android software development kit. It takes you through a series of sample
projects, each introducing new features and techniques to get the most out of
Android. You’ll learn all about the basic functionality as well as discover how to
utilize the advanced features with the help of concise and useful examples.

Beginning with an introduction to the Android software stack, the author
examines the philosophy behind creating robust, consistent, and appealing
applications for mobile phones. You’ll get the grounding and knowledge that is
needed to write customized mobile applications using the current Android 1.0
SDK. Plus, you’ll also gain the flexibility to quickly adapt to future enhancements
in order to build the most cutting-edge solutions.

What you will learn from this book
● Best practices for Android mobile development
● An introduction to Activities, Intents, the manifest, and resources
● How to create user interfaces with layouts and custom views
● Techniques to store and share your application data
● Instructions for creating map-based applications, using location-based

services including GPS, and geocoding locations
● How to create and use background Services and Notifications
● Working with the accelerometers, compass, and camera hardware
● All about phone and networking hardware such as telephony APIs, SMS, and

network management
● Advanced development topics, including security, IPC, and some advanced

graphics and user interface techniques

Who this book is for
This book is for anyone interested in creating applications for the Android mobile phone platform. It includes information that will be
valuable whether you’re an experienced mobile developer or just starting out writing mobile applications.

 Enhance Your Knowledge
Advance Your Career

A
ndroid

™ A
pplication D

evelopm
ent

Meier

Professional

subtitle

spine=.864"

Updates, source code, and Wrox technical support at www.wrox.com

Reto Meier

Wrox Programmer to Programmer TMWrox Programmer to Programmer TM

Professional

Android™
Application
Development

Professional

Android™ Application Development

 Enhance Your Knowledge
Advance Your Career

Professional Android Application Development
978-0-470-34471-2
A hands-on guide to building mobile applications, this book
features concise and compelling examples that show you how
to quickly construct real-world mobile applications for Android
phones. Fully up-to-date for version 1.0 of the Android SDK, it
covers all the essential features, and explores the advanced
capabilities of Android.

Professional Java JDK 6 Edition
978-0-471-77710-6
Building upon Ivor Horton’s Beginning Java 2, this resource shows
you how to use the core features of the latest JDK as well as
powerful open source tools such as Ant, JUnit, and Hibernate. It
will arm you with a well-rounded understanding of the professional
Java development landscape.

Expert One-on-OneTM
J2EETM Development without EJBTM
978-0-7645-5831-3
This hands-on guide shows you alternatives to EJB that can be
used to create higher quality applications faster and at lower
cost, and demonstrates how to leverage practical techniques and
tools, including the popular open source Spring Framework and
Hibernate.

spine=.864"

Get more out of
WROX.com

Programmer to Programmer™

Interact
Take an active role online by participating in
our P2P forums

Wrox Online Library
Hundreds of our books are available online
through Books24x7.com

Wrox Blox
Download short informational pieces and
code to keep you up to date and out of
trouble!

Chapters on Demand
Purchase individual book chapters in pdf
format

Join the Community
Sign up for our free monthly newsletter at
newsletter.wrox.com

Browse
Ready for more Wrox? We have books and
e-books available on .NET, SQL Server, Java,
XML, Visual Basic, C#/ C++, and much more!

Contact Us.
 We always like to get feedback from our readers. Have a book idea?
Need community support? Let us know by e-mailing wrox-partnerwithus@wrox.com

Professional Android™ Application Development

Introduction . xvii
Chapter 1: Hello, Android . 1
Chapter 2: Getting Started . 19
Chapter 3: Creating Applications and Activities . 45
Chapter 4: Creating User Interfaces . 75
Chapter 5: Intents, Broadcast Receivers, Adapters, and the Internet 113
Chapter 6: Data Storage, Retrieval, and Sharing . 159
Chapter 7: Maps, Geocoding, and Location-Based Services 207
Chapter 8: Working in the Background . 249
Chapter 9: Peer-to-Peer Communication . 279
Chapter 10: Accessing Android Hardware . 315
Chapter 11: Advanced Android Development . 353
Index . 399

44712ffirs.indd i44712ffirs.indd i 10/20/08 4:08:56 PM10/20/08 4:08:56 PM

44712ffirs.indd ii44712ffirs.indd ii 10/20/08 4:08:56 PM10/20/08 4:08:56 PM

Professional

Android™ Application Development

Reto Meier

44712ffirs.indd iii44712ffirs.indd iii 10/20/08 4:08:56 PM10/20/08 4:08:56 PM

Professional Android™ Application Development
Published by
Wiley Publishing, Inc.
10475 Crosspoint Boulevard
Indianapolis, IN 46256
www.wiley.com

Copyright © 2009 by Wiley Publishing, Inc., Indianapolis, Indiana

Published simultaneously in Canada

ISBN: 978-0-470-34471-2

Manufactured in the United States of America

10 9 8 7 6 5 4 3 2 1

Library of Congress Cataloging-in-Publication Data is available from the publisher.

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or
by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted
under Sections 107 or 108 of the 1976 United States Copyright Act, without either the prior written permis-
sion of the Publisher, or authorization through payment of the appropriate per-copy fee to the Copyright
Clearance Center, 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 646-8600. Requests to
the Publisher for permission should be addressed to the Legal Department, Wiley Publishing, Inc., 10475
Crosspoint Blvd., Indianapolis, IN 46256, (317) 572-3447, fax (317) 572-4355, or online at
http://www.wiley.com/go/permissions.

Limit of Liability/Disclaimer of Warranty: The publisher and the author make no representations or war-
ranties with respect to the accuracy or completeness of the contents of this work and specifi cally disclaim all
warranties, including without limitation warranties of fi tness for a particular purpose. No warranty may be
created or extended by sales or promotional materials. The advice and strategies contained herein may not
be suitable for every situation. This work is sold with the understanding that the publisher is not engaged in
rendering legal, accounting, or other professional services. If professional assistance is required, the services
of a competent professional person should be sought. Neither the publisher nor the author shall be liable for
damages arising herefrom. The fact that an organization or Web site is referred to in this work as a citation
and/or a potential source of further information does not mean that the author or the publisher endorses the
information the organization or Web site may provide or recommendations it may make. Further, readers
should be aware that Internet Web sites listed in this work may have changed or disappeared between when
this work was written and when it is read.

For general information on our other products and services please contact our Customer Care Department
within the United States at (800) 762-2974, outside the United States at (317) 572-3993 or fax (317) 572-4002.

Trademarks: Wiley, the Wiley logo, Wrox, the Wrox logo, Wrox Programmer to Programmer, and related
trade dress are trademarks or registered trademarks of John Wiley & Sons, Inc. and/or its affi liates, in the
United States and other countries, and may not be used without written permission. Android is a trademark
of Google, Inc. All other trademarks are the property of their respective owners. Wiley Publishing, Inc., is
not associated with any product or vendor mentioned in this book.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not
be available in electronic books.

44712ffirs.indd iv44712ffirs.indd iv 10/20/08 4:08:56 PM10/20/08 4:08:56 PM

To Kris

44712ffirs.indd v44712ffirs.indd v 10/20/08 4:08:56 PM10/20/08 4:08:56 PM

About the Author
Originally from Perth, Western Australia, Reto Meier now lives in London.

Reto is an experienced software developer with more than 10 years of experience in GUI application
architecture, design, and development. He’s worked in various industries, including offshore oil and
gas, before moving to London and into fi nance.

Always interested in emerging technologies, Reto has been involved in Android since the initial release
in 2007. In his spare time, he tinkers with a wide range of development platforms including WPF and
Google’s plethora of developer tools.

You can check out Reto’s web site, The Radioactive Yak, at http://blog.radioactiveyak.com.

About the Tech Editor
Dan Ulery is a software engineer with experience in .NET, Java, and PHP development, as well as in
deployment engineering. He graduated from the University of Idaho with a bachelor of science degree
in computer science and a minor in mathematics.

44712ffirs.indd vi44712ffirs.indd vi 10/20/08 4:08:56 PM10/20/08 4:08:56 PM

Credits
Executive Editor
Chris Webb

Development Editor
William Bridges

Technical Editor
Daniel Ulery

Senior Production Editor
Debra Banninger

Copy Editor
Cate Caffrey

Editorial Manager
Mary Beth Wakefi eld

Production Manager
Tim Tate

Vice President and Executive Group Publisher
Richard Swadley

Vice President and Executive Publisher
Joseph B. Wikert

Project Coordinator, Cover
Lynsey Stanford

Compositor
James D. Kramer, Happenstance Type-O-Rama

Proofreader
Nancy Carrasco

Indexer
Jack Lewis

44712ffirs.indd vii44712ffirs.indd vii 10/20/08 4:08:56 PM10/20/08 4:08:56 PM

Acknowledgments

A big thank you goes to the Android team, particularly those of you who’ve contributed to the Android
developer Google Groups, for creating and supporting an exciting new playground.

I also thank Philipp Lenssen for providing an inspiration, and occasional venue, for my blogging
efforts; Chris Webb for reading a blog and seeing an author; and Bill Bridges, Dan Ulery, and the Wrox
team for helping me along the way.

Thanks also to Paul, Stu, and Mike: Your friendship and inspiration helped me get to where I am.

Most importantly, I’d like to thank Kristy. For everything.

44712ffirs.indd viii44712ffirs.indd viii 10/20/08 4:08:56 PM10/20/08 4:08:56 PM

Contents

Introduction xvii

Hello, Android Chapter 1: 1

A Little Background 2
The Not So Distant Past 2
The Future 3

What It Isn’t 3
An Open Platform for Mobile Development 4
Native Android Applications 4
Android SDK Features 5

Access to Hardware including Camera, GPS, and Accelerometer 6
Native Google Maps, Geocoding, and Location-Based Services 6
Background Services 6
SQLite Database for Data Storage and Retrieval 7
Shared Data and Interapplication Communication 7
P2P Services with Google Talk 7
Extensive Media Support and 2D/3D Graphics 8
Optimized Memory and Process Management 8

Introducing the Open Handset Alliance 8
What Does Android Run On? 9
Why Develop for Android? 9

What Will Drive Android Adoption? 10
What Does It Have That Others Don’t? 10
Changing the Mobile Development Landscape 11

Introducing the Development Framework 11
What Comes in the Box 12
Understanding the Android Software Stack 12
The Dalvik Virtual Machine 14
Android Application Architecture 14
Android Libraries 15
Advanced Android Libraries 16

Summary 17

44712ftoc.indd ix44712ftoc.indd ix 10/21/08 12:07:15 AM10/21/08 12:07:15 AM

x

Contents

Getting Started 1Chapter 2: 9

Developing for Android 20
What You Need to Begin 20
Creating Your First Android Activity 24
Types of Android Applications 29

Developing for Mobile Devices 30
Hardware-Imposed Design Considerations 30
Considering the Users’ Environment 33
Developing for Android 34

To-Do List Example 37
Android Development Tools 42

The Android Emulator 42
Dalvik Debug Monitor Service (DDMS) 43
The Android Debug Bridge (ADB) 43

Summary 44

Creating Applications and Activities 4Chapter 3: 5

What Makes an Android Application? 46
Introducing the Application Manifest 46
Using the Manifest Editor 49
The Android Application Life Cycle 50
Understanding Application Priority and Process States 51
Externalizing Resources 52

Creating Resources 53
Using Resources 59
To-Do List Resources Example 62
Creating Resources for Different Languages and Hardware 63
Runtime Confi guration Changes 64

A Closer Look at Android Activities 66
Creating an Activity 66
The Activity Life Cycle 68
Android Activity Classes 73

Summary 73

Creating User Interfaces 7Chapter 4: 5

Fundamental Android UI Design 76
Introducing Views 76

Creating Activity User Interfaces with Views 77
The Android Widget Toolbox 78

44712ftoc.indd x44712ftoc.indd x 10/21/08 12:07:15 AM10/21/08 12:07:15 AM

xi

Contents

Introducing Layouts 79
Using Layouts 79

Creating New Views 80
Modifying Existing Views 81
Creating Compound Controls 85
Creating Custom Widgets and Controls 88
Using Custom Controls 98

Creating and Using Menus 99
Introducing the Android Menu System 99
Defi ning an Activity Menu 101
Dynamically Updating Menu Items 104
Handling Menu Selections 104
Submenus and Context Menus 105
To-Do List Example Continued 107

Summary 112

Intents, Broadcast Receivers, Adapters, and the Internet 11Chapter 5: 3

Introducing Intents 114
Using Intents to Launch Activities 114
Using Intent Filters to Service Implicit Intents 121
Using Intent Filters for Plug-ins and Extensibility 130
Using Intents to Broadcast Events 132

Introducing Adapters 136
Introducing Some Android-Supplied Adapters 136
Using Adapters for Data Binding 136

Using Internet Resources 141
Connecting to an Internet Resource 142
Leveraging Internet Resources 143

Introducing Dialogs 143
Introducing the Dialog Class 144
Using Activities as Dialogs 147

Creating an Earthquake Viewer 148
Summary 157

Data Storage, Retrieval, and Sharing 15Chapter 6: 9

Android Techniques for Saving Data 160
Saving Simple Application Data 160

Creating and Saving Preferences 161
Retrieving Shared Preferences 161
Saving the Activity State 162
Creating a Preferences Page for the Earthquake Viewer 165

44712ftoc.indd xi44712ftoc.indd xi 10/21/08 12:07:15 AM10/21/08 12:07:15 AM

xii

Contents

Saving and Loading Files 174
Including Static Files as Resources 174
File Management Tools 175

Databases in Android 175
Introducing SQLite 176
Cursors and Content Values 176
Working with Android Databases 177

Introducing Content Providers 189
Using Content Providers 189
Native Android Content Providers 192
Creating a New Content Provider 194
Creating and Using an Earthquake Content Provider 197

Summary 205

Maps, Geocoding, and Location-Based Services 20Chapter 7: 7

Using Location-Based Services 208
Setting up the Emulator with Test Providers 208

Updating Locations in Emulator Location Providers 208
Create an Application to Manage Test Location Providers 209

Selecting a Location Provider 212
Finding the Available Providers 212
Finding Providers Based on Requirement Criteria 212

Finding Your Location 213
“Where Am I?” Example 214
Tracking Movement 216
Updating Your Location in “Where Am I?” 217

Using Proximity Alerts 219
Using the Geocoder 220

Reverse Geocoding 221
Forward Geocoding 221
Geocoding “Where Am I?” 222

Creating Map-Based Activities 224
Introducing MapView and MapActivity 224
Creating a Map-Based Activity 224
Confi guring and Using Map Views 226
Using the Map Controller 227
Mapping “Where Am I?” 228
Creating and Using Overlays 231
Introducing MyLocationOverlay 239
Introducing ItemizedOverlays and OverlayItems 239
Pinning Views to the Map and Map Positions 240

44712ftoc.indd xii44712ftoc.indd xii 10/21/08 12:07:15 AM10/21/08 12:07:15 AM

xiii

Contents

Mapping Earthquakes Example 242
Summary 247

Working in the Background 24Chapter 8: 9

Introducing Services 250
Creating and Controlling Services 250
Binding Activities to Services 258

Using Background Worker Threads 259
Creating New Threads 260
Synchronizing Threads for GUI Operations 260
Moving the Earthquake Service to a Background Thread 261

Let’s Make a Toast 262
Customizing Toasts 263
Using Toasts in Worker Threads 264

Introducing Notifi cations 265
Introducing the Notifi cation Manager 266
Creating Notifi cations 266
Triggering Notifi cations 267
Adding Notifi cations to the Earthquake Monitor 267
Advanced Notifi cation Techniques 270
Ongoing and Insistent Notifi cations 272

Using Alarms 273
Using Alarms to Update Earthquakes 274
Summary 276

Peer-to-Peer Communication 27Chapter 9: 9

Introducing Android Instant Messaging 280
Using the GTalk Service 280
Binding to the GTalk Service 281
Making a GTalk Connection and Starting an IM Session 282
Introducing Presence and the Contact Roster 283
Managing Chat Sessions 286
Sending and Receiving Data Messages 289

Introducing SMS 291
Using SMS in Your Application 291
Sending SMS Messages 292
Listening for SMS Messages 294
Emergency Responder SMS Example 297
Automating the Emergency Responder 306

Summary 314

44712ftoc.indd xiii44712ftoc.indd xiii 10/21/08 12:07:15 AM10/21/08 12:07:15 AM

xiv

Contents

Accessing Android Hardware 31Chapter 10: 5

Using the Media APIs 316
Playing Media Resources 316
Recording Multimedia 317

Using the Camera 319
Controlling Camera Settings 319
Using the Camera Preview 320
Taking a Picture 320

Introducing the Sensor Manager 321
Using the Accelerometer and Compass 323

Introducing Accelerometers 324
Detecting Acceleration Changes 324
Creating a Speedometer 326
Determining Your Orientation 329
Creating a Compass and Artifi cial Horizon 330

Android Telephony 333
Making Phone Calls 334
Monitoring Phone State and Phone Activity 334
Monitoring Data Connectivity and Activity 337
Accessing Phone Properties and Status 338
Controlling the Phone 338

Using Bluetooth 339
Introducing the Bluetooth Service 339
Controlling the Local Bluetooth Device 340
Discovering and Bonding with Bluetooth Devices 340
Managing Bluetooth Connections 342
Communication with Bluetooth 342
Using a Bluetooth Headset 344

Managing Network and Wi-Fi Connections 345
Monitoring and Managing Your Internet Connectivity 345
Managing Active Connections 346
Managing Your Wi-Fi 347

Controlling Device Vibration 350
Summary 351

Advanced Android Development 35Chapter 11: 3

Paranoid Android 354
Linux Kernel Security 354
Introducing Permissions 354
Declaring and Enforcing Permissions 355
Enforcing Permissions with Broadcasting Intents 355

44712ftoc.indd xiv44712ftoc.indd xiv 10/21/08 12:07:15 AM10/21/08 12:07:15 AM

xv

Contents

Using AIDL to Support IPC for Services 356
Implementing an AIDL Interface 356

Using Internet Services 361
Building Rich User Interfaces 361

Working with Animations 361
Using Themes to Skin Your Applications 372
Advanced Canvas Drawing 373
Introducing SurfaceView 390
Creating Interactive Controls 393

Summary 398

Index 399

44712ftoc.indd xv44712ftoc.indd xv 10/21/08 12:07:15 AM10/21/08 12:07:15 AM

44712flast.indd xvi44712flast.indd xvi 10/21/08 12:11:04 AM10/21/08 12:11:04 AM

Introduction

Now is an exciting time for mobile developers. Mobile phones have never been more popular, and pow-
erful smartphones are now a regular choice for consumers. Stylish and versatile phones packing hard-
ware features like GPS, accelerometers, and touch screens are an enticing platform upon which to create
innovative mobile applications.

Android hardware will be designed to tempt consumers, but the real win is for developers. With
existing mobile development built on proprietary operating systems that restrict third-party applica-
tions, Android offers an open and equal alternative. Without artifi cial barriers, Android developers
are free to write applications that take full advantage of increasingly powerful mobile hardware. As a
result, developer interest in Android devices has made their 2008 release a hugely anticipated mobile
technology event.

Built on an open source framework, and featuring powerful SDK libraries and an open philosophy,
Android has opened mobile phone development to thousands of developers who haven’t had access to
tools for building mobile applications. Experienced mobile developers can now expand into the Android
platform, leveraging the unique features to enhance existing products or create innovative new ones.

This book is a hands-on guide to building mobile applications using version 1.0 of the Android soft-
ware development kit. Chapter by chapter, it takes you through a series of sample projects, each intro-
ducing new features and techniques to get the most out of Android. It covers all the basic functionality
as well as exploring the advanced features through concise and useful examples.

Since Android is a brand-new, version 1 product, there are only a small number of handsets currently
available that support it. As with any early release, there are likely to be regular changes and improve-
ments to the software and development libraries. The explanations and examples included in this book
will give the grounding and knowledge you need to write compelling mobile applications using the
current SDK, along with the fl exibility to quickly adapt to future enhancements.

Whom This Book Is For
This book is for anyone interested in creating applications for the Android mobile phone platform. It
includes information that will be valuable, whether you’re an experienced mobile developer or making
your fi rst foray, via Android, into writing mobile applications.

It will help if readers have used mobile phones (particularly phones running Android), but it’s not nec-
essary, nor is prior experience in mobile phone development. It’s expected that you’ll have some experi-
ence in software development and be familiar with basic development practices. While knowledge of
Java is helpful, it’s not a necessity.

Chapters 1 and 2 introduce mobile development and contain instructions to get you started in Android.
Beyond that, there’s no requirement to read the chapters in order, although a good understanding of the
core components described in Chapters 3 through 6 is important before you venture into the remaining
chapters. Chapters 7 through 11 cover a variety of optional and advanced functionality and can be read
in whatever order interest or need dictates.

44712flast.indd xvii44712flast.indd xvii 10/21/08 12:11:04 AM10/21/08 12:11:04 AM

Introduction

xviii

What This Book Covers
Chapter 1 introduces Android, including what it is and how it fi ts into existing mobile development.
What Android offers as a development platform and why it’s an exciting opportunity for creating
mobile phone applications are then examined in greater detail.

Chapter 2 covers some best practices for mobile development and explains how to download the
Android SDK and start developing applications. It also introduces the Android developer tools and
demonstrates how to create new applications from scratch.

Chapters 3 through 6 take an in-depth look at the fundamental Android application components.
Starting with examining the pieces that make up an Android application and its life cycle, you’ll quickly
move on to the application manifest and external resources before learning about “Activities,” their life-
times, and their life cycles.

You’ll then learn how to create User Interfaces with layouts and Views, before being introduced to
the Intent mechanism used to perform actions and send messages between application components.
Internet resources are then covered before a detailed look at data storage, retrieval, and sharing. You’ll
start with the preference-saving mechanism before moving on to fi le handling and databases. This sec-
tion fi nishes with a look at sharing application data using Content Providers.

Chapters 7 to 10 look at more advanced topics. Starting with maps and location-based services, you’ll
move on to Services, background Threads, and using Notifi cations.

Android’s communication abilities are next, including sending and receiving messages through instant
messaging and SMS. Hardware is then covered, starting with media recording and playback, before
introducing the camera, accelerometers, and compass sensors. Chapter 10 concludes with a look at
phone and networking hardware, starting with telephony APIs and going on to Bluetooth and network
management (both Wi-Fi and mobile data connections).

Chapter 11 includes several advanced development topics, among them security, IPC, advanced graph-
ics techniques, and user–hardware interactions.

How This Book Is Structured
This book is structured in a logical sequence to help readers of different development backgrounds
learn how to write advanced Android applications.

There’s no requirement to read each chapter sequentially, but several of the sample projects are developed
over the course of several chapters, adding new functionality and other enhancements at each stage.

Experienced mobile developers with a working Android development environment can skim the fi rst
two chapters — which are an introduction to mobile development and instructions for creating your
development environment — and dive in at Chapters 3 to 6. These cover the fundamentals of Android
development, so it’s important to have a solid understanding of the concepts they describe. With this

44712flast.indd xviii44712flast.indd xviii 10/21/08 12:11:04 AM10/21/08 12:11:04 AM

Introduction

xix

covered, you can move on to the remaining chapters, which look at maps, location-based Services, back-
ground applications, and more advanced topics such as hardware interaction and netwoking.

What You Need to Use This Book
To use the code samples in this book, you will need to create an Android development environment by
downloading the Android SDK libraries and developer tools and the Java development kit. You may
also wish to download and install Eclipse and the Android Developer Tool plug-in to ease your devel-
opment, but neither is a requirement.

Android development is supported in Windows, MacOS, and Linux, with the SDK available from the
Android web site.

You do not need an Android device to use this book or develop Android applications.

Chapter 2 outlines these requirements in more detail as well as describing where to download and how
to install each component.

Conventions
To help you get the most from the text and keep track of what’s happening, I’ve used various conven-
tions throughout the book.

Notes, tips, hints, tricks, and asides to the current discussion are offset and placed in italics like this.

As for styles in the text:

I show URLs and code within the text like so: ❑ persistence.properties.

I present code in two different ways: ❑

I use a monofont type with no highlighting for most code examples.

I use gray highlighting to emphasize code that’s particularly important in
the present context.

In some code samples, you’ll see lines marked as follows: ❑

[… previous code goes here …]

or

[… implement something here …]

This represents an instruction to replace the entire line (including the square brackets) with
actual code, either from a previous code snippet in the former case, or your own implementa-
tion in the latter.

44712flast.indd xix44712flast.indd xix 10/21/08 12:11:04 AM10/21/08 12:11:04 AM

Introduction

xx

Source Code
As you work through the examples in this book, you may choose either to type in all the code manu-
ally or to use the source code fi les that accompany the book. All of the source code used in this book is
available for download at www.wrox.com. Once at the site, simply locate the book’s title (either by using
the Search box or by using one of the title lists), and click the Download Code link on the book’s detail
page to obtain all the source code for the book.

Because many books have similar titles, you may fi nd it easiest to search by ISBN; this book’s ISBN is
978-0-470-34471-2.

Once you download the code, just decompress it with your favorite compression tool. Alternatively, you
can go to the main Wrox code download page at www.wrox.com/dynamic/books/download.aspx to
see the code available for this book and all other Wrox books.

Errata
We make every effort to ensure that there are no errors in the text or in the code. However, no one is
perfect, and mistakes do occur. If you fi nd an error in one of our books, like a spelling mistake or faulty
piece of code, we would be very grateful for your feedback. By sending in errata you may save another
reader hours of frustration, and at the same time you will be helping us provide even higher quality
information.

To fi nd the errata page for this book, go to www.wrox.com and locate the title using the Search box or one
of the title lists. Then, on the book details page, click the Book Errata link. On this page, you can view all
errata that have been submitted for this book and posted by Wrox editors. A complete book list including
links to each book’s errata is also available at www.wrox.com/misc-pages/booklist.shtml.

If you don’t spot “your” error on the Book Errata page, go to www.wrox.com/contact/techsupport.shtml
and complete the form there to send us the error you have found. We’ll check the information and, if appro-
priate, post a message to the book’s Errata page and fi x the problem in subsequent editions of the book.

p2p.wrox.com
For author and peer discussion, join the P2P forums at p2p.wrox.com. The forums are a Web-based
system for you to post messages relating to Wrox books and related technologies and interact with
other readers and technology users. The forums offer a subscription feature to e-mail you topics of
interest of your choosing when new posts are made to the forums. Wrox authors, editors, other industry
experts, and your fellow readers are present on these forums.

44712flast.indd xx44712flast.indd xx 10/21/08 12:11:04 AM10/21/08 12:11:04 AM

Introduction

xxi

At http://p2p.wrox.com, you will fi nd a number of different forums that will help you not only as you
read this book, but also as you develop your own applications. To join the forums, just follow these steps:

 1. Go to p2p.wrox.com and click the Register link.

 2. Read the terms of use and click Agree.

 3. Complete the required information to join as well as any optional information you wish to pro-
vide, and click Submit.

 4. You will receive an e-mail with information describing how to verify your account and com-
plete the joining process.

You can read messages in the forums without joining P2P, but in order to post your own messages, you
must join.

Once you join, you can post new messages and respond to messages other users post. You can read
messages at any time on the Web. If you would like to have new messages from a particular forum
e-mailed to you, click the “Subscribe to This Forum” icon by the forum name in the forum listing.

For more information about how to use the Wrox P2P, be sure to read the P2P FAQs for answers to ques-
tions about how the forum software works as well as many common questions specifi c to P2P and Wrox
books. To read the FAQs, click the FAQ link on any P2P page.

44712flast.indd xxi44712flast.indd xxi 10/21/08 12:11:04 AM10/21/08 12:11:04 AM

44712flast.indd xxii44712flast.indd xxii 10/21/08 12:11:04 AM10/21/08 12:11:04 AM

Hello, Android

Whether you’re an experienced mobile engineer, a desktop or web developer, or a complete pro-
gramming novice, Android represents an exciting new opportunity to write innovative applica-
tions for mobile devices.

Despite the name, Android will not help you create an unstoppable army of emotionless robot
warriors on a relentless quest to cleanse the earth of the scourge of humanity. Instead, Android is
an open source software stack that includes the operating system, middleware, and key applica-
tions along with a set of API libraries for writing mobile applications that can shape the look, feel,
and function of mobile handsets.

Small, stylish, and versatile, modern mobile phones have become powerful tools that incorpo-
rate cameras, media players, GPS systems, and touch screens. As technology has evolved, mobile
devices have become about more than simply making calls, but their software and development
platforms have struggled to keep pace.

Until recently, mobile phones were largely closed environments built on proprietary operating
systems that required proprietary development tools. The phones themselves often prioritized
native applications over those written by third parties. This has introduced an artifi cial barrier
for developers hoping to build on increasingly powerful mobile hardware.

In Android, native and third-party applications are written using the same APIs and executed on
the same run time. These APIs feature hardware access, location-based services, support for back-
ground services, map-based activities, relational databases, interdevice peer-to-peer messaging,
and 2D and 3D graphics.

44712c01.indd 144712c01.indd 1 10/20/08 4:12:23 PM10/20/08 4:12:23 PM

2

Chapter 1: Hello, Android

Using this book, you will learn how to use these APIs to create your own Android applications. In this
chapter, you’ll learn some mobile development guidelines and be introduced to the features available
from the Android development platform.

Android has powerful APIs, excellent documentation, a thriving developer community, and no develop-
ment or distribution costs. As mobile devices continue to increase in popularity, this is an exciting oppor-
tunity to create innovative mobile phone applications no matter what your development background.

A Little Background
In the days before Twitter and Facebook, when Google was still a twinkle in its founders’ eyes and
dinosaurs roamed the earth, mobile phones were just that — portable phones small enough to fi t inside
a briefcase, featuring batteries that could last up to several hours; they offered the freedom to make
calls without being physically connected to a landline.

Increasingly small, stylish, and powerful mobile phones are now as ubiquitous as they are indispens-
able. Hardware advancements have made mobiles smaller and more effi cient while including an
increasing number of peripherals.

Beginning with cameras and media players, mobiles now include GPS systems, accelerometers, and
touch screens. While these hardware innovations should prove fertile ground for software develop-
ment, the applications available for mobile phones have generally lagged behind the hardware.

The Not So Distant Past
Historically, developers, generally coding in low-level C or C++, have needed to understand the specifi c
hardware they were coding for, generally a single device or possibly a range of devices from a single
manufacturer. As hardware technology has advanced, this closed approach has struggled to keep pace.

More recently, platforms like Symbian have been created to provide developers a wider target audience.
These systems have proved more successful in encouraging mobile developers to provide rich applica-
tions that better leverage the hardware available.

These platforms offer some access to the device hardware, but require writing complex C/C++ code and
making heavy use of proprietary APIs that are notoriously diffi cult to use. This diffi culty is amplifi ed
when developing applications that must work on different hardware implementations and is particu-
larly true when developing for a particular hardware feature like GPS.

In recent years, the biggest advance in mobile phone development has been the introduction of Java-
hosted MIDlets. MIDlets are executed on a Java virtual machine, abstracting the underlying hardware
and letting developers create applications that run on the wide variety of hardware that supports the
Java run time. Unfortunately, this convenience comes at the price of restricted access to the device
hardware.

In mobile development, it’s considered normal for third-party applications to receive different hardware
access and execution rights compared to native applications written by the phone manufacturers, with
MIDlets often receiving few of either.

44712c01.indd 244712c01.indd 2 10/20/08 4:12:23 PM10/20/08 4:12:23 PM

3

Chapter 1: Hello, Android

The introduction of Java MIDlets has expanded developers’ audiences, but the lack of low-level hard-
ware access and sandboxed execution have meant that most mobile applications are desktop programs
designed to run on a smaller screen rather than take advantage of the inherent mobility of the handheld
platform.

The Future
Android sits alongside a new wave of mobile operating systems designed for increasingly powerful
mobile hardware. Windows Mobile and Apple’s iPhone now provide a richer, simplifi ed development
environment for mobile applications. However, unlike Android, they’re built on proprietary operating
systems that often prioritize native applications over those created by third parties and restrict commu-
nication among applications and native phone data. Android offers new possibilities for mobile applica-
tions by offering an open development environment built on an open source Linux kernel. Hardware
access is available to all applications through a series of API libraries, and application interaction, while
carefully controlled, is fully supported.

In Android, all applications have equal standing. Third-party and native Android applications are
written using the same APIs and are executed on the same run time. Users can remove and replace
any native application with a third-party developer alternative; even the dialer and home screens can
be replaced.

What It Isn’t
As a disruptive addition to a mature fi eld, it’s not hard to see why there has been some confusion about
what exactly Android is. Android is not:

A Java ME implementation ❑ Android applications are written using the Java language, but
they are not run within a Java ME virtual machine, and Java-compiled classes and executables
will not run natively in Android.

Part of the Linux Phone Standards Forum (LiPS) or the Open Mobile Alliance ❑

(OMA) Android runs on an open source Linux kernel, but, while their goals are similar,
Android’s complete software stack approach goes further than the focus of these standards-
defi ning organizations.

Simply an application layer (like UIQ or S60) ❑ While it does include an application layer,
“Android” also describes the entire software stack encompassing the underlying operating sys-
tem, API libraries, and the applications themselves.

A mobile phone handset ❑ Android includes a reference design for mobile handset manufac-
turers, but unlike the iPhone, there is no single “Android Phone.” Instead, Android has been
designed to support many alternative hardware devices.

Google’s answer to the iPhone ❑ The iPhone is a fully proprietary hardware and software plat-
form released by a single company (Apple), while Android is an open source software stack
produced and supported by the Open Handset Alliance and designed to operate on any hand-
set that meets the requirements. There’s been a lot of speculation regarding a Google-branded
Android phone, but even should Google produce one, it will be just one company’s hardware
implementation of the Android platform.

44712c01.indd 344712c01.indd 3 10/20/08 4:12:23 PM10/20/08 4:12:23 PM

4

Chapter 1: Hello, Android

An Open Platform for Mobile Development
Google describes Android as:

The fi rst truly open and comprehensive platform for mobile devices, all of the software to run a mobile
phone but without the proprietary obstacles that have hindered mobile innovation.
http://googleblog.blogspot.com/2007/11/wheres-my-gphone.html

 Android is made up of several necessary and dependent parts including the following:

A hardware reference design that describes the capabilities required of a mobile device in order ❑

to support the software stack

A Linux operating system kernel that provides the low-level interface with the hardware, mem- ❑

ory management, and process control, all optimized for mobile devices

Open source libraries for application development including SQLite, WebKit, OpenGL, and a ❑

media manager

A run time used to execute and host Android applications, including the Dalvik virtual machine ❑

and the core libraries that provide Android specifi c functionality. The run time is designed to be
small and effi cient for use on mobile devices.

An application framework that agnostically exposes system services to the application layer, ❑

including the window manager, content providers, location manager, telephony, and peer-to-peer
services

A user interface framework used to host and launch applications ❑

Preinstalled applications shipped as part of the stack ❑

A software development kit used to create applications, including the tools, plug-ins, and ❑

documentation

At this stage, not all of the Android stack has been released as open source, although this is expected
to happen by the time phones are released to market. It’s also worth noting that the applications you
develop for Android do not have to be open source.

What really makes Android compelling is its open philosophy, which ensures that any defi ciencies in
user interface or native application design can be fi xed by writing an extension or replacement. Android
provides you, as a developer, the opportunity to create mobile phone interfaces and applications
designed to look, feel, and function exactly as you image them.

Native Android Applications
Android phones will normally come with a suite of preinstalled applications including, but not limited to:

An e-mail client compatible with Gmail but not limited to it ❑

An SMS management application ❑

A full PIM (personal information management) suite including a calendar and contacts list, both ❑

tightly integrated with Google’s online services

44712c01.indd 444712c01.indd 4 10/20/08 4:12:23 PM10/20/08 4:12:23 PM

5

Chapter 1: Hello, Android

A fully featured mobile Google Maps application including StreetView, business fi nder, driving ❑

directions, satellite view, and traffi c conditions

A WebKit-based web browser ❑

An Instant Messaging Client ❑

A music player and picture viewer ❑

The Android Marketplace client for downloading thied-party Android applications. ❑

The Amazon MP3 store client for purchasing DRM free music. ❑

All the native applications are written in Java using the Android SDK and are run on Dalvik.

The data stored and used by the native applications — like contact details — are also available to third-
party applications. Similarly, your applications can handle events such as an incoming call or a new
SMS message.

The exact makeup of the applications available on new Android phones is likely to vary based on the
hardware manufacturer and/or the phone carrier or distributor. This is especially true in the United
States, where carriers have signifi cant infl uence on the software included on shipped devices.

Android SDK Features
The true appeal of Android as a development environment lies in the APIs it provides.

As an application-neutral platform, Android gives you the opportunity to create applications that are as
much a part of the phone as anything provided out of the box. The following list highlights some of the
most noteworthy Android features:

No licensing, distribution, or development fees ❑

Wi-Fi hardware access ❑

GSM, EDGE, and 3G networks for telephony or data transfer, allowing you to make or receive ❑

calls or SMS messages, or to send and retrieve data across mobile networks

Comprehensive APIs for location-based services such as GPS ❑

Full multimedia hardware control including playback and recording using the camera and ❑

microphone

APIs for accelerometer and compass hardware ❑

IPC message passing ❑

Shared data stores ❑

An integrated open source WebKit-based browser ❑

Full support for applications that integrate Map controls as part of their user interface ❑

Peer-to-peer (P2P) support using Google Talk ❑

Mobile-optimized hardware-accelerated graphics including a path-based 2D graphics library ❑

and support for 3D graphics using OpenGL ES

44712c01.indd 544712c01.indd 5 10/20/08 4:12:23 PM10/20/08 4:12:23 PM

6

Chapter 1: Hello, Android

Media libraries for playing and recording a variety of audio/video or still image formats ❑

An application framework that encourages reuse of application components and the replace- ❑

ment of native applications

Access to Hardware including
Camera, GPS, and Accelerometer

Android includes API libraries to simplify development involving the device hardware. These ensure
that you don’t need to create specifi c implementations of your software for different devices, so you can
create Android applications that work as expected on any device that supports the Android software
stack.

The Android SDK includes APIs for location-based hardware (such as GPS), camera, network connec-
tions, Wi-Fi, Bluetooth, accelerometers, touch screen, and power management. You can explore the pos-
sibilities of some of Android’s hardware APIs in more detail in Chapter 10.

Native Google Maps, Geocoding, and
Location-Based Services

Native map support lets you create a range of map-based applications that leverage the mobility of
Android devices. Android lets you create activities that include interactive Google Maps as part of
your user interface with full access to maps that you can control programmatically and annotate
using Android’s rich graphics library.

Android’s location-based services manage technologies like GPS and Google’s GSM cell-based location
technology to determine the device’s current position. These services enforce an abstraction from spe-
cifi c location-detecting technology and let you specify minimum requirements (e.g., accuracy or cost)
rather than choosing a particular technology. It also means that your location-based applications will
work no matter what technology the host handset supports.

To combine maps with locations, Android includes an API for forward and reverse geocoding that lets
you fi nd map coordinates for an address, and the address of a map position.

You’ll learn the details of using maps, the geocoder, and location-based services in Chapter 7.

Background Services
Android supports applications and services designed to run invisibly in the background.

Modern mobiles are by nature multifunction devices; however, their limited screen size means that
generally only one interactive application can be visible at any time. Platforms that don’t support back-
ground execution limit the viability of applications that don’t need your constant attention.

Background services make it possible to create invisible application components that perform automatic
processing without direct user action. Background execution allows your applications to become event-
driven and to support regular updates, which is perfect for monitoring game scores or market prices,
generating location-based alerts, or prioritizing and pre-screening incoming calls and SMS messages.

44712c01.indd 644712c01.indd 6 10/20/08 4:12:23 PM10/20/08 4:12:23 PM

7

Chapter 1: Hello, Android

Learn more about how to get the most out of background services in Chapter 8.

SQLite Database for Data Storage and Retrieval
Rapid and effi cient data storage and retrieval are essential for a device whose storage capacity is limited
by its compact nature.

Android provides a lightweight relational database for each application using SQLite. Your applications
can take advantage of the managed relational database engine to store data securely and effi ciently.

By default, each application database is sandboxed — its content is available only to the application that
created it — but Content Providers supply a mechanism for the managed sharing of these application
databases.

Databases, Content Providers, and other data persistence options available in Android are covered in
detail in Chapter 6.

Shared Data and Interapplication Communication
Android includes three techniques for transmitting information from your applications for use else-
where: Notifi cations, Intents, and Content Providers.

Notifi cations are the standard ways in which a mobile device traditionally alerts users. Using the API,
you can trigger audible alerts, cause vibration, and fl ash the device’s LED, as well as control status bar
notifi cation icons as shown in Chapter 8.

Intents provide a mechanism for message passing within and between applications. Using Intents, you
can broadcast a desired action (such as dialing the phone or editing a contact) system-wide for other
applications to handle. Intents are an important core component of Android and are covered in depth
in Chapter 5.

Finally, Content Providers are a way to give managed access to your application’s private database. The
data stores for native applications, such as the Contact Manager, are exposed as Content Providers so
you can create your own applications that read or modify these data stores. Chapter 6 covers Content
Providers in detail, including the native providers and demonstrating how to create and use providers
of your own.

P2P Services with Google Talk
Based on earlier SDK versions, it’s expected that in later releases you will once again be able to send
structured messages from your application to any other Android mobile using Android’s peer-to-peer
(P2P) communications service.

The Android P2P service uses a specialized version of XMPP (Extensible Messaging and Presence
Protocol). Based on Google’s Google Talk instant messaging service, it creates a persistent socket con-
nection between your device and any other online Android handset that ensures communication with
low latency and rapid response times.

44712c01.indd 744712c01.indd 7 10/20/08 4:12:24 PM10/20/08 4:12:24 PM

8

Chapter 1: Hello, Android

When made available, you’ll be able to use the Google Talk service for conventional instant messaging,
or an interface to send data between application instances on separate devices. This is strong sauce for
creating interactive applications that involve multiple users, such as real-time multiplayer games or
social applications.

The P2P service also offers presence notifi cation, which is used to see if a contact is online. While the
P2P service is very attractive in itself, it also plays very well with other Android features. Imagine a
background service that transmits locations between friends and a corresponding mapping application
that displays these locations or alerts you when friends are nearby.

Owing to security concerns, sending data messages with Google Talk isn’t possible in Android 1.0. An
instant messaging client is available, and it’s expected that XMPP-compatible IM and data messaging
will be made available to developers in a future SDK release.

Extensive Media Support and 2D/3D Graphics
Bigger screens and brighter, higher-resolution displays have helped make mobiles multimedia devices.
To make the most of the hardware available, Android provides graphics libraries for 2D canvas drawing
and 3D graphics with OpenGL.

Android also offers comprehensive libraries for handling still images, video, and audio fi les including
the MPEG4, H.264, MP3, AAC, AMR, JPG, PNG, and GIF formats.

2D and 3D graphics are covered in depth in Chapter 11, while Android media management libraries are
covered in Chapter 10.

Optimized Memory and Process Management
Android’s process and memory management is a little unusual. Like Java and .NET, Android uses its
own run time and virtual machine to manage application memory. Unlike either of these frameworks,
the Android run time also manages the process lifetimes. Android ensures application responsiveness
by stopping and killing processes as necessary to free resources for higher-priority applications.

In this context, priority is determined depending on the application with which the user is interacting.
Ensuring that your applications are prepared for a swift death but are still able to remain responsive
and update or restart in the background if necessary, is an important consideration in an environment
that does not allow applications to control their own lifetimes.

You will learn more about the Android application life cycle in Chapter 3.

Introducing the Open Handset Alliance
The Open Handset Alliance (OHA) is a collection of more than 30 technology companies including hard-
ware manufacturers, mobile carriers, and software developers. Of particular note are the prominent
mobile technology companies Motorola, HTC, T-Mobile, and Qualcomm. In their own words, the OHA
represents:

44712c01.indd 844712c01.indd 8 10/20/08 4:12:24 PM10/20/08 4:12:24 PM

9

Chapter 1: Hello, Android

A commitment to openness, a shared vision for the future, and concrete plans to make the vision a
reality. To accelerate innovation in mobile and offer consumers a richer, less expensive, and better
mobile experience.

http://www.openhandsetalliance.com/oha_faq.html

The OHA hopes to deliver a better mobile software experience for consumers by providing the platform
needed for innovative mobile development at a faster rate and a higher quality without licensing fees
for software developers or handset manufacturers.

Ultimately the success of Android as a mobile platform will depend largely on the success of OHA
partners in releasing desirable handsets and mobile services that encourage the widespread adoption
of Android phones. Developers meanwhile have the opportunity to create innovative new mobile
applications for Android to encourage more mobile technology companies to become part of the OHA.

What Does Android Run On?
The fi rst Android mobile handset, the T-Mobile G1, was released in the US in October 2008 and in the
UK in November 2008. The Open Handset Alliance has further committed to deploying additional
handsets and services that support Android early in 2009.

Rather than a mobile OS created for a single hardware implementation, Android is designed to support
a large variety of hardware platforms, from touch-screen phones to devices with no screens at all.

Beyond that, with no licensing fees or proprietary software, the cost to handset manufacturers for
providing Android-compatible variations of their handsets is comparatively low. It’s hoped that once
demand for hardware capable of running popular Android applications reaches a critical mass, more
device manufacturers will produce increasingly tailored hardware to meet that demand.

Why Develop for Android?
If you have a background in mobile application development, you don’t need me to tell you that:

A lot of what you can do with Android is already possible. ❑

But doing it is painful. ❑

Android represents a clean break, a mobile framework based on the reality of modern mobile devices.

With a simple and powerful SDK, no licensing fees, excellent documentation, and a thriving developer
community, Android is an excellent opportunity to create software that changes how and why people
use their mobile phones.

Android is backed by more than 30 OHA members and is surrounded by signifi cant industry buzz.

44712c01.indd 944712c01.indd 9 10/20/08 4:12:24 PM10/20/08 4:12:24 PM

10

Chapter 1: Hello, Android

In market terms, the growth in portable devices is a worldwide phenomenon, with mobile-phone own-
ership outstripping computer ownership in many countries. The increasing popularity of smartphones
— multifunction devices including a phone but featuring cameras, Internet access, media players, Wi-Fi,
and GPS services — combined with the increasing availability of mobile broadband and Wi-Fi has cre-
ated a growth market for advanced mobile applications.

What Will Drive Android Adoption?
Android is targeted primarily at developers, with Google and the OHA betting that the way to deliver
better mobile software to consumers is by making it easier for developers to write it themselves.

As a development platform, Android is powerful and intuitive, letting developers who have never pro-
grammed for mobile devices create useful applications quickly and easily. It’s easy to see how innova-
tive Android applications could create demand for the devices necessary to run them, particularly if
developers write applications for Android because they can’t write them for other platforms.

Open access to the nuts and bolts of the underlying system is what’s always driven software develop-
ment and platform adoption. The Internet’s inherent openness and neutrality have seen it become the
platform for a multi-billion-dollar industry within 10 years of its inception. Before that, it was open sys-
tems like Linux and the powerful APIs provided as part of the Windows operating system that enabled
the explosion in personal computers and the movement of computer programming from the arcane to
the mainstream.

This openness and power ensure that anyone with the inclination can bring a vision to life at minimal
cost. So far, that’s not been the case for mobile phones, and that’s why there are so few good mobile
phone applications and fewer still available for free.

Corporations will also be attracted to Android for the level of control it offers. By using a popular enter-
prise programming language in Java, no licensing fees, and offering the level of access and control
users demand, Android offers an excellent enterprise platform.

What Does It Have That Others Don’t?
Many of the features listed previously, such as 3D graphics and native database support, are also avail-
able in other mobile SDKs. Here are some of the unique features that set Android apart:

Google Map Application ❑ s Google Maps for Mobile has been hugely popular, and Android
offers a Google Map as an atomic, reusable control for use in your applications. The MapView
widget lets you display, manipulate, and annotate a Google Map within your Activities to build
map-based applications using the familiar Google Maps interface.

Background Services and Application ❑ s Background services let you create applications that
use an event-driven model, working silently while other applications are being used or while
your mobile sits ignored until it rings, fl ashes, or vibrates to get your attention. Maybe it’s an
application that tracks the stock market, alerting you to signifi cant changes in your portfolio,
or a service that changes your ring tone or volume depending on your current location, the
time of day, and the identity of the caller.

44712c01.indd 1044712c01.indd 10 10/20/08 4:12:24 PM10/20/08 4:12:24 PM

11

Chapter 1: Hello, Android

Shared Data and Interprocess Communication ❑ Using Intents and Content Providers,
Android lets your applications exchange messages, perform processing, and share data. You
can also use these mechanisms to leverage the data and functionality provided by the native
Android applications. To mitigate the risks of such an open strategy, each application’s process,
data storage, and fi les are private unless explicitly shared with other applications using a full
permission-based security mechanism detailed in Chapter 11.

All Applications Are Created Equal ❑ Android doesn’t differentiate between native applica-
tions and those developed by third parties. This gives consumers unprecedented power to
change the look and feel of their devices by letting them completely replace every native appli-
cation with a third-party alternative that has access to the same underlying data and hardware.
Every rule needs an exception and this one has two. The “unlock” and “in-call experience”
screens can not be replaced in the initial SDK release.

P2P Interdevice Application Messaging ❑ Android offers peer-to-peer messaging that supports
presence, instant messaging, and interdevice/interapplication communication.

Changing the Mobile Development Landscape
Existing mobile development platforms have created an aura of exclusivity around mobile development.
Whether by design or as a side-effect of the cost or complexity involved in developing native applica-
tions, most mobile phones will remain nearly identical to what they were when fi rst unwrapped.

In contrast, Android allows, even encourages, radical change. As consumer devices, Android hand-
sets ship with a core set of standard applications that consumers demand on a new phone, but the real
power lies in the ability for users to completely change how their device looks, feels, and functions.

Android gives developers a great opportunity. All Android applications are a native part of the phone,
not just software that’s run in a sandbox on top of it. Rather than writing small-screen versions of soft-
ware that can be run on low-power devices, you can now write mobile applications that change the way
people use their phones.

While Android will still have to compete with existing and future mobile development platforms as an
open source developer framework, the strength of use of the development environment is strongly in its
favor. Certainly its free and open approach to mobile application development, with total access to the
phone’s resources, is a giant step in the right direction.

Introducing the Development Framework
With the PR job done, it’s time to look at how you can start developing applications for Android.
Android applications are written using Java as a programming language but are executed using a
custom virtual machine called Dalvik rather than a traditional Java VM.

Later in this chapter, you’ll be introduced to the framework, starting with a technical explanation of the
Android software stack, a look at what’s included in the SDK, an introduction to the Android libraries,
and a look at the Dalvik virtual machine.

44712c01.indd 1144712c01.indd 11 10/20/08 4:12:24 PM10/20/08 4:12:24 PM

12

Chapter 1: Hello, Android

Each Android application runs in a separate process within its own Dalvik instance, relinquishing all
responsibility for memory and process management to the Android run time, which stops and kills
processes as necessary to manage resources.

Dalvik and the Android run time sit on top of a Linux kernel that handles low-level hardware interac-
tion including drivers and memory management, while a set of APIs provides access to all of the under-
lying services, features, and hardware.

What Comes in the Box
The Android software development kit (SDK) includes everything you need to start developing, testing,
and debugging Android applications. Included in the SDK download are:

The Android APIs ❑ The core of the SDK is the Android API libraries that provide devel-
oper access to the Android stack. These are the same libraries used at Google to create native
Android applications.

Development Tools ❑ To turn Android source code into executable Android applications, the
SDK includes several development tools that let you compile and debug your applications. You
will learn more about the developer tools in Chapter 2.

The Android Emulator ❑ The Android Emulator is a fully interactive Android device emulator
featuring several alternative skins. Using the emulator, you can see how your applications will
look and behave on a real Android device. All Android applications run within the Dalvik VM
so that the software emulator is an excellent environment — in fact, as it is hardware-neutral, it
provides a better independent test environment than any single hardware implementation.

Full Documentation ❑ The SDK includes extensive code-level reference information detail-
ing exactly what’s included in each package and class and how to use them. In addition to the
code documentation, Android’s reference documentation explains how to get started and gives
detailed explanations of the fundamentals behind Android development.

Sample Code ❑ The Android SDK includes a selection of sample applications that demonstrate
some of the possibilities available using Android, as well as simple programs that highlight
how to use individual API features.

Online Support ❑ Despite its relative youth, Android has generated a vibrant developer com-
munity. The Google Groups at http://code.google.com/android/groups are active forums
of Android developers with regular input from the Android development team at Google.

For those using the popular Eclipse IDE, Android has released a special plug-in that simplifi es project
creation and tightly integrates Eclipse with the Android Emulator and debugging tools. The features of
the ADT plug-in are covered in more detail in Chapter 2.

Understanding the Android Software Stack
The Android software stack is composed of the elements shown in Figure 1-1 and described in further
detail below it. Put simply, a Linux kernel and a collection of C/C++ libraries are exposed through an
application framework that provides services for, and management of, the run time and applications.

44712c01.indd 1244712c01.indd 12 10/20/08 4:12:24 PM10/20/08 4:12:24 PM

13

Chapter 1: Hello, Android

Third Party Apps Developer Apps

Application Layer

Native Apps
(Contacts, Maps, Browser, etc.)

Application Framework

Location-Based
Services

Content
Providers

Window
Manager

Activity
Manager

Package
Manager

Telephony P2P/IM

Graphics
(OpenGL, SGL, FreeType)

Hardware Drivers
(USB, Display, Bluetooth, etc.)

Power
Management

Process
Management

Memory
Management

Media SSL & WebKit

libc SQLite Surface
Manager

Android
Libraries

Dalvik
Virtual Machine

Notifications Views Resource
Manager

Libraries Android Runtime

Linux Kernal

Figure 1-1

Linux Kernel ❑ Core services (including hardware drivers, process and memory management,
security, network, and power management) are handled by a Linux 2.6 kernel. The kernel also
provides an abstraction layer between the hardware and the remainder of the stack.

Libraries ❑ Running on top of the kernel, Android includes various C/C++ core libraries such
as libc and SSL, as well as:

A media library for playback of audio and video media ❑

A Surface manager to provide display management ❑

Graphics libraries that include SGL and OpenGL for 2D and 3D graphics ❑

SQLite for native database support ❑

SSL and WebKit for integrated web browser and Internet security ❑

Android Run Time ❑ What makes an Android phone an Android phone rather than a mobile
Linux implementation is the Android run time. Including the core libraries and the Dalvik vir-
tual machine, the Android run time is the engine that powers your applications and, along with
the libraries, forms the basis for the application framework.

Core Libraries ❑ While Android development is done in Java, Dalvik is not a Java VM.
The core Android libraries provide most of the functionality available in the core Java
libraries as well as the Android-specifi c libraries.

44712c01.indd 1344712c01.indd 13 10/20/08 4:12:24 PM10/20/08 4:12:24 PM

14

Chapter 1: Hello, Android

Dalvik Virtual Machine ❑ Dalvik is a register-based virtual machine that’s been opti-
mized to ensure that a device can run multiple instances effi ciently. It relies on the
Linux kernel for threading and low-level memory management.

Application Framework ❑ The application framework provides the classes used to create
Android applications. It also provides a generic abstraction for hardware access and manages
the user interface and application resources.

Application Layer ❑ All applications, both native and third party, are built on the application
layer using the same API libraries. The application layer runs within the Android run time
using the classes and services made available from the application framework.

The Dalvik Virtual Machine
One of the key elements of Android is the Dalvik virtual machine. Rather than use a traditional
Java virtual machine (VM) such as Java ME (Java Mobile Edition), Android uses its own custom VM
designed to ensure that multiple instances run effi ciently on a single device.

The Dalvik VM uses the device’s underlying Linux kernel to handle low-level functionality including
security, threading, and process and memory management. It’s also possible to write C/C++ applica-
tions that run directly on the underlying Linux OS. While you can do this, in most cases there’s no rea-
son you should need to.

This book focuses exclusively on writing applications that run within Dalvik. If your inclinations run
toward exploring the Linux kernel and C/C++ underbelly of Android, modifying Dalvik, or otherwise
tinkering with things under the hood, check out the Android Internals Google Group at
http://groups.google.com/group/android-internals

All Android hardware and system service access is managed using Dalvik as a middle tier. By using a
VM to host application execution, developers have an abstraction layer that ensures they never have to
worry about a particular hardware implementation.

The Dalvik VM executes Dalvik executable fi les, a format optimized to ensure minimal memory foot-
print. The .dex executables are created by transforming Java language compiled classes using the tools
supplied within the SDK. You’ll learn more about how to create Dalvik executables in the next chapter.

Android Application Architecture
Android’s architecture encourages the concept of component reuse, allowing you to publish and share
activities, services, and data with other applications with access managed by the security restrictions
you put in place.

The same mechanism that lets you produce a replacement contact manager or phone dialer can let you
expose your application components to let other developers create new UI front ends and functionality
extensions, or otherwise build on them.

44712c01.indd 1444712c01.indd 14 10/20/08 4:12:24 PM10/20/08 4:12:24 PM

15

Chapter 1: Hello, Android

The following application services are the architectural cornerstones of all Android applications, pro-
viding the framework you’ll be using for your own software:

Activity Manager ❑ Controls the life cycle of your activities, including management of the activ-
ity stack described in Chapter 3.

Views ❑ Are used to construct the user interfaces for your activities as described in Chapter 4.

Notifi cation Manager ❑ Provides a consistent and non-intrusive mechanism for signaling your
users as described in Chapter 8.

Content Providers ❑ Lets your applications share data between applications as described in
Chapter 6.

Resource Manager ❑ Supports non-code resources like strings and graphics to be externalized
as shown in Chapter 3.

Android Libraries
Android offers a number of APIs for developing your applications. The following list of core APIs
should provide an insight into what’s available; all Android devices will offer support for at least
these APIs:

android.util ❑ The core utility package contains low-level classes like specialized containers,
string formatters, and XML parsing utilities.

android.os ❑ The operating system package provides access to basic operating system services
like message passing, interprocess communication, clock functions, and debugging.

android.graphics ❑ The graphics API supplies the low-level graphics classes that support can-
vases, colors, and drawing primitives, and lets you draw on canvases.

android.text ❑ The text processing tools for displaying and parsing text.

android.database ❑ Supplies the low-level classes required for handling cursors when working
with databases.

android.content ❑ The content API is used to manage data access and publishing by providing
services for dealing with resources, content providers, and packages.

android.view ❑ Views are the core user interface class. All user interface elements are constructed
using a series of Views to provide the user interaction components.

android.widget ❑ Built on the View package, the widget classes are the “here’s one we created
earlier” user-interface elements for you to use in your applications. They include lists, buttons,
and layouts.

com.google.android.maps ❑ A high-level API that provides access to native map controls that
you can use within your application. Includes the MapView control as well as the Overlay and
MapController classes used to annotate and control your embedded maps.

44712c01.indd 1544712c01.indd 15 10/20/08 4:12:24 PM10/20/08 4:12:24 PM

16

Chapter 1: Hello, Android

android.app ❑ A high-level package that provides access to the application model. The applica-
tion package includes the Activity and Service APIs that form the basis for all your Android
applications.

android.provider ❑ To ease developer access to certain standard Content Providers (such as the
contacts database), the Provider package offers classes to provide access to standard databases
included in all Android distributions.

android.telephony ❑ The telephony APIs give you the ability to directly interact with the device’s
phone stack, letting you make, receive, and monitor phone calls, phone status, and SMS messages.

android.webkit ❑ The WebKit package features APIs for working with Web-based content,
including a WebView control for embedding browsers in your activities and a cookie manager.

In addition to the Android APIs, the Android stack includes a set of C/C++ libraries that are exposed
through the application framework. These libraries include:

OpenGL ❑ The library used to support 3D graphics based on the Open GL ES 1.0 API

FreeType ❑ Support for bitmap and vector font rendering

SGL ❑ The core library used to provide a 2D graphics engine

libc ❑ The standard C library optimized for Linux-based embedded devices

SQLite ❑ The lightweight relation database engine used to store application data

SSL ❑ Support for using the Secure Sockets Layer cryptographic protocol for secure Internet
communications

Advanced Android Libraries
The core libraries provide all the functionality you need to start creating applications for Android,
but it won’t be long before you’re ready to delve into the advanced APIs that offer the really exciting
functionality.

Android hopes to target a wide range of mobile hardware, so be aware that the suitability and imple-
mentation of the following APIs will vary depending on the device upon which they are implemented.

android.location ❑ The location-based services API gives your applications access to the
device’s current physical location. Location-based services provide generic access to location
information using whatever position-fi xing hardware or technology is available on the device.

android.media ❑ The media APIs provide support for playback and recording of audio and
video media fi les, including streamed media.

android.opengl ❑ Android offers a powerful 3D rendering engine using the OpenGL ES API
that you can use to create dynamic 3D user interfaces for your applications.

android.hardware ❑ Where available, the hardware API exposes sensor hardware including the
camera, accelerometer, and compass sensors as shown in Chapter 10.

android.bluetooth, android.net.wifi , and android.telephony ❑ Android also provides low-level
access to the hardware platform, including Bluetooth, Wi-Fi, and telephony hardware as shown
in Chapter 10.

44712c01.indd 1644712c01.indd 16 10/20/08 4:12:24 PM10/20/08 4:12:24 PM

17

Chapter 1: Hello, Android

Summary
This chapter explained that despite signifi cant advances in the hardware features available on modern
mobile phones, the software available for them has lagged. A lack of openness, hard-to-use develop-
ment kits, and hardware-specifi c APIs have stifl ed innovation in mobile software.

Android offers an opportunity for developers to create innovative software applications for mobile
devices without the restrictions generally associated with the existing proprietary mobile development
frameworks.

You were shown the complete Android software stack, which includes not only an application layer and
development toolkit but also the Dalvik VM, a custom run time, core libraries, and a Linux kernel; all of
which will be available as open source.

The Open Handset Alliance was introduced along with the responsibility that developers — as the pri-
mary target audience for Android — have to create applications that will make consumers want Android
phones on which to run them.

You also learned:

How handsets with an expanding range of hardware features have created demand for tools ❑

that give developers better access to these features.

About some of the features available to developers using Android, including peer-to-peer ❑

messaging, native map support, hardware access, background services, interprocess and inter-
device messaging, shared databases, and 2D and 3D graphics.

That all Android applications are built equal, allowing users to completely replace one applica- ❑

tion with another, including the replacement of the core native applications.

That the Android SDK includes developer tools, APIs, and comprehensive documentation. ❑

The next chapter will help you get started by downloading and installing the Android SDK and setting
up an Android development environment in Eclipse.

You’ll also learn how to use the Android developer tools plug-in to streamline development, testing,
and debugging before creating your fi rst Android application.

After learning about the building blocks of Android applications, you’ll be introduced to the different
types of applications you can create, and you’ll start to understand some of the design considerations
that should go into developing applications for mobile devices.

44712c01.indd 1744712c01.indd 17 10/20/08 4:12:24 PM10/20/08 4:12:24 PM

44712c01.indd 1844712c01.indd 18 10/20/08 4:12:24 PM10/20/08 4:12:24 PM

Getting Started

All you need to start writing your own Android applications is a copy of the Android SDK and
the Java development kit. Unless you’re a masochist, you’ll probably want a Java IDE — Eclipse is
particularly well supported — to make development a little easier.

Versions of the SDK, Java, and Eclipse are available for Windows, Mac OS, and Linux, so you
can explore Android from the comfort of whatever OS you favor. The SDK includes an emulator
for all three OS environments, and because Android applications are run on a virtual machine,
there’s no advantage to developing from any particular operating system.

Android code is written using Java syntax, and the core Android libraries include most of the
features from the core Java APIs. Before they can be run, though, your projects are fi rst translated
into Dalvik byte code. As a result, you get the benefi ts of using Java, while your applications have
the advantage of running on a virtual machine optimized for Android devices.

The SDK download includes all the Android libraries, full documentation, and excellent sample
applications. It also includes tools to help you write and debug your applications, like the Android
Emulator to run your projects and the Dalvik Debug Monitoring Service (DDMS) to help debug them.

By the end of this chapter, you’ll have downloaded the Android SDK, set up your development
environment, completed two new applications, and run and debugged them using the emulator
and DDMS.

If you’ve developed for mobile devices before, you already know that their small-form factor, lim-
ited power, and restricted memory create some unique design challenges. Even if you’re new to
the game, it’s obvious that some of the things you can take for granted on the desktop or the Web
aren’t going to work on a mobile.

As well as the hardware limitations, the user environment brings its own challenges. Mobile
devices are used on the move and are often a distraction rather than the focus of attention, so
your applications need to be fast, responsive, and easy to use.

44712c02.indd 1944712c02.indd 19 10/20/08 4:12:12 PM10/20/08 4:12:12 PM

20

Chapter 2: Getting Started

This chapter examines some of the best practices for writing mobile applications to help overcome the
inherent hardware and environmental challenges. Rather than try to tackle the whole topic, we’ll focus
on using the Android SDK in a way that’s consistent with good mobile design principles.

Developing for Android
The Android SDK includes all the tools and APIs you need to write compelling and powerful mobile
applications. The biggest challenge with Android, as with any new development toolkit, is learning the
features and limitations of its APIs.

If you have experience in Java development, you’ll fi nd that the techniques, syntax, and grammar
you’ve been using will translate directly into Android, although some of the specifi c optimization tech-
niques may seem counterintuitive.

If you don’t have experience with Java but have used other object-oriented languages (such as C#), you
should fi nd the transition straightforward. The power of Android comes from its APIs, not from Java, so
being unfamiliar with all the Java specifi c classes won’t be a big disadvantage.

What You Need to Begin
Because Android applications run within the Dalvik virtual machine, you can write them on any plat-
form that supports the developer tools. This currently includes the following:

Microsoft Windows (XP or Vista) ❑

Mac OS X 10.4.8 or later (Intel chips only) ❑

Linux ❑

To get started, you’ll need to download and install the following:

The Android SDK ❑

Java Development Kit (JDK) 5 or 6 ❑

You can download the latest JDK from Sun at

http://java.sun.com/javase/downloads/index.jsp

If you already have a JDK installed, make sure that it meets the version requirements listed above, and
note that the Java runtime environment (JRE) is not suffi cient.

Downloading and Installing the SDK
The Android SDK is completely open. There’s no cost to download and use the API, and Google doesn’t
charge to allow distribution of your fi nished programs. You can download the latest version of the SDK
for your development platform from the Android development home page at

http://code.google.com/android/download.html

44712c02.indd 2044712c02.indd 20 10/20/08 4:12:12 PM10/20/08 4:12:12 PM

21

Chapter 2: Getting Started

Unless otherwise noted, the version of the Android SDK used for writing this book was version 1.0 r1.

The SDK is presented as a ZIP fi le containing the API libraries, developer tools, documentation, and
several sample applications and API demos that highlight the use of particular API features. Install it
by unzipping the SDK into a new folder. (Take note of this location, as you’ll need it later.)

The examples and step-by-step instructions provided are targeted at developers using Eclipse with the
Android Developer Tool (ADT) plug-in. Neither is required, though — you can use any text editor or
Java IDE you’re comfortable with and use the developer tools in the SDK to compile, test, and debug the
code snippets and sample applications.

If you’re planning to use them, the next sections explain how to set up Eclipse and the ADT plug-in as
your Android development environment. Later in the chapter, we’ll also take a closer look at the devel-
oper tools that come with the SDK, so if you’d prefer to develop without using Eclipse or the ADT plug-
in, you’ll particularly want to check that out.

The examples included in the SDK are well documented and are an excellent source for full, working
examples of applications written for Android. Once you’ve fi nished setting up your development envi-
ronment, it’s worth going through them.

Developing with Eclipse
Using Eclipse with the ADT plug-in for your Android development offers some signifi cant advantages.

Eclipse is an open source IDE (integrated development environment) particularly popular for Java devel-
opment. It’s available to download for each of the development platforms supported by Android (Win-
dows, Mac OS, and Linux) from the Eclipse foundation homepage:

www.eclipse.org/downloads/

There are many variations available when selecting your Eclipse download; the following is the recom-
mended confi guration for Android:

Eclipse 3.3, 3.4 (Ganymede) ❑

Eclipse JDT plug-in ❑

WST ❑

WST and the JDT plug-in are included in most Eclipse IDE packages.

Installing Eclipse consists of uncompressing the download into a new folder. When that’s done, run
the Eclipse executable. When it starts for the fi rst time, create a new workspace for your Android
development.

Using the Eclipse Plug-in
The ADT plug-in for Eclipse simplifi es your Android development by integrating the developer tools,
including the emulator and .class-to-.dex converter, directly into the IDE. While you don’t have to use
the ADT plug-in, it does make creating, testing, and debugging your applications faster and easier.

44712c02.indd 2144712c02.indd 21 10/20/08 4:12:12 PM10/20/08 4:12:12 PM

22

Chapter 2: Getting Started

The ADT plug-in integrates the following into Eclipse:

An Android Project Wizard that simplifi es creating new projects and includes a basic applica- ❑

tion template

Forms-based manifest, layout, and resource editors to help create, edit, and validate your XML ❑

resources

Automated building of Android projects, conversion to Android executables (❑ .dex), packaging
to package fi les (.apk), and installation of packages onto Dalvik virtual machines

The Android Emulator, including control of the emulator’s appearance, network connection set- ❑

tings, and the ability to simulate incoming calls and SMS messages

The Dalvik Debug Monitoring Service (DDMS), which includes port forwarding; stack, heap, ❑

and thread viewing; process details; and screen capture facilities

Access to the device or emulator’s fi lesystem, allowing you to navigate the folder tree and trans- ❑

fer fi les

Runtime debugging, so you can set breakpoints and view call stacks ❑

All Android/Dalvik log and console outputs ❑

Figure 2-1 shows the DDMS perspective within Eclipse with the ADT plug-in installed.

Figure 2-1

44712c02.indd 2244712c02.indd 22 10/20/08 4:12:13 PM10/20/08 4:12:13 PM

23

Chapter 2: Getting Started

Installing the ADT Plug-in
Install the developer tools plug-in by the following steps:

 1. Select Help ➪ Software Updates ➪ Find and Install … from within Eclipse.

 2. In the resulting dialog box, choose Search for new features to install.

 3. Select New Remote Site, and enter the following address into the dialog box, as shown in
Figure 2-2:

https://dl-ssl.google.com/android/eclipse/

Figure 2-2

 4. The new site you entered should now be checked. Click Finish.

 5. Eclipse will now download the plug-in. When it’s fi nished, select Android Plugin ➪ Developer
Tools from the resulting Search Results dialog box, and click Next.

 6. Read and then Accept the terms of the license agreement, and click Next and then Finish. As
the ADT plug-in is not signed, you’ll be prompted before the installation continues.

 7. When complete, you’ll have to restart Eclipse and update the ADT preferences. Restart and
select Window ➪ Preferences … (or Eclipse ➪ Preferences for the Mac OS).

 8. Then select Android from the left panel.

 9. Click Browse …, and navigate to the folder into which you unzipped the Android SDK, as
shown in Figure 2-3; then click Apply and OK.

44712c02.indd 2344712c02.indd 23 10/20/08 4:12:13 PM10/20/08 4:12:13 PM

24

Chapter 2: Getting Started

Figure 2-3

If you download a new version of the SDK and place it in a different location, you will need to update
this preference to refl ect the SDK with which the ADT should be building.

Updating the Plug-in
As the Android SDK matures, there are likely to be frequent updates to the ADT plug-in. In most cases,
to update your plug-in, you simply:

 1. Navigate to Help ➪ Software Updates ➪ Find and Install …

 2. Select Search for updates of the currently installed features, and click Finish …

 3. If there are any ADT updates available, they will be presented. Simply select them and choose
Install.

Sometimes a plug-in upgrade is so signifi cant that the dynamic update mechanism can’t be used. In
those cases, you may have to remove the previous plug-in completely before installing the newer version
as described in the previous section.

Creating Your First Android Activity
You’ve downloaded the SDK, installed Eclipse, and plugged in the plug-in. You’re now ready to start
programming for Android. Start by creating a new project and setting up your Eclipse run and debug
confi gurations.

Starting a New Android Project
To create a new Android project using the Android New Project Wizard:

 1. Select File ➪ New ➪ Project.

 2. Select the Android Project application type from the Android folder, and click Finish.

44712c02.indd 2444712c02.indd 24 10/20/08 4:12:13 PM10/20/08 4:12:13 PM

25

Chapter 2: Getting Started

 3. In the dialog that appears (shown in Figure 2-4), enter the details for your new project. The
“Project name” is the name of your project fi le; the “Package name” specifi es its package; the
“Activity name” is the name of the class that is your initial Activity; and the “Application
name” is the friendly name for your application.

Figure 2-4

 4. When you’ve entered the details, click Finish.

The ADT plug-in then creates a new project that includes a new class that extends Activity. Rather
than being completely empty, the default template implements “Hello World.” Before modifying the
project, take this opportunity to confi gure run and debug launch confi gurations.

Creating a Launch Confi guration
Launch confi gurations let you specify runtime options for running and debugging applications. Using
a launch confi guration you can specify the following:

The Project and Activity to launch ❑

The emulator options to use ❑

Input/output settings (including console defaults) ❑

You can specify different launch confi gurations for Run and Debug modes. The following steps show
how to create a launch confi guration for an Android application:

 1. Select Run ➪ Open Run Dialog … (or Run ➪ Open Debug Dialog …).

 2. Right-click Android Application on the project type list, and select New.

44712c02.indd 2544712c02.indd 25 10/20/08 4:12:13 PM10/20/08 4:12:13 PM

26

Chapter 2: Getting Started

 3. Enter a name for the confi guration. You can create multiple confi gurations for each project, so
create a descriptive title that will help you identify this particular setup.

 4. Now choose your start-up options. The fi rst (Android) tab lets you select the project and Activ-
ity that you want to start when you run (or debug) the application. Figure 2-5 shows the settings
for the project you created earlier.

Figure 2-5

 5. Use the Target tab to confi gure the emulator. There are options to choose the screen size, device
skin, and network connection settings. You can also optionally wipe the user data on the emu-
lator and enable or disable the start-up animation. Using the command-line textbox, you can
specify additional emulator start-up options if needed.

 6. Finally, set any additional properties in the Common tab.

 7. Click Apply, and your launch confi guration will be saved.

Running and Debugging Your Android Applications
You’ve created your fi rst project and created the run and debug confi gurations for it. Before making any
changes, test your installation and confi gurations by running and debugging the Hello World project.

From the Run menu, select Run or Debug to launch the most recently selected confi guration, or select
Open Run Dialog … or Open Debug Dialog … to select a confi guration to use.

If you’re using the ADT plug-in, running or debugging your application:

Compiles the current project and converts it to an Android executable (❑ .dex).

Packages the executable and external resources into an Android package (.apk). ❑

Starts the emulator (if it’s not already running). ❑

Installs your application onto the emulator. ❑

Starts your application. ❑

If you’re debugging, the Eclipse debugger will then be attached, allowing you to set breakpoints and
debug your code.

44712c02.indd 2644712c02.indd 26 10/20/08 4:12:13 PM10/20/08 4:12:13 PM

27

Chapter 2: Getting Started

If everything is working correctly, you’ll see a new Activity running in the emulator, as shown in
Figure 2-6.

Figure 2-6

Understanding Hello World
With that confi rmed, let’s take a step back and have a real look at your fi rst Android application.

Activity is the base class for the visual, interactive components of your application; it is roughly
equivalent to a Form in traditional desktop development. The following snippet shows the skeleton
code for an Activity-based class; note that it extends Activity, overriding the onCreate method.

package com.paad.helloworld;

import android.app.Activity;
import android.os.Bundle;

public class HelloWorld extends Activity {

 /** Called when the activity is first created. */
 @Override
 public void onCreate(Bundle icicle) {
 super.onCreate(icicle);
 }
}

What’s missing from this template is the layout of the visual interface. In Android, visual components
are called Views, which are similar to controls in traditional desktop development.

44712c02.indd 2744712c02.indd 27 10/20/08 4:12:13 PM10/20/08 4:12:13 PM

28

Chapter 2: Getting Started

In the Hello World template created by the wizard, the onCreate method is overridden to call
setContentView, which lays out the user interface by infl ating a layout resource, as highlighted below:

@Override
public void onCreate(Bundle icicle) {
 super.onCreate(icicle);
 setContentView(R.layout.main);
}

The resources for an Android project are stored in the res folder of your project hierarchy, which
includes drawable, layout, and values subfolders. The ADT plug-in interprets these XML resources
to provide design time access to them through the R variable as described in Chapter 3.

The following code snippet shows the UI layout defi ned in the main.xml fi le created by the Android
project template:

<?xml version=”1.0” encoding=”utf-8”?>
<LinearLayout xmlns:android=”http://schemas.android.com/apk/res/android”
 android:orientation=”vertical”
 android:layout_width=”fill_parent”
 android:layout_height=”fill_parent”>
 <TextView
 android:layout_width=”fill_parent”
 android:layout_height=”wrap_content”
 android:text=”Hello World, HelloWorld”
 />
</LinearLayout>

Defi ning your UI in XML and infl ating it is the preferred way of implementing your user interfaces, as
it neatly decouples your application logic from your UI design.

To get access to your UI elements in code, you add identifi er attributes to them in the XML defi nition.
You can then use the findViewById method to return a reference to each named item. The following
XML snippet shows an ID attribute added to the TextView widget in the Hello World template:

<TextView
 android:id=”@+id/myTextView”
 android:layout_width=”fill_parent”
 android:layout_height=”wrap_content”
 android:text=”Hello World, HelloWorld”
/>

And the following snippet shows how to get access to it in code:

TextView myTextView = (TextView)findViewById(R.id.myTextView);

Alternatively (although it’s not considered good practice), if you need to, you can create your layout
directly in code as shown below:

public void onCreate(Bundle icicle) {
 super.onCreate(icicle);

 LinearLayout.LayoutParams lp;

44712c02.indd 2844712c02.indd 28 10/20/08 4:12:13 PM10/20/08 4:12:13 PM

29

Chapter 2: Getting Started

 lp = new LinearLayout.LayoutParams(LayoutParams.FILL_PARENT,
 LayoutParams.FILL_PARENT);

 LinearLayout.LayoutParams textViewLP;
 textViewLP = new LinearLayout.LayoutParams(LayoutParams.FILL_PARENT,
 LayoutParams.WRAP_CONTENT);

 LinearLayout ll = new LinearLayout(this);
 ll.setOrientation(LinearLayout.VERTICAL);
 TextView myTextView = new TextView(this);
 myTextView.setText(“Hello World, HelloWorld”);
 ll.addView(myTextView, textViewLP);
 this.addContentView(ll, lp);
}

All the properties available in code can be set with attributes in the XML layout. As well as allowing
easier substitution of layout designs and individual UI elements, keeping the visual design decoupled
from the application code helps keep the code more concise.

The Android web site (http://code.google.com/android/documentation.html) includes
several excellent step-by-step guides that demonstrate many of the features and good practices you will
be using as an Android developer. They’re easy to follow and give a good idea of how Android applica-
tions fi t together.

Types of Android Applications
Most of the applications you create in Android will fall into one of the following categories:

Foreground Activity ❑ An application that’s only useful when it’s in the foreground and is
effectively suspended when it’s not visible. Games and map mashups are common examples.

Background Service ❑ An application with limited interaction that, apart from when being con-
fi gured, spends most of its lifetime hidden. Examples of this include call screening applications
or SMS auto-responders.

Intermittent Activity ❑ Expects some interactivity but does most of its work in the background.
Often these applications will be set up and then run silently, notifying users when appropriate.
A common example would be a media player.

Complex applications are diffi cult to pigeonhole into a single category and include elements of all
three. When creating your application, you need to consider how it’s likely to be used and then design
it accordingly. Let’s look more closely at some of the design considerations for each application type
described above.

Foreground Activities
When creating foreground applications, you need to consider the Activity life cycle (described in Chap-
ter 3) carefully so that the Activity switches seamlessly between the foreground and the background.

Applications have no control over their life cycles, and a backgrounded application, with no Services,
is a prime candidate for cleanup by Android’s resource management. This means that you need to save
the state of the application when the Activity becomes invisible, and present the exact same state when
it returns to the foreground.

44712c02.indd 2944712c02.indd 29 10/20/08 4:12:13 PM10/20/08 4:12:13 PM

30

Chapter 2: Getting Started

It’s also particularly important for foreground Activities to present a slick and intuitive user experience.

You’ll learn more about creating well-behaved and attractive foreground Activities in Chapter 3.

Background Services
These applications run silently in the background with very little user input. They often listen for mes-
sages or actions caused by the hardware, system, or other applications, rather than rely on user interaction.

It’s possible to create completely invisible services, but in practice, it’s better form to provide at least
some sort of user control. At a minimum, you should let users confi rm that the service is running and
let them confi gure, pause, or terminate it as needed.

Services, the powerhouse of background applications, are covered in depth in Chapter 8.

Intermittent Activities
Often you’ll want to create an application that reacts to user input but is still useful when it’s not the
active foreground Activity. These applications are generally a union of a visible controller Activity with
an invisible background Service.

These applications need to be aware of their state when interacting with the user. This might mean
updating the Activity UI when it’s visible and sending notifi cations to keep the user updated when it’s
in the background, as seen in the section on Notifi cations and Services in Chapter 8.

Developing for Mobile Devices
Android does a lot to simplify mobile-device software development, but it’s still important to under-
stand the reasons behind the conventions. There are several factors to account for when writing soft-
ware for mobile and embedded devices, and when developing for Android, in particular.

In this chapter, you’ll learn some of the techniques and best practices for writing effi cient Android code.
In later examples, effi ciency is sometimes compromised for clarity and brevity when introducing new
Android concepts or functionality. In the best traditions of “Do as I say, not as I do,” the examples
you’ll see are designed to show the simplest (or easiest-to-understand) way of doing something, not nec-
essarily the best way of doing it.

Hardware-Imposed Design Considerations
Small and portable, mobile devices offer exciting opportunities for software development. Their limited
screen size and reduced memory, storage, and processor power are far less exciting, and instead present
some unique challenges.

Compared to desktop or notebook computers, mobile devices have relatively:

Low processing power ❑

Limited RAM ❑

Limited permanent storage capacity ❑

44712c02.indd 3044712c02.indd 30 10/20/08 4:12:13 PM10/20/08 4:12:13 PM

31

Chapter 2: Getting Started

Small screens with low resolution ❑

Higher costs associated with data transfer ❑

Slower data transfer rates with higher latency ❑

Less reliable data connections ❑

Limited battery life ❑

It’s important to keep these restrictions in mind when creating new applications.

Be Effi cient
Manufacturers of embedded devices, particularly mobile devices, value small size and long battery
life over potential improvements in processor speed. For developers, that means losing the head start
traditionally afforded thanks to Moore’s law. The yearly performance improvements you’ll see in desk-
top and server hardware usually translate into smaller, more power-effi cient mobiles without much
improvement in processor power.

In practice, this means that you always need to optimize your code so that it runs quickly and respon-
sively, assuming that hardware improvements over the lifetime of your software are unlikely to do you
any favors.

Since code effi ciency is a big topic in software engineering, I’m not going to try and capture it here. This
chapter covers some Android-specifi c effi ciency tips below, but for now, just note that effi ciency is par-
ticularly important for resource-constrained environments like mobile devices.

Expect Limited Capacity
Advances in fl ash memory and solid-state disks have led to a dramatic increase in mobile-device stor-
age capacities (although people’s MP3 collections tend to expand to fi ll the available space). In practice,
most devices still offer relatively limited storage space for your applications. While the compiled size of
your application is a consideration, more important is ensuring that your application is polite in its use
of system resources.

You should carefully consider how you store your application data. To make life easier, you can use
the Android databases and Content Providers to persist, reuse, and share large quantities of data, as
described in Chapter 6. For smaller data storage, such as preferences or state settings, Android provides
an optimized framework, as described in Chapter 6.

Of course, these mechanisms won’t stop you from writing directly to the fi lesystem when you want or
need to, but in those circumstances, always consider how you’re structuring these fi les, and ensure that
yours is an effi cient solution.

Part of being polite is cleaning up after yourself. Techniques like caching are useful for limiting repeti-
tive network lookups, but don’t leave fi les on the fi lesystem or records in a database when they’re no
longer needed.

Design for Small Screens
The small size and portability of mobiles are a challenge for creating good interfaces, particularly when
users are demanding an increasingly striking and information-rich graphical user experience.

44712c02.indd 3144712c02.indd 31 10/20/08 4:12:13 PM10/20/08 4:12:13 PM

32

Chapter 2: Getting Started

Write your applications knowing that users will often only glance at the (small) screen. Make your
applications intuitive and easy to use by reducing the number of controls and putting the most impor-
tant information front and center.

Graphical controls, like the ones you’ll create in Chapter 4, are an excellent way to convey dense infor-
mation in an easy-to-understand way. Rather than a screen full of text with lots of buttons and text
entry boxes, use colors, shapes, and graphics to display information.

If you’re planning to include touch-screen support (and if you’re not, you should be), you’ll need to con-
sider how touch input is going to affect your interface design. The time of the stylus has passed; now it’s
all about fi nger input, so make sure your Views are big enough to support interaction using a fi nger on
the screen. There’s more information on touch-screen interaction in Chapter 11.

Of course, mobile-phone resolutions and screen sizes are increasing, so it’s smart to design for small
screens, but also make sure your UIs scale.

Expect Low Speeds, High Latency
In Chapter 5, you’ll learn how to use Internet resources in your applications. The ability to incorporate
some of the wealth of online information in your applications is incredibly powerful.

The mobile Web unfortunately isn’t as fast, reliable, or readily available as we’d often like, so when
you’re developing your Internet-based applications, it’s best to assume that the network connection will
be slow, intermittent, and expensive. With unlimited 3G data plans and city-wide Wi-Fi, this is chang-
ing, but designing for the worst case ensures that you always deliver a high-standard user experience.

This also means making sure that your applications can handle losing (or not fi nding) a data connection.

The Android Emulator lets you control the speed and latency of your network connection when setting
up an Eclipse launch confi guration. Figure 2-7 shows the emulator’s network connection speed and
latency set up to simulate a distinctly suboptimal EDGE connection.

Figure 2-7

Experiment to ensure responsiveness no matter what the speed, latency, and availability of network
access. You might fi nd that in some circumstances, it’s better to limit the functionality of your applica-
tion or reduce network lookups to cached bursts, based on the network connection(s) available. Details

44712c02.indd 3244712c02.indd 32 10/20/08 4:12:13 PM10/20/08 4:12:13 PM

33

Chapter 2: Getting Started

on how to detect the kind of network connections available at run time, and their speeds, are included
in Chapter 10.

At What Cost?
If you’re a mobile owner, you know all too well that some of the more powerful features on your mobile
can literally come at a price. Services like SMS, GPS, and data transfer often incur an additional tariff
from your service provider.

It’s obvious why it’s important that any costs associated with functionality in your applications are
minimized, and that users are aware when an action they perform might result in them being charged.

It’s a good approach to assume that there’s a cost associated with any action involving an interaction
with the outside world. Minimize interaction costs by the following:

Transferring as little data as possible ❑

Caching data and GPS results to eliminate redundant or repetitive lookups ❑

Stopping all data transfers and GPS updates when your activity is not visible in the foreground ❑

if they’re only being used to update the UI

Keeping the refresh/update rates for data transfers (and location lookups) as low as practicable ❑

Scheduling big updates or transfers at “off peak” times using alarms as shown in Chapter 8 ❑

Often the best solution is to use a lower-quality option that comes at a lower cost.

When using the location-based services described in Chapter 7, you can select a location provider based
on whether there is an associated cost. Within your location-based applications, consider giving users
the choice of lower cost or greater accuracy.

In some circumstances, costs are hard to defi ne, or they’re different for different users. Charges for ser-
vices vary between service providers and user plans. While some people will have free unlimited data
transfers, others will have free SMS.

Rather than enforcing a particular technique based on which seems cheaper, consider letting your
users choose. For example, when downloading data from the Internet, you could ask users if they want
to use any network available or limit their transfers to only when they’re connected via Wi-Fi.

Considering the Users’ Environment
You can’t assume that your users will think of your application as the most important feature of their
phones.

Generally, a mobile is fi rst and foremost a phone, secondly an SMS and e-mail communicator, thirdly a
camera, and fourthly an MP3 player. The applications you write will most likely be in a fi fth category of
“useful mobile tools.”

That’s not a bad thing — it’s in good company with others including Google Maps and the web
browser. That said, each user’s usage model will be different; some people will never use their mobiles

44712c02.indd 3344712c02.indd 33 10/20/08 4:12:13 PM10/20/08 4:12:13 PM

34

Chapter 2: Getting Started

to listen to music, and some phones don’t include a camera, but the multitasking principle inherent in a
device as ubiquitous as it is indispensable is an important consideration for usability design.

It’s also important to consider when and how your users will use your applications. People use their
mobiles all the time — on the train, walking down the street, or even while driving their cars. You can’t
make people use their phones appropriately, but you can make sure that your applications don’t distract
them any more than necessary.

What does this mean in terms of software design? Make sure that your application:

Is well behaved ❑ Start by ensuring that your Activities suspend when they’re not in the fore-
ground. Android triggers event handlers when your Activity is suspended or resumed so you
can pause UI updates and network lookups when your application isn’t visible — there’s no
point updating your UI if no one can see it. If you need to continue updating or processing in
the background, Android provides a Service class designed to run in the background without
the UI overheads.

Switches seamlessly from the background to the foreground ❑ With the multitasking nature
of mobile devices, it’s very likely that your applications will regularly switch into and out of the
background. When this happens, it’s important that they “come to life” quickly and seamlessly.
Android’s nondeterministic process management means that if your application is in the back-
ground, there’s every chance it will get killed to free up resources. This should be invisible to the
user. You can ensure this by saving the application state and queuing updates so that your users
don’t notice a difference between restarting and resuming your application. Switching back to it
should be seamless with users being shown the exact UI and application state they last saw.

Is polite ❑ Your application should never steal focus or interrupt a user’s current activity. Use
Notifi cations and Toasts (detailed in Chapter 8) instead to inform or remind users that their
attention is requested if your application isn’t in the foreground. There are several ways for
mobile devices to alert users. For example, when a call is coming in, your phone rings; when
you have unread messages, the LED fl ashes; and when you have new voice mail, a small “mail”
icon appears in your status bar. All these techniques and more are available through the notifi -
cation mechanism.

Presents a consistent user interface ❑ Your application is likely to be one of several in use at
any time, so it’s important that the UI you present is easy to use. Don’t force users to interpret
and relearn your application every time they load it. Using it should be simple, easy, and obvi-
ous — particularly given the limited screen space and distracting user environment.

Is responsive ❑ Responsiveness is one of the most important design considerations on a mobile
device. You’ve no doubt experienced the frustration of a “frozen” piece of software; the mul-
tifunction nature of a mobile makes it even more annoying. With possible delays due to slow
and unreliable data connections, it’s important that your application use worker threads and
background services to keep your activities responsive and, more importantly, stop them from
preventing other applications from responding in a timely manner.

Developing for Android
Nothing covered so far is specifi c to Android; the design considerations above are just as important
when developing applications for any mobile. In addition to these general guidelines, Android has
some particular considerations.

44712c02.indd 3444712c02.indd 34 10/20/08 4:12:13 PM10/20/08 4:12:13 PM

35

Chapter 2: Getting Started

To start with, it’s worth taking a few minutes to read Google’s Android design philosophy at
http://code.google.com/android/toolbox/philosophy.html.

The Android design philosophy demands that applications be:

Fast ❑

Responsive ❑

Secure ❑

Seamless ❑

Being Fast and Effi cient
In a resource-constrained environment, being fast means being effi cient. A lot of what you already
know about writing effi cient code will be just as effective in Android, but the limitations of embedded
systems and the use of the Dalvik VM mean you can’t take things for granted.

The smart bet for advice is to go to the source. The Android team has published some specifi c guidance
on writing effi cient code for Android, so rather than rehash their advice, I suggest you visit http://
code.google.com/android/toolbox/performance.html and take note of their suggestions.

You may fi nd that some of these performance suggestions contradict established design practices — for
example, avoiding the use of internal setters and getters or preferring virtual over interface. When
writing software for resource-constrained systems like embedded devices, there’s often a compromise
between conventional design principles and the demand for greater effi ciency.

One of the keys to writing effi cient Android code is to not carry over assumptions from desktop and
server environments to embedded devices.

At a time when 2 to 4 GB of memory is standard for most desktop and server rigs, even advanced
smartphones are lucky to feature 32 MB of RAM. With memory such a scarce commodity, you need to
take special care to use it effi ciently. This means thinking about how you use the stack and heap, limit-
ing object creation, and being aware of how variable scope affects memory use.

Being Responsive
Android takes responsiveness very seriously.

Android enforces responsiveness with the Activity Manager and Window Manager. If either service
detects an unresponsive application, it will display the unambiguous Application unresponsive (AUR)
message, as shown in Figure 2-8.

This alert is modal, steals focus, and won’t go away until you hit a button or your application starts
responding — it’s pretty much the last thing you ever want to confront a user with.

Android monitors two conditions to determine responsiveness:

An application must respond to any user action, such as a key press or screen touch, within ❑

5 seconds.

A Broadcast Receiver must return from its ❑ onReceive handler within 10 seconds.

44712c02.indd 3544712c02.indd 35 10/20/08 4:12:13 PM10/20/08 4:12:13 PM

36

Chapter 2: Getting Started

Figure 2-8

The most likely culprits for causing unresponsiveness are network lookups, complex processing (such
as calculating game moves), and fi le I/O. There are a number of ways to ensure that these actions don’t
exceed the responsiveness conditions, in particular, using services and worker threads, as shown in
Chapter 8.

The AUR dialog is a last resort of usability; the generous 5-second limit is a worst-case scenario, not a
benchmark to aim for. Users will notice a regular pause of anything more than half a second between
key press and action. Happily, a side effect of the effi cient code you’re already writing will be faster,
more responsive applications.

Developing Secure Applications
Android applications have direct hardware access, can be distributed independently, and are built on
an open source platform featuring open communication, so it’s not particularly surprising that security
is a big concern.

For the most part, users will take responsibility for what applications they install and what permissions
they grant them. The Android security model restricts access to certain services and functionality by
forcing applications to request permission before using them. During installation, users then decide if
the application should be granted the permissions requested. You can learn more about Android’s secu-
rity model in Chapter 11 and at http://code.google.com/android/devel/security.html.

This doesn’t get you off the hook. You not only need to make sure your application is secure for its own
sake, but you also need to ensure that it can’t be hijacked to compromise the device. You can use several
techniques to help maintain device security, and they’ll be covered in more detail as you learn the tech-
nologies involved. In particular, you should:

Consider requiring permissions for any services you create or broadcasts you transmit. ❑

Take special care when accepting input to your application from external sources such as the ❑

Internet, SMS messages, or instant messaging (IM). You can fi nd out more about using IM and
SMS for application messaging in Chapter 9.

Be cautious when your application may expose access to lower-level hardware. ❑

For reasons of clarity and simplicity, many of the examples in this book take a fairly relaxed approach to
security. When creating your own applications, particularly ones you plan to distribute, this is an area
that should not be overlooked. You can fi nd out more about Android security in Chapter 11.

44712c02.indd 3644712c02.indd 36 10/20/08 4:12:13 PM10/20/08 4:12:13 PM

37

Chapter 2: Getting Started

Ensuring a Seamless User Experience
The idea of a seamless user experience is an important, if somewhat nebulous, concept. What do we
mean by seamless? The goal is a consistent user experience where applications start, stop, and transition
instantly and without noticeable delays or jarring transitions.

The speed and responsiveness of a mobile device shouldn’t degrade the longer it’s on. Android’s pro-
cess management helps by acting as a silent assassin, killing background applications to free resources
as required. Knowing this, your applications should always present a consistent interface, regardless of
whether they’re being restarted or resumed.

With an Android device typically running several third-party applications written by different devel-
opers, it’s particularly important that these applications interact seamlessly.

Use a consistent and intuitive approach to usability. You can still create applications that are revolution-
ary and unfamiliar, but even they should integrate cleanly with the wider Android environment.

Persist data between sessions, and suspend tasks that use processor cycles, network bandwidth, or bat-
tery life when the application isn’t visible. If your application has processes that need to continue run-
ning while your activity is out of sight, use a Service, but hide these implementation decisions from your
users.

When your application is brought back to the front, or restarted, it should seamlessly return to its last
visible state. As far as your users are concerned, each application should be sitting silently ready to be
used but just out of sight.

You should also follow the best-practice guidelines for using Notifi cations and use generic UI elements
and themes to maintain consistency between applications.

There are many other techniques you can use to ensure a seamless user experience, and you’ll be intro-
duced to some of them as you discover more of the possibilities available in Android in the coming
chapters.

To-Do List Example
In this example, you’ll be creating a new Android application from scratch. This simple example cre-
ates a new to-do list application using native Android View controls. It’s designed to illustrate the basic
steps involved in starting a new project.

Don’t worry if you don’t understand everything that happens in this example. Some of the features used
to create this application, including ArrayAdapters, ListViews, and KeyListeners, won’t be introduced
properly until later chapters, where they’re explained in detail. You’ll also return to this example later
to add new functionality as you learn more about Android.

 1. Start by creating a new Android project. Within Eclipse, select File ➪ New ➪ Project …, then
choose Android (as shown in Figure 2-9) before clicking Next.

44712c02.indd 3744712c02.indd 37 10/20/08 4:12:13 PM10/20/08 4:12:13 PM

38

Chapter 2: Getting Started

Figure 2-9

 2. In the dialog box that appears (shown in Figure 2-10), enter the details for your new project.
The “Application name” is the friendly name of your application, and the “Activity name” is the
name of your Activity subclass. With the details entered, click Finish to create your new project.

Figure 2-10

 3. Take this opportunity to set up debug and run confi gurations by selecting Run ➪ Open Debug
Dialog … and then Run ➪ Open Run Dialog …, creating a new confi guration for each, speci-
fying the Todo_List project. You can leave the launch actions as Launch Default Activity or
explicitly set them to launch the new ToDoList Activity, as shown in Figure 2-11.

44712c02.indd 3844712c02.indd 38 10/20/08 4:12:13 PM10/20/08 4:12:13 PM

39

Chapter 2: Getting Started

Figure 2-11

 4. Now decide what you want to show the users and what actions they’ll need to perform. Design
a user interface that will make this as intuitive as possible.

In this example, we want to present users with a list of to-do items and a text entry box to add new
ones. There’s both a list and a text entry control (View) available from the Android libraries. You’ll learn
more about the Views available in Android and how to create new ones in Chapter 4.

The preferred method for laying out your UI is using a layout resource fi le. Open the main.xml layout
fi le in the res/layout project folder, as shown in Figure 2-12.

Figure 2-12

 5. Modify the main layout to include a ListView and an EditText within a LinearLayout. It’s
important to give both the EditText and ListView controls IDs so you can get references to
them in code.

<?xml version=”1.0” encoding=”utf-8”?>
<LinearLayout xmlns:android=”http://schemas.android.com/apk/res/android”
 android:orientation=”vertical”
 android:layout_width=”fill_parent”
 android:layout_height=”fill_parent”>
 <EditText
 android:id=”@+id/myEditText”
 android:layout_width=”fill_parent”
 android:layout_height=”wrap_content”
 android:text=”New To Do Item”
 />
 <ListView

44712c02.indd 3944712c02.indd 39 10/20/08 4:12:13 PM10/20/08 4:12:13 PM

40

Chapter 2: Getting Started

 android:id=”@+id/myListView”
 android:layout_width=”fill_parent”
 android:layout_height=”wrap_content”
 />
</LinearLayout>

 6. With your user interface defi ned, open the ToDoList.java Activity class from your proj-
ect’s source folder. In this example, you’ll make all your changes by overriding the onCreate
method. Start by infl ating your UI using setContentView and then get references to the
ListView and EditText using findViewById.

public void onCreate(Bundle icicle) {
 // Inflate your view
 setContentView(R.layout.main);

 // Get references to UI widgets
 ListView myListView = (ListView)findViewById(R.id.myListView);
 final EditText myEditText = (EditText)findViewById(R.id.myEditText);
}

 7. Still within onCreate, defi ne an ArrayList of Strings to store each to-do list item. You can
bind a ListView to an ArrayList using an ArrayAdapter, so create a new ArrayAdapter
instance to bind the to-do item array to the ListView. We’ll return to ArrayAdapters in
Chapter 5.

public void onCreate(Bundle icicle) {
 setContentView(R.layout.main);

 ListView myListView = (ListView)findViewById(R.id.myListView);
 final EditText myEditText = (EditText)findViewById(R.id.myEditText);

 // Create the array list of to do items
 final ArrayList<String> todoItems = new ArrayList<String>();
 // Create the array adapter to bind the array to the listview
 final ArrayAdapter<String> aa;
 aa = new ArrayAdapter<String>(this,
 android.R.layout.simple_list_item_1,
 todoItems);
 // Bind the array adapter to the listview.
 myListView.setAdapter(aa);
}

 8. The fi nal step to make this to-do list functional is to let users add new to-do items. Add an
onKeyListener to the EditText that listens for a “D-pad center button” click before adding
the contents of the EditText to the to-do list array and notifying the ArrayAdapter of the
change. Then clear the EditText to prepare for another item.

public void onCreate(Bundle icicle) {
 setContentView(R.layout.main);

 ListView myListView = (ListView)findViewById(R.id.myListView);
 final EditText myEditText = (EditText)findViewById(R.id.myEditText);

 final ArrayList<String> todoItems = new ArrayList<String>();
 final ArrayAdapter<String> aa;
 aa = new ArrayAdapter<String>(this,

44712c02.indd 4044712c02.indd 40 10/20/08 4:12:14 PM10/20/08 4:12:14 PM

41

Chapter 2: Getting Started

 android.R.layout.simple_list_item_1,
 todoItems);
 myListView.setAdapter(aa);

 myEditText.setOnKeyListener(new OnKeyListener() {
 public boolean onKey(View v, int keyCode, KeyEvent event) {
 if (event.getAction() == KeyEvent.ACTION_DOWN)
 if (keyCode == KeyEvent.KEYCODE_DPAD_CENTER)
 {
 todoItems.add(0, myEditText.getText().toString());
 aa.notifyDataSetChanged();
 myEditText.setText(“”);
 return true;
 }
 return false;
 }
 });
}

 9. Run or debug the application, and you’ll see a text entry box above a list, as shown in Figure 2-13.

Figure 2-13

 10. You’ve now fi nished your fi rst “real” Android application. Try adding breakpoints to the code
to test the debugger and experiment with the DDMS perspective.

As it stands, this to-do list application isn’t spectacularly useful. It doesn’t save to-do list items between
sessions, you can’t edit or remove an item from the list, and typical task list items like due dates and
task priority aren’t recorded or displayed. On balance, it fails most of the criteria laid out so far for a
good mobile application design.

You’ll rectify some of these defi ciencies when you return to this example in later chapters.

44712c02.indd 4144712c02.indd 41 10/20/08 4:12:14 PM10/20/08 4:12:14 PM

42

Chapter 2: Getting Started

Android Development Tools
The Android SDK includes several tools and utilities to help you create, test, and debug your projects. A
detailed examination of each developer tool is outside the scope of this book, but it’s worth briefl y review-
ing what’s available. For more detail than is included here, check out the Android documentation at:

http://code.google.com/android/intro/tools.html

As mentioned earlier, the ADT plug-in conveniently incorporates most of these tools into the Eclipse
IDE, where you can access them from the DDMS perspective, including:

The Android Emulator ❑ An implementation of the Android virtual machine designed to run
on your development computer. You can use the emulator to test and debug your android
applications.

Dalvik Debug Monitoring Service (DDMS) ❑ Use the DDMS perspective to monitor and con-
trol the Dalvik virtual machines on which you’re debugging your applications.

Android Asset Packaging Tool (AAPT) ❑ Constructs the distributable Android package
fi les (.apk).

Android Debug Bridge (ADB) ❑ The ADB is a client-server application that provides a link to
a running emulator. It lets you copy fi les, install compiled application packages (.apk), and run
shell commands.

The following additional tools are also available:

SQLite3 ❑ A database tool that you can use to access the SQLite database fi les created and used
by Android

Traceview ❑ Graphical analysis tool for viewing the trace logs from your Android application

MkSDCard ❑ Creates an SDCard disk image that can be used by the emulator to simulate an
external storage card.

dx ❑ Converts Java .class bytecode into Android .dex bytecode.

activityCreator ❑ Script that builds Ant build fi les that you can then use to compile your
Android applications without the ADT plug-in

Let’s take a look at some of the more important tools in more detail.

The Android Emulator
The emulator is the perfect tool for testing and debugging your applications, particularly if you don’t
have a real device (or don’t want to risk it) for experimentation.

The emulator is an implementation of the Dalvik virtual machine, making it as valid a platform for run-
ning Android applications as any Android phone. Because it’s decoupled from any particular hardware,
it’s an excellent baseline to use for testing your applications.

44712c02.indd 4244712c02.indd 42 10/20/08 4:12:14 PM10/20/08 4:12:14 PM

43

Chapter 2: Getting Started

A number of alternative user interfaces are available to represent different hardware confi gurations,
each with different screen sizes, resolutions, orientations, and hardware features to simulate a variety
of mobile device types.

Full network connectivity is provided along with the ability to tweak the Internet connection speed and
latency while debugging your applications. You can also simulate placing and receiving voice calls and
SMS messages.

The ADT plug-in integrates the emulator into Eclipse so that it’s launched automatically when you run
or debug your projects. If you aren’t using the plug-in or want to use the emulator outside of Eclipse,
you can telnet into the emulator and control it from its console. For more details on controlling the emu-
lator, check the documentation at http://code.google.com/android/reference/emulator.html.

At this stage, the emulator doesn’t implement all the mobile hardware features supported by Android,
including the camera, vibration, LEDs, actual phone calls, the accelerometer, USB connections,
Bluetooth, audio capture, battery charge level, and SD card insertion/ejection.

Dalvik Debug Monitor Service (DDMS)
The emulator lets you see how your application will look, behave, and interact, but to really see what’s
happening under the surface, you need the DDMS. The Dalvik Debug Monitoring Service is a power-
ful debugging tool that lets you interrogate active processes, view the stack and heap, watch and pause
active threads, and explore the fi lesystem of any active emulator.

The DDMS perspective in Eclipse also provides simplifi ed access to screen captures of the emulator and
the logs generated by LogCat.

If you’re using the ADT plug-in, the DDMS is fully integrated into Eclipse and is available from the
DDMS perspective. If you aren’t using the plug-in or Eclipse, you can run DDMS from the command
line, and it will automatically connect to any emulator that’s running.

The Android Debug Bridge (ADB)
The Android debug bridge (ADB) is a client-service application that lets you connect with an Android
Emulator or device. It’s made up of three components: a daemon running on the emulator, a service that
runs on your development hardware, and client applications (like the DDMS) that communicate with
the daemon through the service.

As a communications conduit between your development hardware and the Android device/emulator,
the ADB lets you install applications, push and pull fi les, and run shell commands on the target device.
Using the device shell, you can change logging settings, and query or modify SQLite databases avail-
able on the device.

The ADT tool automates and simplifi es a lot of the usual interaction with the ADB, including applica-
tion installation and update, log fi les, and fi le transfer (through the DDMS perspective).

To learn more about what you can do with the ADB, check out the documentation at
http://code.google.com/android/reference/adb.html.

44712c02.indd 4344712c02.indd 43 10/20/08 4:12:14 PM10/20/08 4:12:14 PM

44

Chapter 2: Getting Started

Summary
This chapter showed you how to download and install the Android SDK; create a development envi-
ronment using Eclipse on Windows, Mac OS, or Linux platforms; and how to create run and debug con-
fi gurations for your projects. You learned how to install and use the ADT plug-in to simplify creating
new projects and streamline your development cycle.

You were introduced to some of the design considerations for developing mobile applications, particu-
larly the importance of optimizing for speed and effi ciency when increasing battery life and shrinking
sizes are higher priorities than increasing processor power.

As with any mobile development, there are considerations when designing for small screens and
mobile data connections that can be slow, costly, and unreliable.

After creating an Android to-do list application, you were introduced to the Android Emulator and the
developer tools you’ll use to test and debug your applications.

Specifi cally in this chapter, you:

Downloaded and installed the Android SDK. ❑

Set up a development environment in Eclipse and downloaded and installed the ADT plug-in. ❑

Created your fi rst application and learned how it works. ❑

Set up run and debug launch confi gurations for your projects. ❑

Learned about the different types of Android applications. ❑

Were introduced to some mobile-device design considerations and learned some specifi c ❑

Android design practices.

Created a to-do list application. ❑

Were introduced to the Android Emulator and the developer tools. ❑

The next chapter focuses on Activities and application design. You’ll see how to defi ne application set-
tings using the Android manifest and how to externalize your UI layouts and application resources.
You’ll also fi nd out more about the Android application life cycle and Android application states.

44712c02.indd 4444712c02.indd 44 10/20/08 4:12:14 PM10/20/08 4:12:14 PM

Creating Applications
and Activities

Before you start writing Android applications, it’s important to understand how they’re con-
structed and have an understanding of the Android application life cycle. In this chapter, you’ll
be introduced to the loosely coupled components that make up Android applications (and how
they’re bound together using the Android manifest). Next you’ll see how and why you should
use external resources, before getting an introduction to the Activity component.

In recent years, there’s been a move toward development frameworks featuring managed code,
such as the Java virtual machine and the .NET Common Language Runtime.

In Chapter 1, you learned that Android uses this model, with each application running in a sepa-
rate process with its own instance of the Dalvik virtual machine. In this chapter, you’ll learn more
about the application life cycle and how it’s managed by the Android run time. This will lead to
an introduction of the process states that represent the application priority, which, in turn, deter-
mines the likelihood of an application’s being terminated when more resources are required.

Mobile devices now come in many shapes and sizes and are used internationally. In this chapter,
you’ll learn how to give your applications the fl exibility to run seamlessly on different hardware,
in different countries, and using multiple languages by externalizing resources.

Next you’ll examine the Activity component. Arguably the most important of the Android build-
ing blocks, the Activity class forms the basis for all your user interface screens. You’ll learn how
to create new Activities and gain an understanding of their life cycles and how they affect the
application lifetime.

Finally, you’ll be introduced to some of the Activity subclasses that wrap up resource manage-
ment for some common user interface components such as maps and lists.

44712c03.indd 4544712c03.indd 45 10/21/08 7:42:17 AM10/21/08 7:42:17 AM

46

Chapter 3: Creating Applications and Activities

What Makes an Android Application?
Android applications consist of loosely coupled components, bound using a project manifest that
describes each component and how they interact.

There are six components that provide the building blocks for your applications:

Activities ❑ Your application’s presentation layer. Every screen in your application will be an
extension of the Activity class. Activities use Views to form graphical user interfaces that dis-
play information and respond to user actions. In terms of desktop development, an Activity is
equivalent to a Form. You’ll learn more about Activities later in this chapter.

Services ❑ The invisible workers of your application. Service components run invisibly, updat-
ing your data sources and visible Activities and triggering Notifi cations. They’re used to per-
form regular processing that needs to continue even when your application’s Activities aren’t
active or visible. You’ll learn how to create Services in Chapter 8.

Content Providers ❑ A shareable data store. Content Providers are used to manage and share
application databases. Content Providers are the preferred way of sharing data across applica-
tion boundaries. This means that you can confi gure your own Content Providers to permit access
from other applications and use Content Providers exposed by others to access their stored data.
Android devices include several native Content Providers that expose useful databases like con-
tact information. You’ll learn how to create and use Content Providers in Chapter 6.

Intents ❑ A simple message-passing framework. Using Intents, you can broadcast messages sys-
tem-wide or to a target Activity or Service, stating your intention to have an action performed.
The system will then determine the target(s) that will perform any actions as appropriate.

Broadcast Receivers ❑ Intent broadcast consumers. By creating and registering a Broadcast
Receiver, your application can listen for broadcast Intents that match specifi c fi lter criteria.
Broadcast Receivers will automatically start your application to respond to an incoming Intent,
making them ideal for event-driven applications.

Notifi cations ❑ A user notifi cation framework. Notifi cations let you signal users without steal-
ing focus or interrupting their current Activities. They’re the preferred technique for getting
a user’s attention from within a Service or Broadcast Receiver. For example, when a device
receives a text message or an incoming call, it alerts you by fl ashing lights, making sounds, dis-
playing icons, or showing dialog messages. You can trigger these same events from your own
applications using Notifi cations, as shown in Chapter 8.

By decoupling the dependencies between application components, you can share and interchange
individual pieces, such as Content Providers or Services, with other applications — both your own and
those of third parties.

Introducing the Application Manifest
Each Android project includes a manifest fi le, AndroidManifest.xml, stored in the root of the proj-
ect hierarchy. The manifest lets you defi ne the structure and metadata of your application and its
components.

44712c03.indd 4644712c03.indd 46 10/21/08 7:42:17 AM10/21/08 7:42:17 AM

47

Chapter 3: Creating Applications and Activities

It includes nodes for each of the components (Activities, Services, Content Providers, and Broadcast
Receivers) that make up your application and, using Intent Filters and Permissions, determines how
they interact with each other and other applications.

It also offers attributes to specify application metadata (like its icon or theme), and additional top-level
nodes can be used for security settings and unit tests as described below.

The manifest is made up of a root manifest tag with a package attribute set to the project’s package.
It usually includes an xmlns:android attribute that supplies several system attributes used within the
fi le. A typical manifest node is shown in the XML snippet below:

<manifest xmlns:android=http://schemas.android.com/apk/res/android
 package=”com.my_domain.my_app”>
 [... manifest nodes ...]
</manifest>

The manifest tag includes nodes that defi ne the application components, security settings, and test
classes that make up your application. The following list gives a summary of the available manifest
node tags, and an XML snippet demonstrating how each one is used:

application ❑ A manifest can contain only one application node. It uses attributes to specify
the metadata for your application (including its title, icon, and theme). It also acts as a container
that includes the Activity, Service, Content Provider, and Broadcast Receiver tags used to spec-
ify the application components.

<application android:icon=”@drawable/icon”
 android:theme=”@style/my_theme”>
 [... application nodes ...]
</application>

activity ❑ An activity tag is required for every Activity displayed by your applica-
tion, using the android:name attribute to specify the class name. This must include the
main launch Activity and any other screen or dialogs that can be displayed. Trying to
start an Activity that’s not defi ned in the manifest will throw a runtime exception. Each
Activity node supports intent-filter child tags that specify which Intents launch the
Activity.

<activity android:name=”.MyActivity” android:label=”@string/app_name”>
 <intent-filter>
 <action android:name=”android.intent.action.MAIN” />
 <category android:name=”android.intent.category.LAUNCHER” />
 </intent-filter>
</activity>

service ❑ As with the activity tag, create a new service tag for each Service class
used in your application. (Services are covered in detail in Chapter 8.) Service tags also
support intent-filter child tags to allow late runtime binding.

<service android:enabled=”true” android:name=”.MyService”></service>

44712c03.indd 4744712c03.indd 47 10/21/08 7:42:17 AM10/21/08 7:42:17 AM

48

Chapter 3: Creating Applications and Activities

provider ❑ Provider tags are used for each of your application’s Content Providers.
Content Providers are used to manage database access and sharing within and between
applications and are examined in Chapter 6.

<provider android:permission=”com.paad.MY_PERMISSION”
 android:name=”.MyContentProvider”
 android:enabled=”true”
 android:authorities=”com.paad.myapp.MyContentProvider”>
</provider>

receiver ❑ By adding a receiver tag, you can register a Broadcast Receiver without
having to launch your application fi rst. As you’ll see in Chapter 5, Broadcast Receivers
are like global event listeners that, once registered, will execute whenever a matching
Intent is broadcast by an application. By registering a Broadcast Receiver in the mani-
fest, you can make this process entirely autonomous. If a matching Intent is broadcast,
your application will be started automatically and the registered Broadcast Receiver
will be run.

<receiver android:enabled=”true”
 android:label=”My Broadcast Receiver”
 android:name=”.MyBroadcastReceiver”>
</receiver>

uses-permission ❑ As part of the security model, uses-permission tags declare the permis-
sions you’ve determined that your application needs for it to operate properly. The permissions
you include will be presented to the user, to grant or deny, during installation. Permissions
are required for many of the native Android services, particularly those with a cost or security
implication (such as dialing, receiving SMS, or using the location-based services). As shown
in the item below, third-party applications, including your own, can also specify permissions
before providing access to shared application components.

<uses-permission android:name=”android.permission.ACCESS_LOCATION”>
</uses-permission>

permission ❑ Before you can restrict access to an application component, you need to defi ne
a permission in the manifest. Use the permission tag to create these permission defi nitions.
Application components can then require them by adding the android:permission attribute.
Other applications will then need to include a uses-permission tag in their manifests (and
have it granted) before they can use these protected components.

Within the permission tag, you can specify the level of access the permission will permit
(normal, dangerous, signature, signatureOrSystem), a label, and an external resource
containing the description that explain the risks of granting this permission.

<permission android:name=”com.paad.DETONATE_DEVICE”
 android:protectionLevel=”dangerous”
 android:label=”Self Destruct”
 android:description=”@string/detonate_description”>
</permission>

instrumentation ❑ Instrumentation classes provide a framework for running tests on your
Activities and Services at run time. They provide hooks to monitor your application and its

44712c03.indd 4844712c03.indd 48 10/21/08 7:42:17 AM10/21/08 7:42:17 AM

49

Chapter 3: Creating Applications and Activities

interaction with the system resources. Create a new node for each of the test classes you’ve cre-
ated for your application.

<instrumentation android:label=”My Test”
 android:name=”.MyTestClass”
 android:targetPackage=”com.paad.aPackage”>
</instrumentation>

A more detailed description of the manifest and each of these nodes can be found at

http://code.google.com/android/devel/bblocks-manifest.html

The ADT New Project Wizard automatically creates a new manifest fi le when it creates a new project.

You’ll return to the manifest as each of the application components is introduced.

Using the Manifest Editor
The ADT plug-in includes a visual Manifest Editor to manage your manifest, rather than your having to
manipulate the underlying XML directly.

To use the Manifest Editor in Eclipse, right-click the AndroidManifest.xml fi le in your project folder,
and select Open With ➪ Android Manifest Editor. This presents the Android Manifest Overview
screen, as shown in Figure 3-1. This gives you a high-level view of your application structure and pro-
vides shortcut links to the Application, Permissions, Instrumentation, and raw XML screens.

Figure 3-1

44712c03.indd 4944712c03.indd 49 10/21/08 7:42:17 AM10/21/08 7:42:17 AM

50

Chapter 3: Creating Applications and Activities

Each of the next three tabs contains a visual interface for managing the application, security, and instru-
mentation (testing) settings, while the last tag (using the manifest’s fi lename) gives access to the raw XML.

Of particular interest is the Application tab, shown in Figure 3-2. Use it to manage the application node
and the application component hierarchy, where you specify the application components.

Figure 3-2

You can specify an application’s attributes — including its Icon, Label, and Theme — in the Application
Attributes panel. The Application Nodes tree beneath it lets you manage the application components,
including their attributes and any associated Intent Filter subnodes.

The Android Application Life Cycle
Unlike most traditional environments, Android applications have no control over their own life cycles.
Instead, application components must listen for changes in the application state and react accordingly,
taking particular care to be prepared for untimely termination.

As mentioned before, by default, each Android application is run in its own process that’s running a
separate instance of Dalvik. Memory and process management of each application is handled exclu-
sively by the run time.

While uncommon, it’s possible to force application components within the same application
to run in different processes or to have multiple applications share the same process using the
android:process attribute on the affected component nodes within the manifest.

Android aggressively manages its resources, doing whatever it takes to ensure that the device remains
responsive. This means that processes (and their hosted applications) will be killed, without warning if

44712c03.indd 5044712c03.indd 50 10/21/08 7:42:17 AM10/21/08 7:42:17 AM

51

Chapter 3: Creating Applications and Activities

necessary, to free resources for higher-priority applications — generally those that are interacting
directly with the user at the time. The prioritization process is discussed in the next section.

Understanding Application Priority
and Process States

The order in which processes are killed to reclaim resources is determined by the priority of the hosted
applications. An application’s priority is equal to its highest-priority component.

Where two applications have the same priority, the process that has been at a lower priority longest
will be killed fi rst. Process priority is also affected by interprocess dependencies; if an application has a
dependency on a Service or Content Provider supplied by a second application, the secondary applica-
tion will have at least as high a priority as the application it supports.

All Android applications will remain running and in memory until the system needs its resources for
other applications.

Figure 3-3 shows the priority tree used to determine the order of application termination.

1. Active Process

2. Visible Process

3. Started Service Process

4. Background Process

5. Empty Process

Low Priority

Critical Priority

High Priority

Figure 3-3

It’s important to structure your application correctly to ensure that its priority is appropriate for the
work it’s doing. If you don’t, your application could be killed while it’s in the middle of something
important.

The following list details each of the application states shown in Figure 3-3, explaining how the state is
determined by the application components comprising it:

Active Processes ❑ Active (foreground) processes are those hosting applications with compo-
nents currently interacting with the user. These are the processes Android is trying to keep
responsive by reclaiming resources. There are generally very few of these processes, and they
will be killed only as a last resort.

44712c03.indd 5144712c03.indd 51 10/21/08 7:42:17 AM10/21/08 7:42:17 AM

52

Chapter 3: Creating Applications and Activities

Active processes include:

Activities in an “active” state; that is, they are in the foreground and responding to user ❑

events. You will explore Activity states in greater detail later in this chapter.

Activities, Services, or Broadcast Receivers that are currently executing an ❑

onReceive event handler.

Services that are executing an ❑ onStart, onCreate, or onDestroy event handler.

Visible Processes ❑ Visible, but inactive processes are those hosting “visible” Activities. As the
name suggests, visible Activities are visible, but they aren’t in the foreground or responding to
user events. This happens when an Activity is only partially obscured (by a non-full-screen or
transparent Activity). There are generally very few visible processes, and they’ll only be killed
in extreme circumstances to allow active processes to continue.

Started Service Processes ❑ Processes hosting Services that have been started. Services support
ongoing processing that should continue without a visible interface. Because Services don’t
interact directly with the user, they receive a slightly lower priority than visible Activities. They
are still considered to be foreground processes and won’t be killed unless resources are needed
for active or visible processes. You’ll learn more about Services in Chapter 8.

Background Processes ❑ Processes hosting Activities that aren’t visible and that don’t have any
Services that have been started are considered background processes. There will generally be a
large number of background processes that Android will kill using a last-seen-fi rst-killed pat-
tern to obtain resources for foreground processes.

Empty Processes ❑ To improve overall system performance, Android often retains applications
in memory after they have reached the end of their lifetimes. Android maintains this cache to
improve the start-up time of applications when they’re re-launched. These processes are rou-
tinely killed as required.

Externalizing Resources
No matter what your development environment, it’s always good practice to keep non-code resources like
images and string constants external to your code. Android supports the externalization of resources
ranging from simple values such as strings and colors to more complex resources like images (drawables),
animations, and themes. Perhaps the most powerful resources available for externalization are layouts.

By externalizing resources, they become easier to maintain, update, and manage. This also lets you eas-
ily defi ne alternative resource values to support different hardware and internationalization.

You’ll see later in this section how Android dynamically selects resources from resource trees that let
you defi ne alternative values based on a device’s hardware confi guration, language, and location. This
lets you create different resource values for specifi c languages, countries, screens, and keyboards. When
an application starts, Android will automatically select the correct resource values without your having
to write a line of code.

Among other things, this lets you change the layout based on the screen size and orientation and cus-
tomize text prompts based on language and country.

44712c03.indd 5244712c03.indd 52 10/21/08 7:42:17 AM10/21/08 7:42:17 AM

53

Chapter 3: Creating Applications and Activities

Creating Resources
Application resources are stored under the res/ folder of your project hierarchy. In this folder, each of
the available resource types can have a subfolder containing its resources.

If you start a project using the ADT wizard, it will create a res folder that contains subfolders for the
values, drawable, and layout resources that contain the default layout, application icon, and string
resource defi nitions, respectively, as shown in Figure 3-4.

Figure 3-4

There are seven primary resource types that have different folders: simple values, drawables, layouts,
animations, XML, styles, and raw resources. When your application is built, these resources will be
compiled as effi ciently as possible and included in your application package.

This process also creates an R class fi le that contains references to each of the resources you include in
your project. This lets you reference the resources in your code, with the advantage of design time syn-
tax checking.

The following sections describe the specifi c resource types available within these categories and how to
create them for your applications.

 In all cases, the resource fi lenames should contain only lowercase letters, numbers, and the period (.)
and underscore (_) symbols.

Creating Simple Values
Supported simple values include strings, colors, dimensions, and string or integer arrays. All simple
values are stored within XML fi les in the res/values folder.

Within each XML fi le, you indicate the type of value being stored using tags as shown in the sample
XML fi le below:

<?xml version=”1.0” encoding=”utf-8”?>
<resources>
 <string name=”app_name”>To Do List</string>
 <color name=”app_background”>#FF0000FF</color>
 <dimen name=”default_border”>5px</dimen>
 <array name=”string_array”>

44712c03.indd 5344712c03.indd 53 10/21/08 7:42:17 AM10/21/08 7:42:17 AM

54

Chapter 3: Creating Applications and Activities

 <item>Item 1</item>
 <item>Item 2</item>
 <item>Item 3</item>
 </array>
 <array name=”integer_array”>
 <item>3</item>
 <item>2</item>
 <item>1</item>
 </array>
</resources>

This example includes all of the simple value types. By convention, resources are separated into sepa-
rate fi les for each type; for example, res/values/strings.xml would contain only string resources.

The following sections detail the options for defi ning simple resources.

Strings
Externalizing your strings helps maintain consistency within your application and makes it much
easier to create localized versions.

String resources are specifi ed using the string tag as shown in the following XML snippet:

<string name=”stop_message”>Stop.</string>

Android supports simple text styling, so you can use the HTML tags , <i>, and <u> to apply bold,
italics, or underlining to parts of your text strings as shown in the example below:

<string name=”stop_message”>Stop.</string>

You can use resource strings as input parameters for the String.format method. However,
String.format does not support the text styling described above. To apply styling to a format
string, you have to escape the HTML tags when creating your resource, as shown below:

<string name=”stop_message”>Stop. %1$s</string>

Within your code, use the Html.fromHtml method to convert this back into a styled character
sequence:

String rString = getString(R.string.stop_message);
String fString = String.format(rString, “Collaborate and listen.”);
CharSequence styledString = Html.fromHtml(fString);

Colors
Use the color tag to defi ne a new color resource. Specify the color value using a # symbol followed by
the (optional) alpha channel, then the red, green, and blue values using one or two hexadecimal num-
bers with any of the following notations:

#RGB ❑

#RRGGBB ❑

44712c03.indd 5444712c03.indd 54 10/21/08 7:42:17 AM10/21/08 7:42:17 AM

55

Chapter 3: Creating Applications and Activities

#ARGB ❑

#ARRGGBB ❑

The following example shows how to specify a fully opaque blue and a partially transparent green:

<color name=”opaque_blue”>#00F</color>
<color name=”transparent_green”>#7700FF00</color>

Dimensions
Dimensions are most commonly referenced within style and layout resources. They’re useful for creat-
ing layout constants such as borders and font heights.

To specify a dimension resource, use the dimen tag, specifying the dimension value, followed by an
identifi er describing the scale of your dimension:

px ❑ Screen pixels

in ❑ Physical inches

pt ❑ Physical points

mm ❑ Physical millimeters

dp ❑ Density-independent pixels relative to a 160-dpi screen

sp ❑ Scale-independent pixels

These alternatives let you defi ne a dimension not only in absolute terms, but also using relative scales
that account for different screen resolutions and densities to simplify scaling on different hardware.

The following XML snippet shows how to specify dimension values for a large font size and a stan-
dard border:

<dimen name=”standard_border”>5px</dimen>
<dimen name=”large_font_size”>16sp</dimen>

Styles and Themes
Style resources let your applications maintain a consistent look and feel by specifying the attribute
values used by Views. The most common use of themes and styles is to store the colors and fonts for an
application.

You can easily change the appearance of your application by simply specifying a different style as the
theme in your project manifest.

To create a style, use a style tag that includes a name attribute, and contains one or more item tags.
Each item tag should include a name attribute used to specify the attribute (such as font size or color)
being defi ned. The tag itself should then contain the value, as shown in the skeleton code below:

<?xml version=”1.0” encoding=”utf-8”?>
<resources>

44712c03.indd 5544712c03.indd 55 10/21/08 7:42:17 AM10/21/08 7:42:17 AM

56

Chapter 3: Creating Applications and Activities

 <style name=”StyleName”>
 <item name=”attributeName”>value</item>
 </style>
</resources>

Styles support inheritance using the parent attribute on the style tag, making it easy to create simple
variations.

The following example shows two styles that can also be used as a theme; a base style that sets several
text properties and a second style that modifi es the fi rst to specify a smaller font.

<?xml version=”1.0” encoding=”utf-8”?>
<resources>
 <style name=”BaseText”>
 <item name=”android:textSize”>14sp</item>
 <item name=”android:textColor”>#111</item>
 </style>
 <style name=”SmallText” parent=”BaseText”>
 <item name=”android:textSize”>8sp</item>
 </style>
</resources>

Drawables
Drawable resources include bitmaps and NinePatch (stretchable PNG) images. They are stored as indi-
vidual fi les in the res/drawable folder.

The resource identifi er for a bitmap resource is the lowercase fi lename without an extension.

The preferred format for a bitmap resource is PNG, although JPG and GIF fi les are also supported.

NinePatch (or stretchable) images are PNG fi les that mark the parts of an image that can be
stretched. NinePatch images must be properly defi ned PNG fi les that end in .9.png. The resource
identifi er for NinePatches is the fi lename without the trailing .9.png.

A NinePatch is a variation of a PNG image that uses a 1-pixel border to defi ne the area of the image
that can be stretched if the image is enlarged. To create a NinePatch, draw single-pixel black lines that
represent stretchable areas along the left and top borders of your image. The unmarked sections won’t
be resized, and the relative size of each of the marked sections will remain the same as the image size
changes.

NinePatches are a powerful technique for creating images for the backgrounds of Views or Activities
that may have a variable size; for example, Android uses NinePatches for creating button backgrounds.

Layouts
Layout resources let you decouple your presentation layer by designing user-interface layouts in XML
rather than constructing them in code.

The most common use of a layout is to defi ne the user interface for an Activity. Once defi ned in XML, the
layout is “infl ated” within an Activity using setContentView, usually within the onCreate method.

44712c03.indd 5644712c03.indd 56 10/21/08 7:42:18 AM10/21/08 7:42:18 AM

57

Chapter 3: Creating Applications and Activities

You can also reference layouts from within other layout resources, such as layouts for each row in a List
View. More detailed information on using and creating layouts in Activities can be found in Chapter 4.

Using layouts to create your screens is best-practice UI design in Android. The decoupling of the layout
from the code lets you create optimized layouts for different hardware confi gurations, such as varying
screen sizes, orientation, or the presence of keyboards and touch screens.

Each layout defi nition is stored in a separate fi le, each containing a single layout, in the res/layout
folder. The fi lename then becomes the resource identifi er.

A thorough explanation of layout containers and View elements is included in the next chapter, but as
an example, the following code snippet shows the layout created by the New Project Wizard. It uses a
LinearLayout as a layout container for a TextView that displays the “Hello World” greeting.

<?xml version=”1.0” encoding=”utf-8”?>
<LinearLayout xmlns:android=”http://schemas.android.com/apk/res/android”
 android:orientation=”vertical”
 android:layout_width=”fill_parent”
 android:layout_height=”fill_parent”>
 <TextView
 android:layout_width=”fill_parent”
 android:layout_height=”wrap_content”
 android:text=”Hello World!”
 />
</LinearLayout>

Animations
Android supports two types of animation. Tweened animations can be used to rotate, move, stretch, and
fade a View; or you can create frame-by-frame animations to display a sequence of drawable images. A
comprehensive overview of creating, using, and applying animations can be found in Chapter 11.

Defi ning animations as external resources allows you to reuse the same sequence in multiple places
and provides you with the opportunity to present an alternative animation based on device hardware
or orientation.

Tweened Animations
Each tweened animation is stored in a separate XML fi le in the project’s res/anim folder. As with lay-
outs and drawable resources, the animation’s fi lename is used as its resource identifi er.

An animation can be defi ned for changes in alpha (fading), scale (scaling), translate (moving), or
rotate (rotating).

Each of these animation types supports attributes to defi ne what the sequence will do:

Alpha fromAlpha and toAlpha Float from 0 to 1

Scale fromXScale/toXScale

fromYScale/toYScale

pivotX/pivotY

Float from 0 to 1

Float from 0 to 1

String of the percentage of graphic width/height from 0% to 100%

44712c03.indd 5744712c03.indd 57 10/21/08 7:42:18 AM10/21/08 7:42:18 AM

58

Chapter 3: Creating Applications and Activities

Translate fromX/toX

fromY/toY

Float from 0 to 1

Float from 0 to 1

Rotate fromDegrees/toDegrees

pivotX/pivotY

Float from 0 to 360

String of the percentage of graphic width/height from 0% to 100%

You can create a combination of animations using the set tag. An animation set contains one or more
animation transformations and supports various additional tags and attributes to customize when and
how each animation within the set is run.

The following list shows some of the set tags available:

duration ❑ Duration of the animation in milliseconds.

startOffset ❑ Millisecond delay before starting this animation.

fi llBefore ❑ True to apply the animation transformation before it begins.

fi llAfter ❑ True to apply the animation transformation after it begins.

interpolator ❑ Interpolator to set how the speed of this effect varies over time. Chapter 11
explores the interpolators available. To specify an interpolator, reference the system animation
resources at android:anim/interpolatorName.

If you do not use the startOffset tag, all the animation effects within a set will execute
simultaneously.

The following example shows an animation set that spins the target 360 degrees while it shrinks and
fades out:

<?xml version=”1.0” encoding=”utf-8”?>
<set xmlns:android=”http://schemas.android.com/apk/res/android”
 android:interpolator=”@android:anim/accelerate_interpolator”>
 <rotate
 android:fromDegrees=”0”
 android:toDegrees=”360”
 android:pivotX=”50%”
 android:pivotY=”50%”
 android:startOffset=”500”
 android:duration=”1000” />
 <scale
 android:fromXScale=”1.0”
 android:toXScale=”0.0”
 android:fromYScale=”1.0”
 android:toYScale=”0.0”
 android:pivotX=”50%”
 android:pivotY=”50%”
 android:startOffset=”500”
 android:duration=”500” />
 <alpha
 android:fromAlpha=”1.0”
 android:toAlpha=”0.0”

44712c03.indd 5844712c03.indd 58 10/21/08 7:42:18 AM10/21/08 7:42:18 AM

59

Chapter 3: Creating Applications and Activities

 android:startOffset=”500”
 android:duration=”500” />
</set>

Frame-by-Frame Animations
Frame-by-frame animations let you create a sequence of drawables, each of which will be displayed for
a specifi ed duration, on the background of a View.

Because frame-by-frame animations represent animated drawables, they are stored in the res/drawble
folder, rather than with the tweened animations, and use their fi lenames (without the xml extension) as
their resource IDs.

The following XML snippet shows a simple animation that cycles through a series of bitmap resources,
displaying each one for half a second. In order to use this snippet, you will need to create new image
resources rocket1 through rocket3.

<animation-list
 xmlns:android=”http://schemas.android.com/apk/res/android”
 android:oneshot=”false”>
 <item android:drawable=”@drawable/rocket1” android:duration=”500” />
 <item android:drawable=”@drawable/rocket2” android:duration=”500” />
 <item android:drawable=”@drawable/rocket3” android:duration=”500” />
</animation-list>

Using Resources
As well as the resources you create, Android supplies several system resources that you can use in your
applications. The resources can be used directly from your application code and can also be referenced
from within other resources (e.g., a dimension resource might be referenced in a layout defi nition).

Later in this chapter, you’ll learn how to defi ne alternative resource values for different languages, loca-
tions, and hardware. It’s important to note that when using resources you cannot choose a particular
specialized version. Android will automatically select the most appropriate value for a given resource
identifi er based on the current hardware and device settings.

Using Resources in Code
You access resources in code using the static R class. R is a generated class based on your external
resources and created by compiling your project. The R class contains static subclasses for each of the
resource types for which you’ve defi ned at least one resource. For example, the default new project
includes the R.string and R.drawable subclasses.

If you are using the ADT plug-in in Eclipse, the R class will be created automatically when you make
any change to an external resource fi le or folder. If you are not using the plug-in, use the AAPT tool
to compile your project and generate the R class. R is a compiler-generated class, so don’t make any
manual modifi cations to it as they will be lost when the fi le is regenerated.

Each of the subclasses within R exposes its associated resources as variables, with the variable names
matching the resource identifi ers — for example, R.string.app_name or R.drawable.icon.

44712c03.indd 5944712c03.indd 59 10/21/08 7:42:18 AM10/21/08 7:42:18 AM

60

Chapter 3: Creating Applications and Activities

The value of these variables is a reference to the corresponding resource’s location in the resource table,
not an instance of the resource itself.

Where a constructor or method, such as setContentView, accepts a resource identifi er, you can pass in
the resource variable, as shown in the code snippet below:

// Inflate a layout resource.
setContentView(R.layout.main);
// Display a transient dialog box that displays the
// error message string resource.
Toast.makeText(this, R.string.app_error, Toast.LENGTH_LONG).show();

When you need an instance of the resource itself, you’ll need to use helper methods to extract them
from the resource table, represented by an instance of the Resources class.

Because these methods perform lookups on the application’s resource table, these helper methods can’t
be static. Use the getResources method on your application context as shown in the snippet below to
access your application’s Resource instance:

Resources myResources = getResources();

The Resources class includes getters for each of the available resource types and generally works by
passing in the resource ID you’d like an instance of. The following code snippet shows an example of
using the helper methods to return a selection of resource values:

Resources myResources = getResources();
CharSequence styledText = myResources.getText(R.string.stop_message);
Drawable icon = myResources.getDrawable(R.drawable.app_icon);

int opaqueBlue = myResources.getColor(R.color.opaque_blue);

float borderWidth = myResources.getDimension(R.dimen.standard_border);

Animation tranOut;
tranOut = AnimationUtils.loadAnimation(this, R.anim.spin_shrink_fade);

String[] stringArray;
stringArray = myResources.getStringArray(R.array.string_array);

int[] intArray = myResources.getIntArray(R.array.integer_array);

Frame-by-frame animated resources are infl ated into AnimationResources. You can return the value
using getDrawable and casting the return value as shown below:

AnimationDrawable rocket;
rocket = (AnimationDrawable)myResources.getDrawable(R.drawable.frame_by_frame);

At the time of going to print, there is a bug in the AnimationDrawable class.
Currently, AnimationDrawable resources are not properly loaded until some time
after an Activity’s onCreate method has completed. Current work-arounds use
timers to force a delay before loading a frame-by-frame resource.

44712c03.indd 6044712c03.indd 60 10/21/08 7:42:18 AM10/21/08 7:42:18 AM

61

Chapter 3: Creating Applications and Activities

Referencing Resources in Resources
You can also reference resources to use as attribute values in other XML resources.

This is particularly useful for layouts and styles, letting you create specialized variations on themes
and localized strings and graphics. It’s also a useful way to support different images and spacing for a
layout to ensure that it’s optimized for different screen sizes and resolutions.

To reference one resource from another, use @ notation, as shown in the following snippet:

attribute=”@[packagename:]resourcetype/resourceidentifier”

Android will assume you’re using a resource from the same package, so you only need to fully qualify
the package name if you’re using a resource from a different package.

The following snippet creates a layout that uses color, dimension, and string resources:

<?xml version=”1.0” encoding=”utf-8”?>
<LinearLayout
 xmlns:android=”http://schemas.android.com/apk/res/android”
 android:orientation=”vertical”
 android:layout_width=”fill_parent”
 android:layout_height=”fill_parent”
 android:padding=”@dimen/standard_border”>
 <EditText
 android:id=”@+id/myEditText”
 android:layout_width=”fill_parent”
 android:layout_height=”wrap_content”
 android:text=”@string/stop_message”
 android:textColor=”@color/opaque_blue”
 />
</LinearLayout>

Using System Resources
The native Android applications externalize many of their resources, providing you with various
strings, images, animations, styles, and layouts to use in your applications.

Accessing the system resources in code is similar to using your own resources. The difference is that you
use the native android resource classes available from android.R, rather than the application-specifi c R
class. The following code snippet uses the getString method available in the application context to
retrieve an error message available from the system resources:

CharSequence httpError = getString(android.R.string.httpErrorBadUrl);

To access system resources in XML, specify Android as the package name, as shown in this XML snippet:

<EditText
 android:id=”@+id/myEditText”
 android:layout_width=”fill_parent”
 android:layout_height=”wrap_content”
 android:text=”@android:string/httpErrorBadUrl”
 android:textColor=”@android:color/darker_gray”
/>

44712c03.indd 6144712c03.indd 61 10/21/08 7:42:18 AM10/21/08 7:42:18 AM

62

Chapter 3: Creating Applications and Activities

Referring to Styles in the Current Theme
Themes are an excellent way to ensure consistency for your application’s UI. Rather than fully defi ne
each style, Android provides a shortcut to let you use styles from the currently applied theme.

To do this, you use ?android: rather than @ as a prefi x to the resource you want to use. The following
example shows a snippet of the above code but uses the current theme’s text color rather than an exter-
nal resource:

<EditText
 android:id=”@+id/myEditText”
 android:layout_width=”fill_parent”
 android:layout_height=”wrap_content”
 android:text=”@string/stop_message”
 android:textColor=”?android:textColor”
/>

This technique lets you create styles that will change if the current theme changes, without having to
modify each individual style resource.

To-Do List Resources Example
In this example, you’ll create new external resources in preparation for adding functionality to the
To-Do List example you started in Chapter 2. The string and image resources you create here will be
used in Chapter 4 when you implement a menu system for the To-Do List application.

The following steps will show you how to create text and icon resources to use for the add and remove
menu items, and how to create a theme to apply to the application:

 1. Create two new PNG images to represent adding, and removing, a to-do list item. Each image
should have dimensions of approximately 16 × 16 pixels, like those illustrated in Figure 3-5.

Figure 3-5

 2. Copy the images into your project’s res/drawable folder, and refresh your project. Your proj-
ect hierarchy should appear as shown in Figure 3-6.

Figure 3-6

44712c03.indd 6244712c03.indd 62 10/21/08 7:42:18 AM10/21/08 7:42:18 AM

63

Chapter 3: Creating Applications and Activities

 3. Open the strings.xml resource from the res/values folder, and add values for the “add_new,”
“remove,” and “cancel” menu items. (You can remove the default “hello” string value while
you’re there.)

<?xml version=”1.0” encoding=”utf-8”?>
<resources>
 <string name=”app_name”>To Do List</string>
 <string name=”add_new”>Add New Item</string>
 <string name=”remove”>Remove Item</string>
 <string name=”cancel”>Cancel</string>
</resources>

 4. Create a new theme for the application by creating a new styles.xml resource in the res/values
folder. Base your theme on the standard Android theme, but set values for a default text size.

<?xml version=”1.0” encoding=”utf-8”?>
<resources>
 <style name=”ToDoTheme” parent=”@android:style/Theme.Black”>
 <item name=”android:textSize”>12sp</item>
 </style>
</resources>

 5. Apply the theme to your project in the manifest:

<activity android:name=”.ToDoList”
 android:label=”@string/app_name”
 android:theme=”@style/ToDoTheme”>

Creating Resources for Different Languages and Hardware
One of the most powerful reasons to externalize your resources is Android’s dynamic resource selec-
tion mechanism.

Using the structure described below, you can create different resource values for specifi c languages,
locations, and hardware confi gurations that Android will choose between dynamically at run time.

 This lets you create language-, location-, and hardware-specifi c user interfaces without having to
change your code.

Specifying alternative resource values is done using a parallel directory structure within the res/
folder, using hyphen (-) separated text qualifi ers to specify the conditions you’re supporting.

The example hierarchy below shows a folder structure that features default string values, along with a
French language alternative with an additional Canadian location variation:

Project/
 res/
 values/
 strings.xml
 values-fr/
 strings.xml
 values-fr-rCA/
 strings.xml

44712c03.indd 6344712c03.indd 63 10/21/08 7:42:18 AM10/21/08 7:42:18 AM

64

Chapter 3: Creating Applications and Activities

The following list gives the available qualifi ers you can use to customize your resource fi les:

Language ❑ Using the lowercase two-letter ISO 639-1 language code (e.g., en)

Region ❑ A lowercase “r” followed by the uppercase two-letter ISO 3166-1-alpha-2 language
code (e.g., rUS, rGB)

Screen Orientation ❑ One of port (portrait), land (landscape), or square (square)

Screen Pixel Density ❑ Pixel density in dots per inch (dpi) (e.g., 92dpi, 108dpi)

Touchscreen Type ❑ One of notouch, stylus, or finger

Keyboard Availability ❑ Either of keysexposed or keyshidden

Keyboard Input Type ❑ One of nokeys, qwerty, or 12key

UI Navigation Type ❑ One of notouch, dpad, trackball, or wheel

Screen Resolution ❑ Screen resolution in pixels with the largest dimension fi rst (e.g., 320x240)

You can specify multiple qualifi ers for any resource type, separating each qualifi er with a hyphen. Any
combination is supported; however, they must be used in the order given in the list above, and no more
than one value can be used per qualifi er.

The following example shows valid and invalid directory names for alternative drawable resources.

Valid: ❑

 drawable-en-rUS
 drawable-en-keyshidden
 drawable-land-notouch-nokeys-320x240

Invalid: ❑

 drawable-rUS-en (out of order)
 drawable-rUS-rUK (multiple values for a single qualifier)

When Android retrieves a resource at run time, it will fi nd the best match from the available alterna-
tives. Starting with a list of all the folders in which the required value exists, it then selects the one with
the greatest number of matching qualifi ers. If two folders are an equal match, the tiebreaker will be
based on the order of the matched qualifi ers in the above list.

Runtime Confi guration Changes
Android supports runtime changes to the language, location, and hardware by terminating and restart-
ing each application and reloading the resource values.

This default behavior isn’t always convenient or desirable, particularly as some confi guration changes
(like screen orientation and keyboard visibility) can occur as easily as a user rotating the device or slid-
ing out the keyboard. You can customize your application’s response to these changes by detecting and
reacting to them yourself.

To have an Activity listen for runtime confi guration changes, add an android:configChanges attri-
bute to its manifest node, specifying the confi guration changes you want to handle.

44712c03.indd 6444712c03.indd 64 10/21/08 7:42:18 AM10/21/08 7:42:18 AM

65

Chapter 3: Creating Applications and Activities

The following list describes the confi guration changes you can specify:

orientation ❑ The screen has been rotated between portrait and landscape.

keyboardHidden ❑ The keyboard has been exposed or hidden.

fontScale ❑ The user has changed the preferred font size.

locale ❑ The user has chosen a different language setting.

keyboard ❑ The type of keyboard has changed; for example, the phone may have a 12 keypad
that fl ips out to reveal a full keyboard.

touchscreen ❑ or navigation The type of keyboard or navigation method has changed. Nei-
ther of these events should normally happen.

You can select multiple events to handle by separating the values with a pipe (|).

The following XML snippet shows an activity node declaring that it will handle changes in screen ori-
entation and keyboard visibility:

<activity android:name=”.TodoList”
 android:label=”@string/app_name”
 android:theme=”@style/TodoTheme”
 android:configChanges=”orientation|keyboard”/>

Adding this attribute suppresses the restart for the specifi ed confi guration changes, instead, triggering
the onConfigurationChanged method in the Activity. Override this method to handle the confi gura-
tion changes using the passed-in Configuration object to determine the new confi guration values, as
shown in the following skeleton code. Be sure to call back to the super class and reload any resource
values that the Activity uses in case they’ve changed.

@Override
public void onConfigurationChanged(Configuration _newConfig) {
 super.onConfigurationChanged(_newConfig);

 [... Update any UI based on resource values ...]

 if (_newConfig.orientation == Configuration.ORIENTATION_LANDSCAPE) {
 [... React to different orientation ...]
 }

 if (_newConfig.keyboardHidden == Configuration.KEYBOARDHIDDEN_NO) {
 [... React to changed keyboard visibility ...]
 }
}

When onConfigurationChanged is called, the Activity’s Resource variables will have already been
updated with the new values so they’ll be safe to use.

Any confi guration change that you don’t explicitly fl ag as being handled by your application will still
cause an application restart without a call to onConfigurationChanged.

44712c03.indd 6544712c03.indd 65 10/21/08 7:42:18 AM10/21/08 7:42:18 AM

66

Chapter 3: Creating Applications and Activities

A Closer Look at Android Activities
To create user-interface screens for your applications, you extend the Activity class, using Views to
provide user interaction.

Each Activity represents a screen (similar to the concept of a Form in desktop development) that an
application can present to its users. The more complicated your application, the more screens you are
likely to need.

You’ll need to create a new Activity for every screen you want to display. Typically this includes at least
a primary interface screen that handles the main UI functionality of your application. This is often sup-
ported by secondary Activities for entering information, providing different perspectives on your data,
and supporting additional functionality. To move between screens in Android, you start a new Activity
(or return from one).

Most Activities are designed to occupy the entire display, but you can create Activities that are semi-
transparent, fl oating, or use dialog boxes.

Creating an Activity
To create a new Activity, you extend the Activity class, defi ning the user interface and implementing
your functionality. The basic skeleton code for a new Activity is shown below:

package com.paad.myapplication;

import android.app.Activity;
import android.os.Bundle;

public class MyActivity extends Activity {

 /** Called when the activity is first created. */
 @Override
 public void onCreate(Bundle icicle) {
 super.onCreate(icicle);
 }
}

The base Activity class presents an empty screen that encapsulates the window display handling func-
tionality. An empty Activity isn’t particularly useful, so the fi rst thing you’ll want to do is lay out the
screen interface using Views and layouts.

Activity UIs are created using Views. Views are the user-interface controls that display data and pro-
vide user interaction. Android provides several layout classes, called View Groups, that can contain mul-
tiple Views to help you design compelling user interfaces.

Chapter 4 examines Views and View Groups in detail, detailing what’s available, how to use them, and
how to create your own Views and layouts.

To assign a user interface to an Activity, call setContentView from the onCreate method of your
Activity.

44712c03.indd 6644712c03.indd 66 10/21/08 7:42:18 AM10/21/08 7:42:18 AM

67

Chapter 3: Creating Applications and Activities

In this fi rst snippet, a simple instance of MyView is used as the Activity’s user interface:

@Override
public void onCreate(Bundle icicle) {
 super.onCreate(icicle);
 MyView myView = new MyView(this);
 setContentView(myView);
}

More commonly you’ll want to use a more complex UI design. You can create a layout in code using lay-
out View Groups, or you can use the standard Android convention of passing a resource ID for a layout
defi ned in an external resource, as shown in the snippet below:

@Override
public void onCreate(Bundle icicle) {
 super.onCreate(icicle);
 setContentView(R.layout.main);
}

In order to use an Activity in your application, you need to register it in the manifest. Add new activity
tags within the application node of the manifest; the activity tag includes attributes for metadata
such as the label, icon, required permissions, and themes used by the Activity. An Activity without a
corresponding activity tag can’t be started.

The following XML snippet shows how to add a node for the MyActivity class created in the snippets
above:

<activity android:label=”@string/app_name”
 android:name=”.MyActivity”>
 <intent-filter>
 <action android:name=”android.intent.action.MAIN” />
 <category android:name=”android.intent.category.LAUNCHER” />
 </intent-filter>
</activity>

Within the activity tag, you can add intent-filter nodes that specify the Intents your Activity
will listen for and react to. Each Intent Filter defi nes one or more actions and categories that your Activ-
ity supports. Intents and Intent Filters are covered in depth in Chapter 5, but it’s worth noting that to
make an Activity available from the main program launcher, it must include an Intent Filter listening
for the Main action and the Launcher category, as highlighted in the snippet below:

<activity android:label=”@string/app_name”
 android:name=”.MyActivity”>
 <intent-filter>
 <action android:name=”android.intent.action.MAIN” />
 <category android:name=”android.intent.category.LAUNCHER” />
 </intent-filter>
</activity>

44712c03.indd 6744712c03.indd 67 10/21/08 7:42:18 AM10/21/08 7:42:18 AM

68

Chapter 3: Creating Applications and Activities

The Activity Life Cycle
A good understanding of the Activity life cycle is vital to ensure that your application provides a seam-
less user experience and properly manages its resources.

As explained earlier, Android applications do not control their own process lifetimes; the Android run
time manages the process of each application, and by extension that of each Activity within it.

While the run time handles the termination and management of an Activity’s process, the Activity’s
state helps determine the priority of its parent application. The application priority, in turn, infl uences
the likelihood that the run time will terminate it and the Activities running within it.

Activity Stacks
The state of each Activity is determined by its position on the Activity stack, a last-in–fi rst-out collection
of all the currently running Activities. When a new Activity starts, the current foreground screen is
moved to the top of the stack. If the user navigates back using the Back button, or the foreground Activ-
ity is closed, the next Activity on the stack moves up and becomes active. This process is illustrated in
Figure 3-7.

As described previously in this chapter, an application’s priority is infl uenced by its highest-priority
Activity. The Android memory manager uses this stack to determine the priority of applications based
on their Activities when deciding which application to terminate to free resources.

New Activity Active Activity

Last Active Activity

Removed to
free resources

New Activity
started

Back button
pushed or

activity closed

Previous Activities

Activity Stack

•
•
•

Figure 3-7

Activity States
As activities are created and destroyed, they move in and out of the stack shown in Figure 3-7. As they
do so, they transition through four possible states:

44712c03.indd 6844712c03.indd 68 10/21/08 7:42:18 AM10/21/08 7:42:18 AM

69

Chapter 3: Creating Applications and Activities

Active ❑ When an Activity is at the top of the stack, it is the visible, focused, foreground activity
that is receiving user input. Android will attempt to keep it alive at all costs, killing Activities
further down the stack as needed, to ensure that it has the resources it needs. When another
Activity becomes active, this one will be paused.

Paused ❑ In some cases, your Activity will be visible but will not have focus; at this point, it’s
paused. This state is reached if a transparent or non-full-screen Activity is active in front of it.
When paused, an Activity is treated as if it were active; however, it doesn’t receive user input
events. In extreme cases, Android will kill a paused Activity to recover resources for the active
Activity. When an Activity becomes totally obscured, it becomes stopped.

Stopped ❑ When an Activity isn’t visible, it “stops.” The Activity will remain in memory retain-
ing all state and member information; however, it is now a prime candidate for execution when
the system requires memory elsewhere. When an Activity is stopped, it’s important to save data
and the current UI state. Once an Activity has exited or closed, it becomes inactive.

Inactive ❑ After an Activity has been killed, and before it’s been launched, it’s inactive. Inactive
Activities have been removed from the Activity stack and need to be restarted before they can
be displayed and used.

State transitions are nondeterministic and are handled entirely by the Android memory manager.
Android will start by closing applications that contain inactive Activities, followed by those that are
stopped, and in extreme cases, it will remove those that are paused.

To ensure a seamless user experience, transitions between these states should be invisible to the user.
There should be no difference between an Activity moving from paused, stopped, or killed states back
to active, so it’s important to save all UI state changes and persist all data when an Activity is paused or
stopped. Once an Activity does become active, it should restore those saved values.

Monitoring State Changes
To ensure that Activities can react to state changes, Android provides a series of event handlers that are
fi red when an Activity transitions through its full, visible, and active lifetimes. Figure 3-8 summarizes
these lifetimes in terms of the Activity states described above.

Active Lifetime
Visible Lifetime

Full Lifetime

Activity is Killable

Activity.
onCreate

Activity.
onStart

Activity.
onStop

Activity.
onDestroy

Activity.
onRestore

InstanceState
Activity.

onResume

Activity.
onRestart

Activity.
onPause

Activity.
onSave

InstanceState

Figure 3-8

44712c03.indd 6944712c03.indd 69 10/21/08 7:42:18 AM10/21/08 7:42:18 AM

70

Chapter 3: Creating Applications and Activities

The following skeleton code shows the stubs for the state change method handlers available in an
Activity. Comments within each stub describe the actions you should consider taking on each state
change event.

package com.paad.myapplication;

import android.app.Activity;
import android.os.Bundle;

public class MyActivity extends Activity {

 // Called at the start of the full lifetime.
 @Override
 public void onCreate(Bundle icicle) {
 super.onCreate(icicle);
 // Initialize activity.
 }

 // Called after onCreate has finished, use to restore UI state
 @Override
 public void onRestoreInstanceState(Bundle savedInstanceState) {
 super.onRestoreInstanceState(savedInstanceState);
 // Restore UI state from the savedInstanceState.
 // This bundle has also been passed to onCreate.
 }

 // Called before subsequent visible lifetimes
 // for an activity process.
 @Override
 public void onRestart(){
 super.onRestart();
 // Load changes knowing that the activity has already
 // been visible within this process.
 }

 // Called at the start of the visible lifetime.
 @Override
 public void onStart(){
 super.onStart();
 // Apply any required UI change now that the Activity is visible.
 }

 // Called at the start of the active lifetime.
 @Override
 public void onResume(){
 super.onResume();
 // Resume any paused UI updates, threads, or processes required
 // by the activity but suspended when it was inactive.
 }

 // Called to save UI state changes at the
 // end of the active lifecycle.
 @Override
 public void onSaveInstanceState(Bundle savedInstanceState) {
 // Save UI state changes to the savedInstanceState.

44712c03.indd 7044712c03.indd 70 10/21/08 7:42:18 AM10/21/08 7:42:18 AM

71

Chapter 3: Creating Applications and Activities

 // This bundle will be passed to onCreate if the process is
 // killed and restarted.
 super.onSaveInstanceState(savedInstanceState);
 }

 // Called at the end of the active lifetime.
 @Override
 public void onPause(){
 // Suspend UI updates, threads, or CPU intensive processes
 // that don’t need to be updated when the Activity isn’t
 // the active foreground activity.
 super.onPause();
 }

 // Called at the end of the visible lifetime.
 @Override
 public void onStop(){
 // Suspend remaining UI updates, threads, or processing
 // that aren’t required when the Activity isn’t visible.
 // Persist all edits or state changes
 // as after this call the process is likely to be killed.
 super.onStop();
 }

 // Called at the end of the full lifetime.
 @Override
 public void onDestroy(){
 // Clean up any resources including ending threads,
 // closing database connections etc.
 super.onDestroy();
 }
}

As shown in the snippet above, you should always call back to the superclass when overriding these
event handlers.

Understanding Activity Lifetimes
Within an Activity’s full lifetime, between creation and destruction, it will go through one or more
iterations of the active and visible lifetimes. Each transition will trigger the method handlers described
previously. The following sections provide a closer look at each of these lifetimes and the events that
bracket them.

The Full Lifetime
The full lifetime of your Activity occurs between the fi rst call to onCreate and the fi nal call to
onDestroy. It’s possible, in some cases, for an Activity’s process to be terminated without the
onDestroy method being called.

Use the onCreate method to initialize your Activity: Infl ate the user interface, allocate references to
class variables, bind data to controls, and create Services and threads. The onCreate method is passed
a Bundle object containing the UI state saved in the last call to onSaveInstanceState. You should use
this Bundle to restore the user interface to its previous state, either in the onCreate method or by over-
riding onRestoreInstanceStateMethod.

44712c03.indd 7144712c03.indd 71 10/21/08 7:42:18 AM10/21/08 7:42:18 AM

72

Chapter 3: Creating Applications and Activities

Override onDestroy to clean up any resources created in onCreate, and ensure that all external con-
nections, such as network or database links, are closed.

As part of Android’s guidelines for writing effi cient code, it’s recommended that you avoid the creation
of short-term objects. Rapid creation and destruction of objects forces additional garbage collection, a
process that can have a direct impact on the user experience. If your Activity creates the same set of
objects regularly, consider creating them in the onCreate method instead, as it’s called only once in the
Activity’s lifetime.

The Visible Lifetime
An Activity’s visible lifetimes are bound between calls to onStart and onStop. Between these
calls, your Activity will be visible to the user, although it may not have focus and might be partially
obscured. Activities are likely to go through several visible lifetimes during their full lifetime, as they
move between the foreground and background. While unusual, in extreme cases, the Android run time
will kill an Activity during its visible lifetime without a call to onStop.

The onStop method should be used to pause or stop animations, threads, timers, Services, or other
processes that are used exclusively to update the user interface. There’s little value in consuming
resources (such as CPU cycles or network bandwidth) to update the UI when it isn’t visible. Use the
onStart (or onRestart) methods to resume or restart these processes when the UI is visible again.

The onRestart method is called immediately prior to all but the fi rst call to onStart. Use it to imple-
ment special processing that you want done only when the Activity restarts within its full lifetime.

The onStart/onStop methods are also used to register and unregister Broadcast Receivers that are
being used exclusively to update the user interface. It will not always be necessary to unregister Receiv-
ers when the Activity becomes invisible, particularly if they are used to support actions other than
updating the UI. You’ll learn more about using Broadcast Receivers in Chapter 5.

The Active Lifetime
The active lifetime starts with a call to onResume and ends with a corresponding call to onPause.

An active Activity is in the foreground and is receiving user input events. Your Activity is likely to go
through several active lifetimes before it’s destroyed, as the active lifetime will end when a new Activ-
ity is displayed, the device goes to sleep, or the Activity loses focus. Try to keep code in the onPause
and onResume methods relatively fast and lightweight to ensure that your application remains respon-
sive when moving in and out of the foreground.

Immediately before onPause, a call is made to onSaveInstanceState. This method provides an
opportunity to save the Activity’s UI state in a Bundle that will be passed to the onCreate and
onRestoreInstanceState methods. Use onSaveInstanceState to save the UI state (such as check
button states, user focus, and entered but uncommitted user input) to ensure that the Activity can
present the same UI when it next becomes active. During the active lifetime, you can safely assume
that onSaveInstanceState and onPause will be called before the process is terminated.

Most Activity implementations will override at least the onPause method to commit unsaved changes,
as it marks the point beyond which an Activity may be killed without warning. Depending on your
application architecture, you may also choose to suspend threads, processes, or Broadcast Receivers
while your Activity is not in the foreground.

44712c03.indd 7244712c03.indd 72 10/21/08 7:42:18 AM10/21/08 7:42:18 AM

73

Chapter 3: Creating Applications and Activities

The onResume method can be very lightweight. You will not need to reload the UI state here as this is
handled by the onCreate and onRestoreInstanceState methods when required. Use onResume to
re-register any Broadcast Receivers or other processes you may have stopped in onPause.

Android Activity Classes
The Android SDK includes a selection of Activity subclasses that wrap up the use of common user
interface widgets. Some of the more useful ones are listed below:

MapActivity ❑ Encapsulates the resource handling required to support a MapView widget
within an Activity. Learn more about MapActivity and MapView in Chapter 7.

ListActivity ❑ Wrapper class for Activities that feature a ListView bound to a data source as
the primary UI metaphor, and exposing event handlers for list item selection

ExpandableListActivity ❑ Similar to the List Activity but supporting an ExpandableListView

ActivityGroup ❑ Allows you to embed multiple Activities within a single screen.

Summary
In this chapter, you learned how to design robust applications using loosely coupled application com-
ponents: Activities, Services, Content Providers, Intents, and Broadcast Receivers bound together using
the application manifest.

You were introduced to the Android application life cycle, learning how each application’s priority is
determined by its process state, which is, in turn, determined by the state of the components within it.

To take full advantage of the wide range of device hardware available and the international user base,
you learned how to create external resources and how to defi ne alternative values for specifi c locations,
languages, and hardware confi gurations.

Next you discovered more about Activities and their role in the application framework. As well as
learning how to create new Activities, you were introduced to the Activity life cycle. In particular, you
learned about Activity state transitions and how to monitor these events to ensure a seamless user
experience.

Finally, you were introduced to some specialized Android Activity classes.

In the next chapter, you’ll learn how to create User Interfaces. Chapter 4 will demonstrate how to use
layouts to design your UI before introducing some native widgets and showing you how to extend,
modify, and group them to create specialized controls. You’ll also learn how to create your own unique
user interface elements from a blank canvas, before being introduced to the Android menu system.

44712c03.indd 7344712c03.indd 73 10/21/08 7:42:18 AM10/21/08 7:42:18 AM

44712c03.indd 7444712c03.indd 74 10/21/08 7:42:18 AM10/21/08 7:42:18 AM

Creating User Interfaces

It’s vital to create compelling and intuitive User Interfaces for your applications. Ensuring
that they are as stylish and easy to use as they are functional should be a primary design
consideration.

To quote Stephen Fry on the importance of style as part of substance in the design of digital
devices:

As if a device can function if it has no style. As if a device can be called stylish that does not
function superbly. … yes, beauty matters. Boy, does it matter. It is not surface, it is not an extra,
it is the thing itself.

 — Stephen Fry, The Guardian (October 27, 2007)

Increasing screen sizes, display resolutions, and mobile processor power has seen mobile appli-
cations become increasingly visual. While the diminutive screens pose a challenge for creating
complex visual interfaces, the ubiquity of mobiles makes it a challenge worth accepting.

In this chapter, you’ll learn the basic Android UI elements and discover how to use Views, View
Groups, and layouts to create functional and intuitive User Interfaces for your Activities.

After being introduced to some of the controls available from the Android SDK, you’ll learn how
to extend and customize them. Using View Groups, you’ll see how to combine Views to create
atomic, reusable UI elements made up of interacting subcontrols. You’ll also learn how to create
your own Views to implement creative new ways to display data and interact with users.

The individual elements of an Android User Interface are arranged on screen using a variety of
layout managers derived from ViewGroup. Correctly using layouts is essential for creating good
interfaces; this chapter introduces several native layout classes and demonstrates how to use
them and how to create your own.

44712c04.indd 7544712c04.indd 75 10/21/08 12:02:45 AM10/21/08 12:02:45 AM

76

Chapter 4: Creating User Interfaces

Android’s application and context menu systems use a new approach, optimized for modern touch-
screen devices. As part of an examination of the Android UI model, this chapter ends with a look at
how to create and use Activity and context menus.

Fundamental Android UI Design
User Interface design, human–computer interaction, and usability are huge topics that aren’t covered in
great depth in this book. Nonetheless, it’s important that you get them right when creating your User
Interfaces.

Android introduces some new terminology for familiar programming metaphors that will be explored
in detail in the following sections:

Views ❑ Views are the basic User Interface class for visual interface elements (commonly known
as controls or widgets). All User Interface controls, and the layout classes, are derived from
Views.

ViewGroups ❑ View Groups are extensions of the View class that can contain multiple child
Views. By extending the ViewGroup class, you can create compound controls that are made up
of interconnected child Views. The ViewGroup class is also extended to provide the layout man-
agers, such as LinearLayout, that help you compose User Interfaces.

Activities ❑ Activities, described in detail in the previous chapter, represent the window or
screen being displayed to the user. Activities are the Android equivalent of a Form. To display a
User Interface, you assign a View or layout to an Activity.

Android provides several common UI controls, widgets, and layout managers.

For most graphical applications, it’s likely that you’ll need to extend and modify these standard controls
— or create composite or entirely new controls — to provide your own functionality.

Introducing Views
As described above, all visual components in Android descend from the View class and are referred to
generically as Views. You’ll often see Views referred to as controls or widgets — terms you’re probably
familiar with if you’ve done any GUI development.

The ViewGroup class is an extension of View designed to contain multiple Views. Generally, View
Groups are either used to construct atomic reusable components (widgets) or to manage the layout of
child Views. View Groups that perform the latter function are generally referred to as layouts.

Because all visual elements derive from Views, many of the terms above are interchangeable. By con-
vention, a control usually refers to an extension of Views that implements relatively simple functionality,
while a widget generally refers to both compound controls and more complex extensions of Views.

The conventional naming model is shown in Figure 4-1. In practice, you will likely see both widget and
control used interchangeably with View.

44712c04.indd 7644712c04.indd 76 10/21/08 12:02:46 AM10/21/08 12:02:46 AM

77

Chapter 4: Creating User Interfaces

View

ViewGroup Control

Widget
Compound Control

Layout

Control Control Control

Figure 4-1

You’ve already been introduced to a layout and two widgets — the LinearLayout, a ListView, and a
TextView — when you created the To-Do List example in Chapter 2.

In the following sections, you’ll learn how to put together increasingly complex UIs, starting with the
Views available in the SDK, before learning how to extend them, build your own compound controls,
and create your own custom Views from scratch.

Creating Activity User Interfaces with Views
A new Activity starts with a temptingly empty screen onto which you place your User Interface. To set
the User Interface, call setContentView, passing in the View instance (typically a layout) to display.
Because empty screens aren’t particularly inspiring, you will almost always use setContentView to
assign an Activity’s User Interface when overriding its onCreate handler.

The setContentView method accepts either a layout resource ID (as described in Chapter 3) or a single
View instance. This lets you defi ne your User Interface either in code or using the preferred technique
of external layout resources.

Using layout resources decouples your presentation layer from the application logic, providing the
fl exibility to change the presentation without changing code. This makes it possible to specify differ-
ent layouts optimized for different hardware confi gurations, even changing them at run time based on
hardware changes (such as screen orientation).

The following code snippet shows how to set the User Interface for an Activity using an external layout
resource. You can get references to the Views used within a layout with the findViewById method.
This example assumes that main.xml exists in the project’s res/layout folder.

@Override
public void onCreate(Bundle icicle) {
 super.onCreate(icicle);

 setContentView(R.layout.main);

44712c04.indd 7744712c04.indd 77 10/21/08 12:02:46 AM10/21/08 12:02:46 AM

78

Chapter 4: Creating User Interfaces

 TextView myTextView = (TextView)findViewById(R.id.myTextView);
}

If you prefer the more traditional approach, you can specify the User Interface in code. The following
snippet shows how to assign a new TextView as the User Interface:

@Override
public void onCreate(Bundle icicle) {
 super.onCreate(icicle);

 TextView myTextView = new TextView(this);
 setContentView(myTextView);
 myTextView.setText(“Hello, Android”);
}

The setContentView method accepts a single View instance; as a result, you have to group multiple
controls to ensure that you can reference a layout using a single View or View Group.

The Android Widget Toolbox
Android supplies a toolbox of standard Views to help you create simple interfaces. By using these con-
trols (and modifying or extending them as necessary), you can simplify your development and provide
consistency between applications.

The following list highlights some of the more familiar toolbox controls:

TextView ❑ A standard read only text label. It supports multiline display, string formatting,
and automatic word wrapping.

EditText ❑ An editable text entry box. It accepts multiline entry and word wrapping.

ListView ❑ A View Group that creates and manages a group of Views used to display the items
in a List. The standard ListView displays the string value of an array of objects using a Text
View for each item.

Spinner ❑ Composite control that displays a TextView and an associated ListView that lets you
select an item from a list to display in the textbox. It’s made from a Text View displaying the
current selection, combined with a button that displays a selection dialog when pressed.

Button ❑ Standard push-button

CheckBox ❑ Two-state button represented with a checked or unchecked box

RadioButton ❑ Two-state grouped buttons. Presents the user with a number of binary options
of which only one can be selected at a time.

This is only a selection of the widgets available. Android also supports several more advanced View
implementations including date-time pickers, auto-complete input boxes, maps, galleries, and tab
sheets. For a more comprehensive list of the available widgets, head to
http://code.google.com/android/reference/view-gallery.html.

44712c04.indd 7844712c04.indd 78 10/21/08 12:02:46 AM10/21/08 12:02:46 AM

79

Chapter 4: Creating User Interfaces

It’s only a matter of time before you, as an innovative developer, encounter a situation in which none of
the built-in controls meets your needs. Later in this chapter, you’ll learn how to extend and combine the
existing controls and how to design and create entirely new widgets from scratch.

Introducing Layouts
Layout Managers (more generally, “layouts”) are extensions of the ViewGroup class designed to control
the position of child controls on a screen. Layouts can be nested, letting you create arbitrarily complex
interfaces using a combination of Layout Managers.

The Android SDK includes some simple layouts to help you construct your UI. It’s up to you to select
the right combination of layouts to make your interface easy to understand and use.

The following list includes some of the more versatile layout classes available:

FrameLayout ❑ The simplest of the Layout Managers, the Frame Layout simply pins each child
view to the top left corner. Adding multiple children stacks each new child on top of the previ-
ous, with each new View obscuring the last.

LinearLayout ❑ A Linear Layout adds each child View in a straight line, either vertically or hori-
zontally. A vertical layout has one child View per row, while a horizontal layout has a single row
of Views. The Linear Layout Manager allows you to specify a “weight” for each child View that
controls the relative size of each within the available space.

RelativeLayout ❑ Using the Relative Layout, you can defi ne the positions of each of the child
Views relative to each other and the screen boundaries.

TableLayout ❑ The Table Layout lets you lay out Views using a grid of rows and columns. Tables
can span multiple rows and columns, and columns can be set to shrink or grow.

AbsoluteLayout ❑ In an Absolute Layout, each child View’s position is defi ned in absolute coor-
dinates. Using this class, you can guarantee the exact layout of your components, but at a price.
Compared to the previous managers, describing a layout in absolute terms means that your lay-
out can’t dynamically adjust for different screen resolutions and orientations.

The Android documentation describes the features and properties of each layout class in detail, so rather
than repeating it here, I’ll refer you to http://code.google.com/android/devel/ui/layout.html.

Later in this chapter, you’ll also learn how to create compound controls (widgets made up of several
interconnected Views) by extending these layout classes.

Using Layouts
The preferred way to implement layouts is in XML using external resources. A layout XML must con-
tain a single root element. This root node can contain as many nested layouts and Views as necessary to
construct an arbitrarily complex screen.

44712c04.indd 7944712c04.indd 79 10/21/08 12:02:46 AM10/21/08 12:02:46 AM

80

Chapter 4: Creating User Interfaces

The following XML snippet shows a simple layout that places a TextView above an EditText control
using a LinearLayout confi gured to lay out vertically:

<?xml version=”1.0” encoding=”utf-8”?>
<LinearLayout xmlns:android=”http://schemas.android.com/apk/res/android”
 android:orientation=”vertical”
 android:layout_width=”fill_parent”
 android:layout_height=”fill_parent”>
 <TextView
 android:layout_width=”fill_parent”
 android:layout_height=”wrap_content”
 android:text=”Enter Text Below”
 />
 <EditText
 android:layout_width=”fill_parent”
 android:layout_height=”wrap_content”
 android:text=”Text Goes Here!”
 />
</LinearLayout>

Implementing layouts in XML decouples the presentation layer from View and Activity code. It also lets
you create hardware-specifi c variations that are dynamically loaded without requiring code changes.

When it’s preferred, or required, you can implement layouts in code. When assigning Views to layouts,
it’s important to apply LayoutParameters using the setLayoutParams method, or passing them in to
the addView call as shown below:

LinearLayout ll = new LinearLayout(this);
ll.setOrientation(LinearLayout.VERTICAL);

TextView myTextView = new TextView(this);
EditText myEditText = new EditText(this);

myTextView.setText(“Enter Text Below”);
myEditText.setText(“Text Goes Here!”);

int lHeight = LinearLayout.LayoutParams.FILL_PARENT;
int lWidth = LinearLayout.LayoutParams.WRAP_CONTENT;

ll.addView(myTextView, new LinearLayout.LayoutParams(lHeight, lWidth));
ll.addView(myEditText, new LinearLayout.LayoutParams(lHeight, lWidth));
setContentView(ll);

Creating New Views
The ability to extend existing Views, create composite widgets, and create unique new controls lets you
create beautiful User Interfaces optimized for your particular workfl ow. Android lets you subclass the
existing widget toolbox and implement your own View controls, giving you total freedom to tailor your
User Interface to maximize the user experience.

44712c04.indd 8044712c04.indd 80 10/21/08 12:02:46 AM10/21/08 12:02:46 AM

81

Chapter 4: Creating User Interfaces

When you design a User Interface, it’s important to balance raw aesthetics and usability. With the
power to create your own custom controls comes the temptation to rebuild all of them from scratch.
Resist that urge. The standard widgets will be familiar to users from other Android applications. On
small screens with users often paying limited attention, familiarity can often provide better usability
than a slightly shinier widget.

Deciding on your approach when creating a new View depends on what you want to achieve:

Modify or extend the appearance and/or behavior of an existing control when it already supplies ❑

the basic functionality you want. By overriding the event handlers and onDraw, but still calling
back to the superclass’s methods, you can customize the control without having to reimplement
its functionality. For example, you could customize a TextView to display a set number of deci-
mal points.

Combine controls to create atomic, reusable widgets that leverage the functionality of several ❑

interconnected controls. For example, you could create a dropdown combo box by combining a
TextView and a Button that displays a fl oating ListView when clicked.

Create an entirely new control when you need a completely different interface that can’t be ❑

achieved by changing or combining existing controls.

Modifying Existing Views
The toolbox includes a lot of common UI requirements, but the controls are necessarily generic. By cus-
tomizing these basic Views, you avoid reimplementing existing behavior while still tailoring the User
Interface, and functionality, of each control to your application’s needs.

To create a new widget based on an existing control, create a new class that extends it — as shown in
the following skeleton code that extends TextView:

import android.content.Context;
import android.util.AttributeSet;
import android.widget.TextView;

public class MyTextView extends TextView {

 public MyTextView (Context context, AttributeSet attrs, int defStyle)
 {
 super(context, attrs, defStyle);
 }

 public MyTextView (Context context) {
 super(context);
 }

 public MyTextView (Context context, AttributeSet attrs) {
 super(context, attrs);
 }
}

To override the appearance or behavior of your new View, override and extend the event handlers asso-
ciated with the behavior you want to change.

44712c04.indd 8144712c04.indd 81 10/21/08 12:02:46 AM10/21/08 12:02:46 AM

82

Chapter 4: Creating User Interfaces

In the following skeleton code, the onDraw method is overridden to modify the View’s appearance, and
the onKeyDown handler is overridden to allow custom key press handling:

public class MyTextView extends TextView {

 public MyTextView (Context context, AttributeSet ats, int defStyle) {
 super(context, ats, defStyle);
 }

 public MyTextView (Context context) {
 super(context);
 }

 public MyTextView (Context context, AttributeSet attrs) {
 super(context, attrs);
 }

 @Override
 public void onDraw(Canvas canvas) {
 [... Draw things on the canvas under the text ...]

 // Render the text as usual using the TextView base class.
 super.onDraw(canvas);

 [... Draw things on the canvas over the text ...]
 }

 @Override
 public boolean onKeyDown(int keyCode, KeyEvent keyEvent) {
 [... Perform some special processing ...]
 [... based on a particular key press ...]

 // Use the existing functionality implemented by
 // the base class to respond to a key press event.
 return super.onKeyDown(keyCode, keyEvent);
 }
}

The User Interface event handlers available within Views are covered in more detail later in this chapter.

Customizing Your To-Do List
The To-Do List example from Chapter 2 uses TextViews (within a List View) to display each item. You
can customize the appearance of the list by creating a new extension of the Text View, overriding the
onDraw method.

In this example, you’ll create a new TodoListItemView that will make each item appear as if on a
paper pad. When complete, your customized To-Do List should look like Figure 4-2.

44712c04.indd 8244712c04.indd 82 10/21/08 12:02:46 AM10/21/08 12:02:46 AM

83

Chapter 4: Creating User Interfaces

Figure 4-2

 1. Create a new TodoListItemView class that extends TextView. Include a stub for overriding the
onDraw method, and implement constructors that call a new init method stub.

package com.paad.todolist;

import android.content.Context;
import android.content.res.Resources;
import android.graphics.Canvas;
import android.graphics.Paint;
import android.util.AttributeSet;
import android.widget.TextView;

public class TodoListItemView extends TextView {

 public TodoListItemView (Context context, AttributeSet ats, int ds) {
 super(context, ats, ds);
 init();
 }

 public TodoListItemView (Context context) {
 super(context);
 init();
 }

 public TodoListItemView (Context context, AttributeSet attrs) {
 super(context, attrs);
 init();
 }

 private void init() {
 }

 @Override
 public void onDraw(Canvas canvas) {
 // Use the base TextView to render the text.
 super.onDraw(canvas);
 }

}

44712c04.indd 8344712c04.indd 83 10/21/08 12:02:46 AM10/21/08 12:02:46 AM

84

Chapter 4: Creating User Interfaces

 2. Create a new colors.xml resource in the res/values folder. Create new color values for the
paper, margin, line, and text colors.

<?xml version=”1.0” encoding=”utf-8”?>
<resources>
 <color name=”notepad_paper”>#AAFFFF99</color>
 <color name=”notepad_lines”>#FF0000FF</color>
 <color name=”notepad_margin”>#90FF0000</color>
 <color name=”notepad_text”>#AA0000FF</color>
</resources>

 3. Create a new dimens.xml resource fi le, and add a new value for the paper’s margin width.

<?xml version=”1.0” encoding=”utf-8”?>
<resources>
 <dimen name=”notepad_margin”>30px</dimen>
</resources>

 4. With the resources defi ned, you’re ready to customize the TodoListItemView appearance.
Create new private instance variables to store the Paint objects you’ll use to draw the paper
background and margin. Also create variables for the paper color and margin width values.

Fill in the init method to get instances of the resources you created in the last two steps and
create the Paint objects.

private Paint marginPaint;
private Paint linePaint;
private int paperColor;
private float margin;

private void init() {
 // Get a reference to our resource table.
 Resources myResources = getResources();

 // Create the paint brushes we will use in the onDraw method.
 marginPaint = new Paint(Paint.ANTI_ALIAS_FLAG);
 marginPaint.setColor(myResources.getColor(R.color.notepad_margin));
 linePaint = new Paint(Paint.ANTI_ALIAS_FLAG);
 linePaint.setColor(myResources.getColor(R.color.notepad_lines));

 // Get the paper background color and the margin width.
 paperColor = myResources.getColor(R.color.notepad_paper);
 margin = myResources.getDimension(R.dimen.notepad_margin);
}

 5. To draw the paper, override onDraw, and draw the image using the Paint objects you created
in Step 4. Once you’ve drawn the paper image, call the superclass’s onDraw method, and let it
draw the text as usual.

@Override
public void onDraw(Canvas canvas) {
 // Color as paper
 canvas.drawColor(paperColor);

 // Draw ruled lines

44712c04.indd 8444712c04.indd 84 10/21/08 12:02:46 AM10/21/08 12:02:46 AM

85

Chapter 4: Creating User Interfaces

 canvas.drawLine(0, 0, getMeasuredHeight(), 0, linePaint);
 canvas.drawLine(0, getMeasuredHeight(),
 getMeasuredWidth(), getMeasuredHeight(),
 linePaint);

 // Draw margin
 canvas.drawLine(margin, 0, margin, getMeasuredHeight(), marginPaint);

 // Move the text across from the margin
 canvas.save();
 canvas.translate(margin, 0);

 // Use the TextView to render the text.
 super.onDraw(canvas);
 canvas.restore();
}

 6. That completes the TodoListItemView implementation. To use it in the To-Do List Activity,
you need to include it in a new layout and pass that in to the Array Adapter constructor.

Start by creating a new todolist_item.xml resource in the res/layout folder. It will specify how
each of the to-do list items is displayed. For this example, your layout need only consist of the
new TodoListItemView, set to fi ll the entire available area.

<?xml version=”1.0” encoding=”utf-8”?>
<com.paad.todolist.TodoListItemView
 xmlns:android=”http://schemas.android.com/apk/res/android”
 android:layout_width=”fill_parent”
 android:layout_height=”fill_parent”
 android:padding=”10dp”
 android:scrollbars=”vertical”
 android:textColor=”@color/notepad_text”
 android:fadingEdge=”vertical”
/>

 7. Now open the ToDoList Activity class. The fi nal step is to change the parameters passed in
to the ArrayAdapter in onCreate. Replace the reference to the default android.R.layout
.simple_list_item_1 with the new R.layout.todolist_item layout created in Step 6.

final ArrayList<String> todoItems = new ArrayList<String>();
int resID = R.layout.todolist_item;
final ArrayAdapter<String> aa = new ArrayAdapter<String>(this, resID, todoItems);
myListView.setAdapter(aa);

Creating Compound Controls
Compound controls are atomic, reusable widgets that contain multiple child controls laid out and wired
together.

When you create a compound control, you defi ne the layout, appearance, and interaction of the Views
it contains. Compound controls are created by extending a ViewGroup (usually a Layout Manager). To

44712c04.indd 8544712c04.indd 85 10/21/08 12:02:46 AM10/21/08 12:02:46 AM

86

Chapter 4: Creating User Interfaces

create a new compound control, choose a layout class that’s most suitable for positioning the child con-
trols, and extend it as shown in the skeleton code below:

public class MyCompoundView extends LinearLayout {

 public MyCompoundView(Context context) {
 super(context);
 }

 public MyCompoundView(Context context, AttributeSet attrs) {
 super(context, attrs);
 }

}

As with an Activity, the preferred way to design the UI for a compound control is to use a layout
resource. The following code snippet shows the XML layout defi nition for a simple widget consisting
of an Edit Text box and a button to clear it:

<?xml version=”1.0” encoding=”utf-8”?>
<LinearLayout xmlns:android=”http://schemas.android.com/apk/res/android”
 android:orientation=”vertical”
 android:layout_width=”fill_parent”
 android:layout_height=”fill_parent”>
 <EditText
 android:id=”@+id/editText”
 android:layout_width=”fill_parent”
 android:layout_height=”wrap_content”
 />
 <Button
 android:id=”@+id/clearButton”
 android:layout_width=”fill_parent”
 android:layout_height=”wrap_content”
 android:text=”Clear”
 />
</LinearLayout>

To use this layout for your new widget, override its constructor to infl ate the layout resource using
the inflate method from the LayoutInflate system service. The inflate method takes the layout
resource and returns an infl ated View. For circumstances such as this where the returned View should
be the class you’re creating, you can pass in a parent and attach the result to it automatically, as shown
in the next code sample.

The following code snippet shows the ClearableEditText class. Within the constructor it infl ates the
layout resource created above and gets references to each of the Views it contains. It also makes a call to
hookupButton that will be used to hookup the clear text functionality when the button is pressed.

public class ClearableEditText extends LinearLayout {

 EditText editText;
 Button clearButton;

 public ClearableEditText(Context context) {

44712c04.indd 8644712c04.indd 86 10/21/08 12:02:46 AM10/21/08 12:02:46 AM

87

Chapter 4: Creating User Interfaces

 super(context);

 // Inflate the view from the layout resource.
 String infService = Context.LAYOUT_INFLATER_SERVICE;
 LayoutInflater li;
 li = (LayoutInflater)getContext().getSystemService(infService);
 li.inflate(R.layout.clearable_edit_text, this, true);

 // Get references to the child controls.
 editText = (EditText)findViewById(R.id.editText);
 clearButton = (Button)findViewById(R.id.clearButton);

 // Hook up the functionality
 hookupButton();
 }
}

If you’d prefer to construct your layout in code, you can do so just as you would for an Activity. The fol-
lowing code snippet shows the ClearableEditText constructor overridden to create the same UI as is
defi ned in the XML used in the earlier example:

public ClearableEditText(Context context) {
 super(context);

 // Set orientation of layout to vertical
 setOrientation(LinearLayout.VERTICAL);

 // Create the child controls.
 editText = new EditText(getContext());
 clearButton = new Button(getContext());
 clearButton.setText(“Clear”);

 // Lay them out in the compound control.
 int lHeight = LayoutParams.WRAP_CONTENT;
 int lWidth = LayoutParams.FILL_PARENT;

 addView(editText, new LinearLayout.LayoutParams(lWidth, lHeight));
 addView(clearButton, new LinearLayout.LayoutParams(lWidth, lHeight));

 // Hook up the functionality
 hookupButton();
}

Once the screen has been constructed, you can hook up the event handlers for each child control to pro-
vide the functionality you need. In this next snippet, the hookupButton method is fi lled in to clear the
textbox when the button is pressed:

private void hookupButton() {
 clearButton.setOnClickListener(new Button.OnClickListener() {
 public void onClick(View v) {
 editText.setText(“”);
 }
 });
}

44712c04.indd 8744712c04.indd 87 10/21/08 12:02:46 AM10/21/08 12:02:46 AM

88

Chapter 4: Creating User Interfaces

Creating Custom Widgets and Controls
Creating completely new Views gives you the power to fundamentally shape the way your applica-
tions look and feel. By creating your own controls, you can create User Interfaces that are uniquely
suited to your users’ needs. To create new controls from a blank canvas, you extend either the View or
SurfaceView classes.

The View class provides a Canvas object and a series of draw methods and Paint classes, to create
a visual interface using raster graphics. You can then override user events like screen touches or key
presses to provide interactivity. In situations where extremely rapid repaints and 3D graphics aren’t
required, the View base class offers a powerful lightweight solution.

The SurfaceView provides a canvas that supports drawing from a background thread and using
openGL for 3D graphics. This is an excellent option for graphics-heavy controls that are frequently
updated or display complex graphical information, particularly games and 3D visualizations.

This chapter introduces 2D controls based on the View class. To learn more about the SurfaceView
class and some of the more advanced Canvas paint features available in Android, see Chapter 11.

Creating a New Visual Interface
The base View class presents a distinctly empty 100 × 100 pixel square. To change the size of the con-
trol and display a more compelling visual interface, you need to override the onMeasure and onDraw
methods, respectively.

Within onMeasure, the new View will calculate the height and width it will occupy given a set of bound-
ary conditions. The onDraw method is where you draw on the Canvas to create the visual interface.

The following code snippet shows the skeleton code for a new View class, which will be examined
further in the following sections:

public class MyView extends View {

 // Constructor required for in-code creation
 public MyView(Context context) {
 super(context);
 }

 // Constructor required for inflation from resource file
 public MyView (Context context, AttributeSet ats, int defaultStyle) {
 super(context, ats, defaultStyle);
 }

 //Constructor required for inflation from resource file
 public MyView (Context context, AttributeSet attrs) {
 super(context, attrs);
 }

 @Override
 protected void onMeasure(int wMeasureSpec, int hMeasureSpec) {
 int measuredHeight = measureHeight(hMeasureSpec);

44712c04.indd 8844712c04.indd 88 10/21/08 12:02:47 AM10/21/08 12:02:47 AM

89

Chapter 4: Creating User Interfaces

 int measuredWidth = measureWidth(wMeasureSpec);

 // MUST make this call to setMeasuredDimension
 // or you will cause a runtime exception when
 // the control is laid out.
 setMeasuredDimension(measuredHeight, measuredWidth);
 }

 private int measureHeight(int measureSpec) {
 int specMode = MeasureSpec.getMode(measureSpec);
 int specSize = MeasureSpec.getSize(measureSpec);

 [... Calculate the view height ...]

 return specSize;
 }

 private int measureWidth(int measureSpec) {
 int specMode = MeasureSpec.getMode(measureSpec);
 int specSize = MeasureSpec.getSize(measureSpec);

 [... Calculate the view width ...]

 return specSize;
 }

 @Override
 protected void onDraw(Canvas canvas) {
 [... Draw your visual interface ...]
 }
}

Note that the onMeasure method calls setMeasuredDimension; you must always
call this method within your overridden onMeasure method or your control will
throw an exception when the parent container attempts to lay it out.

Drawing Your Control
The onDraw method is where the magic happens. If you’re creating a new widget from scratch, it’s
because you want to create a completely new visual interface. The Canvas parameter available in the
onDraw method is the surface you’ll use to bring your imagination to life.

Android provides a variety of tools to help draw your design on the Canvas using various Paint objects.
The Canvas class includes helper methods to draw primitive 2D objects including circles, lines, rectan-
gles, text, and Drawables (images). It also supports transformations that let you rotate, translate (move),
and scale (resize) the Canvas while you draw on it.

Used in combination with Drawables and the Paint class (which offer a variety of customizable fi lls
and pens), the complexity and detail that your control can render are limited only by the size of the
screen and the power of the processor rendering it.

44712c04.indd 8944712c04.indd 89 10/21/08 12:02:47 AM10/21/08 12:02:47 AM

90

Chapter 4: Creating User Interfaces

One of the most important techniques for writing effi cient code in Android is to
avoid repetitive creation and destruction of objects. Any object created in your
onDraw method will be created and destroyed every time the screen refreshes.
Improve effi ciency by making as many of these objects (in particular, instances of
Paint and Drawable) class-scoped and moving their creation into the constructor.

The following code snippet shows how to override the onDraw method to display a simple text string in
the center of the control:

@Override
protected void onDraw(Canvas canvas) {
 // Get the size of the control based on the last call to onMeasure.
 int height = getMeasuredHeight();
 int width = getMeasuredWidth();

 // Find the center
 int px = width/2;
 int py = height/2;

 // Create the new paint brushes.
 // NOTE: For efficiency this should be done in
 // the widget’s constructor
 Paint mTextPaint = new Paint(Paint.ANTI_ALIAS_FLAG);
 mTextPaint.setColor(Color.WHITE);

 // Define the string.
 String displayText = “Hello World!”;

 // Measure the width of the text string.
 float textWidth = mTextPaint.measureText(displayText);

 // Draw the text string in the center of the control.
 canvas.drawText(displayText, px-textWidth/2, py, mTextPaint);
}

Android offers a rich drawing library for the Canvas. Rather than diverge too far from the current
topic, a more detailed look at the techniques available for drawing more complex visuals is included
in Chapter 11.

Android does not currently support vector graphics. As a result, changes to any element of your canvas
require repainting the entire canvas; modifying the color of a brush will not change your View’s display
until it is invalidated and redrawn. Alternatively, you can use OpenGL to render graphics; for more
details, see the discussion on SurfaceView in Chapter 11.

Sizing Your Control
Unless you conveniently require a control that always occupies 100 × 100 pixels, you will also need to
override onMeasure.

The onMeasure method is called when the control’s parent is laying out its child controls. It asks the
question, “How much space will you use?” and passes in two parameters — widthMeasureSpec and

44712c04.indd 9044712c04.indd 90 10/21/08 12:02:47 AM10/21/08 12:02:47 AM

91

Chapter 4: Creating User Interfaces

heightMeasureSpec. They specify the space available for the control and some metadata describing
that space.

Rather than return a result, you pass the View’s height and width into the setMeasuredDimension
method.

The following skeleton code shows how to override onMeasure. Note the calls to local method stubs
calculateHeight and calculateWidth. They’ll be used to decode the widthHeightSpec and
heightMeasureSpec values and calculate the preferred height and width values.

@Override
protected void onMeasure(int widthMeasureSpec, int heightMeasureSpec) {

 int measuredHeight = measureHeight(heightMeasureSpec);
 int measuredWidth = measureWidth(widthMeasureSpec);

 setMeasuredDimension(measuredHeight, measuredWidth);
}

private int measureHeight(int measureSpec) {
 // Return measured widget height.
}

private int measureWidth(int measureSpec) {
 // Return measured widget width.
}

The boundary parameters, widthMeasureSpec and heightMeasureSpec, are passed in as integers for
effi ciency reasons. Before they can be used, they fi rst need to be decoded using the static getMode and
getSize methods from the MeasureSpec class, as shown in the snippet below:

int specMode = MeasureSpec.getMode(measureSpec);
int specSize = MeasureSpec.getSize(measureSpec);

Depending on the mode value, the size represents either the maximum space available for the control
(in the case of AT_MOST), or the exact size that your control will occupy (for EXACTLY). In the case of
UNSPECIFIED, your control does not have any reference for what the size represents.

By marking a measurement size as EXACT, the parent is insisting that the View will be placed into an
area of the exact size specifi ed. The AT_MOST designator says the parent is asking what size the View
would like to occupy, given an upper bound. In many cases, the value you return will be the same.

In either case, you should treat these limits as absolute. In some circumstances, it may still be appropri-
ate to return a measurement outside these limits, in which case you can let the parent choose how to
deal with the oversized View, using techniques such as clipping and scrolling.

The following skeleton code shows a typical implementation for handling View measurement:

@Override
protected void onMeasure(int widthMeasureSpec, int heightMeasureSpec) {
 int measuredHeight = measureHeight(heightMeasureSpec);

44712c04.indd 9144712c04.indd 91 10/21/08 12:02:47 AM10/21/08 12:02:47 AM

92

Chapter 4: Creating User Interfaces

 int measuredWidth = measureWidth(widthMeasureSpec);

 setMeasuredDimension(measuredHeight, measuredWidth);
}

private int measureHeight(int measureSpec) {
 int specMode = MeasureSpec.getMode(measureSpec);
 int specSize = MeasureSpec.getSize(measureSpec);

 // Default size if no limits are specified.
 int result = 500;

 if (specMode == MeasureSpec.AT_MOST) {
 // Calculate the ideal size of your
 // control within this maximum size.
 // If your control fills the available
 // space return the outer bound.
 result = specSize;
 } else if (specMode == MeasureSpec.EXACTLY) {
 // If your control can fit within these bounds return that value.
 result = specSize;
 }
 return result;
}

private int measureWidth(int measureSpec) {
 int specMode = MeasureSpec.getMode(measureSpec);
 int specSize = MeasureSpec.getSize(measureSpec);

 // Default size if no limits are specified.
 int result = 500;

 if (specMode == MeasureSpec.AT_MOST) {
 // Calculate the ideal size of your control
 // within this maximum size.
 // If your control fills the available space
 // return the outer bound.
 result = specSize;
 } else if (specMode == MeasureSpec.EXACTLY) {
 // If your control can fit within these bounds return that value.
 result = specSize;
 }
 return result;
}

Handling User Interaction Events
To make your new widget interactive, it will need to respond to user events like key presses, screen
touches, and button clicks. Android exposes several virtual event handlers, listed below, that let you
react to user input:

onKeyDown ❑ Called when any device key is pressed; includes the D-pad, keyboard, hang-up,
call, back, and camera buttons

44712c04.indd 9244712c04.indd 92 10/21/08 12:02:47 AM10/21/08 12:02:47 AM

93

Chapter 4: Creating User Interfaces

onKeyUp ❑ Called when a user releases a pressed key

onTrackballEvent ❑ Called when the device’s trackball is moved

onTouchEvent ❑ Called when the touch screen is pressed or released, or it detects movement

The following code snippet shows a skeleton class that overrides each of the user interaction handlers
in a View:

@Override
public boolean onKeyDown(int keyCode, KeyEvent keyEvent) {
 // Return true if the event was handled.
 return true;
}

@Override
public boolean onKeyUp(int keyCode, KeyEvent keyEvent) {
 // Return true if the event was handled.
 return true;
}

@Override
public boolean onTrackballEvent(MotionEvent event) {
 // Get the type of action this event represents
 int actionPerformed = event.getAction();
 // Return true if the event was handled.
 return true;
}

@Override
public boolean onTouchEvent(MotionEvent event) {
 // Get the type of action this event represents
 int actionPerformed = event.getAction();
 // Return true if the event was handled.
 return true;
}

Further details on using each of these event handlers, including greater detail on the parameters
received by each method, are available in Chapter 11.

Creating a Compass View Example
In the following example, you’ll create a new Compass View by extending the View class. It uses a tradi-
tional compass rose to indicate a heading/orientation. When complete, it should appear as in Figure 4-3.

A compass is an example of a User Interface control that requires a radically different visual display
from the textboxes and buttons available in the SDK toolbox, making it an excellent candidate for
building from scratch.

In Chapter 10, you’ll use this Compass View and the device’s built-in accelerometer to display the
user’s current bearing. Then in Chapter 11, you will learn some advanced techniques for Canvas draw-
ing that will let you dramatically improve its appearance.

44712c04.indd 9344712c04.indd 93 10/21/08 12:02:47 AM10/21/08 12:02:47 AM

94

Chapter 4: Creating User Interfaces

Figure 4-3

 1. Create a new Compass project that will contain your new Compass View, and an Activity to
hold it. Now create a new CompassView class that extends View. Create constructors that will
allow the View to be instantiated in code, or through infl ation from a resource layout. Add a
new initCompassView method that will be used to initialize the control and call it from each
constructor.

package com.paad.compass;

import android.content.Context;
import android.graphics.*;
import android.graphics.drawable.*;
import android.view.*;
import android.util.AttributeSet;
import android.content.res.Resources;

public class CompassView extends View {

 public CompassView(Context context) {
 super(context);
 initCompassView();
 }

 public CompassView(Context context, AttributeSet attrs) {
 super(context, attrs);
 initCompassView();
 }

 public CompassView(Context context,
 AttributeSet ats,
 int defaultStyle) {
 super(context, ats, defaultStyle);

44712c04.indd 9444712c04.indd 94 10/21/08 12:02:47 AM10/21/08 12:02:47 AM

95

Chapter 4: Creating User Interfaces

 initCompassView();
 }

 protected void initCompassView() {
 setFocusable(true);
 }

}

 2. The compass control should always be a perfect circle that takes up as much of the canvas as
this restriction allows. Override the onMeasure method to calculate the length of the shortest
side, and use setMeasuredDimension to set the height and width using this value.

@Override
protected void onMeasure(int widthMeasureSpec, int heightMeasureSpec) {
 // The compass is a circle that fills as much space as possible.
 // Set the measured dimensions by figuring out the shortest boundary,
 // height or width.
 int measuredWidth = measure(widthMeasureSpec);
 int measuredHeight = measure(heightMeasureSpec);

 int d = Math.min(measuredWidth, measuredHeight);

 setMeasuredDimension(d, d);
}

private int measure(int measureSpec) {
 int result = 0;

 // Decode the measurement specifications.
 int specMode = MeasureSpec.getMode(measureSpec);
 int specSize = MeasureSpec.getSize(measureSpec);

 if (specMode == MeasureSpec.UNSPECIFIED) {
 // Return a default size of 200 if no bounds are specified.
 result = 200;
 } else {
 // As you want to fill the available space
 // always return the full available bounds.
 result = specSize;
 }
 return result;
}

 3. Create two new resource fi les that store the colors and text strings you’ll use to draw the compass.

 3.1. Create the text string resource res/values/strings.xml.

<?xml version=”1.0” encoding=”utf-8”?>
<resources>
 <string name=”app_name”>Compass</string>
 <string name=”cardinal_north”>N</string>
 <string name=”cardinal_east”>E</string>
 <string name=”cardinal_south”>S</string>
 <string name=”cardinal_west”>W</string>
</resources>

44712c04.indd 9544712c04.indd 95 10/21/08 12:02:47 AM10/21/08 12:02:47 AM

96

Chapter 4: Creating User Interfaces

 3.2. Create the color resource res/values/colors.xml.

<?xml version=”1.0” encoding=”utf-8”?>
<resources>
 <color name=”background_color”>#F555</color>
 <color name=”marker_color”>#AFFF</color>
 <color name=”text_color”>#AFFF</color>
</resources>

 4. Now return to the CompassView class. Add a new property for the bearing to display and
create get and set methods for it.

 private float bearing;

 public void setBearing(float _bearing) {
 bearing = _bearing;
 }
 public float getBearing() {
 return bearing;
 }

 5. Next, return to the initCompassView method, and get references to each resource created
in Step 3. Store the String values as instance variables, and use the color values to create new
class-scoped Paint objects. You’ll use these objects in the next step to draw the compass face.

private Paint markerPaint;
private Paint textPaint;
private Paint circlePaint;
private String northString;
private String eastString;
private String southString;
private String westString;
private int textHeight;

protected void initCompassView() {
 setFocusable(true);

 circlePaint = new Paint(Paint.ANTI_ALIAS_FLAG);
 circlePaint.setColor(R.color. background_color);
 circlePaint.setStrokeWidth(1);
 circlePaint.setStyle(Paint.Style.FILL_AND_STROKE);

 Resources r = this.getResources();
 northString = r.getString(R.string.cardinal_north);
 eastString = r.getString(R.string.cardinal_east);
 southString = r.getString(R.string.cardinal_south);
 westString = r.getString(R.string.cardinal_west);

 textPaint = new Paint(Paint.ANTI_ALIAS_FLAG);
 textPaint.setColor(r.getColor(R.color.text_color));

 textHeight = (int)textPaint.measureText(“yY”);

 markerPaint = new Paint(Paint.ANTI_ALIAS_FLAG);
 markerPaint.setColor(r.getColor(R.color.marker_color));
}

44712c04.indd 9644712c04.indd 96 10/21/08 12:02:47 AM10/21/08 12:02:47 AM

97

Chapter 4: Creating User Interfaces

 6. The fi nal step is drawing the compass face using the Strings and Paint objects you created
in Step 5. The following code snippet is presented with only limited commentary. You can fi nd
more detail on how to draw on the Canvas and use advanced Paint effects in Chapter 11.

 6.1. Start by overriding the onDraw method in the CompassView class.

@Override
protected void onDraw(Canvas canvas) {

 6.2. Find the center of the control, and store the length of the smallest side as the compass’s
radius.

 int px = getMeasuredWidth() / 2;
 int py = getMeasuredHeight() /2 ;

 int radius = Math.min(px, py);

 6.3. Draw the outer boundary, and color the background of the compass face using the
drawCircle method. Use the circlePaint object you created in Step 5.

 // Draw the background
 canvas.drawCircle(px, py, radius, circlePaint);

 6.4. This compass displays the current heading by rotating the face, so that the current
direction is always at the top of the device. To do this, rotate the canvas in the opposite
direction to the current heading.

 // Rotate our perspective so that the ‘top’ is
 // facing the current bearing.
 canvas.save();
 canvas.rotate(-bearing, px, py);

 6.5. All that’s left is to draw the markings. Rotate the canvas through a full rotation, drawing
markings every 15 degrees and the abbreviated direction string every 45 degrees.

 int textWidth = (int)textPaint.measureText(“W”);
 int cardinalX = px-textWidth/2;
 int cardinalY = py-radius+textHeight;

 // Draw the marker every 15 degrees and text every 45.
 for (int i = 0; i < 24; i++) {
 // Draw a marker.
 canvas.drawLine(px, py-radius, px, py-radius+10, markerPaint);

 canvas.save();
 canvas.translate(0, textHeight);

 // Draw the cardinal points
 if (i % 6 == 0) {
 String dirString = “”;
 switch (i) {
 case(0) : {
 dirString = northString;
 int arrowY = 2*textHeight;
 canvas.drawLine(px, arrowY, px-5, 3*textHeight,
 markerPaint);

44712c04.indd 9744712c04.indd 97 10/21/08 12:02:47 AM10/21/08 12:02:47 AM

98

Chapter 4: Creating User Interfaces

 canvas.drawLine(px, arrowY, px+5, 3*textHeight,
 markerPaint);
 break;
 }
 case(6) : dirString = eastString; break;
 case(12) : dirString = southString; break;
 case(18) : dirString = westString; break;
 }
 canvas.drawText(dirString, cardinalX, cardinalY, textPaint);
 }

 else if (i % 3 == 0) {
 // Draw the text every alternate 45deg
 String angle = String.valueOf(i*15);
 float angleTextWidth = textPaint.measureText(angle);

 int angleTextX = (int)(px-angleTextWidth/2);
 int angleTextY = py-radius+textHeight;
 canvas.drawText(angle, angleTextX, angleTextY, textPaint);
 }
 canvas.restore();

 canvas.rotate(15, px, py);
 }
 canvas.restore();
}

 7. To view the compass, modify the main.xml layout resource and replace the TextView reference
with your new CompassView. This process is explained in more detail in the next section.

<?xml version=”1.0” encoding=”utf-8”?>
<LinearLayout xmlns:android=”http://schemas.android.com/apk/res/android”
 android:orientation=”vertical”
 android:layout_width=”fill_parent”
 android:layout_height=”fill_parent”>
 <com.paad.compass.CompassView
 android:id=”@+id/compassView”
 android:layout_width=”fill_parent”
 android:layout_height=”fill_parent”
 />
</LinearLayout>

 8. Run the Activity, and you should see the CompassView displayed. See Chapter 10 to learn how
to bind the CompassView to the device’s compass.

Using Custom Controls
Having created you own custom Views, you can use them within code and layouts as you would any
other Android control. The snippet below shows how to add the CompassView created in the above
example to an Activity, by overriding the onCreate method:

@Override
public void onCreate(Bundle icicle) {

44712c04.indd 9844712c04.indd 98 10/21/08 12:02:47 AM10/21/08 12:02:47 AM

99

Chapter 4: Creating User Interfaces

 super.onCreate(icicle);
 CompassView cv = new CompassView(this);
 setContentView(cv);
 cv.setBearing(45);
}

To use the same control within a layout resource, specify the fully qualifi ed class name when you create
a new node in the layout defi nition, as shown in the following XML snippet:

<com.paad.compass.CompassView
 android:id=”@+id/compassView”
 android:layout_width=”fill_parent”
 android:layout_height=”fill_parent”
/>

You can infl ate the layout and get a reference to the CompassView as normal, using the following code:

@Override
public void onCreate(Bundle icicle) {
 super.onCreate(icicle);
 setContentView(R.layout.main);
 CompassView cv = (CompassView)this.findViewById(R.id.compassView);
 cv.setBearing(45);
}

Creating and Using Menus
Menus offer a way to expose application functions without sacrifi cing valuable screen space. Each
Activity can specify its own Activity menu that’s displayed when the device’s menu button is pressed.

Android also supports context menus that can be assigned to any View within an Activity. A View’s
context menu is triggered when a user holds the middle D-pad button, depresses the trackball, or long-
presses the touch screen for around 3 seconds when the View has focus.

Activity and context menus support submenus, checkboxes, radio buttons, shortcut keys, and icons.

Introducing the Android Menu System
If you’ve ever tried to navigate a mobile phone menu system using a stylus or trackball, you’ll know
that traditional menu systems are awkward to use on mobile devices.

To improve the usability of application menus, Android features a three-stage menu system optimized
for small screens:

The Icon Menu ❑ This compact menu (shown in Figure 4-4) appears along the bottom of the
screen when the Menu button is pressed. It displays the icons and text for up to six Menu Items
(or submenus).

44712c04.indd 9944712c04.indd 99 10/21/08 12:02:47 AM10/21/08 12:02:47 AM

100

Chapter 4: Creating User Interfaces

Figure 4-4

This icon menu does not display checkboxes, radio buttons, or the shortcut keys for Menu Items,
so it’s generally good practice not to assign checkboxes or radio buttons to icon menu items, as
they will not be available.

If more than six Menu Items have been defi ned, a More item is included that, when selected, dis-
plays the expanded menu. Pressing the Back button closes the icon menu.

The Expanded Menu ❑ The expanded menu is triggered when a user selects the More Menu
Item from the icon menu. The expanded menu (shown in Figure 4-5) displays a scrollable list of
only the Menu Items that weren’t visible in the icon menu. This menu displays full text, shortcut
keys, and checkboxes/radio buttons as appropriate.

Figure 4-5

It does not, however, display icons. As a result, you should avoid assigning icons to Menu Items
that are likely to appear only in the expanded menu.

Pressing Back from the expanded menu returns to the icon menu.

You cannot force Android to display the expanded menu instead of the icon menu. As a result, special
care must be taken with Menu Items that feature checkboxes or radio buttons to ensure that they are
either available only in the extended menu, or that their state information is also indicated using an
icon or change in text.

44712c04.indd 10044712c04.indd 100 10/21/08 12:02:47 AM10/21/08 12:02:47 AM

101

Chapter 4: Creating User Interfaces

Submenus ❑ The traditional “expanding hierarchical tree” can be awkward to navigate using a
mouse, so it’s no surprise that this metaphor is particularly ill-suited for use on mobile devices.
The Android alternative is to display each submenu in a fl oating window. For example, when a
user selects a submenu such as the creatively labeled Submenu from Figure 4-5, its items are dis-
played in a fl oating menu Dialog box, as shown in Figure 4-6.

Figure 4-6

Note that the name of the submenu is shown in the header bar and that each Menu Item is dis-
played with its full text, checkbox (if any), and shortcut key. Since Android does not support
nested submenus, you can’t add a submenu to a submenu (trying will result in an exception).

As with the extended menu, icons are not displayed in the submenu items, so it’s good practice
to avoid assigning icons to submenu items.

Pressing the Back button closes the fl oating window without navigating back to the extended or
icon menus.

Defi ning an Activity Menu
To defi ne a menu for an Activity, override its onCreateOptionsMenu method. This method is triggered
the fi rst time an Activity’s menu is displayed.

The onCreateOptionsMenu receives a Menu object as a parameter. You can store a reference to, and con-
tinue to use, the Menu reference elsewhere in your code until the next time that onCreateOptionsMenu
is called.

You should always call through to the base implementation as it automatically includes additional sys-
tem menu options where appropriate.

Use the add method on the Menu object to populate your menu. For each Menu Item, you must specify:

A group value to separate Menu Items for batch processing and ordering ❑

44712c04.indd 10144712c04.indd 101 10/21/08 12:02:47 AM10/21/08 12:02:47 AM

102

Chapter 4: Creating User Interfaces

A unique identifi er for each Menu Item. For effi ciency reasons, Menu Item selections are gener- ❑

ally handled by the onOptionsItemSelected event handler, so this unique identifi er is impor-
tant to determine which Menu Item was pressed. It is convention to declare each menu ID as a
private static variable within the Activity class. You can use the Menu.FIRST static constant
and simply increment that value for each subsequent item.

An order value that defi nes the order in which the Menu Items are displayed ❑

The menu text, either as a character string or as a string resource ❑

When you have fi nished populating the menu, return True to allow Android to display the menu.

The following skeleton code shows how to add a single item to an Activity menu:

static final private int MENU_ITEM = Menu.FIRST;

@Override
public boolean onCreateOptionsMenu(Menu menu) {
 super.onCreateOptionsMenu(menu);

 // Group ID
 int groupId = 0;
 // Unique menu item identifier. Used for event handling.
 int menuItemId = MENU_ITEM;
 // The order position of the item
 int menuItemOrder = Menu.NONE;
 // Text to be displayed for this menu item.
 int menuItemText = R.string.menu_item;

 // Create the menu item and keep a reference to it.
 MenuItem menuItem = menu.add(groupId, menuItemId,
 menuItemOrder, menuItemText);

 return true;
}

Like the Menu object, each Menu Item reference returned by a call to add is valid until the next call to
onCreateOptionsMenu. Rather than maintaining a reference to each item, you can fi nd a particular
Menu Item by passing its ID into the Menu.findItem method.

Menu Item Options
Android supports most of the traditional Menu Item options you’re probably familiar with, including
icons, shortcuts, checkboxes, and radio buttons, as described below:

Checkboxes and Radio Buttons ❑ Checkboxes and radio buttons on Menu Items are visible in
expanded menus and submenus, as shown in Figure 4-6. To set a Menu Item as a checkbox, use
the setCheckable method. The state of that checkbox is controlled using setChecked.

A radio button group is a group of items displaying circular buttons, where only one item can be
selected at any given time. Checking one of these items will automatically unselect any other
item in the same group, that is currently checked. To create a radio button group, assign the

44712c04.indd 10244712c04.indd 102 10/21/08 12:02:47 AM10/21/08 12:02:47 AM

103

Chapter 4: Creating User Interfaces

same group identifi er to each item, then call Menu.setGroupCheckable, passing in that group
identifi er and setting the exclusive parameter to True.

Checkboxes are not visible in the icon menu, so Menu Items that feature checkboxes should be
reserved for submenus and items that appear only in the expanded menu. The following code
snippet shows how to add a checkbox and a group of three radio buttons:

// Create a new check box item.
menu.add(0, CHECKBOX_ITEM, Menu.NONE, “CheckBox”).setCheckable(true);

// Create a radio button group.
menu.add(RB_GROUP, RADIOBUTTON_1, Menu.NONE, “Radiobutton 1”);
menu.add(RB_GROUP, RADIOBUTTON_2, Menu.NONE, “Radiobutton 2”);
menu.add(RB_GROUP, RADIOBUTTON_3, Menu.NONE,
 “Radiobutton 3”).setChecked(true);
menu.setGroupCheckable(RB_GROUP, true, true);

Shortcut Keys ❑ You can specify a keypad shortcut for a Menu Item using the setShortcut
method. Each call to setShortcut requires two shortcut keys, one for use with the numeric
keypad and a second to support a full keyboard. Neither key is case-sensitive.

The code below shows how to set a shortcut for both modes:

// Add a shortcut to this menu item, ‘0’ if using the numeric keypad
// or ‘b’ if using the full keyboard.
menuItem.setShortcut(‘0’, ‘b’);

Condensed Titles ❑ The icon menu does not display shortcuts or checkboxes, so it’s often neces-
sary to modify its display text to indicate its state. The following code shows how to set the icon
menu–specifi c text for a Menu Item:

menuItem.setTitleCondensed(“Short Title”);

Icons ❑ Icon is a drawable resource identifi er for an icon to be used in the Menu Item. Icons are
only displayed in the icon menu; they are not visible in the extended menu or submenus. The
following snippet shows how to apply an icon to a Menu Item:

menuItem.setIcon(R.drawable.menu_item_icon);

Menu Item Click Listener ❑ An event handler that will execute when the Menu Item is selected.
For effi ciency reasons, this is discouraged; instead, Menu Item selections should be handled by
the onOptionsItemSelected handler as shown later in this section. To apply a click listener to
a Menu Item, use the pattern shown in the following code snippet:

menuItem.setOnMenuItemClickListener(new OnMenuItemClickListener() {

 public boolean onMenuItemClick(MenuItem _menuItem) {
 [... execute click handling, return true if handled ...]
 return true;
 }

});

44712c04.indd 10344712c04.indd 103 10/21/08 12:02:47 AM10/21/08 12:02:47 AM

104

Chapter 4: Creating User Interfaces

Intents ❑ An Intent assigned to a Menu Item is triggered when clicking a Menu Item isn’t han-
dled by either a MenuItemClickListener or the Activity’s onOptionsItemSelected handler.
When triggered, Android will execute startActivity, passing in the specifi ed Intent. The fol-
lowing code snippet shows how to specify an Intent for a Menu Item:

menuItem.setIntent(new Intent(this, MyOtherActivity.class));

Dynamically Updating Menu Items
By overriding your activity’s onPrepareOptionsMenu method, you can modify your menu based on
the application state each time it’s displayed. This lets you dynamically disable/enable each item, set
visibility, and modify text at runtime.

To modify Menu Items dynamically, you can either keep a reference to them when they’re created in the
onCreateOptionsMenu method, or you can use menu.findItem as shown in the following skeleton
code, where onPrepareOptionsMenu is overridden:

@Override
public boolean onPrepareOptionsMenu(Menu menu) {
 super.onPrepareOptionsMenu(menu);

 MenuItem menuItem = menu.findItem(MENU_ITEM);

 [... modify menu items ...]

 return true;
}

Handling Menu Selections
Android handles all of an Activity’s Menu Item selections using a single event handler, the
onOptions ItemSelected method. The Menu Item selected is passed in to this method as the MenuItem
parameter.

To react to the menu selection, compare the item.getItemId value to the Menu Item identifi ers you
used when populating the menu, and react accordingly, as shown in the following code:

public boolean onOptionsItemSelected(MenuItem item) {
 super.onOptionsItemSelected(item);

 // Find which menu item has been selected
 switch (item.getItemId()) {

 // Check for each known menu item
 case (MENU_ITEM):
 [... Perform menu handler actions ...]
 return true;
 }

 // Return false if you have not handled the menu item.
 return false;
}

44712c04.indd 10444712c04.indd 104 10/21/08 12:02:47 AM10/21/08 12:02:47 AM

105

Chapter 4: Creating User Interfaces

Submenus and Context Menus
Context menus are displayed using the same fl oating window as the submenus shown in Figure 4-5.
While their appearance is the same, the two menu types are populated differently.

Creating Submenus
Submenus are displayed as regular Menu Items that, when selected, reveal more items. Traditionally,
submenus are displayed using a hierarchical tree layout. Android uses a different approach to simplify
menu navigation for small-screen devices. Rather than a tree structure, selecting a submenu presents a
single fl oating window that displays all of its Menu Items.

You can add submenus using the addSubMenu method. It supports the same parameters as the add
method used to add normal Menu Items, allowing you to specify a group, unique identifi er, and text
string for each submenu. You can also use the setHeaderIcon and setIcon methods to specify an
icon to display in the submenu’s header bar or the regular icon menu, respectively.

The Menu Items within a submenu support the same options as those assigned to the icon or extended
menus. However, unlike traditional systems, Android does not support nested submenus.

The code snippet below shows an extract from an implementation of the onCreateMenuOptions code
that adds a submenu to the main menu, sets the header icon, and then adds a submenu Menu Item:

SubMenu sub = menu.addSubMenu(0, 0, Menu.NONE, “Submenu”);
sub.setHeaderIcon(R.drawable.icon);
sub.setIcon(R.drawable.icon);

MenuItem submenuItem = sub.add(0, 0, Menu.NONE, “Submenu Item”);

Using Context Menus
Context Menus are contextualized by the currently focused View and are triggered by pressing the
trackball, middle D-pad button, or the View for around 3 seconds.

You defi ne and populate Context Menus similarly to the Activity menu. There are two options available
for creating Context Menus for a particular View.

Creating Context Menus
The fi rst option is to create a generic Context Menu for a View class by overriding a View’s
onCreate ContextMenu handler as shown below:

@Override
public void onCreateContextMenu(ContextMenu menu) {
 super.onCreateContextMenu(menu);
 menu.add(“ContextMenuItem1”);
}

The Context Menu created here will be available from any Activity that includes this View class.

44712c04.indd 10544712c04.indd 105 10/21/08 12:02:47 AM10/21/08 12:02:47 AM

106

Chapter 4: Creating User Interfaces

The more common alternative is to create Activity-specifi c Context Menus by overriding the
onCreate ContextMenu method and registering the Views that should use it. Register Views using
register ForContextMenu and passing them in, as shown in the following code:

@Override
public void onCreate(Bundle icicle) {
 super.onCreate(icicle);

 EditText view = new EditText(this);
 setContentView(view);

 registerForContextMenu(view);
}

Once a View has been registered, the onCreateContextMenu handler will be triggered whenever a
Context Menu should be displayed for that View.

Override onCreateContextMenu and check which View has triggered the menu creation to populate
the menu parameter with the appropriate contextual items, as shown in the following code snippet:

@Override
public void onCreateContextMenu(ContextMenu menu, View v,
 ContextMenu.ContextMenuInfo menuInfo) {
 super.onCreateContextMenu(menu, v, menuInfo);

 menu.setHeaderTitle(“Context Menu”);
 menu.add(0, menu.FIRST, Menu.NONE,
 “Item 1”).setIcon(R.drawable.menu_item);
 menu.add(0, menu.FIRST+1, Menu.NONE, “Item 2”).setCheckable(true);
 menu.add(0, menu.FIRST+2, Menu.NONE, “Item 3”).setShortcut(‘3’, ‘3’);
 SubMenu sub = menu.addSubMenu(“Submenu”);
 sub.add(“Submenu Item”);
}

As shown above, the ContextMenu class supports the same add method as the Menu class, so you can
populate a Context Menu in the same way as Activity menus — including support for submenus — but
icons will never be displayed. You can also specify the title and icon to display in the Context Menu’s
header bar.

Android supports late runtime population of Context Menus using Intent Filters. This mechanism lets
you populate a Context Menu by specifying the kind of data presented by the current View, and asking
other Android applications if they support any actions for it. The most common example of this behav-
ior is the cut/copy/paste Menu Items available on EditText controls. This process is covered in detail in
the next chapter.

Handling Context Menu Selections
Context Menu Item selections are handled similarly to the Activity menu. You can attach an Intent or
Menu Item Click Listener directly to each Menu Item, or use the preferred technique of overriding the
onContextItemSelected method on the Activity.

44712c04.indd 10644712c04.indd 106 10/21/08 12:02:47 AM10/21/08 12:02:47 AM

107

Chapter 4: Creating User Interfaces

This event handler is triggered whenever a Context Menu Item is selected within the Activity. A skel-
eton implementation is shown below:

@Override
public boolean onContextItemSelected(MenuItem item) {
 super.onContextItemSelected(item);

 [... Handle menu item selection ...]

 return false;
}

To-Do List Example Continued
In the following example, you’ll be adding some simple menu functions to the To-Do List application
you started in Chapter 2 and continued to improve previously in this chapter.

You will add the ability to remove items from Context and Activity Menus, and improve the use of
screen space by displaying the text entry box only when adding a new item.

 1. Start by importing the packages you need to support menu functionality into the ToDoList
Activity class.

import android.view.Menu;
import android.view.MenuItem;
import android.view.ContextMenu;
import android.widget.AdapterView;

 2. Then add private static fi nal variables that defi ne the unique IDs for each Menu Item.

static final private int ADD_NEW_TODO = Menu.FIRST;
static final private int REMOVE_TODO = Menu.FIRST + 1;

 3. Now override the onCreateOptionsMenu method to add two new Menu Items, one to add and
the other to remove the to-do item. Specify the appropriate text, and assign icon resources and
shortcut keys for each item.

@Override
public boolean onCreateOptionsMenu(Menu menu) {
 super.onCreateOptionsMenu(menu);

 // Create and add new menu items.
 MenuItem itemAdd = menu.add(0, ADD_NEW_TODO, Menu.NONE,
 R.string.add_new);
 MenuItem itemRem = menu.add(0, REMOVE_TODO, Menu.NONE,
 R.string.remove);

 // Assign icons
 itemAdd.setIcon(R.drawable.add_new_item);
 itemRem.setIcon(R.drawable.remove_item);

 // Allocate shortcuts to each of them.

44712c04.indd 10744712c04.indd 107 10/21/08 12:02:47 AM10/21/08 12:02:47 AM

108

Chapter 4: Creating User Interfaces

 itemAdd.setShortcut(‘0’, ‘a’);
 itemRem.setShortcut(‘1’, ‘r’);

 return true;
}

If you run the Activity, pressing the Menu button should appear as shown in Figure 4-7.

Figure 4-7

 4. Having populated the Activity Menu, create a Context Menu. First, modify onCreate to regis-
ter the ListView to receive a Context Menu. Then override onCreateContextMenu to populate
the menu with a “remove” item.

@Override
 public void onCreate(Bundle icicle) {

 [... existing onCreate method ...]

 registerForContextMenu(myListView);
}

@Override
public void onCreateContextMenu(ContextMenu menu,
 View v,
 ContextMenu.ContextMenuInfo menuInfo) {
 super.onCreateContextMenu(menu, v, menuInfo);

 menu.setHeaderTitle(“Selected To Do Item”);
 menu.add(0, REMOVE_TODO, Menu.NONE, R.string.remove);
}

44712c04.indd 10844712c04.indd 108 10/21/08 12:02:47 AM10/21/08 12:02:47 AM

109

Chapter 4: Creating User Interfaces

 5. Now modify the appearance of the menu based on the application context, by overriding the
onPrepareOptionsMenu method. The menu should be customized to show “cancel” rather
than “delete” if you are currently adding a new Menu Item.

private boolean addingNew = false;

@Override
public boolean onPrepareOptionsMenu(Menu menu) {
 super.onPrepareOptionsMenu(menu);

 int idx = myListView.getSelectedItemPosition();

 String removeTitle = getString(addingNew ?
 R.string.cancel : R.string.remove);

 MenuItem removeItem = menu.findItem(REMOVE_TODO);
 removeItem.setTitle(removeTitle);
 removeItem.setVisible(addingNew || idx > -1);

 return true;
}

 6. For the code in Step 5 to work, you need to increase the scope of the todoListItems and
ListView control beyond the onCreate method. Do the same thing for the ArrayAdapter and
EditText to support the add and remove actions when they’re implemented later.

private ArrayList<String> todoItems;
private ListView myListView;
private EditText myEditText;
private ArrayAdapter<String> aa;

@Override
public void onCreate(Bundle icicle) {
 super.onCreate(icicle);

 // Inflate your view
 setContentView(R.layout.main);

 // Get references to UI widgets
 myListView = (ListView)findViewById(R.id.myListView);
 myEditText = (EditText)findViewById(R.id.myEditText);

 todoItems = new ArrayList<String>();
 int resID = R.layout.todolist_item;
 aa = new ArrayAdapter<String>(this, resID, todoItems);
 myListView.setAdapter(aa);

 myEditText.setOnKeyListener(new OnKeyListener() {
 public boolean onKey(View v, int keyCode, KeyEvent event) {
 if (event.getAction() == KeyEvent.ACTION_DOWN)
 if (keyCode == KeyEvent.KEYCODE_DPAD_CENTER)
 {
 todoItems.add(0, myEditText.getText().toString());
 myEditText.setText(“”);

44712c04.indd 10944712c04.indd 109 10/21/08 12:02:47 AM10/21/08 12:02:47 AM

110

Chapter 4: Creating User Interfaces

 aa.notifyDataSetChanged();
 return true;
 }
 return false;
 }
 });

 registerForContextMenu(myListView);
}

 7. Next you need to handle Menu Item clicks. Override the onOptionsItemSelected and
onContextItemSelected methods to execute stubs that handle the new Menu Items.

 7.1. Start by overriding onOptionsItemSelected to handle the Activity menu selections.
For the remove menu option, you can use the getSelectedItemPosition method on
the List View to fi nd the currently highlighted item.

@Override
public boolean onOptionsItemSelected(MenuItem item) {
 super.onOptionsItemSelected(item);

 int index = myListView.getSelectedItemPosition();

 switch (item.getItemId()) {
 case (REMOVE_TODO): {
 if (addingNew) {
 cancelAdd();
 }
 else {
 removeItem(index);
 }
 return true;
 }
 case (ADD_NEW_TODO): {
 addNewItem();
 return true;
 }
 }

 return false;
}

 7.2. Next override onContextItemSelected to handle Context Menu Item selections. Note
that you are using the AdapterView specifi c implementation of ContextMenuInfo.
This includes a reference to the View that triggered the Context Menu and the position
of the data it’s displaying in the underlying Adapter.

Use the latter to fi nd the index of the item to remove.

@Override
public boolean onContextItemSelected(MenuItem item) {
 super.onContextItemSelected(item);
 switch (item.getItemId()) {
 case (REMOVE_TODO): {
 AdapterView.AdapterContextMenuInfo menuInfo;
 menuInfo =(AdapterView.AdapterContextMenuInfo)item.getMenuInfo();

44712c04.indd 11044712c04.indd 110 10/21/08 12:02:47 AM10/21/08 12:02:47 AM

111

Chapter 4: Creating User Interfaces

 int index = menuInfo.position;

 removeItem(index);
 return true;
 }
 }
 return false;
}

 7.3. Create the stubs called in the Menu Item selection handlers you created above.

private void cancelAdd() {
}

private void addNewItem() {
}

private void removeItem(int _index) {
}

 8. Now implement each of the stubs to provide the new functionality.

private void cancelAdd() {
 addingNew = false;
 myEditText.setVisibility(View.GONE);
}

private void addNewItem() {
 addingNew = true;
 myEditText.setVisibility(View.VISIBLE);
 myEditText.requestFocus();
}

private void removeItem(int _index) {
 todoItems.remove(_index);
 aa.notifyDataSetChanged();
}

 9. Next you need to hide the text entry box after you’ve added a new item. In the onCreate
method, modify the onKeyListener to call the cancelAdd function after adding a new item.

myEditText.setOnKeyListener(new OnKeyListener() {
 public boolean onKey(View v, int keyCode, KeyEvent event) {
 if (event.getAction() == KeyEvent.ACTION_DOWN)
 if (keyCode == KeyEvent.KEYCODE_DPAD_CENTER)
 {
 todoItems.add(0, myEditText.getText().toString());
 myEditText.setText(“”);
 aa.notifyDataSetChanged();
 cancelAdd();
 return true;
 }
 return false;
 }
});

44712c04.indd 11144712c04.indd 111 10/21/08 12:02:47 AM10/21/08 12:02:47 AM

112

Chapter 4: Creating User Interfaces

 10. Finally, to ensure a consistent UI, modify the main.xml layout to hide the text entry box until
the user chooses to add a new item.

<EditText
 android:id=”@+id/myEditText”
 android:layout_width=”fill_parent”
 android:layout_height=”wrap_content”
 android:text=””
 android:visibility=”gone”
/>

Running the application should now let you trigger the Activity menu to add or remove items from the
list, and a Context Menu on each item should offer the option of removing it.

Summary
You now know the basics of creating intuitive User Interfaces for Android applications. You learned
about Views and layouts and were introduced to the Android menu system.

Activity screens are created by positioning Views using Layout Managers that can be created in code
or as resource fi les. You learned how to extend, group, and create new View-based controls to provide
customized appearance and behavior for your applications.

In this chapter, you:

Were introduced to some of the controls and widgets available as part of the Android SDK. ❑

Learned how to use your custom controls within Activities. ❑

Discovered how to create and use Activity Menus and Context Menus. ❑

Extended the To-Do List Example to support custom Views and menu-based functions. ❑

Created a new CompassView control from scratch. ❑

Having covered the fundamentals of Android UI design, the next chapter focuses on binding application
components using Intents, Broadcast Receivers, and Adapters. You will learn how to start new Activities
and broadcast and consume requests for actions. Chapter 5 also introduces Internet connectivity and
looks at the Dialog class.

44712c04.indd 11244712c04.indd 112 10/21/08 12:02:47 AM10/21/08 12:02:47 AM

Intents, Broadcast
Receivers, Adapters,

and the Internet

At fi rst glance, the subjects of this chapter may appear to have little in common; in practice, they
represent the glue that binds applications and their components.

Mobile applications on most platforms run in their own sandboxes. They’re isolated from each
other and have strict limits on their interaction with the system hardware and native components.
Android applications are also sandboxed, but they can use Intents, Broadcast Receivers, Adapters,
Content Providers, and the Internet to extend beyond those boundaries.

In this chapter, you’ll look at Intents and learn how to use them to start Activities, both explicitly
and using late runtime binding. Using implicit Intents, you’ll learn how to request that an action
be performed on a piece of data, letting Android determine which application component can
service that request.

Broadcast Intents are used to announce application events system-wide. You’ll learn how to trans-
mit these broadcasts and consume them using Broadcast Receivers.

You’ll examine Adapters and learn how to use them to bind your presentation layer to data
sources, and you’ll examine the Dialog-box mechanisms available.

Having looked at the mechanisms for transmitting and consuming local data, you’ll be intro-
duced to Android’s Internet connectivity model and some of the Java techniques for parsing
Internet data feeds.

44712c05.indd 11344712c05.indd 113 10/20/08 4:11:33 PM10/20/08 4:11:33 PM

114

Chapter 5: Intents, Broadcast Receivers, Adapters, and the Internet

An earthquake-monitoring example will then demonstrate how to tie all these features together. The
earthquake monitor will form the basis of an ongoing example that you’ll improve and extend in later
chapters.

Introducing Intents
Intents are used as a message-passing mechanism that lets you declare your intention that an action be
performed, usually with (or on) a particular piece of data.

You can use Intents to support interaction between any of the application components available on an
Android device, no matter which application they’re part of. This turns a collection of independent
components into a single, interconnected system.

One of the most common uses for Intents is to start new Activities, either explicitly (by specifying the
class to load) or implicitly (by requesting an action be performed on a piece of data).

Intents can also be used to broadcast messages across the system. Any application can register a Broad-
cast Receiver to listen for, and react to, these broadcast Intents. This lets you create event-driven applica-
tions based on internal, system, or third-party application events.

Android uses broadcast Intents to announce system events, like changes in Internet connection status
or battery charge levels. The native Android applications, such as the phone dialer and SMS manager,
simply register components that listen for specifi c broadcast Intents — such as “incoming phone call” or
“SMS message received” — and react accordingly.

Using Intents to propagate actions — even within the same application — is a fundamental Android
design principle. It encourages the decoupling of components, to allow the seamless replacement of
application elements. It also provides the basis of a simple model for extending functionality.

Using Intents to Launch Activities
The most common use of Intents is to bind your application components. Intents are used to start, stop,
and transition between the Activities within an application.

The instructions given in this section refer to starting new Activities, but the same rules generally
apply to Services as well. Details on starting (and creating) Services are available in Chapter 8.

To open a different application screen (Activity) in your application, call startActivity, passing in an
Intent, as shown in the snippet below.

startActivity(myIntent);

The Intent can either explicitly specify the class to open, or include an action that the target should
perform. In the latter case, the run time will choose the Activity to open, using a process known as
“Intent resolution.”

The startActivity method fi nds, and starts, the single Activity that best matches your Intent.

44712c05.indd 11444712c05.indd 114 10/20/08 4:11:34 PM10/20/08 4:11:34 PM

115

Chapter 5: Intents, Broadcast Receivers, Adapters, and the Internet

When using startActivity, your application won’t receive any notifi cation when the newly launched
Activity fi nishes. To track feedback from the opened form, use the startActivityForResult method
described in more detail below.

Explicitly Starting New Activities
You learned in Chapter 2 that applications consist of several interrelated screens — Activities — that
must be included in the application manifest. To connect them, you may want to explicitly specify
which Activity to open.

To explicitly select an Activity class to start, create a new Intent specifying the current application
context and the class of the Activity to launch. Pass this Intent in to startActivity, as shown in the
following code snippet:

Intent intent = new Intent(MyActivity.this, MyOtherActivity.class);
startActivity(intent);

After calling startActivity, the new Activity (in this example, MyOtherActivity) will be created
and become visible and active, moving to the top of the Activity stack.

Calling finish programmatically on the new Activity will close it and remove it from the stack. Alter-
natively, users can navigate to the previous Activity using the device’s Back button.

Implicit Intents and Late Runtime Binding
Implicit Intents are a mechanism that lets anonymous application components service action requests.

When constructing a new implicit Intent to use with startActivity, you nominate an action to per-
form and, optionally, supply the data on which to perform that action.

When you use this new implicit Intent to start an Activity, Android will — at run time — resolve it into
the class best suited to performing the action on the type of data specifi ed. This means that you can cre-
ate projects that use functionality from other applications, without knowing exactly which application
you’re borrowing functionality from ahead of time.

For example, if you want to let users make calls from an application, rather than implementing a new
dialer you could use an implicit Intent that requests that the action (“dial a number”) be performed on a
phone number (represented as a URI), as shown in the code snippet below:

if (somethingWeird && itDontLookGood) {
 Intent intent = new Intent(Intent.ACTION_DIAL,
 Uri.parse(“tel:555-2368”));
 startActivity(intent);
}

Android resolves this Intent and starts an Activity that provides the dial action on a telephone number
— in this case, the dialler Activity.

Various native applications provide components to handle actions performed on specifi c data. Third-
party applications, including your own, can be registered to support new actions or to provide an alter-
native provider of native actions. You’ll be introduced to some of the native actions later in this chapter.

44712c05.indd 11544712c05.indd 115 10/20/08 4:11:34 PM10/20/08 4:11:34 PM

116

Chapter 5: Intents, Broadcast Receivers, Adapters, and the Internet

Introducing Linkify
Linkify is a helper class that automagically creates hyperlinks within TextView (and TextView-derived)
classes through RegEx pattern matching.

Text that matches a specifi ed RegEx pattern will be converted into a clickable hyperlink that implicitly fi res
startActivity(new Intent(Intent.ACTION_VIEW, uri)) using the matched text as the target URI.

You can specify any string pattern you want to turn into links; for convenience, the Linkify class pro-
vides presets for common content types (like phone numbers and e-mail/web addresses).

The Native Link Types
The static Linkify.addLinks method accepts the View to linkify, and a bitmask of one or more of the
default content types supported and supplied by the Linkify class: WEB_URLS, EMAIL_ADDRESSES,
PHONE_NUMBERS, and ALL.

The following code snippet shows how to linkify a TextView to display web and e-mail addresses as
hyperlinks. When clicked, they will open the browser or e-mail application, respectively.

TextView textView = (TextView)findViewById(R.id.myTextView);
Linkify.addLinks(textView, Linkify.WEB_URLS|Linkify.EMAIL_ADDRESSES);

You can linkify Views from within a layout resource using the android:autoLink attribute. It supports
one or more (separated by |) of the following self-describing values: none, web, email, phone, or all.

The following XML snippet shows how to add hyperlinks for phone numbers and e-mail addresses:

<TextView
 android:layout_width=”fill_parent”
 android:layout_height=”fill_parent”
 android:text=”@string/linkify_me”
 android:autoLink=”phone|email”
/>

Creating Custom Link Strings
To defi ne your own linkify strings, you create a new RegEx pattern to match the text you want to dis-
play as hyperlinks.

As with the native types, you linkify the target view by calling Linkify.addLinks, but this time pass
in the new RegEx pattern. You can also pass in a prefi x that will be prepended to the target URI when a
link is clicked.

The following example shows a View being linkifi ed to support earthquake data provided by an
Android Content Provider (that you will create in the next Chapter). Rather than include the entire
schema, the linkify pattern matches any text that starts with “quake” and is followed by a number. The
content schema is then prepended to the URI before the Intent is fi red.

int flags = Pattern.CASE_INSENSITIVE;
Pattern p = Pattern.compile(“\\bquake[0-9]*\\b”, flags);

44712c05.indd 11644712c05.indd 116 10/20/08 4:11:34 PM10/20/08 4:11:34 PM

117

Chapter 5: Intents, Broadcast Receivers, Adapters, and the Internet

Linkify.addLinks(myTextView, p,
 “content://com.paad.earthquake/earthquakes/”);

Linkify also supports TransformFilter and MatchFilter interfaces. They offer additional control
over the target URI structure and the defi nition of matching strings, and are used as shown in the skel-
eton code below:

Linkify.addLinks(myTextView, pattern, prefixWith,
 new MyMatchFilter(), new MyTransformFilter());

Using the Match Filter
Implement the acceptMatch method in your MatchFilter to add additional conditions to RegEx pat-
tern matches. When a potential match is found, acceptMatch is triggered, with the match start and end
index (along with the full text being searched) passed in as parameters.

The following code shows a MatchFilter implementation that cancels any match that is immediately
preceded by an exclamation mark.

class MyMatchFilter implements MatchFilter {
 public boolean acceptMatch(CharSequence s, int start, int end) {
 return (start == 0 || s.charAt(start-1) != ‘!’);
 }
}

Using the Transform Filter
The Transform Filter gives you more freedom to format your text strings by letting you modify the
implicit URI generated by the link text. Decoupling the link text from the target URI gives you more
freedom in how you display data strings to your users.

To use the Transform Filter, implement the transformUrl method in your Transform Filter. When
Linkify fi nds a successful match, it calls transformUrl, passing in the RegEx pattern used and the
default URI string it creates. You can modify the matched string, and return the URI as a target suitable
to be “viewed” by another Android application.

The following TransformFilter implementation transforms the matched text into a lowercase URI:

class MyTransformFilter implements TransformFilter {
 public String transformUrl(Matcher match, String url) {
 return url.toLowerCase();
 }
}

Returning Results from Activities
An Activity started using startActivity is independent of its parent and will not provide any feed-
back when it closes.

Alternatively, you can start an Activity as a sub-Activity that’s inherently connected to its parent. Sub-
Activities trigger an event handler within their parent Activity when they close. Sub-Activities are per-
fect for situations in which one Activity is providing data input (such as a user selecting an item from a
list) for another.

44712c05.indd 11744712c05.indd 117 10/20/08 4:11:34 PM10/20/08 4:11:34 PM

118

Chapter 5: Intents, Broadcast Receivers, Adapters, and the Internet

Sub-Activities are created the same way as normal Activities and must also be registered in the applica-
tion manifest. Any manifest-registered Activity can be opened as a sub-Activity.

Launching Sub-Activities
The startActivityForResult method works much like startActivity but with one important dif-
ference. As well as the Intent used to determine which Activity to launch, you also pass in a request code.
This value will be used later to uniquely identify the sub-Activity that has returned a result.

The skeleton code for launching a sub-Activity is shown below:

private static final int SHOW_SUBACTIVITY = 1;

Intent intent = new Intent(this, MyOtherActivity.class);
startActivityForResult(intent, SHOW_SUBACTIVITY);

As with regular Activities, sub-Activities can be started implicitly or explicitly. The following skeleton
code uses an implicit Intent to launch a new sub-Activity to pick a contact:

private static final int PICK_CONTACT_SUBACTIVITY = 2;

Uri uri = Uri.parse(“content://contacts/people”);
Intent intent = new Intent(Intent.ACTION_PICK, uri);
startActivityForResult(intent, PICK_CONTACT_SUBACTIVITY);

Returning Results
When your sub-Activity is ready to close, call setResult before finish to return a result to the calling
Activity.

The setResult method takes two parameters: the result code and result payload represented as an Intent.

The result code is the “result” of running the sub-Activity — generally either Activity.RESULT_OK or
Activity.RESULT_CANCELED. In some circumstances, you’ll want to use your own response codes to
handle application-specifi c choices; setResult supports any integer value.

The Intent returned as a result can include a URI to a piece of content (such as the contact, phone num-
ber, or media fi le) and a collection of Extras used to return additional information.

This next code snippet is taken from a sub-Activity’s onCreate method and shows how an OK button
and a Cancel button might return different results to the calling Activity:

Button okButton = (Button) findViewById(R.id.ok_button);
 okButton.setOnClickListener(new View.OnClickListener() {

 public void onClick(View view) {
 Uri data = Uri.parse(“content://horses/” + selected_horse_id);

 Intent result = new Intent(null, data);
 result.putExtra(IS_INPUT_CORRECT, inputCorrect);
 result.putExtra(SELECTED_PISTOL, selectedPistol);

44712c05.indd 11844712c05.indd 118 10/20/08 4:11:34 PM10/20/08 4:11:34 PM

119

Chapter 5: Intents, Broadcast Receivers, Adapters, and the Internet

 setResult(RESULT_OK, result);

 finish();
 }
});

Button cancelButton = (Button) findViewById(R.id.cancel_button);
cancelButton.setOnClickListener(new View.OnClickListener() {

 public void onClick(View view) {
 setResult(RESULT_CANCELED, null);

 finish();
 }
});

Handling Sub-Activity Results
When a sub-Activity closes, its parent Activity’s onActivityResult event handler is fi red.

Override this method to handle the results from the sub-Activities. The onActivityResult handler
receives several parameters:

The Request Code ❑ The request code that was used to launch the returning sub-Activity

A Result Code ❑ The result code set by the sub-Activity to indicate its result. It can be any inte-
ger value, but typically will be either Activity.RESULT_OK or Activity.RESULT_CANCELLED.

If the sub-Activity closes abnormally or doesn’t specify a result code before it closes, the result code is
Activity.RESULT_CANCELED.

Data ❑ An Intent used to bundle any returned data. Depending on the purpose of the sub-Activ-
ity, it will typically include a URI that represents the particular piece of data selected from a list.
Alternatively, or additionally, the sub-Activity can return extra information as primitive values
using the “extras” mechanism.

The skeleton code for implementing the onActivityResult event handler within an Activity is shown
below:

private static final int SHOW_SUB_ACTIVITY_ONE = 1;
private static final int SHOW_SUB_ACTIVITY_TWO = 2;

@Override
public void onActivityResult(int requestCode,
 int resultCode,
 Intent data) {

 super.onActivityResult(requestCode, resultCode, data);

 switch(requestCode) {
 case (SHOW_SUB_ACTIVITY_ONE) : {
 if (resultCode == Activity.RESULT_OK) {
 Uri horse = data.getData();

44712c05.indd 11944712c05.indd 119 10/20/08 4:11:34 PM10/20/08 4:11:34 PM

120

Chapter 5: Intents, Broadcast Receivers, Adapters, and the Internet

 boolean inputCorrect = data.getBooleanExtra(IS_INPUT_CORRECT,
 false);
 String selectedPistol = data.getStringExtra(SELECTED_PISTOL);
 }
 break;
 }
 case (SHOW_SUB_ACTIVITY_TWO) : {
 if (resultCode == Activity.RESULT_OK) {
 // TODO: Handle OK click.
 }
 break;
 }
 }
}

Native Android Actions
Native Android applications also use Intents to launch Activities and sub-Activities.

The following noncomprehensive list shows some of the native actions available as static string con-
stants in the Intent class. You can use these actions when creating implicit Intents to start Activities
and sub-Activities within your own applications.

In the next section you will be introduced to Intent Filters, and you’ll learn how to register your own
Activities as handlers for these actions.

ACTION_ANSWER ❑ Opens an Activity that handles incoming calls. Currently this is handled by
the native phone dialer.

ACTION_CALL ❑ Brings up a phone dialer and immediately initiates a call using the number sup-
plied in the data URI. Generally, it’s considered better form to use the Dial_Action if possible.

ACTION_DELETE ❑ Starts an Activity that lets you delete the entry currently stored at the data
URI location.

ACTION_DIAL ❑ Brings up a dialer application with the number to dial prepopulated from the
data URI. By default, this is handled by the native Android phone dialer. The dialer can normal-
ize most number schemas; for example, tel:555-1234 and tel:(212) 555 1212 are both
valid numbers.

ACTION_EDIT ❑ Requests an Activity that can edit the data at the URI.

ACTION_INSERT ❑ Opens an Activity capable of inserting new items into the cursor specifi ed in
the data fi eld. When called as a sub-Activity, it should return a URI to the newly inserted item.

ACTION_PICK ❑ Launches a sub-Activity that lets you pick an item from the URI data. When
closed, it should return a URI to the item that was picked. The Activity launched depends on
the data being picked; for example, passing content://contacts/people will invoke the
native contacts list.

ACTION_SEARCH ❑ Launches the UI for performing a search. Supply the search term as a string
in the Intent’s extras using the SearchManager.QUERY key.

ACTION_SENDTO ❑ Launches an Activity to send a message to the contact specifi ed by the
data URI.

44712c05.indd 12044712c05.indd 120 10/20/08 4:11:34 PM10/20/08 4:11:34 PM

121

Chapter 5: Intents, Broadcast Receivers, Adapters, and the Internet

ACTION_SEND ❑ Launches an Activity that sends the specifi ed data (the recipient needs to be
selected by the resolved Activity). Use setType to set the Intent’s type as the transmitted data’s
mime type.

The data itself should be stored as an extra using the key EXTRA_TEXT or EXTRA_STREAM
depending on the type. In the case of e-mail, the native Android applications will also accept
extras using the EXTRA_EMAIL, EXTRA_CC, EXTRA_BCC, and EXTRA_SUBJECT keys.

ACTION_VIEW ❑ The most common generic action. View asks that the data supplied in the
Intent’s URI be viewed in the most reasonable manner. Different applications will handle view
requests depending on the URI schema of the data supplied. Natively, http: addresses will
open in the browser, tel: addresses will open the dialer to call the number, geo: addresses
are displayed in the Google Maps application, and contact content will be displayed in the
Contact Manager.

ACTION_WEB_SEARCH ❑ Opens an activity that performs a Web search based on the text sup-
plied in the data URI.

As well as these Activity actions, Android includes a large number of Broadcast actions that are used
to create Intents that the system broadcasts to notify applications of events. These Broadcast actions are
described later in this chapter.

Using Intent Filters to Service Implicit Intents
If an Intent is a request for an action to be performed on a set of data, how does Android know
which application (and component) to use to service the request? Intent Filters are used to register
Activities, Services, and Broadcast Receivers as being capable of performing an action on a particular
kind of data.

Using Intent Filters, application components tell Android that they can service action requests from oth-
ers, including components in the same, native, or third-party applications.

To register an application component as an Intent handler, use the intent-filter tag within the com-
ponent’s manifest node.

Using the following tags (and associated attributes) within the Intent Filter node, you can specify a
component’s supported actions, categories, and data:

action ❑ Use the android:name attribute to specify the name of the action being serviced.
Actions should be unique strings, so best practice is to use a naming system based on the Java
package naming conventions.

category ❑ Use the android:category attribute to specify under which circumstances
the action should be serviced. Each Intent Filter tag can include multiple category tags. You
can specify your own categories or use the standard values provided by Android and listed
below:

ALTERNATIVE ❑ As you’ll see later in this chapter, one of the uses of Intent Filters is to
help populate context menus with actions. The alternative category specifi es that
this action should be available as an alternative to the default action performed on an
item of this data type. For example, where the default action for a contact is to view it,
the alternatives could be to edit or delete it.

44712c05.indd 12144712c05.indd 121 10/20/08 4:11:34 PM10/20/08 4:11:34 PM

122

Chapter 5: Intents, Broadcast Receivers, Adapters, and the Internet

SELECTED_ALTERNATIVE ❑ Similar to the alternative category, but where Alterna-
tive will always resolve to a single action using the Intent resolution described below,
SELECTED_ALTERNATIVE is used when a list of possibilities is required.

BROWSABLE ❑ Specifi es an action available from within the browser. When an Intent is
fi red from within the browser, it will always specify the browsable category.

DEFAULT ❑ Set this to make a component the default action for the data values defi ned
by the Intent Filter. This is also necessary for Activities that are launched using an
explicit Intent.

GADGET ❑ By setting the gadget category, you specify that this Activity can run embed-
ded inside another Activity.

HOME ❑ The home Activity is the fi rst Activity displayed when the device starts (the
launch screen). By setting an Intent Filter category as home without specifying an
action, you are presenting it as an alternative to the native home screen.

LAUNCHER ❑ Using this category makes an Activity appear in the application launcher.

data ❑ The data tag lets you specify matches for data your component can act on; you can
include several schemata if your component is capable of handling more than one. You can
use any combination of the following attributes to specify the data that your component
supports:

android:host ❑ Specifi es a valid host name (e.g., com.google).

android:mimetype ❑ Lets you specify the type of data your component is capable of
handling. For example, <type android:value=”vnd.android.cursor.dir/*”/>
would match any Android cursor.

android:path ❑ Valid “path” values for the URI (e.g., /transport/boats/)

android:port ❑ Valid ports for the specifi ed host

android:scheme ❑ Requires a particular scheme (e.g., content or http).

The following code snippet shows how to confi gure an Intent Filter for an Activity that can perform the
SHOW_DAMAGE action as either a primary or alternative action. (You’ll create earthquake content in the
next chapter.)

<activity android:name=”.EarthquakeDamageViewer”
 android:label=”View Damage”>
 <intent-filter>
 <action
 android:name=”com.paad.earthquake.intent.action.SHOW_DAMAGE”>
 </action>
 <category android:name=”android.intent.category.DEFAULT”/>
 <category
 android:name=”android.intent.category.ALTERNATIVE_SELECTED”
 />
 <data android:mimeType=”vnd.earthquake.cursor.item/*”/>
 </intent-filter>
</activity>

44712c05.indd 12244712c05.indd 122 10/20/08 4:11:34 PM10/20/08 4:11:34 PM

123

Chapter 5: Intents, Broadcast Receivers, Adapters, and the Internet

How Android Resolves Intent Filters
The anonymous nature of runtime binding makes it important to understand how Android resolves an
implicit Intent into a particular application component.

As you saw previously, when using startActivity, the implicit Intent resolves to a single Activity. If
there are multiple Activities capable of performing the given action on the specifi ed data, the “best” of
those Activities will be launched.

The process of deciding which Activity to start is called Intent resolution. The aim of Intent resolution is
to fi nd the best Intent Filter match possible using the following process:

 1. Android puts together a list of all the Intent Filters available from the installed packages.

 2. Intent Filters that do not match the action or category associated with the Intent being resolved
are removed from the list.

 2.1. Action matches are made if the Intent Filter either includes the specifi ed action or has
no action specifi ed.

An Intent Filter will only fail the action match check if it has one or more actions
defi ned, where none of them match the action specifi ed by the Intent.

 2.2. Category matching is stricter. Intent Filters must include all the categories defi ned in the
resolving Intent. An Intent Filter with no categories specifi ed only matches Intents with
no categories.

 3. Finally, each part of the Intent’s data URI is compared to the Intent Filter’s data tag. If Intent
Filter defi nes the scheme, host/authority, path, or mime type, these values are compared to the
Intent’s URI. Any mismatches will remove the Intent Filter from the list.

Specifying no data values in an Intent Filter will match with all Intent data values.

 3.1. The mime type is the data type of the data being matched. When matching data types,
you can use wild cards to match subtypes (e.g., earthquakes/*). If the Intent Filter spec-
ifi es a data type, it must match the Intent; specifying no data type resolves to all of them.

 3.2. The scheme is the “protocol” part of the URI — for example, http:, mailto:, or tel:.

 3.3. The host name or “data authority” is the section of the URI between the scheme and the
path (e.g., www.google.com). For a host name to match, the Intent Filter’s scheme must
also pass.

 3.4. The data path is what comes after the authority (e.g., /ig). A path can only match if the
scheme and host-name parts of the data tag also match.

 4. If more than one component is resolved from this process, they are ordered in terms of priority,
with an optional tag that can be added to the Intent Filter node. The highest ranking component
is then returned.

Native Android application components are part of the Intent resolution process in exactly the same
way as third-party applications. They do not have a higher priority and can be completely replaced with
new Activities that declare Intent Filters that service the same action requests.

44712c05.indd 12344712c05.indd 123 10/20/08 4:11:34 PM10/20/08 4:11:34 PM

124

Chapter 5: Intents, Broadcast Receivers, Adapters, and the Internet

Responding to Intent Filter Matches
When an application component is started through an implicit Intent, it needs to fi nd the action it is to
perform and the data upon which to perform it.

Call the getIntent method — usually from within the onCreate method — to extract the Intent used
to launch a component, as shown below:

@Override
public void onCreate(Bundle icicle) {
 super.onCreate(icicle);
 setContentView(R.layout.main);

 Intent intent = getIntent();
}

Use the getData and getAction methods to fi nd the data and action of the Intent. Use the type-safe
get<type>Extra methods to extract additional information stored in its extras Bundle.

String action = intent.getAction();
Uri data = intent.getData();

Passing on Responsibility
You can use the startNextMatchingActivity method to pass responsibility for action handling to
the next best matching application component, as shown in the snippet below:

Intent intent = getIntent();
if (isAfterMidnight)
 startNextMatchingActivity(intent);

This allows you to add additional conditions to your components that restrict their use beyond the abil-
ity of the Intent Filter–based Intent resolution process.

In some cases, your component may wish to perform some processing, or offer the user a choice, before
passing the Intent on to the native handler.

Select a Contact Example
In this example, you’ll create a new sub-Activity that services the PICK_ACTION for contact data. It dis-
plays each of the contacts in the contact database and lets the user select one, before closing and return-
ing its URI to the calling Activity.

It’s worth noting that this example is somewhat contrived. Android already supplies an Intent Filter
for picking a contact from a list that can be invoked by using the content:/contacts/people/
URI in an implicit Intent. The purpose of this exercise is to demonstrate the form, even if this particular
implementation isn’t overly useful.

 1. Create a new ContactPicker project that includes a ContactPicker Activity.

package com.paad.contactpicker;

import android.app.Activity;

44712c05.indd 12444712c05.indd 124 10/20/08 4:11:34 PM10/20/08 4:11:34 PM

125

Chapter 5: Intents, Broadcast Receivers, Adapters, and the Internet

import android.content.Intent;
import android.database.Cursor;
import android.net.Uri;
import android.os.Bundle;
import android.provider.Contacts.People;
import android.view.View;
import android.widget.AdapterView;
import android.widget.ListView;
import android.widget.SimpleCursorAdapter;
import android.widget.AdapterView.OnItemClickListener;

public class ContactPicker extends Activity {
 @Override
 public void onCreate(Bundle icicle) {
 super.onCreate(icicle);
 setContentView(R.layout.main);
 }
}

 2. Modify the main.xml layout resource to include a single ListView control. This control will be
used to display the contacts.

<?xml version=”1.0” encoding=”utf-8”?>
<LinearLayout xmlns:android=”http://schemas.android.com/apk/res/android”
 android:orientation=”vertical”
 android:layout_width=”fill_parent”
 android:layout_height=”fill_parent”>
 <ListView
 android:id=”@+id/contactListView”
 android:layout_width=”fill_parent”
 android:layout_height=”wrap_content”
 />
</LinearLayout>

 3. Create a new listitemlayout.xml layout resource that includes a single Text View. This will be
used to display each contact in the List View.

<?xml version=”1.0” encoding=”utf-8”?>
<LinearLayout
 xmlns:android=”http://schemas.android.com/apk/res/android”
 android:orientation=”vertical”
 android:layout_width=”fill_parent”
 android:layout_height=”fill_parent”>
 <TextView
 android:id=”@+id/itemTextView”
 android:layout_width=”fill_parent”
 android:layout_height=”wrap_content”
 android:padding=”10px”
 android:textSize=”16px”
 android:textColor=”#FFF”
 />
</LinearLayout>

44712c05.indd 12544712c05.indd 125 10/20/08 4:11:34 PM10/20/08 4:11:34 PM

126

Chapter 5: Intents, Broadcast Receivers, Adapters, and the Internet

 4. Return to the ContactPicker Activity. Override the onCreate method, and extract the data
path from the calling Intent.

@Override
public void onCreate(Bundle icicle) {
 super.onCreate(icicle);
 setContentView(R.layout.main);

 Intent intent = getIntent();
 String dataPath = intent.getData().toString();

 4.1. Create a new data URI for the people stored in the contact list, and bind it to the List
View using a SimpleCursorArrayAdapter.

The SimpleCursorArrayAdapter lets you assign Cursor data, used by Content Providers, to
Views. It’s used here without further comment but is examined in more detail later in this chapter.

 final Uri data = Uri.parse(dataPath + “people/”);
 final Cursor c = managedQuery(data, null, null, null, null);

 String[] from = new String[] {People.NAME};
 int[] to = new int[] { R.id.itemTextView };

 SimpleCursorAdapter adapter = new SimpleCursorAdapter(this,
 R.layout.listitemlayout,
 c,
 from,
 to);
 ListView lv = (ListView)findViewById(R.id.contactListView);
 lv.setAdapter(adapter);

 4.2. Add an ItemClickListener to the List View. Selecting a contact from the list should
return a path to the item to the calling Activity.

 lv.setOnItemClickListener(new OnItemClickListener() {

 public void onItemClick(AdapterView<?> parent, View view, int pos,
 long id) {
 // Move the cursor to the selected item
 c.moveToPosition(pos);
 // Extract the row id.
 int rowId = c.getInt(c.getColumnIndexOrThrow(“_id”));
 // Construct the result URI.
 Uri outURI = Uri.parse(data.toString() + rowId);
 Intent outData = new Intent();
 outData.setData(outURI);
 setResult(Activity.RESULT_OK, outData);
 finish();
 }
 });

 4.3. Close off the onCreate method.

}

44712c05.indd 12644712c05.indd 126 10/20/08 4:11:34 PM10/20/08 4:11:34 PM

127

Chapter 5: Intents, Broadcast Receivers, Adapters, and the Internet

 5. Modify the application manifest and replace the intent-filter tag of the Activity to add sup-
port for the pick action on contact data.

<?xml version=”1.0” encoding=”utf-8”?>
<manifest xmlns:android=”http://schemas.android.com/apk/res/android”
 package=”com.paad.contactpicker”>
 <application android:icon=”@drawable/icon”>
 <activity android:name=”ContactPicker”
 android:label=”@string/app_name”>
 <intent-filter>
 <action android:name=”android.intent.action.PICK”/>
 <category android:name=”android.intent.category.DEFAULT”/>
 <data android:path=”contacts”
 android:scheme=”content”>
 </data>
 </intent-filter>
 </activity>
 </application>
</manifest>

 6. This completes the sub-Activity. To test it, create a new test harness ContentPickerTester
Activity. Create a new layout resource — contentpickertester — that includes a TextView
to display the selected contact and a Button to start the sub-Activity.

<?xml version=”1.0” encoding=”utf-8”?>
<LinearLayout
 xmlns:android=”http://schemas.android.com/apk/res/android”
 android:orientation=”vertical”
 android:layout_width=”fill_parent”
 android:layout_height=”fill_parent”>
 <TextView
 android:id=”@+id/selected_contact_textview”
 android:layout_width=”fill_parent”
 android:layout_height=”wrap_content”
 />
 <Button
 android:id=”@+id/pick_contact_button”
 android:layout_width=”fill_parent”
 android:layout_height=”wrap_content”
 android:text=”Pick Contact”
 />
</LinearLayout>

 7. Override the onCreate method of the ContentPickerTester to add a Click Listener to the
button so that it implicitly starts a new sub-Activity by specifying the PICK_ACTION and the
contact database URI (content://contacts/).

package com.paad.contactpicker;

import android.app.Activity;
import android.content.Intent;
import android.database.Cursor;
import android.net.Uri;
import android.os.Bundle;
import android.provider.Contacts.People;
import android.view.View;

44712c05.indd 12744712c05.indd 127 10/20/08 4:11:34 PM10/20/08 4:11:34 PM

128

Chapter 5: Intents, Broadcast Receivers, Adapters, and the Internet

import android.view.View.OnClickListener;
import android.widget.Button;
import android.widget.TextView;

public class ContentPickerTester extends Activity {

 public static final int PICK_CONTACT = 1;

 @Override
 public void onCreate(Bundle icicle) {
 super.onCreate(icicle);
 setContentView(R.layout.contentpickertester);

 Button button = (Button)findViewById(R.id.pick_contact_button);

 button.setOnClickListener(new OnClickListener() {
 public void onClick(View _view) {
 Intent intent = new Intent(Intent.ACTION_PICK,
 Uri.parse(“content://contacts/”));
 startActivityForResult(intent, PICK_CONTACT);
 }
 });
 }
}

 8. When the sub-Activity returns, use the result to populate the Text View with the selected con-
tact’s name.

@Override
public void onActivityResult(int reqCode, int resCode, Intent data) {
 super.onActivityResult(reqCode, resCode, data);

 switch(reqCode) {
 case (PICK_CONTACT) : {
 if (resCode == Activity.RESULT_OK) {
 Uri contactData = data.getData();
 Cursor c = managedQuery(contactData, null, null, null, null);
 c.moveToFirst();
 String name;
 name = c.getString(c.getColumnIndexOrThrow(People.NAME));
 TextView tv;
 tv = (TextView)findViewById(R.id.selected_contact_textview);
 tv.setText(name);
 }
 break;
 }
 }
}

 9. With your test harness complete, simply add it to your application manifest. You’ll also need to
add a READ_CONTACTS permission within a uses-permission tag, to allow the application to
access the contacts database.

<?xml version=”1.0” encoding=”utf-8”?>
<manifest xmlns:android=”http://schemas.android.com/apk/res/android”

44712c05.indd 12844712c05.indd 128 10/20/08 4:11:34 PM10/20/08 4:11:34 PM

129

Chapter 5: Intents, Broadcast Receivers, Adapters, and the Internet

 package=”com.paad.contactpicker”>
 <application android:icon=”@drawable/icon”>
 <activity android:name=”.ContactPicker”
 android:label=”@string/app_name”>
 <intent-filter>
 <action android:name=”android.intent.action.PICK”/>
 <category android:name=”android.intent.category.DEFAULT”/>
 <data android:path=”contacts” android:scheme=”content”/>
 </intent-filter>
 </activity>
 <activity android:name=”.ContentPickerTester”
 android:label=”Contact Picker Test”>
 <intent-filter>
 <action android:name=”android.intent.action.MAIN”/>
 <category android:name=”android.intent.category.LAUNCHER”/>
 </intent-filter>
 </activity>
 </application>
 <uses-permission android:name=”android.permission.READ_CONTACTS”/>
</manifest>

When your Activity is running, press the button. The contact picker Activity should be shown as in
Figure 5-1.

Figure 5-1

Once you select a contact, the parent Activity should return to the foreground with the selected contact
name displayed, as shown in Figure 5-2.

Figure 5-2

44712c05.indd 12944712c05.indd 129 10/20/08 4:11:34 PM10/20/08 4:11:34 PM

130

Chapter 5: Intents, Broadcast Receivers, Adapters, and the Internet

Using Intent Filters for Plug-ins and Extensibility
So far you’ve learned how to explicitly create implicit Intents, but that’s only half the story. Android lets
future packages provide new functionality for existing applications, using Intent Filters to populate
menus dynamically at run time.

This provides a plug-in model for your Activities that lets them take advantage of functionality you
haven’t yet conceived of through new application components, without your having to modify or
recompile your projects.

The addIntentOptions method available from the Menu class lets you specify an Intent that describes
the data that is acted upon by this menu. Android resolves this Intent and returns every action speci-
fi ed in the Intent Filters that matches the specifi ed data. A new Menu Item is created for each, with the
text populated from the matching Intent Filters’ labels.

The elegance of this concept is best explained by example. Say the data your application displays are
a list of places. At the moment, the menu actions available might include “view” and “show directions
to.” Jump a few years ahead, and you’ve created an application that interfaces with your car, allowing
your phone to handle driving. Thanks to the runtime menu generation, by including a new Intent Fil-
ter — with a DRIVE_CAR action — within the new Activity’s node, Android will automagically add this
action as a new Menu Item in your earlier application.

Runtime menu population provides the ability to retrofi t functionality when you create new compo-
nents capable of performing actions on a given type of data. Many of Android’s native applications use
this functionality, giving you the ability to provide additional actions to native Activities.

Supplying Anonymous Actions to Applications
To make actions available for other Activities, publish them using intent-filter tags within their
manifest nodes.

The Intent Filter describes the action it performs and the data upon which it can be performed. The
latter will be used during the Intent resolution process to determine when this action should be avail-
able. The category tag must be either or both ALTERNATIVE and SELECTED_ALTERNATIVE. The text
used by Menu Items is specifi ed by the android:label attribute.

The following XML shows an example of an Intent Filter used to advertise an Activity’s ability to nuke
moon bases from orbit.

<activity android:name=”.NostromoController”>
 <intent-filter android:label=”Nuke From Orbit”>
 <action android:name=”com.pad.nostromo.NUKE_FROM_ORBIT”/>
 <data android:mimeType=”vnd.moonbase.cursor.item/*”/>
 <category android:name=”android.intent.category.ALTERNATIVE”/>
 <category
 android:name=”android.intent.category.SELECTED_ALTERNATIVE”
 />
 </intent-filter>
</activity>

44712c05.indd 13044712c05.indd 130 10/20/08 4:11:34 PM10/20/08 4:11:34 PM

131

Chapter 5: Intents, Broadcast Receivers, Adapters, and the Internet

The Content Provider and other code needed for this example to run aren’t provided; in the following
sections, you’ll see how to write the code that will make this action available dynamically from another
Activity’s menu.

Incorporating Anonymous Actions in Your Activity’s Menu
To add menu options to your menus at run time, you use the addIntentOptions method on the
menu object in question, passing in an Intent that specifi es the data for which you want to provide
actions. Generally, this will be handled within your Activity’s onCreateOptionsMenu or
onCreateContextMenu handlers.

The Intent you create will be used to resolve components with Intent Filters that supply actions for
the data you specify. The Intent is being used to fi nd actions, so don’t assign it one; it should only
specify the data on which to perform actions. You should also specify the category of the action,
either CATEGORY_ALTERNATIVE or CATEGORY_SELECTED_ALTERNATIVE.

The skeleton code for creating an Intent for menu-action resolution is shown below:

Intent intent = new Intent();
intent.setData(MyProvider.CONTENT_URI);
intent.addCategory(Intent.CATEGORY_ALTERNATIVE);

Pass this Intent into addIntentOptions on the menu you wish to populate, as well as any option fl ags,
the name of the calling class, the menu group to use, and menu ID values. You can also specify an array
of Intents you’d like to use to create additional Menu Items.

The following code snippet gives an idea of how to dynamically populate an Activity menu that would
include the “moonbase nuker” action from the previous section:

@Override
public boolean onCreateOptionsMenu(Menu menu) {
 super.onCreateOptionsMenu(menu);

 // Create the intent used to resolve which actions
 // should appear in the menu.
 Intent intent = new Intent();
 intent.setData(MoonBaseProvider.CONTENT_URI);
 intent.addCategory(Intent.CATEGORY_SELECTED_ALTERNATIVE);

 // Normal menu options to let you set a group and ID
 // values for the menu items you’re adding.
 int menuGroup = 0;
 int menuItemId = 0;
 int menuItemOrder = Menu.NONE;

 // Provide the name of the component that’s calling
 // the action -- generally the current Activity.
 ComponentName caller = getComponentName();

 // Define intents that should be added first.
 Intent[] specificIntents = null;
 // The menu items created from the previous Intents
 // will populate this array.

44712c05.indd 13144712c05.indd 131 10/20/08 4:11:34 PM10/20/08 4:11:34 PM

132

Chapter 5: Intents, Broadcast Receivers, Adapters, and the Internet

 MenuItem[] outSpecificItems = null;

 // Set any optional flags.
 int flags = Menu.FLAG_APPEND_TO_GROUP;

 // Populate the menu
 menu.addIntentOptions(menuGroup,
 menuItemId,
 menuItemOrder,
 caller,
 specificIntents,
 intent,
 flags,
 outSpecificItems);

 return true;
}

Using Intents to Broadcast Events
As a system-level message-passing mechanism, Intents are capable of sending structured messages
across process boundaries.

So far you’ve looked at using Intents to start new application components, but they can also be used to
broadcast messages anonymously between components with the sendBroadcast method. You can imple-
ment Broadcast Receivers to listen for, and respond to, these broadcast Intents within your applications.

Broadcast Intents are used to notify listeners of system or application events, extending the event-
driven programming model between applications.

Broadcasting Intents helps make your application more open; by broadcasting an event using an Intent,
you let yourself and third-party developers react to events without having to modify your original
application. Within your applications, you can listen for Broadcast Intents to replace or enhance native
(or third-party) applications or react to system changes and application events.

For example, by listening for the incoming call broadcast, you can modify the ringtone or volume based
on the caller.

Android uses Broadcast Intents extensively to broadcast system events like battery-charging levels,
network connections, and incoming calls.

Broadcasting Events with Intents
Broadcasting Intents is actually quite simple. Within your application component, construct the Intent
you want to broadcast, and use the sendBroadcast method to send it.

Set the action, data, and category of your Intent in a way that lets Broadcast Receivers accurately deter-
mine their interest. In this scenario, the Intent action string is used to identify the event being broadcast,

44712c05.indd 13244712c05.indd 132 10/20/08 4:11:34 PM10/20/08 4:11:34 PM

133

Chapter 5: Intents, Broadcast Receivers, Adapters, and the Internet

so it should be a unique string that identifi es the event. By convention, action strings are constructed
using the same form as Java packages, as shown in the following snippet:

public static final String NEW_LIFEFORM_DETECTED =
 “com.paad.action.NEW_LIFEFORM”;

If you wish to include data within the Intent, you can specify a URI using the Intent’s data property.
You can also include extras to add additional primitive values. Considered in terms of an event-driven
paradigm, the extras Bundle equates to optional parameters within an event handler.

The skeleton code below shows the basic creation of a Broadcast Intent using the action defi ned previ-
ously, with additional event information stored as extras.

Intent intent = new Intent(NEW_LIFEFORM_DETECTED);
intent.putExtra(“lifeformName”, lifeformType);
intent.putExtra(“longitude”, currentLongitude);
intent.putExtra(“latitude”, currentLatitude);

sendBroadcast(intent);

Listening for Broadcasts with Broadcast Receivers
Broadcast Receivers are used to listen for Broadcast Intents. To enable a Broadcast Receiver, it needs to
be registered, either in code or within the application manifest. When registering a Broadcast Receiver,
you must use an Intent Filter to specify which Intents it is listening for.

To create a new Broadcast Receiver, extend the BroadcastReceiver class and override the onReceive
event handler as shown in the skeleton code below:

import android.content.BroadcastReceiver;
import android.content.Context;
import android.content.Intent;

public class MyBroadcastReceiver extends BroadcastReceiver {

 @Override
 public void onReceive(Context context, Intent intent) {
 //TODO: React to the Intent received.
 }

}

The onReceive method will be executed when a Broadcast Intent is received that matches the Intent
Filter used to register the receiver. The onReceive handler must complete within 5 seconds, or the
Application Unresponsive dialog will be displayed.

Applications with registered Broadcast Receivers do not have to be running when the Intent is broad-
cast for the receivers to execute. They will be started automatically when a matching Intent is broadcast.
This is excellent for resource management as it lets you create event-driven applications that can be
closed or killed, safe in the knowledge that they will still respond to broadcast events.

44712c05.indd 13344712c05.indd 133 10/20/08 4:11:35 PM10/20/08 4:11:35 PM

134

Chapter 5: Intents, Broadcast Receivers, Adapters, and the Internet

Typically, Broadcast Receivers will update content, launch Services, update Activity UI, or notify the
user using the Notifi cation Manager. The 5-second execution limit ensures that major processing
cannot, as it should not, be done within the Broadcast Receiver directly.

The following example shows how to implement a Broadcast Receiver. In the following sections, you
will learn how to register it in code or in your application manifest.

public class LifeformDetectedBroadcastReceiver extends BroadcastReceiver {

 public static final String BURN =
 “com.paad.alien.action.BURN_IT_WITH_FIRE”;

 @Override
 public void onReceive(Context context, Intent intent) {
 // Get the lifeform details from the intent.
 Uri data = intent.getData();
 String type = intent.getStringExtra(“type”);
 double lat = intent.getDoubleExtra(“latitude”, 0);
 double lng = intent.getDoubleExtra(“longitude”, 0);
 Location loc = new Location(“gps”);
 loc.setLatitude(lat);
 loc.setLongitude(lng);

 if (type.equals(“alien”)) {
 Intent startIntent = new Intent(BURN, data);
 startIntent.putExtra(“latitude”, lat);
 startIntent.putExtra(“longitude”, lng);

 context.startActivity(startIntent);
 }
 }
}

Registering Broadcast Receivers in Your Application Manifest
To include a Broadcast Receiver in the application manifest, add a receiver tag within the applica-
tion node specifying the class name of the Broadcast Receiver to register. The receiver node needs to
include an intent-filter tag that specifi es the action string being listened for, as shown in the XML
snippet below:

<receiver android:name=”.LifeformDetectedBroadcastReceiver”>
 <intent-filter>
 <action android:name=”com.paad.action.NEW_LIFEFORM”/>
 </intent-filter>
</receiver>

Broadcast Receivers registered this way are always active.

Registering Broadcast Receivers in Code
You can control the registration of Broadcast Receivers in code. This is typically done when the receiver
is being used to update UI elements in an Activity. In this case, it’s good practice to unregister Broad-
cast Receivers when the Activity isn’t visible (or active).

44712c05.indd 13444712c05.indd 134 10/20/08 4:11:35 PM10/20/08 4:11:35 PM

135

Chapter 5: Intents, Broadcast Receivers, Adapters, and the Internet

The following code snippet shows how to register a Broadcast Receiver using an IntentFilter:

// Create and register the broadcast receiver.
IntentFilter filter = new IntentFilter(NEW_LIFEFORM_DETECTED);
LifeformDetectedBroadcastReceiver r = new LifeformDetectedBroadcastReceiver();
registerReceiver(r, filter);

To unregister a Broadcast Receiver, use the unregisterReceiver method on your application context,
passing in a Broadcast Receiver instance, as shown below:

unregisterReceiver(r);

Further examples can also be found in Chapter 8 when you learn to create your own background
Services and use Intents to broadcast events back to your Activities.

Native Android Broadcast Actions
Android broadcasts Intents for many of the system Services. You can use these messages to add func-
tionality to your own projects based on system events such as time-zone changes, data-connection sta-
tus, incoming SMS messages, or phone calls.

The following list introduces some of the native actions exposed as constants in the Intents class; these
actions are used primarily to track device status changes:

ACTION_BOOT_COMPLETED ❑ Fired once when the device has completed its start-up sequence.
Requires the RECEIVE_BOOT_COMPLETED permission.

ACTION_CAMERA_BUTTON ❑ Fired when the Camera button is clicked.

ACTION_DATE_CHANGED ❑ and ACTION_TIME_CHANGED These actions are broadcast if the date
or time on the device is manually changed (as opposed to them changing through the natural
progress of time).

ACTION_GTALK_SERVICE_CONNECTED ❑ and ACTION_GTALK_SERVICE_DISCONNECTED These
two actions are broadcast each time a GTalk connection is made or lost. More specifi c handling
of GTalk messaging is discussed in more detail in Chapter 9.

ACTION_MEDIA_BUTTON ❑ Fired when the Media button is clicked.

ACTION_MEDIA_EJECT ❑ If the user chooses to eject the external storage media, this event is
fi red fi rst. If your application is reading or writing to the external media storage, you should
listen for this event in order to save and close any open fi le handles.

ACTION_MEDIA_MOUNTED ❑ and ACTION_MEDIA_UNMOUNTED These two events are broadcast
whenever new external storage media are successfully added or removed from the device.

ACTION_SCREEN_OFF ❑ and ACTION_SCREEN_ON Broadcasts when the screen turns off or on.

ACTION_TIMEZONE_CHANGED ❑ This action is broadcast whenever the phone’s current time zone
changes. The Intent includes a time-zone extra that returns the ID of the new
java.util.TimeZone.

A comprehensive list of the broadcast actions used and transmitted natively by Android to notify
applications of system state changes is available at http://code.google.com/android/reference/
android/content/Intent.html.

44712c05.indd 13544712c05.indd 135 10/20/08 4:11:35 PM10/20/08 4:11:35 PM

136

Chapter 5: Intents, Broadcast Receivers, Adapters, and the Internet

Android also uses Broadcast Intents to monitor application-specifi c events like incoming SMS mes-
sages. The actions and Intents associated with these events are discussed in more detail in later chap-
ters when you learn more about the associated Services.

Introducing Adapters
Adapters are bridging classes that bind data to user-interface Views. The adapter is responsible for creat-
ing the child views used to represent each item and providing access to the underlying data.

User-interface controls that support Adapter binding must extend the AdapterView abstract class. It’s
possible to create your own AdapterView-derived controls and create new Adapter classes to bind them.

Introducing Some Android-Supplied Adapters
In many cases, you won’t have to create your own Adapter from scratch. Android supplies a set of
Adapters that pump data into the native user-interface widgets.

Because Adapters are responsible both for supplying the data and selecting the Views that represent each
item, Adaptors can radically modify the appearance and functionality of the controls they’re bound to.

The following list highlights two of the most useful and versatile native adapters:

ArrayAdapter ❑ The ArrayAdapter is a generic class that binds Adapter Views to an array of
objects. By default, the ArrayAdapter binds the toString value of each object to a TextView
control defi ned within a layout. Alternative constructors allow you to use more complex lay-
outs, or you can extend the class to use alternatives to Text View (such as populating an
ImageView or nested layout) by overriding the getView method.

SimpleCursorAdapter ❑ The SimpleCursorAdapter binds Views to cursors returned from
Content Provider queries. You specify an XML layout defi nition and then bind the value within
each column in the result set, to a View in that layout.

The following sections will delve into these Adapter classes in more detail. The examples provided
bind data to List Views, although the same logic will work just as well for other AdapterView classes
such as Spinners and Galleries.

Using Adapters for Data Binding
To apply an Adapter to an AdapterView-derived class, you call the View’s setAdapter method, passing
in an Adapter instance, as shown in the snippet below:

ArrayList<String> myStringArray = new ArrayList<String>();
ArrayAdapter<String> myAdapterInstance;

int layoutID = android.R.layout.simple_list_item_1;
myAdapterInstance = new ArrayAdapter<String>(this, layoutID,

44712c05.indd 13644712c05.indd 136 10/20/08 4:11:35 PM10/20/08 4:11:35 PM

137

Chapter 5: Intents, Broadcast Receivers, Adapters, and the Internet

 myStringArray);

myListView.setAdapter(myAdapterInstance);

This snippet shows the most simplistic case, where the array being bound is a string and the List View
items are displayed using a single Text View control.

The fi rst of the following examples demonstrates how to bind an array of complex objects to a List View
using a custom layout. The second shows how to use a Simple Cursor Adapter to bind a query result to
a custom layout within a List View.

Customizing the To-Do List ArrayAdapter
This example extends the To-Do List project, storing each item as a ToDoItem object that includes the
date each item was created.

You will extend ArrayAdapter to bind a collection of ToDoItem objects to the ListView and custom-
ize the layout used to display each List View item.

 1. Return to the To-Do List project. Create a new ToDoItem class that stores the task and its cre-
ation date. Override the toString method to return a summary of the item data.

package com.paad.todolist;

import java.text.SimpleDateFormat;
import java.util.Date;

public class ToDoItem {

 String task;
 Date created;

 public String getTask() {
 return task;
 }

 public Date getCreated() {
 return created;
 }

 public ToDoItem(String _task) {
 this(_task, new Date(java.lang.System.currentTimeMillis()));
 }

 public ToDoItem(String _task, Date _created) {
 task = _task;
 created = _created;
 }

 @Override
 public String toString() {

44712c05.indd 13744712c05.indd 137 10/20/08 4:11:35 PM10/20/08 4:11:35 PM

138

Chapter 5: Intents, Broadcast Receivers, Adapters, and the Internet

 SimpleDateFormat sdf = new SimpleDateFormat(“dd/MM/yy”);
 String dateString = sdf.format(created);
 return “(“ + dateString + “) “ + task;
 }
}

 2. Open the ToDoList Activity, and modify the ArrayList and ArrayAdapter variable types to
store ToDoItem objects rather than Strings. You’ll then need to modify the onCreate method to
update the corresponding variable initialization. You’ll also need to update the onKeyListener
handler to support the ToDoItem objects.

private ArrayList<ToDoItem> todoItems;
private ListView myListView;
private EditText myEditText;
private ArrayAdapter<ToDoItem> aa;

@Override
public void onCreate(Bundle icicle) {
 super.onCreate(icicle);

 // Inflate your view
 setContentView(R.layout.main);

 // Get references to UI widgets
 myListView = (ListView)findViewById(R.id.myListView);
 myEditText = (EditText)findViewById(R.id.myEditText);

 todoItems = new ArrayList<ToDoItem>();
 int resID = R.layout.todolist_item;
 aa = new ArrayAdapter<ToDoItem>(this, resID, todoItems);
 myListView.setAdapter(aa);

 myEditText.setOnKeyListener(new OnKeyListener() {
 public boolean onKey(View v, int keyCode, KeyEvent event) {
 if (event.getAction() == KeyEvent.ACTION_DOWN)
 if (keyCode == KeyEvent.KEYCODE_DPAD_CENTER) {
 ToDoItem newItem;
 newItem = new ToDoItem(myEditText.getText().toString());
 todoItems.add(0, newItem);
 myEditText.setText(“”);
 aa.notifyDataSetChanged();
 cancelAdd();
 return true;
 }
 return false;
 }
 });

 registerForContextMenu(myListView);
}

 3. If you run the Activity, it will now display each to-do item, as shown in Figure 5-3.

44712c05.indd 13844712c05.indd 138 10/20/08 4:11:35 PM10/20/08 4:11:35 PM

139

Chapter 5: Intents, Broadcast Receivers, Adapters, and the Internet

Figure 5-3

 4. Now you can create a custom layout to display each to-do item. Start by modifying the custom
layout you created in Chapter 4 to include a second TextView. It will be used to show the cre-
ation date of each to-do item.

<?xml version=”1.0” encoding=”utf-8”?>
<RelativeLayout xmlns:android=”http://schemas.android.com/apk/res/android”
 android:layout_width=”fill_parent”
 android:layout_height=”fill_parent”
 android:background=”@color/notepad_paper”>
 <TextView
 android:id=”@+id/rowDate”
 android:layout_width=”wrap_content”
 android:layout_height=”fill_parent”
 android:padding=”10dp”
 android:scrollbars=”vertical”
 android:fadingEdge=”vertical”
 android:textColor=”@color/notepad_text”
 android:layout_alignParentRight=”true”
 />
 <TextView
 android:id=”@+id/row”
 android:layout_width=”fill_parent”
 android:layout_height=”fill_parent”
 android:padding=”10dp”
 android:scrollbars=”vertical”
 android:fadingEdge=”vertical”
 android:textColor=”@color/notepad_text”
 android:layout_alignParentLeft=”@+id/rowDate”
 />
</RelativeLayout>

 5. Create a new class (ToDoItemAdapter) that extends an ArrayAdapter with a ToDoItem-spe-
cifi c variation. Override getView to assign the task and date properties in the ToDoItem object
to the Views in the layout you created in Step 4.

import java.text.SimpleDateFormat;
import android.content.Context;
import java.util.*;

44712c05.indd 13944712c05.indd 139 10/20/08 4:11:35 PM10/20/08 4:11:35 PM

140

Chapter 5: Intents, Broadcast Receivers, Adapters, and the Internet

import android.view.*;
import android.widget.*;

public class ToDoItemAdapter extends ArrayAdapter<ToDoItem> {

 int resource;

 public ToDoItemAdapter(Context _context,
 int _resource,
 List<ToDoItem> _items) {
 super(_context, _resource, _items);
 resource = _resource;
 }

 @Override
 public View getView(int position, View convertView, ViewGroup parent)
 {
 LinearLayout todoView;

 ToDoItem item = getItem(position);

 String taskString = item.getTask();
 Date createdDate = item.getCreated();
 SimpleDateFormat sdf = new SimpleDateFormat(“dd/MM/yy”);
 String dateString = sdf.format(createdDate);

 if (convertView == null) {
 todoView = new LinearLayout(getContext());
 String inflater = Context.LAYOUT_INFLATER_SERVICE;
 LayoutInflater vi;
 vi = (LayoutInflater)getContext().getSystemService(inflater);
 vi.inflate(resource, todoView, true);
 } else {
 todoView = (LinearLayout) convertView;
 }

 TextView dateView = (TextView)todoView.findViewById(R.id.rowDate);
 TextView taskView = (TextView)todoView.findViewById(R.id.row);

 dateView.setText(dateString);
 taskView.setText(taskString);

 return todoView;
 }
}

 6. Finally, replace the ArrayAdapter declaration with a ToDoItemAdapter.

private ToDoItemAdapter aa;

Within onCreate, replace the ArrayAdapter<String> instantiation with the new
ToDoItemAdapter.

aa = new ToDoItemAdapter(this, resID, todoItems);

44712c05.indd 14044712c05.indd 140 10/20/08 4:11:35 PM10/20/08 4:11:35 PM

141

Chapter 5: Intents, Broadcast Receivers, Adapters, and the Internet

 7. If you run your Activity, it should appear as shown in the screenshot in Figure 5-4.

Figure 5-4

Using the SimpleCursorAdapter
The SimpleCursorAdapter lets you bind columns from a Cursor to a List View using a custom layout
defi nition.

The SimpleCursorAdapter is constructed by passing in the current context, a layout resource, a Cur-
sor, and two arrays: one that contains the names of the columns to be used and a second (equally sized)
array that has resource IDs for the Views to use to display the corresponding column’s data value.

The following skeleton code shows how to construct a SimpleCursorAdapter to display contact
information:

String uriString = “content://contacts/people/”;
Cursor myCursor = managedQuery(Uri.parse(uriString), null, null, null, null);

String[] fromColumns = new String[] {People.NUMBER, People.NAME};

int[] toLayoutIDs = new int[] { R.id.nameTextView, R.id.numberTextView};

SimpleCursorAdapter myAdapter;
myAdapter = new SimpleCursorAdapter(this,
 R.layout.simplecursorlayout,
 myCursor,
 fromColumns,
 toLayoutIDs);

myListView.setAdapter(myAdapter);

The Simple Cursor Adapter was used previously in this chapter when creating the Contact Picker
example. You’ll learn more about Content Providers and Cursors in Chapter 6, where you’ll also fi nd
more SimpleCursorAdapter examples.

Using Internet Resources
With Internet connectivity and WebKit browser, you might well ask if there’s any reason to create native
Internet-based applications when you could make a web-based version instead.

44712c05.indd 14144712c05.indd 141 10/20/08 4:11:35 PM10/20/08 4:11:35 PM

142

Chapter 5: Intents, Broadcast Receivers, Adapters, and the Internet

There are several benefi ts to creating thick- and thin-client native applications rather than relying on
entirely web-based solutions:

Bandwidth ❑ Static resources like images, layouts, and sounds can be expensive data consumers
on devices with limited and often expensive bandwidth restraints. By creating a native applica-
tion, you can limit the bandwidth requirements to only data updates.

Caching ❑ Mobile Internet access has not yet reached the point of ubiquity. With a browser-
based solution, a patchy Internet connection can result in intermittent application availability.
A native application can cache data to provide as much functionality as possible without a live
connection.

Native Features ❑ Android devices are more than a simple platform for running a browser;
they include location-based services, camera hardware, and accelerometers. By creating a native
application, you can combine the data available online with the hardware features available on
the device to provide a richer user experience.

Modern mobile devices offer various alternatives for accessing the Internet. Looked at broadly, Android
provides three connection techniques for Internet connectivity. Each is offered transparently to the
application layer.

GPRS, EDGE, and 3G ❑ Mobile Internet access is available through carriers that offer mobile
data plans.

Wi-Fi ❑ Wi-Fi receivers and mobile hotspots are becoming increasingly more common.

Connecting to an Internet Resource
While the details of working with specifi c web services aren’t covered within this book, it’s useful to
know the general principles of connecting to the Internet and getting an input stream from a remote
data source.

Before you can access Internet resources, you need to add an INTERNET uses-permission node to
your application manifest, as shown in the following XML snippet:

<uses-permission android:name=”android.permission.INTERNET”/>

The following skeleton code shows the basic pattern for opening an Internet data stream:

String myFeed = getString(R.string.my_feed);
try {
 URL url = new URL(myFeed);

 URLConnection connection = url.openConnection();
 HttpURLConnection httpConnection = (HttpURLConnection)connection;

 int responseCode = httpConnection.getResponseCode();
 if (responseCode == HttpURLConnection.HTTP_OK) {
 InputStream in = httpConnection.getInputStream();

44712c05.indd 14244712c05.indd 142 10/20/08 4:11:35 PM10/20/08 4:11:35 PM

143

Chapter 5: Intents, Broadcast Receivers, Adapters, and the Internet

 [... Process the input stream as required ...]
 }
}
catch (MalformedURLException e) { }
catch (IOException e) { }

Android includes several classes to help you handle network communications. They are available in the
java.net.* and android.net.* packages.

Later in this chapter, there is a fully worked example that shows how to obtain and process an Internet
feed to get a list of earthquakes felt in the last 24 hours.

Chapter 9 includes further details on Internet-based communications using the GTalk Service. Chapter
10 features more information on managing specifi c Internet connections, including monitoring connec-
tion status and confi guring Wi-Fi access point connections.

Leveraging Internet Resources
Android offers several ways to leverage Internet resources.

At one extreme, you can use the WebView widget to include a WebKit-based browser control within
an Activity. At the other extreme, you can use client-side APIs such as Google’s GData APIs to interact
directly with server processes. Somewhere in between, you can process remote XML feeds to extract
and process data using a Java-based XML parser such as SAX or javax.

Detailed instructions for parsing XML and interacting with specifi c web services are outside the scope
of this book. That said, the Earthquake example, included later in this chapter, gives a fully worked
example of parsing an XML feed using the javax classes.

If you’re using Internet resources in your application, remember that your users’ data connections
depend on the communications technology available to them. EDGE and GSM connections are notori-
ously low bandwidth, while a Wi-Fi connection may be unreliable in a mobile setting.

Optimize the user experience by limiting the quantity of data being transmitted, and ensure that your
application is robust enough to handle network outages and bandwidth limitations.

Introducing Dialogs
Dialog boxes are a common UI metaphor in desktop and web applications. They’re used to help users
answer questions, make selections, confi rm actions, and read warning or error messages. An Android
Dialog is a fl oating window that partially obscures the Activity that launched it.

As you can see in Figure 5-5, Dialog boxes are not full screen and can be partially transparent. They
generally obscure the Activities behind them using a blur or dim fi lter.

44712c05.indd 14344712c05.indd 143 10/20/08 4:11:35 PM10/20/08 4:11:35 PM

144

Chapter 5: Intents, Broadcast Receivers, Adapters, and the Internet

Figure 5-5

There are three ways to implement a Dialog box in Android:

Using a Dialog-Class Descendent ❑ As well as the general-purpose AlertDialog class,
Android includes several specialist classes that extend Dialog. Each is designed to provide
specifi c Dialog-box functionality. Dialog-class-based screens are constructed entirely within
their calling Activity, so they don’t need to be registered in the manifest, and their life cycle is
controlled entirely by the calling Activity.

Dialog-Themed Activities ❑ You can apply the Dialog theme to a regular Activity to give it the
appearance of a Dialog box.

Toasts ❑ Toasts are special non-modal transient message boxes, often used by Broadcast Receiv-
ers and background services to notify users of events. You learn more about Toasts in Chapter 8.

Introducing the Dialog Class
The Dialog class implements a simple fl oating window that is constructed entirely within an Activity.

To use the base Dialog class, you create a new instance and set the title and layout as shown below:

Dialog d = new Dialog(MyActivity.this);

// Have the new window tint and blur the window it
// obscures.
Window window = d.getWindow();
window.setFlags(WindowManager.LayoutParams.FLAG_BLUR_BEHIND,
 WindowManager.LayoutParams.FLAG_BLUR_BEHIND);

d.setTitle(“Dialog Title”);
d.setContentView(R.layout.dialog_view);

TextView text = (TextView)d.findViewById(R.id.dialogTextView);
text.setText(“This is the text in my dialog”);

44712c05.indd 14444712c05.indd 144 10/20/08 4:11:35 PM10/20/08 4:11:35 PM

145

Chapter 5: Intents, Broadcast Receivers, Adapters, and the Internet

Once it’s confi gured to your liking, use the show method to display it.

d.show();

The AlertDialog Class
The AlertDialog class is one of the most versatile Dialog implementations. It offers various options
that let you construct screens for some of the most common Dialog-box use cases, including:

Presenting a message to the user offering one to three options in the form of alternative buttons. ❑

This functionality is probably familiar to you if you’ve done any desktop programming, where
the buttons presented are usually a selection of OK, Cancel, Yes, or No.

Offering a list of options in the form of check buttons or radio buttons. ❑

Providing a text entry box for user input. ❑

To construct the Alert Dialog user interface, create a new AlertDialog.Builder object, as shown below:

AlertDialog.Builder ad = new AlertDialog.Builder(context);

You can then assign values for the title and message to display, and optionally assign values to be used
for any buttons, selection items, and text input boxes you wish to display. That includes setting event
listeners to handle user interaction.

The following code gives an example of a new Alert Dialog used to display a message and offer two
button options to continue. Clicking on either button will automatically close the Dialog after executing
the attached Click Listener.

Context context = MyActivity.this;
String title = “It is Pitch Black”;
String message = “You are likely to be eaten by a grue.”;
String button1String = “Go Back”;
String button2String = “Move Forward”;

AlertDialog.Builder ad = new AlertDialog.Builder(context);
ad.setTitle(title);
ad.setMessage(message);
ad.setPositiveButton(button1String,
 new OnClickListener() {
 public void onClick(DialogInterface dialog,
 int arg1) {
 eatenByGrue();
 }
 });
ad.setNegativeButton(button2String,
 new OnClickListener(){
 public void onClick(DialogInterface dialog,
 int arg1) {
 // do nothing
 }
 });
ad.setCancelable(true);
ad.setOnCancelListener(new OnCancelListener() {

44712c05.indd 14544712c05.indd 145 10/20/08 4:11:35 PM10/20/08 4:11:35 PM

146

Chapter 5: Intents, Broadcast Receivers, Adapters, and the Internet

 public void onCancel(DialogInterface dialog) {
 eatenByGrue();
 }
 });

To display an Alert Dialog that you’ve created call show.

ad.show();

Alternatively, you can override the onCreateDialog and onPrepareDialog methods within your
Activity to create single-instance Dialogs that persist their state. This technique is examined later in
this chapter.

Specialist Input Dialogs
One of the major uses of Dialog boxes is to provide an interface for user input. Android includes several
specialist Dialog boxes that encapsulate controls designed to facilitate common user input requests.
They include the following:

DatePickerDialog ❑ Lets users select a date from a DatePicker View. The constructor includes
a callback listener to alert your calling Activity when the date has been set.

TimePickerDialog ❑ Similar to the DatePickerDialog, this Dialog lets users select a time from a
TimePicker View.

ProgressDialog ❑ A Dialog that displays a progress bar beneath a message textbox. Perfect for
keeping the user informed of the ongoing progress of a time-consuming operation.

Using and Managing Dialogs
Rather than creating new instances of a Dialog each time it’s required, Android provides the
OnCreateDialog and onPrepareDialog event handlers within the Activity class to persist and
manage Dialog-box instances.

By overriding the onCreateDialog class, you can specify Dialogs that will be created on demand
when showDialog is used to display a specifi c Dialog. As shown in this code snippet, the overridden
method includes a switch statement that lets you determine which Dialog is required:

static final private int TIME_DIALOG = 1;

@Override
public Dialog onCreateDialog(int id) {
 switch(id) {
 case (TIME_DIALOG) :
 AlertDialog.Builder timeDialog = new AlertDialog.Builder(this);
 timeDialog.setTitle(“The Current Time Is...”);
 timeDialog.setMessage(“Now”);
 return timeDialog.create();
 }
 return null;
}

44712c05.indd 14644712c05.indd 146 10/20/08 4:11:35 PM10/20/08 4:11:35 PM

147

Chapter 5: Intents, Broadcast Receivers, Adapters, and the Internet

After the initial creation, each time a showDialog is called, it will trigger the onPrepareDialog han-
dler. By overriding this method, you can modify a Dialog immediately before it is displayed. This lets
you contextualize any of the display values, as shown in the following snippet, which assigns the cur-
rent time to the Dialog created above:

@Override
public void onPrepareDialog(int id, Dialog dialog) {
 switch(id) {
 case (TIME_DIALOG) :
 SimpleDateFormat sdf = new SimpleDateFormat(“HH:mm:ss”);
 Date currentTime;
 currentTime = new Date(java.lang.System.currentTimeMillis());
 String dateString = sdf.format(currentTime);
 AlertDialog timeDialog = (AlertDialog)dialog;
 timeDialog.setMessage(dateString);

 break;
 }
}

Once you’ve overridden these methods, you can display the Dialogs by calling showDialog, as shown
below. Pass in the identifi er for the Dialog you wish to display, and Android will create (if necessary)
and prepare the Dialog before displaying it:

showDialog(TIME_DIALOG);

As well as improving resource use, this technique lets your Activity handle the persistence of state
information within Dialogs. Any selection or data input (such as item selection and text entry) will be
persisted between displays of each Dialog instance.

Using Activities as Dialogs
Dialogs offer a simple and lightweight technique for displaying screens, but there will still be times
when you need more control over the content and life cycle of your Dialog box.

The solution is to implement it as a full Activity. By creating an Activity, you lose the lightweight nature
of the Dialog class, but you gain the ability to implement any screen you want and full access to the
Activity life-cycle event handlers.

So, when is an Activity a Dialog? The easiest way to make an Activity look like a Dialog is to apply the
android:style/Theme.Dialog theme when you add it to your manifest, as shown in the following
XML snippet:

<activity android:name=”MyDialogActivity”
 android:theme=”@android:style/Theme.Dialog”>
</activity>

This will cause your Activity to behave like a Dialog, fl oating on top of, and partially obscuring, the
Activity beneath it.

44712c05.indd 14744712c05.indd 147 10/20/08 4:11:35 PM10/20/08 4:11:35 PM

148

Chapter 5: Intents, Broadcast Receivers, Adapters, and the Internet

Creating an Earthquake Viewer
In the following example, you’ll create a tool that uses a USGS earthquake feed to display a list of recent
earthquakes.

You will return to this Earthquake application several times, fi rst in Chapter 6 to save and share the
earthquake data with a Content Provider, and again in Chapters 7 and 8 to add mapping support and to
move the earthquake updates into a background Service.

In this example, you will create a list-based Activity that connects to an earthquake feed and displays
the location, magnitude, and time of the earthquakes it contains. You’ll use an Alert Dialog to provide a
detail window that includes a linkifi ed Text View with a link to the USGS web site.

 1. Start by creating an Earthquake project featuring an Earthquake Activity. Modify the main.xml
layout resource to include a List View control — be sure to name it so you can reference it from
the Activity code.

<?xml version=”1.0” encoding=”utf-8”?>
<LinearLayout xmlns:android=”http://schemas.android.com/apk/res/android”
 android:orientation=”vertical”
 android:layout_width=”fill_parent”
 android:layout_height=”fill_parent”>
 <ListView
 android:id=”@+id/earthquakeListView”
 android:layout_width=”fill_parent”
 android:layout_height=”wrap_content”
 />
</LinearLayout>

 2. Create a new public Quake class. This class will be used to store the details (date, details, loca-
tion, magnitude, and link) of each earthquake. Override the toString method to provide the
string that will be used for each quake in the List View.

package com.paad.earthquake;

import java.util.Date;
import java.text.SimpleDateFormat;
import android.location.Location;

public class Quake {
 private Date date;
 private String details;
 private Location location;
 private double magnitude;
 private String link;

 public Date getDate() { return date; }
 public String getDetails() { return details; }
 public Location getLocation() { return location; }
 public double getMagnitude() { return magnitude; }
 public String getLink() { return link; }

 public Quake(Date _d, String _det, Location _loc, double _mag,
 String _link) {
 date = _d;

44712c05.indd 14844712c05.indd 148 10/20/08 4:11:35 PM10/20/08 4:11:35 PM

149

Chapter 5: Intents, Broadcast Receivers, Adapters, and the Internet

 details = _det;
 location = _loc;
 magnitude = _mag;
 link = _link;
 }

 @Override
 public String toString() {
 SimpleDateFormat sdf = new SimpleDateFormat(“HH.mm”);
 String dateString = sdf.format(date);
 return dateString + “: “ + magnitude + “ “ + details;
 }

}

 3. In the Earthquake Activity, override the onCreate method to store an ArrayList of Quake
objects, and bind that to the ListView using an ArrayAdapter.

package com.paad.earthquake;

import java.io.IOException;
import java.io.InputStream;
import java.net.HttpURLConnection;
import java.net.MalformedURLException;
import java.net.URL;
import java.net.URLConnection;
import java.text.ParseException;
import java.text.SimpleDateFormat;
import java.util.ArrayList;
import java.util.Date;
import java.util.GregorianCalendar;
import javax.xml.parsers.DocumentBuilder;
import javax.xml.parsers.DocumentBuilderFactory;
import javax.xml.parsers.ParserConfigurationException;
import org.w3c.dom.Document;
import org.w3c.dom.Element;
import org.w3c.dom.NodeList;
import org.xml.sax.SAXException;
import android.app.Activity;
import android.app.Dialog;
import android.location.Location;
import android.os.Bundle;
import android.view.Menu;
import android.view.View;
import android.view.WindowManager;
import android.view.MenuItem;
import android.widget.AdapterView;
import android.widget.ArrayAdapter;
import android.widget.ListView;
import android.widget.TextView;
import android.widget.AdapterView.OnItemClickListener;

public class Earthquake extends Activity {

 ListView earthquakeListView;

44712c05.indd 14944712c05.indd 149 10/20/08 4:11:35 PM10/20/08 4:11:35 PM

150

Chapter 5: Intents, Broadcast Receivers, Adapters, and the Internet

 ArrayAdapter<Quake> aa;

 ArrayList<Quake> earthquakes = new ArrayList<Quake>();

 @Override
 public void onCreate(Bundle icicle) {
 super.onCreate(icicle);
 setContentView(R.layout.main);

 earthquakeListView =
 (ListView)this.findViewById(R.id.earthquakeListView);

 int layoutID = android.R.layout.simple_list_item_1;
 aa = new ArrayAdapter<Quake>(this, layoutID , earthquakes);
 earthquakeListView.setAdapter(aa);
 }
}

 4. Next, you should start processing the earthquake feed. For this example, the feed used is the
1-day USGS feed for earthquakes with a magnitude greater than 2.5.

Add the location of your feed as an external string resource. This lets you potentially specify a different
feed based on a user’s location.

<?xml version=”1.0” encoding=”utf-8”?>
<resources>
 <string name=”app_name”>Earthquake</string>
 <string name=”quake_feed”>
 http://earthquake.usgs.gov/eqcenter/catalogs/1day-M2.5.xml
 </string>
</resources>

 5. Before your application can access the Internet, it needs to be granted permission for Internet
access. Add the uses-permission to the manifest.

<uses-permission xmlns:android=”http://schemas.android.com/apk/res/android”
 android:name=”android.permission.INTERNET”>
</uses-permission>

 6. Returning to the Earthquake Activity, create a new refreshEarthquakes method that con-
nects to, and parses, the earthquake feed. Extract each earthquake, and parse the details to
obtain the date, magnitude, link, and location. As you fi nish parsing each earthquake, pass it in
to a new addNewQuake method.

The XML parsing is presented here without further comment.

private void refreshEarthquakes() {
 // Get the XML
 URL url;
 try {
 String quakeFeed = getString(R.string.quake_feed);
 url = new URL(quakeFeed);

 URLConnection connection;

44712c05.indd 15044712c05.indd 150 10/20/08 4:11:35 PM10/20/08 4:11:35 PM

151

Chapter 5: Intents, Broadcast Receivers, Adapters, and the Internet

 connection = url.openConnection();

 HttpURLConnection httpConnection = (HttpURLConnection)connection;
 int responseCode = httpConnection.getResponseCode();

 if (responseCode == HttpURLConnection.HTTP_OK) {
 InputStream in = httpConnection.getInputStream();

 DocumentBuilderFactory dbf;
 dbf = DocumentBuilderFactory.newInstance();
 DocumentBuilder db = dbf.newDocumentBuilder();

 // Parse the earthquake feed.
 Document dom = db.parse(in);
 Element docEle = dom.getDocumentElement();

 // Clear the old earthquakes
 earthquakes.clear();

 // Get a list of each earthquake entry.
 NodeList nl = docEle.getElementsByTagName(“entry”);
 if (nl != null && nl.getLength() > 0) {
 for (int i = 0 ; i < nl.getLength(); i++) {
 Element entry = (Element)nl.item(i);
 Element title =
 (Element)entry.getElementsByTagName(“title”).item(0);
 Element g =
 (Element)entry.getElementsByTagName(“georss:point”).item(0);
 Element when =
 (Element)entry.getElementsByTagName(“updated”).item(0);
 Element link =
 (Element)entry.getElementsByTagName(“link”).item(0);

 String details = title.getFirstChild().getNodeValue();
 String hostname = “http://earthquake.usgs.gov”;
 String linkString = hostname + link.getAttribute(“href”);

 String point = g.getFirstChild().getNodeValue();
 String dt = when.getFirstChild().getNodeValue();
 SimpleDateFormat sdf;
 sdf = new SimpleDateFormat(“yyyy-MM-dd’T’hh:mm:ss’Z’”);
 Date qdate = new GregorianCalendar(0,0,0).getTime();
 try {
 qdate = sdf.parse(dt);
 } catch (ParseException e) {
 e.printStackTrace();
 }

 String[] location = point.split(“ “);
 Location l = new Location(“dummyGPS”);
 l.setLatitude(Double.parseDouble(location[0]));
 l.setLongitude(Double.parseDouble(location[1]));

 String magnitudeString = details.split(“ “)[1];

44712c05.indd 15144712c05.indd 151 10/20/08 4:11:35 PM10/20/08 4:11:35 PM

152

Chapter 5: Intents, Broadcast Receivers, Adapters, and the Internet

 int end = magnitudeString.length()-1;
 double magnitude;
 magnitude = Double.parseDouble(magnitudeString.substring(0,
 end));

 details = details.split(“,”)[1].trim();

 Quake quake = new Quake(qdate, details, l,
 magnitude, linkString);

 // Process a newly found earthquake
 addNewQuake(quake);
 }
 }
 }
 } catch (MalformedURLException e) {
 e.printStackTrace();
 } catch (IOException e) {
 e.printStackTrace();
 } catch (ParserConfigurationException e) {
 e.printStackTrace();
 } catch (SAXException e) {
 e.printStackTrace();
 }
 finally {
 }
}

private void addNewQuake(Quake _quake) {
 // TODO: Add the earthquakes to the array list.
}

 7. Update the addNewQuake method so that it takes each newly processed quake and adds it to the
Earthquake ArrayList. It should also notify the Array Adapter that the underlying data have
changed.

private void addNewQuake(Quake _quake) {
 // Add the new quake to our list of earthquakes.
 earthquakes.add(_quake);

 // Notify the array adapter of a change.
 aa.notifyDataSetChanged();
}

 8. Modify your onCreate method to call refreshEarthquakes on start-up.

@Override
public void onCreate(Bundle icicle) {
 super.onCreate(icicle);
 setContentView(R.layout.main);

 earthquakeListView =

44712c05.indd 15244712c05.indd 152 10/20/08 4:11:35 PM10/20/08 4:11:35 PM

153

Chapter 5: Intents, Broadcast Receivers, Adapters, and the Internet

 (ListView)this.findViewById(R.id.earthquakeListView);

 int layoutID = android.R.layout.simple_list_item_1;
 aa = new ArrayAdapter<Quake>(this, layoutID , earthquakes);
 earthquakeListView.setAdapter(aa);

 refreshEarthquakes();
}

The Internet lookup is currently happening on the main UI thread. This is bad form as the application
will become unresponsive if the lookup takes longer than a few seconds. In Chapter 8, you’ll learn how
to move expensive or time-consuming operations like this onto the background thread.

 9. If you run your project, you should see a List View that features the earthquakes from the last
24 hours with a magnitude greater than 2.5, as shown in the screenshot in Figure 5-6.

Figure 5-6

 10. There are only two more steps to make this a more useful application. First, create a new menu
item to let users refresh the earthquake feed on demand.

 10.1. Start by adding a new external string for the menu option.

<string name=”menu_update”>Refresh Earthquakes</string>

 10.2 Then override the Activity’s onCreateOptionsMenu and onOptionsItemSelected
methods to display and handle the refresh earthquakes menu item.

static final private int MENU_UPDATE = Menu.FIRST;

@Override

44712c05.indd 15344712c05.indd 153 10/20/08 4:11:35 PM10/20/08 4:11:35 PM

154

Chapter 5: Intents, Broadcast Receivers, Adapters, and the Internet

public boolean onCreateOptionsMenu(Menu menu) {
 super.onCreateOptionsMenu(menu);

 menu.add(0, MENU_UPDATE, Menu.NONE, R.string.menu_update);

 return true;
}

@Override
public boolean onOptionsItemSelected(MenuItem item) {
 super.onOptionsItemSelected(item);

 switch (item.getItemId()) {
 case (MENU_UPDATE): {
 refreshEarthquakes();
 return true;
 }
 }
 return false;
}

 11. Now add some interaction. Let users fi nd more details by opening a Dialog box when they
select an earthquake from the list.

 11.1. Creating a new quake_details.xml layout resource for the Dialog box you’ll display on
an item click.

<?xml version=”1.0” encoding=”utf-8”?>
<LinearLayout
 xmlns:android=”http://schemas.android.com/apk/res/android”
 android:orientation=”vertical”
 android:layout_width=”fill_parent”
 android:layout_height=”fill_parent”
 android:padding=”10sp”>
 <TextView
 android:id=”@+id/quakeDetailsTextView”
 android:layout_width=”fill_parent”
 android:layout_height=”fill_parent”
 android:textSize=”14sp”
 />
</LinearLayout>

 11.2. Then modify your onCreate method to add an ItemClickListener to the List View
that displays a Dialog box whenever an earthquake item is selected.

static final private int QUAKE_DIALOG = 1;
Quake selectedQuake;

@Override
public void onCreate(Bundle icicle) {
 super.onCreate(icicle);
 setContentView(R.layout.main);

 earthquakeListView =

44712c05.indd 15444712c05.indd 154 10/20/08 4:11:35 PM10/20/08 4:11:35 PM

155

Chapter 5: Intents, Broadcast Receivers, Adapters, and the Internet

 (ListView)this.findViewById(R.id.earthquakeListView);

 earthquakeListView.setOnItemClickListener(new OnItemClickListener() {

 public void onItemClick(AdapterView _av, View _v, int _index,
 long arg3) {
 selectedQuake = earthquakes.get(_index);
 showDialog(QUAKE_DIALOG);
 }
 });

 int layoutID = android.R.layout.simple_list_item_1;
 aa = new ArrayAdapter<Quake>(this, layoutID , earthquakes);
 earthquakeListView.setAdapter(aa);

 refreshEarthquakes();
}

 11.3. Now override the onCreateDialog and onPrepareDialog methods to create and
populate the Earthquake Details dialog.

@Override
public Dialog onCreateDialog(int id) {
 switch(id) {
 case (QUAKE_DIALOG) :
 LayoutInflater li = LayoutInflater.from(this);
 View quakeDetailsView = li.inflate(R.layout.quake_details, null);

 AlertDialog.Builder quakeDialog = new AlertDialog.Builder(this);
 quakeDialog.setTitle(“Quake Time”);
 quakeDialog.setView(quakeDetailsView);
 return quakeDialog.create();
 }
 return null;
}

@Override
public void onPrepareDialog(int id, Dialog dialog) {
 switch(id) {
 case (QUAKE_DIALOG) :
 SimpleDateFormat sdf;
 sdf = new SimpleDateFormat(“dd/MM/yyyy HH:mm:ss”);
 String dateString = sdf.format(selectedQuake.getDate());
 String quakeText = “Mangitude “ + selectedQuake.getMagnitude() +
 “\n” + selectedQuake.getDetails() + “\n” +
 selectedQuake.getLink();

 AlertDialog quakeDialog = (AlertDialog)dialog;
 quakeDialog.setTitle(dateString);
 TextView tv =
 (TextView)quakeDialog.findViewById(R.id.quakeDetailsTextView);
 tv.setText(quakeText);

 break;
 }
}

44712c05.indd 15544712c05.indd 155 10/20/08 4:11:35 PM10/20/08 4:11:35 PM

156

Chapter 5: Intents, Broadcast Receivers, Adapters, and the Internet

 11.4. The fi nal step is to linkify the Dialog to make the link to the USGS a hyperlink. Adjust
the Dialog box’s XML layout resource defi nition to include an autolink attribute.

<?xml version=”1.0” encoding=”utf-8”?>
<LinearLayout
 xmlns:android=”http://schemas.android.com/apk/res/android”
 android:orientation=”vertical”
 android:layout_width=”fill_parent”
 android:layout_height=”fill_parent”
 android:padding=”10sp”>
 <TextView
 android:id=”@+id/quakeDetailsTextView”
 android:layout_width=”fill_parent”
 android:layout_height=”fill_parent”
 android:textSize=”14sp”
 android:autoLink=”all”
 />
</LinearLayout>

Launch your activity again. When you click on a particular earthquake, a Dialog box will appear, par-
tially obscuring the list, as shown in Figure 5-7.

Figure 5-7

44712c05.indd 15644712c05.indd 156 10/20/08 4:11:36 PM10/20/08 4:11:36 PM

157

Chapter 5: Intents, Broadcast Receivers, Adapters, and the Internet

Summary
The focus of this chapter has been on binding your application components.

Intents provide a versatile messaging system that lets you pass intentions between your application
and others, to perform actions and signal events. You learned how to use implicit and explicit Intents to
start new Activities, and how to populate an Activity menu dynamically through runtime resolution of
Activity Intent Filters.

You were introduced to Broadcast Intents and saw how they can be used to send messages throughout the
device, particularly to support an event-driven model based on system- and application-specifi c events.

You learned how to use sub-Activities to pass data between Activities and how to use Dialogs to dis-
play information and facilitate user input.

Adapters were introduced and used to bind underlying data to visual components. In particular, you
saw how to use an Array Adapter and Simple Cursor Adapter to bind a List View to Array Lists and
Cursors.

Finally, you learned the basics behind connecting to the Internet and using remote feeds as data sources
for your native client applications.

You also learned:

To use Linkify to add implicit View Intents to TextViews at run time. ❑

Which native Android actions are available for you to extend, replace, or embrace. ❑

How to use Intent Filters to let your own Activities become handlers for completing action ❑

requests from your own or other applications.

How to listen for Broadcast Intents using Broadcast Receivers. ❑

How to use an Activity as a Dialog box. ❑

In the next chapter, you will learn how to persist information within your applications. Android pro-
vides several mechanisms for saving application data, including fi les, simple preferences, and fully fea-
tured relational databases (using the SQLite database library).

44712c05.indd 15744712c05.indd 157 10/20/08 4:11:36 PM10/20/08 4:11:36 PM

44712c05.indd 15844712c05.indd 158 10/20/08 4:11:36 PM10/20/08 4:11:36 PM

Data Storage, Retrieval,
and Sharing

In this chapter, you’ll be introduced to three of the most versatile data persistence techniques
in Android — preferences, local fi les, and SQLite databases — before looking at Content
Providers.

Saving and loading data is an essential requirement for most applications. At a minimum,
Activities should save their User Interface (UI) state each time they move out of the foreground.
This ensures that the same UI state is presented when it’s next seen, even if the process has been
killed and restarted before that happens.

It’s also likely that you’ll need to save preferences, to let users customize the application, and per-
sist data entered or recorded. Just as important is the ability to load data from fi les, databases, and
Content Providers — your own, and those shared by native and third-party applications.

Android’s nondeterministic Activity and Application lifetimes make persisting UI state and
application data between sessions particularly important. Android offers several alternatives for
saving application data, each optimized to fulfi ll a particular need.

Preferences are a simple, lightweight key/value pair mechanism for saving primitive application
data, most commonly a user’s application preferences. Android also provides access to the local
fi lesystem, both through specialized methods and the normal Java.IO classes.

For a more robust persistence layer, Android provides the SQLite database library. The SQLite
database offers a powerful native SQL database over which you have total control.

44712c06.indd 15944712c06.indd 159 10/20/08 4:11:20 PM10/20/08 4:11:20 PM

160

Chapter 6: Data Storage, Retrieval, and Sharing

Content Providers offer a generic interface to any data source. They effectively decouple the underlying
data storage technique from the application layer.

By default, access to all fi les, databases, and preferences is restricted to the application that created
them. Content Providers offer a managed way for your applications to share private data with other
applications. As a result, your applications can use the Content Providers offered by others, including
native providers.

Android Techniques for Saving Data
The data persistence techniques in Android provide options for balancing speed, effi ciency, and
robustness:

Shared Preferences ❑ When storing the UI state, user preferences, or application settings, you
want a lightweight mechanism to store a known set of values. Shared Preferences let you save
groups of key/value pairs of primitive data as named preferences.

Files ❑ It’s not pretty, but sometimes writing to, and reading from, fi les directly is the only way
to go. Android lets you create and load fi les on the device’s internal or external media.

SQLite Databases ❑ When managed, structured data is the best approach, Android offers the
SQLite relational database library. Every application can create its own databases over which it
has total control.

Content Providers ❑ Rather than a storage mechanism in their own right, Content Providers let
you expose a well-defi ned interface for using and sharing private data. You can control access
to Content Providers using the standard permission system.

Saving Simple Application Data
There are two lightweight techniques for saving simple application data for Android applications —
Shared Preferences and a pair of event handlers used for saving Activity instance details. Both mecha-
nisms use a name/value pair (NVP) mechanism to store simple primitive values.

Using SharedPreferences, you can create named maps of key/value pairs within your application
that can be shared between application components running in the same Context.

Shared Preferences support the primitive types Boolean, string, fl oat, long, and integer, making them
an ideal way to quickly store default values, class instance variables, the current UI state, and user
preferences. They are most commonly used to persist data across user sessions and to share settings
between application components.

Alternatively, Activities offer the onSaveInstanceState handler. It’s designed specifi cally to persist
the UI state when the Activity becomes eligible for termination by a resource-hungry run time.

The handler works like the Shared Preference mechanism. It offers a Bundle parameter that represents
a key/value map of primitive types that can be used to save the Activity’s instance values. This Bundle

44712c06.indd 16044712c06.indd 160 10/20/08 4:11:20 PM10/20/08 4:11:20 PM

161

Chapter 6: Data Storage, Retrieval, and Sharing

is then made available as a parameter passed in to the onCreate and onRestoreInstanceState
method handlers.

This UI state Bundle is used to record the values needed for an Activity to provide an identical UI fol-
lowing unexpected restarts.

Creating and Saving Preferences
To create or modify a Shared Preference, call getSharedPreferences on the application Context, pass-
ing in the name of the Shared Preferences to change. Shared Preferences are shared across an applica-
tion’s components but aren’t available to other applications.

To modify a Shared Preference, use the SharedPreferences.Editor class. Get the Editor object by
calling edit on the SharedPreferences object you want to change. To save edits, call commit on the
Editor, as shown in the code snippet below.

public static final String MYPREFS = “mySharedPreferences”;

protected void savePreferences(){
 // Create or retrieve the shared preference object.
 int mode = Activity.MODE_PRIVATE;
 SharedPreferences mySharedPreferences = getSharedPreferences(MYPREFS,
 mode);
 // Retrieve an editor to modify the shared preferences.
 SharedPreferences.Editor editor = mySharedPreferences.edit();

 // Store new primitive types in the shared preferences object.
 editor.putBoolean(“isTrue”, true);
 editor.putFloat(“lastFloat”, 1f);
 editor.putInt(“wholeNumber”, 2);
 editor.putLong(“aNumber”, 3l);
 editor.putString(“textEntryValue”, “Not Empty”);

 // Commit the changes.
 editor.commit();
}

Retrieving Shared Preferences
Accessing saved Shared Preferences is also done with the getSharedPreferences method. Pass in the
name of the Shared Preference you want to access, and use the type-safe get<type> methods to extract
saved values.

Each getter takes a key and a default value (used when no value is available for that key), as shown in
the skeleton code below:

public void loadPreferences() {
 // Get the stored preferences
 int mode = Activity.MODE_PRIVATE;

44712c06.indd 16144712c06.indd 161 10/20/08 4:11:20 PM10/20/08 4:11:20 PM

162

Chapter 6: Data Storage, Retrieval, and Sharing

 SharedPreferences mySharedPreferences = getSharedPreferences(MYPREFS,
 mode);

 // Retrieve the saved values.
 boolean isTrue = mySharedPreferences.getBoolean(“isTrue”, false);
 float lastFloat = mySharedPreferences.getFloat(“lastFloat”, 0f);
 int wholeNumber = mySharedPreferences.getInt(“wholeNumber”, 1);
 long aNumber = mySharedPreferences.getLong(“aNumber”, 0);
 String stringPreference;
 stringPreference = mySharedPreferences.getString(“textEntryValue”,
 “”);
}

Saving the Activity State
If you want to save Activity information that doesn’t need to be shared with other components (e.g.,
class instance variables), you can call Activity.getPreferences() without specifying a preferences
name. Access to the Shared Preferences map returned is restricted to the calling Activity; each Activity
supports a single unnamed SharedPreferences object.

The following skeleton code shows how to use the Activity’s private Shared Preferences:

protected void saveActivityPreferences(){
 // Create or retrieve the activity preferences object.
 SharedPreferences activityPreferences =
 getPreferences(Activity.MODE_PRIVATE);

 // Retrieve an editor to modify the shared preferences.
 SharedPreferences.Editor editor = activityPreferences.edit();

 // Retrieve the View
 TextView myTextView = (TextView)findViewById(R.id.myTextView);

 // Store new primitive types in the shared preferences object.
 editor.putString(“currentTextValue”,
 myTextView.getText().toString());

 // Commit changes.
 editor.commit();
}

Saving and Restoring Instance State
To save Activity instance variables, Android offers a specialized alternative to Shared Preferences.

By overriding an Activity’s onSaveInstanceState event handler, you can use its Bundle parameter
to save instance values. Store values using the same get and put methods as shown for Shared Pref-
erences, before passing the modifi ed Bundle into the superclass’s handler, as shown in the following
code snippet:

private static final String TEXTVIEW_STATE_KEY = “TEXTVIEW_STATE_KEY”;

44712c06.indd 16244712c06.indd 162 10/20/08 4:11:20 PM10/20/08 4:11:20 PM

163

Chapter 6: Data Storage, Retrieval, and Sharing

@Override
public void onSaveInstanceState(Bundle outState) {
 // Retrieve the View
 TextView myTextView = (TextView)findViewById(R.id.myTextView);

 // Save its state
 outState.putString(TEXTVIEW_STATE_KEY,
 myTextView.getText().toString());
 super.onSaveInstanceState(outState);
}

This handler will be triggered whenever an Activity completes its Active life cycle, but only when it’s
not being explicitly fi nished. As a result, it’s used to ensure a consistent Activity state between active
life cycles of a single user session.

The saved Bundle is passed in to the onRestoreInstanceState and onCreate methods if the applica-
tion is forced to restart during a session. The following snippet shows how to extract values from the
Bundle and use them to update the Activity instance state:

@Override
public void onCreate(Bundle icicle) {
 super.onCreate(icicle);
 setContentView(R.layout.main);

 TextView myTextView = (TextView)findViewById(R.id.myTextView);

 String text = “”;
 if (icicle != null && icicle.containsKey(TEXTVIEW_STATE_KEY))
 text = icicle.getString(TEXTVIEW_STATE_KEY);

 myTextView.setText(text);
}

It’s important to remember that onSaveInstanceState is called only when an Activity becomes
inactive, but not when it is being closed by a call to fi nish or by the user pressing the Back button.

Saving the To-Do List Activity State
Currently, each time the To-Do List example application is restarted, all the to-do items are lost and any
text entered into the text entry box is cleared. In this example, you’ll start to save the application state of
the To-Do list application across sessions.

The instance state in the ToDoList Activity consists of three variables:

Is a new item being added? ❑

What text exists in the new item entry textbox? ❑

What is the currently selected item? ❑

Using the Activity’s default Shared Preference, you can store each of these values and update the UI
when the Activity is restarted.

44712c06.indd 16344712c06.indd 163 10/20/08 4:11:20 PM10/20/08 4:11:20 PM

164

Chapter 6: Data Storage, Retrieval, and Sharing

Later in this chapter, you’ll learn how to use the SQLite database to persist the to-do items as well. This
example is a fi rst step that shows how to ensure a seamless experience by saving Activity instance details.

 1. Start by adding static String variables to use as preference keys.

private static final String TEXT_ENTRY_KEY = “TEXT_ENTRY_KEY”;
private static final String ADDING_ITEM_KEY = “ADDING_ITEM_KEY”;
private static final String SELECTED_INDEX_KEY = “SELECTED_INDEX_KEY”;

 2. Next, override the onPause method. Get the Activity’s private Shared Preference object, and get
its Editor object.

Using the keys you created in Step 1, store the instance values based on whether a new item is
being added and any text in the “new item” Edit Box.

@Override
protected void onPause(){
 super.onPause();

 // Get the activity preferences object.
 SharedPreferences uiState = getPreferences(0);
 // Get the preferences editor.
 SharedPreferences.Editor editor = uiState.edit();

 // Add the UI state preference values.
 editor.putString(TEXT_ENTRY_KEY, myEditText.getText().toString());
 editor.putBoolean(ADDING_ITEM_KEY, addingNew);
 // Commit the preferences.
 editor.commit();
}

 3. Write a restoreUIState method that applies the instance values you recorded in Step 2 when
the application restarts.

Modify the onCreate method to add a call to the restoreUIState method at the very end.

@Override
public void onCreate(Bundle icicle) {
 [... existing onCreate logic ...]
 restoreUIState();
}

private void restoreUIState() {
 // Get the activity preferences object.
 SharedPreferences settings = getPreferences(Activity.MODE_PRIVATE);

 // Read the UI state values, specifying default values.
 String text = settings.getString(TEXT_ENTRY_KEY, “”);
 Boolean adding = settings.getBoolean(ADDING_ITEM_KEY, false);

 // Restore the UI to the previous state.
 if (adding) {
 addNewItem();
 myEditText.setText(text);
 }
}

44712c06.indd 16444712c06.indd 164 10/20/08 4:11:20 PM10/20/08 4:11:20 PM

165

Chapter 6: Data Storage, Retrieval, and Sharing

 4. Record the index of the selected item using the onSaveInstanceState / onRestore
InstanceState mechanism. It’s then only saved and applied if the application is killed without
the user’s explicit instruction.

@Override
public void onSaveInstanceState(Bundle outState) {
 outState.putInt(SELECTED_INDEX_KEY,
 myListView.getSelectedItemPosition());

 super.onSaveInstanceState(outState);
}

@Override
public void onRestoreInstanceState(Bundle savedInstanceState) {
 int pos = -1;

 if (savedInstanceState != null)
 if (savedInstanceState.containsKey(SELECTED_INDEX_KEY))
 pos = savedInstanceState.getInt(SELECTED_INDEX_KEY, -1);

 myListView.setSelection(pos);
}

When you run the To-Do List application, you should now see the UI state persisted across sessions.
That said, it still won’t persist the to-do list items — you’ll add this essential piece of functionality later
in the chapter.

Creating a Preferences Page for the Earthquake Viewer
In Chapter 5, you created an earthquake monitor that showed a list of recent earthquakes based on an
Internet feed.

In the following example, you’ll create a Preferences page for this earthquake viewer that lets users
confi gure application settings for a more personalized experience. You’ll provide the option to toggle
automatic updates, control the frequency of updates, and fi lter the minimum earthquake magnitude
displayed.

Later in this chapter, you’ll extend this example further by creating a Content Provider to save and
share earthquake data with other applications.

 1. Open the Earthquake project you created in Chapter 5.

Add new String resources for the labels displayed in the “Preferences” screen. Also, add a String
for the new Menu Item that will let users access the Preferences screen.

<?xml version=”1.0” encoding=”utf-8”?>
<resources>
 <string name=”app_name”>Earthquake</string>
 <string name=”quake_feed”>
 http://earthquake.usgs.gov/eqcenter/catalogs/1day-M2.5.xml
 </string>
 <string name=”menu_update”>Refresh Earthquakes</string>

44712c06.indd 16544712c06.indd 165 10/20/08 4:11:20 PM10/20/08 4:11:20 PM

166

Chapter 6: Data Storage, Retrieval, and Sharing

 <string name=”auto_update_prompt”>Auto Update?</string>
 <string name=”update_freq_prompt”>Update Frequency</string>
 <string name=”min_quake_mag_prompt”>Minimum Quake Magnitude</string>
 <string name=”menu_preferences”>Preferences</string>
</resources>

 2. Create a new preferences.xml layout resource that lays out the UI for the Preferences Activ-
ity. Include a checkbox for indicating the “automatic update” toggle, and spinners to select the
update rate and magnitude fi lter.

<LinearLayout
 xmlns:android=”http://schemas.android.com/apk/res/android”
 android:orientation=”vertical”
 android:layout_width=”fill_parent”
 android:layout_height=”fill_parent”>
 <TextView
 android:layout_width=”fill_parent”
 android:layout_height=”wrap_content”
 android:text=”@string/auto_update_prompt”
 />
 <CheckBox android:id=”@+id/checkbox_auto_update”
 android:layout_width=”fill_parent”
 android:layout_height=”wrap_content”
 />
 <TextView
 android:layout_width=”fill_parent”
 android:layout_height=”wrap_content”
 android:text=”@string/update_freq_prompt”
 />
 <Spinner
 android:id=”@+id/spinner_update_freq”
 android:layout_width=”fill_parent”
 android:layout_height=”wrap_content”
 android:drawSelectorOnTop=”true”
 />
 <TextView
 android:layout_width=”fill_parent”
 android:layout_height=”wrap_content”
 android:text=”@string/min_quake_mag_prompt”
 />
 <Spinner
 android:id=”@+id/spinner_quake_mag”
 android:layout_width=”fill_parent”
 android:layout_height=”wrap_content”
 android:drawSelectorOnTop=”true”
 />
 <LinearLayout
 android:orientation=”horizontal”
 android:layout_width=”fill_parent”
 android:layout_height=”wrap_content”>
 <Button

44712c06.indd 16644712c06.indd 166 10/20/08 4:11:20 PM10/20/08 4:11:20 PM

167

Chapter 6: Data Storage, Retrieval, and Sharing

 android:id=”@+id/okButton”
 android:layout_width=”wrap_content”
 android:layout_height=”wrap_content”
 android:text=”@android:string/ok”
 />
 <Button
 android:id=”@+id/cancelButton”
 android:layout_width=”wrap_content”
 android:layout_height=”wrap_content”
 android:text=”@android:string/cancel”
 />
 </LinearLayout>
</LinearLayout>

 3. Create four new array resources in a new res/values/arrays.xml fi le. They will provide the
values to use for the update frequency and minimum magnitude fi lter.

<?xml version=”1.0” encoding=”utf-8”?>
<resources>
 <string-array name=”update_freq_options”>
 <item>Every Minute</item>
 <item>5 minutes</item>
 <item>10 minutes</item>
 <item>15 minutes</item>
 <item>Every Hour</item>
 </string-array>

 <array name=”magnitude”>
 <item>3</item>
 <item>5</item>
 <item>6</item>
 <item>7</item>
 <item>8</item>
 </array>

 <string-array name=”magnitude_options”>
 <item>3</item>
 <item>5</item>
 <item>6</item>
 <item>7</item>
 <item>8</item>
 </string-array>

 <array name=”update_freq_values”>
 <item>1</item>
 <item>5</item>
 <item>10</item>
 <item>15</item>
 <item>60</item>
 </array>
</resources>

44712c06.indd 16744712c06.indd 167 10/20/08 4:11:20 PM10/20/08 4:11:20 PM

168

Chapter 6: Data Storage, Retrieval, and Sharing

 4. Create the Preferences Activity. It will be used to display the application preferences.

Override onCreate to infl ate the layout you created in Step 2, and get references to the
Checkbox and both Spinner controls. Then make a call to the populateSpinners stub.

package com.paad.earthquake;

import android.app.Activity;
import android.content.SharedPreferences;
import android.content.SharedPreferences.Editor;
import android.os.Bundle;
import android.view.View;
import android.widget.ArrayAdapter;
import android.widget.Button;
import android.widget.CheckBox;
import android.widget.Spinner;

public class Preferences extends Activity {

 CheckBox autoUpdate;
 Spinner updateFreqSpinner;
 Spinner magnitudeSpinner;

 @Override
 public void onCreate(Bundle icicle) {
 super.onCreate(icicle);
 setContentView(R.layout.preferences);

 updateFreqSpinner =
 (Spinner)findViewById(R.id.spinner_update_freq);
 magnitudeSpinner = (Spinner)findViewById(R.id.spinner_quake_mag);
 autoUpdate = (CheckBox)findViewById(R.id.checkbox_auto_update);

 populateSpinners();
 }

 private void populateSpinners() {
 }
}

 5. Fill in the populateSpinners method, using Array Adapters to bind each Spinner to its corre-
sponding array.

private void populateSpinners() {
 // Populate the update frequency spinner
 ArrayAdapter<CharSequence> fAdapter;
 fAdapter = ArrayAdapter.createFromResource(this,
 R.array.update_freq_options,
 android.R.layout.simple_spinner_item);
 fAdapter.setDropDownViewResource(
 android.R.layout.simple_spinner_dropdown_item);

44712c06.indd 16844712c06.indd 168 10/20/08 4:11:20 PM10/20/08 4:11:20 PM

169

Chapter 6: Data Storage, Retrieval, and Sharing

 updateFreqSpinner.setAdapter(fAdapter);

 // Populate the minimum magnitude spinner
 ArrayAdapter<CharSequence> mAdapter;
 mAdapter = ArrayAdapter.createFromResource(this,
 R.array.magnitude_options,
 android.R.layout.simple_spinner_item);
 mAdapter.setDropDownViewResource(
 android.R.layout.simple_spinner_dropdown_item);

 magnitudeSpinner.setAdapter(mAdapter);
}

 6. Add public static String values to use to identify the named Shared Preference you’re going to cre-
ate, and the keys it will use to store each preference value. Update the onCreate method to retrieve
the named preference and call updateUIFromPreferences. The updateUIFrom Preferences
method uses the get<type> methods on the Shared Preference object to retrieve each preference
value and apply it to the current UI.

public static final String USER_PREFERENCE = “USER_PREFERENCES”;

public static final String PREF_AUTO_UPDATE = “PREF_AUTO_UPDATE”;
public static final String PREF_MIN_MAG = “PREF_MIN_MAG”;
public static final String PREF_UPDATE_FREQ = “PREF_UPDATE_FREQ”;

SharedPreferences prefs;

@Override
public void onCreate(Bundle icicle) {
 super.onCreate(icicle);
 setContentView(R.layout.preferences);

 updateFreqSpinner = (Spinner)findViewById(R.id.spinner_update_freq);
 magnitudeSpinner = (Spinner)findViewById(R.id.spinner_quake_mag);
 autoUpdate = (CheckBox)findViewById(R.id.checkbox_auto_update);

 populateSpinners();

 prefs = getSharedPreferences(USER_PREFERENCE, Activity.MODE_PRIVATE);
 updateUIFromPreferences();
}

private void updateUIFromPreferences() {
 boolean autoUpChecked = prefs.getBoolean(PREF_AUTO_UPDATE, false);
 int updateFreqIndex = prefs.getInt(PREF_UPDATE_FREQ, 2);
 int minMagIndex = prefs.getInt(PREF_MIN_MAG, 0);

 updateFreqSpinner.setSelection(updateFreqIndex);
 magnitudeSpinner.setSelection(minMagIndex);
 autoUpdate.setChecked(autoUpChecked);
}

44712c06.indd 16944712c06.indd 169 10/20/08 4:11:20 PM10/20/08 4:11:20 PM

170

Chapter 6: Data Storage, Retrieval, and Sharing

 7. Still in the onCreate method, add event handlers for the OK and Cancel buttons. Cancel should
close the Activity, while OK should call savePreferences fi rst.

@Override
public void onCreate(Bundle icicle) {
 super.onCreate(icicle);
 setContentView(R.layout.preferences);

 updateFreqSpinner = (Spinner)findViewById(R.id.spinner_update_freq);
 magnitudeSpinner = (Spinner)findViewById(R.id.spinner_quake_mag);
 autoUpdate = (CheckBox)findViewById(R.id.checkbox_auto_update);

 populateSpinners();

 prefs = getSharedPreferences(USER_PREFERENCE, Activity.MODE_PRIVATE);
 updateUIFromPreferences();

 Button okButton = (Button) findViewById(R.id.okButton);
 okButton.setOnClickListener(new View.OnClickListener() {

 public void onClick(View view) {
 savePreferences();
 Preferences.this.setResult(RESULT_OK);
 finish();
 }
 });

 Button cancelButton = (Button) findViewById(R.id.cancelButton);
 cancelButton.setOnClickListener(new View.OnClickListener() {

 public void onClick(View view) {
 Preferences.this.setResult(RESULT_CANCELED);
 finish();
 }
 });
}

private void savePreferences() {
}

 8. Fill in the savePreferences method to record the current preferences, based on the UI selec-
tions, to the Shared Preference object.

private void savePreferences() {
 int updateIndex = updateFreqSpinner.getSelectedItemPosition();
 int minMagIndex = magnitudeSpinner.getSelectedItemPosition();
 boolean autoUpdateChecked = autoUpdate.isChecked();

 Editor editor = prefs.edit();
 editor.putBoolean(PREF_AUTO_UPDATE, autoUpdateChecked);
 editor.putInt(PREF_UPDATE_FREQ, updateIndex);
 editor.putInt(PREF_MIN_MAG, minMagIndex);
 editor.commit();
}

44712c06.indd 17044712c06.indd 170 10/20/08 4:11:20 PM10/20/08 4:11:20 PM

171

Chapter 6: Data Storage, Retrieval, and Sharing

 9. That completes the Preferences Activity. Make it accessible in the application by adding it to
the application manifest.

<activity android:name=”.Preferences”
 android:label=”Earthquake Preferences”>
</activity>

 10. Now return to the Earthquake Activity, and add support for the new Shared Preferences fi le
and a Menu Item to display the Preferences Activity.

Start by adding the new Menu Item. Extend the onCreateOptionsMenu method to include a
new item that opens the Preferences Activity.

static final private int MENU_PREFERENCES = Menu.FIRST+1;

@Override
public boolean onCreateOptionsMenu(Menu menu) {
 super.onCreateOptionsMenu(menu);

 menu.add(0, MENU_UPDATE, Menu.NONE, R.string.menu_update);
 menu.add(0, MENU_PREFERENCES, Menu.NONE, R.string.menu_preferences);

 return true;
}

 11. Modify the onOptionsItemSelected method to display the Preferences Activity when the new
Menu Item is selected. Create an explicit Intent, and pass it in to the startActivityForResult
method. This will launch the Preferences screen and alert the Earthquake class when the prefer-
ences are saved through the onActivityResult handler.

private static final int SHOW_PREFERENCES = 1;

public boolean onOptionsItemSelected(MenuItem item) {
 super.onOptionsItemSelected(item);

 switch (item.getItemId()) {
 case (MENU_UPDATE): {
 refreshEarthquakes();
 return true;
 }
 case (MENU_PREFERENCES): {
 Intent i = new Intent(this, Preferences.class);
 startActivityForResult(i, SHOW_PREFERENCES);
 return true;
 }
 }
 return false;
}

 12. Launch your application, and select Preferences from the Activity menu. The Preferences Activ-
ity should be displayed as shown in Figure 6-1.

44712c06.indd 17144712c06.indd 171 10/20/08 4:11:20 PM10/20/08 4:11:20 PM

172

Chapter 6: Data Storage, Retrieval, and Sharing

Figure 6-1

 13. All that’s left is to apply the preferences to the Earthquake functionality.

Implementing the automatic updates will be left until Chapter 8, when you’ll learn how to use
Services and background threads. For now, you can put the framework in place and apply the
magnitude fi lter.

 14. Start by creating a new updateFromPreferences method that reads the Shared Preference val-
ues and creates instance variables for each of them.

int minimumMagnitude = 0;
boolean autoUpdate = false;
int updateFreq = 0;

private void updateFromPreferences() {
 SharedPreferences prefs =
 getSharedPreferences(Preferences.USER_PREFERENCE,
 Activity.MODE_PRIVATE);

 int minMagIndex = prefs.getInt(Preferences.PREF_MIN_MAG, 0);
 if (minMagIndex < 0)
 minMagIndex = 0;

 int freqIndex = prefs.getInt(Preferences.PREF_UPDATE_FREQ, 0);
 if (freqIndex < 0)
 freqIndex = 0;

 autoUpdate = prefs.getBoolean(Preferences.PREF_AUTO_UPDATE, false);

 Resources r = getResources();

44712c06.indd 17244712c06.indd 172 10/20/08 4:11:20 PM10/20/08 4:11:20 PM

173

Chapter 6: Data Storage, Retrieval, and Sharing

 // Get the option values from the arrays.
 int[] minMagValues = r.getIntArray(R.array.magnitude);
 int[] freqValues = r.getIntArray(R.array.update_freq_values);

 // Convert the values to ints.
 minimumMagnitude = minMagValues[minMagIndex];
 updateFreq = freqValues[freqIndex];
}

 15. Apply the magnitude fi lter by updating the addNewQuake method to check a new earthquake’s
magnitude before adding it to the list.

private void addNewQuake(Quake _quake) {
 if (_quake.getMagnitude() > minimumMagnitude) {
 // Add the new quake to our list of earthquakes.
 earthquakes.add(_quake);

 // Notify the array adapter of a change.
 aa.notifyDataSetChanged();
 }
}

 16. Override the onActivityResult handler to call updateFromPreferences and refresh the
earthquakes whenever the Preferences Activity saves changes.

@Override
public void onActivityResult(int requestCode, int resultCode,
 Intent data) {
 super.onActivityResult(requestCode, resultCode, data);

 if (requestCode == SHOW_PREFERENCES)
 if (resultCode == Activity.RESULT_OK) {
 updateFromPreferences();
 refreshEarthquakes();
 }
}

 17. Finally, call updateFromPreferences in onCreate (before the call to refreshEarthquakes)
to ensure that the preferences are applied when the Activity fi rst starts.

@Override
public void onCreate(Bundle icicle) {
 super.onCreate(icicle);
 setContentView(R.layout.main);

 earthquakeListView =
 (ListView)this.findViewById(R.id.earthquakeListView);

 earthquakeListView.setOnItemClickListener(new OnItemClickListener() {

 public void onItemClick(AdapterView _av, View _v,
 int _index, long arg3) {
 selectedQuake = earthquakes.get(_index);
 showDialog(QUAKE_DIALOG);

44712c06.indd 17344712c06.indd 173 10/20/08 4:11:20 PM10/20/08 4:11:20 PM

174

Chapter 6: Data Storage, Retrieval, and Sharing

 }
 });

 int layoutID = android.R.layout.simple_list_item_1;
 aa = new ArrayAdapter<Quake>(this, layoutID, earthquakes);
 earthquakeListView.setAdapter(aa);

 updateFromPreferences();
 refreshEarthquakes();
}

Saving and Loading Files
It’s good practice to use Shared Preferences or a database to store your application data, but there are
still times when you’ll want to use fi les directly rather than rely on Android’s managed mechanisms.

As well as the standard Java I/O classes and methods, Android offers openFileInput and
openFileOuput to simplify reading and writing streams from and to local fi les, as shown in the
code snippet below:

String FILE_NAME = “tempfile.tmp”;

// Create a new output file stream that’s private to this application.
FileOutputStream fos = openFileOutput(FILE_NAME, Context.MODE_PRIVATE);
// Create a new file input stream.
FileInputStream fis = openFileInput(FILE_NAME);

These methods only support fi les in the current application folder; specifying path separators will
cause an exception to be thrown.

If the fi lename you specify when creating a FileOutputStream does not exist, Android will create it
for you. The default behavior for existing fi les is to overwrite them; to append an existing fi le, specify
the mode as Context.MODE_APPEND.

By default, fi les created using the openFileOutput method are private to the calling application —
a different application that tries to access these fi les will be denied access. The standard way to
share a fi le between applications is to use a Content Provider. Alternatively, you can specify either
Context.MODE_WORLD_READABLE or Context.MODE_WORLD_WRITEABLE when creating the output
fi le to make them available in other applications, as shown in the following snippet:

String OUTPUT_FILE = “publicCopy.txt”;
FileOutputStream fos = openFileOutput(OUTPUT_FILE, Context.MODE_WORLD_WRITEABLE);

Including Static Files as Resources
If your application requires external fi le resources, you can include them in your distribution package
by placing them in the res/raw folder of your project hierarchy.

44712c06.indd 17444712c06.indd 174 10/20/08 4:11:20 PM10/20/08 4:11:20 PM

175

Chapter 6: Data Storage, Retrieval, and Sharing

To access these Read Only fi le resources, call the openRawResource method from your application’s
Resource object to receive an InputStream based on the specifi ed resource. Pass in the fi lename
(without extension) as the variable name from the R.raw class, as shown in the skeleton code below:

Resources myResources = getResources();
InputStream myFile = myResources.openRawResource(R.raw.myfilename);

Adding raw fi les to your resources hierarchy is an excellent alternative for large, preexisting data
sources (such as dictionaries) where it’s not desirable (or even possible) to convert them into an
Android database.

Android’s resource mechanism lets you specify alternative resource fi les for different languages,
locations, or hardware confi gurations. As a result, you could, for example, create an application that
dynamically loads a dictionary resource based on the user’s current settings.

File Management Tools
Android supplies some basic fi le management tools to help you deal with the fi lesystem. Many of these
utilities are located within the standard java.io.File package.

Complete coverage of Java fi le management utilities is beyond the scope of this book, but Android does
supply some specialized utilities for fi le management available from the application’s Context.

deleteFile ❑ Lets you remove fi les created by the current application.

fileList ❑ Returns a String array that includes all the fi les created by the current application.

Databases in Android
Android provides full relational database capabilities through the SQLite library, without imposing any
additional limitations.

Using SQLite, you can create independent, relational databases for each application. Use them to store
and manage complex, structured application data.

All Android databases are stored in the /data/data/<package_name>/databases folder on your
device (or emulator). By default, all databases are private, accessible only by the application that created
them. To share a database across applications, use Content Providers, as shown later in this chapter.

Database design is a vast topic that deserves more thorough coverage than is possible within this book.
However, it’s worth highlighting that standard database best practices still apply. In particular, when
creating databases for resource-constrained devices, it’s important to reduce data redundancy using
normalization.

The following sections focus on the practicalities of creating and managing SQLite databases in Android.

44712c06.indd 17544712c06.indd 175 10/20/08 4:11:20 PM10/20/08 4:11:20 PM

176

Chapter 6: Data Storage, Retrieval, and Sharing

Introducing SQLite
SQLite is a relational database management system (RDBMS). It is well regarded, being:

Open source ❑

Standards-compliant ❑

Lightweight ❑

Single-tier ❑

 It has been implemented as a compact C library that’s included as part of the Android software stack.

By providing functionality through a library, rather than as a separate process, each database becomes
an integrated part of the application that created it. This reduces external dependencies, minimizes
latency, and simplifi es transaction locking and synchronization.

SQLite has a reputation of being extremely reliable and is the database system of choice for many con-
sumer electronic devices, including several MP3 players, the iPhone, and the iPod Touch.

Lightweight and powerful, SQLite differs from many conventional database engines by using a loosely
typed approach to column defi nitions. Rather than requiring column values to conform to a single type,
the values in each row for each column are individually typed. As a result, there’s no strict type check-
ing when assigning or extracting values from each column within a row.

For more comprehensive coverage of SQLite, including its particular strengths and limitations, check
out the offi cial site at www.sqlite.org/.

Cursors and Content Values
ContentValues objects are used to insert new rows into database tables (and Content Providers). Each
Content Values object represents a single row, as a map of column names to values.

Queries in Android are returned as Cursor objects. Rather than extracting and returning a copy of the
result values, Cursors act as pointers to a subset of the underlying data. Cursors are a managed way
of controlling your position (row) in the result set of a database query.

The Cursor class includes several functions to navigate query results including, but not limited to, the
following:

moveToFirst ❑ Moves the cursor to the fi rst row in the query result.

moveToNext ❑ Moves the cursor to the next row.

moveToPrevious ❑ Moves the cursor to the previous row.

getCount ❑ Returns the number of rows in the result set.

getColumnIndexOrThrow ❑ Returns an index for the column with the specifi ed name (throw-
ing an exception if no column exists with that name).

getColumnName ❑ Returns the name of the specifi ed column index.

getColumnNames ❑ Returns a String array of all the column names in the current cursor.

44712c06.indd 17644712c06.indd 176 10/20/08 4:11:21 PM10/20/08 4:11:21 PM

177

Chapter 6: Data Storage, Retrieval, and Sharing

moveToPosition ❑ Moves the cursor to the specifi ed row.

getPosition ❑ Returns the current cursor position.

Android provides a mechanism to manage Cursor resources within your Activities. The
startManagingCursor method integrates the Cursor’s lifetime into the parent Activity’s lifetime
management. When you’ve fi nished with the Cursor, call stopManagingCursor to do just that.

Later in this chapter, you’ll learn how to query a database and how to extract specifi c row/column val-
ues from the resulting Cursor objects.

Working with Android Databases
It’s good practice to create a helper class to simplify your database interactions.

Consider creating a database adapter, which adds an abstraction layer that encapsulates database inter-
actions. It should provide intuitive, strongly typed methods for adding, removing, and updating items.
A database adapter should also handle queries and wrap creating, opening, and closing the database.

It’s often also used as a convenient location from which to publish static database constants, including
table names, column names, and column indexes.

The following snippet shows the skeleton code for a standard database adapter class. It includes an exten-
sion of the SQLiteOpenHelper class, used to simplify opening, creating, and upgrading the database.

import android.content.Context;
import android.database.*;
import android.database.sqlite.*;
import android.database.sqlite.SQLiteDatabase.CursorFactory;
import android.util.Log;

public class MyDBAdapter {
 private static final String DATABASE_NAME = “myDatabase.db”;
 private static final String DATABASE_TABLE = “mainTable”;
 private static final int DATABASE_VERSION = 1;

 // The index (key) column name for use in where clauses.
 public static final String KEY_ID=”_id”;

 // The name and column index of each column in your database.
 public static final String KEY_NAME=”name”;
 public static final int NAME_COLUMN = 1;
 // TODO: Create public field for each column in your table.

 // SQL Statement to create a new database.
 private static final String DATABASE_CREATE = “create table “ +
 DATABASE_TABLE + “ (“ + KEY_ID +
 “ integer primary key autoincrement, “ +
 KEY_NAME + “ text not null);”;

 // Variable to hold the database instance
 private SQLiteDatabase db;

 // Context of the application using the database.

44712c06.indd 17744712c06.indd 177 10/20/08 4:11:21 PM10/20/08 4:11:21 PM

178

Chapter 6: Data Storage, Retrieval, and Sharing

 private final Context context;
 // Database open/upgrade helper
 private myDbHelper dbHelper;

 public MyDBAdapter(Context _context) {
 context = _context;
 dbHelper = new myDbHelper(context, DATABASE_NAME, null,
 DATABASE_VERSION);
 }

 public MyDBAdapter open() throws SQLException {
 db = dbHelper.getWritableDatabase();
 return this;
 }

 public void close() {
 db.close();
 }

 public long insertEntry(MyObject _myObject) {
 ContentValues contentValues = new ContentValues();
 // TODO fill in ContentValues to represent the new row
 return db.insert(DATABASE_TABLE, null, contentValues);
 }

 public boolean removeEntry(long _rowIndex) {
 return db.delete(DATABASE_TABLE, KEY_ID +
 “=” + _rowIndex, null) > 0;
 }

 public Cursor getAllEntries () {
 return db.query(DATABASE_TABLE, new String[] {KEY_ID, KEY_NAME},
 null, null, null, null, null);
 }

 public MyObject getEntry(long _rowIndex) {
 MyObject objectInstance = new MyObject();
 // TODO Return a cursor to a row from the database and
 // use the values to populate an instance of MyObject
 return objectInstance;
 }

 public int updateEntry(long _rowIndex, MyObject _myObject) {
 String where = KEY_ID + “=” + _rowIndex;
 ContentValues contentValues = new ContentValues();
 // TODO fill in the ContentValue based on the new object
 return db.update(DATABASE_TABLE, contentValues, where, null);
 }

 private static class myDbHelper extends SQLiteOpenHelper {

 public myDbHelper(Context context, String name,
 CursorFactory factory, int version) {

44712c06.indd 17844712c06.indd 178 10/20/08 4:11:21 PM10/20/08 4:11:21 PM

179

Chapter 6: Data Storage, Retrieval, and Sharing

 super(context, name, factory, version);
 }

 // Called when no database exists in
 // disk and the helper class needs
 // to create a new one.
 @Override
 public void onCreate(SQLiteDatabase _db) {
 _db.execSQL(DATABASE_CREATE);
 }

 // Called when there is a database version mismatch meaning that
 // the version of the database on disk needs to be upgraded to
 // the current version.
 @Override
 public void onUpgrade(SQLiteDatabase _db, int _oldVersion,
 int _newVersion) {
 // Log the version upgrade.
 Log.w(“TaskDBAdapter”, “Upgrading from version “ +
 _oldVersion + “ to “ +
 _newVersion +
 “, which will destroy all old data”);

 // Upgrade the existing database to conform to the new version.
 // Multiple previous versions can be handled by comparing
 // _oldVersion and _newVersion values.

 // The simplest case is to drop the old table and create a
 // new one.
 _db.execSQL(“DROP TABLE IF EXISTS “ + DATABASE_TABLE);
 // Create a new one.
 onCreate(_db);
 }
 }
}

Using the SQLiteOpenHelper
SQLiteOpenHelper is an abstract class that wraps up the best practice pattern for creating, opening,
and upgrading databases. By implementing and using an SQLiteOpenHelper, you hide the logic used
to decide if a database needs to be created or upgraded before it’s opened.

The code snippet above shows how to extend the SQLiteOpenHelper class by overriding the construc-
tor, onCreate, and onUpgrade methods to handle the creation of a new database and upgrading to a
new version, respectively.

In the previous example, onUpgrade simply drops the existing table and replaces it with the new defi -
nition. In practice, a better solution is to migrate existing data into the new table.

To use an implementation of the helper class, create a new instance, passing in the context, database
name, current version, and a CursorFactory (if you’re using one).

44712c06.indd 17944712c06.indd 179 10/20/08 4:11:21 PM10/20/08 4:11:21 PM

180

Chapter 6: Data Storage, Retrieval, and Sharing

Call getReadableDatabase or getWriteableDatabase to open and return a readable/writable
instance of the database.

A call to getWriteableDatabase can fail because of disk space or permission issues, so it’s good prac-
tice to provide fallback to the getReadableDatabase method as shown below:

dbHelper = new myDbHelper(context, DATABASE_NAME, null, DATABASE_VERSION);

SQLiteDatabase db;
try {
 db = dbHelper.getWritableDatabase();
}
catch (SQLiteException ex){
 db = dbHelper.getReadableDatabase();
}

Behind the scenes, if the database doesn’t exist, the helper executes its onCreate handler. If the database
version has changed, the onUpgrade handler will fi re. In both cases, the get<read/write>ableDatabase
call will return the existing, newly created, or upgraded database as appropriate.

Opening and Creating Databases without the SQLiteHelper
You can create and open databases without using the SQLiteHelper class with the
openOrCreateDatabase method on the application Context.

Setting up a database is a two-step process. First, call openOrCreateDatabase to create the new data-
base. Then, call execSQL on the resulting database instance to run the SQL commands that will create
your tables and their relationships. The general process is shown in the snippet below:

private static final String DATABASE_NAME = “myDatabase.db”;
private static final String DATABASE_TABLE = “mainTable”;

private static final String DATABASE_CREATE =
 “create table “ + DATABASE_TABLE +
 “ (_id integer primary key autoincrement,” +
 “column_one text not null);”;

SQLiteDatabase myDatabase;

private void createDatabase() {
 myDatabase = openOrCreateDatabase(DATABASE_NAME,
 Context.MODE_PRIVATE, null);
 myDatabase.execSQL(DATABASE_CREATE);
}

Android Database Design Considerations
There are several considerations specifi c to Android that you should consider when designing your database:

Files (such as bitmaps or audio fi les) are not usually stored within database tables. Instead, use ❑

a string to store a path to the fi le, preferably a fully qualifi ed Content Provider URI.

While not strictly a requirement, it’s strongly recommended that all tables include an auto- ❑

increment key fi eld, to function as a unique index value for each row. It’s worth noting that if
you plan to share your table using a Content Provider, this unique ID fi eld is mandatory.

44712c06.indd 18044712c06.indd 180 10/20/08 4:11:21 PM10/20/08 4:11:21 PM

181

Chapter 6: Data Storage, Retrieval, and Sharing

Querying Your Database
All database queries are returned as a Cursor to a result set. This lets Android manage resources more
effi ciently by retrieving and releasing row and column values on demand.

To execute a query on a database, use the query method on the database object, passing in:

An optional Boolean that specifi es if the result set should contain only unique values ❑

The name of the table to query ❑

A projection, as an array of ❑ Strings, that lists the columns to include in the result set

A “where” clause that defi nes the rows to be returned. You can include ❑ ? wildcards that will be
replaced by the values stored in the selection argument parameter.

An array of selection argument strings that will replace the ❑ ?’s in the “where” clause

A “group by” clause that defi nes how the resulting rows will be grouped ❑

A “having” fi lter that defi nes which row groups to include if you specifi ed a “group by” clause ❑

A ❑ String that describes the order of the returned rows

An optional ❑ String that defi nes a limit to the returned rows

The following skeleton code shows snippets for returning some, and all, of the rows in a particular table:

// Return all rows for columns one and three, no duplicates
String[] result_columns = new String[] {KEY_ID, KEY_COL1, KEY_COL3};

Cursor allRows = myDatabase.query(true, DATABASE_TABLE, result_columns,
 null, null, null, null, null, null);

// Return all columns for rows where column 3 equals a set value
// and the rows are ordered by column 5.
String where = KEY_COL3 + “=” + requiredValue;
String order = KEY_COL5;
Cursor myResult = myDatabase.query(DATABASE_TABLE, null, where,
 null, null, null, order);

In practice, it’s often useful to abstract these query commands within an adapter class to simplify
data access.

Extracting Results from a Cursor
To extract actual values from a result Cursor, fi rst use the moveTo<location> methods described pre-
viously to position the Cursor at the correct row of the result set.

With the Cursor at the desired row, use the type-safe get methods (passing in a column index) to
return the value stored at the current row for the specifi ed column, as shown in the following snippet:

String columnValue = myResult.getString(columnIndex);

Database implementations should publish static constants that provide the column indexes using more
easily recognizable variables based on the column names. They are generally exposed within a database
adapter as described previously.

44712c06.indd 18144712c06.indd 181 10/20/08 4:11:21 PM10/20/08 4:11:21 PM

182

Chapter 6: Data Storage, Retrieval, and Sharing

The following example shows how to iterate over a result cursor, extracting and summing a column
of fl oats:

int GOLD_HOARDED_COLUMN = 2;
Cursor myGold = myDatabase.query(“GoldHoards”, null, null, null, null,
 null, null);
float totalHoard = 0f;

// Make sure there is at least one row.
if (myGold.moveToFirst()) {
 // Iterate over each cursor.
 do {
 float hoard = myGold.getFloat(GOLD_HOARDED_COLUMN);
 totalHoard += hoard;
 } while(myGold.moveToNext());
}

float averageHoard = totalHoard / myGold.getCount();

Because SQLite database columns are loosely typed, you can cast individual values into valid types as
required. For example, values stored as floats can be read back as Strings.

Adding, Updating, and Removing Rows
The SQLiteDatabase class exposes specialized insert, delete, and update methods to encapsulate
the SQL statements required to perform these actions. Nonetheless, the execSQL method lets you exe-
cute any valid SQL on your database tables should you want to execute these operations manually.

Any time you modify the underlying database values, you should call refreshQuery on any Cursors
that currently have a view on the table.

Inserting New Rows

To create a new row, construct a ContentValues object, and use its put methods to supply values for
each column. Insert the new row by passing the Content Values object into the insert method called
on the target database object — along with the table name — as shown in the snippet below:

// Create a new row of values to insert.
ContentValues newValues = new ContentValues();

// Assign values for each row.
newValues.put(COLUMN_NAME, newValue);
[... Repeat for each column ...]

// Insert the row into your table
myDatabase.insert(DATABASE_TABLE, null, newValues);

Updating a Row on the Database

Updating rows is also done using Content Values.

44712c06.indd 18244712c06.indd 182 10/20/08 4:11:21 PM10/20/08 4:11:21 PM

183

Chapter 6: Data Storage, Retrieval, and Sharing

Create a new ContentValues object, using the put methods to assign new values to each column you
want to update. Call update on the database object, passing in the table name, the updated Content Val-
ues object, and a where statement that returns the row(s) to update.

The update process is demonstrated in the snippet below:

// Define the updated row content.
ContentValues updatedValues = new ContentValues();

// Assign values for each row.
updatedValues.put(COLUMN_NAME, newValue);
[... Repeat for each column ...]

String where = KEY_ID + “=” + rowId;

// Update the row with the specified index with the new values.
myDatabase.update(DATABASE_TABLE, updatedValues, where, null);

Deleting Rows

To delete a row, simply call delete on your database object, specifying the table name and a where
clause that returns the rows you want to delete, as shown in the code below:

myDatabase.delete(DATABASE_TABLE, KEY_ID + “=” + rowId, null);

Saving Your To-Do List
Previously in this chapter, you enhanced the To-Do List example to persist the Activity’s UI state across
sessions. That was only half the job; in the following example, you’ll create a private database to save
the to-do items:

 1. Start by creating a new ToDoDBAdapter class. It will be used to manage your database
interactions.

Create private variables to store the SQLiteDatabase object and the Context of the calling
application. Add a constructor that takes the owner application’s Context, and include static
class variables for the name and version of the database and a name for the to-do item table.

package com.paad.todolist;

import android.content.ContentValues;
import android.content.Context;
import android.database.Cursor;
import android.database.SQLException;
import android.database.sqlite.SQLiteException;
import android.database.sqlite.SQLiteDatabase;
import android.database.sqlite.SQLiteOpenHelper;
import android.util.Log;

public class ToDoDBAdapter {
 private static final String DATABASE_NAME = “todoList.db”;
 private static final String DATABASE_TABLE = “todoItems”;
 private static final int DATABASE_VERSION = 1;

 private SQLiteDatabase db;

44712c06.indd 18344712c06.indd 183 10/20/08 4:11:21 PM10/20/08 4:11:21 PM

184

Chapter 6: Data Storage, Retrieval, and Sharing

 private final Context context;

 public ToDoDBAdapter(Context _context) {
 this.context = _context;
 }
}

 2. Create public convenience variables that defi ne the column names and indexes; this will make it
easier to fi nd the correct columns when extracting values from query result Cursors.

public static final String KEY_ID = “_id”;

public static final String KEY_TASK = “task”;
public static final int TASK_COLUMN = 1;

public static final String KEY_CREATION_DATE = “creation_date”;
public static final int CREATION_DATE_COLUMN = 2;

 3. Create a new taskDBOpenHelper class within the ToDoDBAdapter that extends
SQLiteOpenHelper. It will be used to simplify version management of your database.

Within it, overwrite the onCreate and onUpgrade methods to handle the database creation and
upgrade logic.

private static class toDoDBOpenHelper extends SQLiteOpenHelper {

 public toDoDBOpenHelper(Context context, String name,
 CursorFactory factory, int version) {
 super(context, name, factory, version);
 }

 // SQL Statement to create a new database.
 private static final String DATABASE_CREATE = “create table “ +
 DATABASE_TABLE + “ (“ + KEY_ID +
 “ integer primary key autoincrement, “ +
 KEY_TASK + “ text not null, “ + KEY_CREATION_DATE + “ long);”;

 @Override
 public void onCreate(SQLiteDatabase _db) {
 _db.execSQL(DATABASE_CREATE);
 }

 @Override
 public void onUpgrade(SQLiteDatabase _db, int _oldVersion,
 int _newVersion) {
 Log.w(“TaskDBAdapter”, “Upgrading from version “ +
 _oldVersion + “ to “ +
 _newVersion +
 “, which will destroy all old data”);

 // Drop the old table.
 _db.execSQL(“DROP TABLE IF EXISTS “ + DATABASE_TABLE);
 // Create a new one.
 onCreate(_db);
 }
}

44712c06.indd 18444712c06.indd 184 10/20/08 4:11:21 PM10/20/08 4:11:21 PM

185

Chapter 6: Data Storage, Retrieval, and Sharing

 4. Within the ToDoDBAdapter class, add a private instance variable to store an instance of the
toDoDBOpenHelper class you just created; assign it within the constructor.

private toDoDBOpenHelper dbHelper;

public ToDoDBAdapter(Context _context) {
 this.context = _context;
 dbHelper = new toDoDBOpenHelper(context, DATABASE_NAME,
 null, DATABASE_VERSION);
}

 5. Still in the adapter class, create open and close methods that encapsulate the open and close
logic for your database. Start with a close method that simply calls close on the database
object.

public void close() {
 db.close();
}

 6. The open method should use the toDoDBOpenHelper class. Call getWritableDatabase to
let the helper handle database creation and version checking. Wrap the call to try to provide a
readable database if a writable instance can’t be opened.

public void open() throws SQLiteException {
 try {
 db = dbHelper.getWritableDatabase();
 } catch (SQLiteException ex) {
 db = dbHelper.getReadableDatabase();
 }
}

 7. Add strongly typed methods for adding, removing, and updating items.

// Insert a new task
public long insertTask(ToDoItem _task) {
 // Create a new row of values to insert.
 ContentValues newTaskValues = new ContentValues();
 // Assign values for each row.
 newTaskValues.put(KEY_TASK, _task.getTask());
 newTaskValues.put(KEY_CREATION_DATE, _task.getCreated().getTime());
 // Insert the row.
 return db.insert(DATABASE_TABLE, null, newTaskValues);
}

// Remove a task based on its index
public boolean removeTask(long _rowIndex) {
 return db.delete(DATABASE_TABLE, KEY_ID + “=” + _rowIndex, null) > 0;
}

// Update a task
public boolean updateTask(long _rowIndex, String _task) {
 ContentValues newValue = new ContentValues();
 newValue.put(KEY_TASK, _task);
 return db.update(DATABASE_TABLE, newValue,
 KEY_ID + “=” + _rowIndex, null) > 0;
}

44712c06.indd 18544712c06.indd 185 10/20/08 4:11:21 PM10/20/08 4:11:21 PM

186

Chapter 6: Data Storage, Retrieval, and Sharing

 8. Now add helper methods to handle queries. Write three methods — one to return all the items,
another to return a particular row as a Cursor, and fi nally, one that returns a strongly typed
ToDoItem.

public Cursor getAllToDoItemsCursor() {
 return db.query(DATABASE_TABLE,
 new String[] { KEY_ID, KEY_TASK, KEY_CREATION_DATE},
 null, null, null, null, null);
}

public Cursor setCursorToToDoItem(long _rowIndex) throws SQLException {
 Cursor result = db.query(true, DATABASE_TABLE,
 new String[] {KEY_ID, KEY_TASK},
 KEY_ID + “=” + _rowIndex, null, null, null,
 null, null);
 if ((result.getCount() == 0) || !result.moveToFirst()) {
 throw new SQLException(“No to do items found for row: “ +
 _rowIndex);
 }
 return result;
}

public ToDoItem getToDoItem(long _rowIndex) throws SQLException {
 Cursor cursor = db.query(true, DATABASE_TABLE,
 new String[] {KEY_ID, KEY_TASK},
 KEY_ID + “=” + _rowIndex,
 null, null, null, null, null);
 if ((cursor.getCount() == 0) || !cursor.moveToFirst()) {
 throw new SQLException(“No to do item found for row: “ +
 _rowIndex);
 }

 String task = cursor.getString(TASK_COLUMN);
 long created = cursor.getLong(CREATION_DATE_COLUMN);

 ToDoItem result = new ToDoItem(task, new Date(created));
 return result;
}

 9. That completes the database helper class. Return the ToDoList Activity, and update it to persist
the to-do list array.

Start by updating the Activity’s onCreate method to create an instance of the toDoDBAdapter,
and open a connection to the database. Also include a call to the populateTodoList method stub.

ToDoDBAdapter toDoDBAdapter;

public void onCreate(Bundle icicle) {
 [... existing onCreate logic ...]

 toDoDBAdapter = new ToDoDBAdapter(this);

44712c06.indd 18644712c06.indd 186 10/20/08 4:11:21 PM10/20/08 4:11:21 PM

187

Chapter 6: Data Storage, Retrieval, and Sharing

 // Open or create the database
 toDoDBAdapter.open();

 populateTodoList();
}

private void populateTodoList() { }

 10. Create a new instance variable to store a Cursor over all the to-do items in the database.

Update the populateTodoList method to use the toDoDBAdapter instance to query the
database, and call startManagingCursor to let the Activity manage the Cursor. It should also
make a call to updateArray, a method that will be used to repopulate the to-do list array using
the Cursor.

Cursor toDoListCursor;

private void populateTodoList() {
 // Get all the todo list items from the database.
 toDoListCursor = toDoDBAdapter.getAllToDoItemsCursor();
 startManagingCursor(toDoListCursor);

 // Update the array.
 updateArray();
}

private void updateArray() { }

 11. Now implement the updateArray method to update the current to-do list array. Call requery
on the result Cursor to ensure that it’s fully up to date, then clear the array and iterate over the
result set. When complete, call notifyDataSetChanged on the Array Adapter.

private void updateArray() {
 toDoListCursor.requery();

 todoItems.clear();

 if (toDoListCursor.moveToFirst())
 do {
 String task =
 toDoListCursor.getString(ToDoDBAdapter.TASK_COLUMN);
 long created =
 toDoListCursor.getLong(ToDoDBAdapter.CREATION_DATE_COLUMN);

 ToDoItem newItem = new ToDoItem(task, new Date(created));
 todoItems.add(0, newItem);
 } while(toDoListCursor.moveToNext());

 aa.notifyDataSetChanged();
}

44712c06.indd 18744712c06.indd 187 10/20/08 4:11:21 PM10/20/08 4:11:21 PM

188

Chapter 6: Data Storage, Retrieval, and Sharing

 12. To join the pieces together, modify the OnKeyListener assigned to the text entry box in
the onCreate method, and update the removeItem method. Both should now use the
toDoDBAdapter to add and remove items from the database rather than modifying the
to-do list array directly.

 12.1. Start with the OnKeyListener, insert the new item into the database, and refresh the
array.

public void onCreate(Bundle icicle) {
 super.onCreate(icicle);
 setContentView(R.layout.main);

 myListView = (ListView)findViewById(R.id.myListView);
 myEditText = (EditText)findViewById(R.id.myEditText);

 todoItems = new ArrayList<ToDoItem>();
 int resID = R.layout.todolist_item;
 aa = new ToDoItemAdapter(this, resID, todoItems);
 myListView.setAdapter(aa);

 myEditText.setOnKeyListener(new OnKeyListener() {
 public boolean onKey(View v, int keyCode, KeyEvent event) {
 if (event.getAction() == KeyEvent.ACTION_DOWN)
 if (keyCode == KeyEvent.KEYCODE_DPAD_CENTER) {
 ToDoItem newItem;
 newItem = new ToDoItem(myEditText.getText().toString());
 toDoDBAdapter.insertTask(newItem);
 updateArray();
 myEditText.setText(“”);
 aa.notifyDataSetChanged();
 cancelAdd();
 return true;
 }
 return false;
 }
 });

 registerForContextMenu(myListView);
 restoreUIState();

 toDoDBAdapter = new ToDoDBAdapter(this);

 // Open or create the database
 toDoDBAdapter.open();

 populateTodoList();
}

 12.2. Then modify the removeItem method to remove the item from the database and
refresh the array list.

private void removeItem(int _index) {
 // Items are added to the listview in reverse order,
 // so invert the index.

44712c06.indd 18844712c06.indd 188 10/20/08 4:11:21 PM10/20/08 4:11:21 PM

189

Chapter 6: Data Storage, Retrieval, and Sharing

 toDoDBAdapter.removeTask(todoItems.size()-_index);
 updateArray();
}

 13. As a fi nal step, override the onDestroy method of your Activity to close your database
connection.

@Override
public void onDestroy() {

 // Close the database
 toDoDBAdapter.close();

 super.onDestroy();
}

Your to-do items will now be saved between sessions. As a further enhancement, you could change the
Array Adapter to a Cursor Adapter and have the List View update dynamically, directly from changes
to the underlying database.

By using a private database, your tasks are not available for other applications to view or add to them.
To provide access to your tasks for other applications to leverage, you can expose them using a Content
Provider.

Introducing Content Providers
Content Providers are a generic interface mechanism that lets you share data between applications. By
abstracting away the underlying data source, Content Providers let you decouple your application layer
from the data layer, making your applications data-source agnostic.

Content Providers feature full permission control and are accessed using a simple URI model. Shared
content can be queried for results as well as supporting write access. As a result, any application with
the appropriate permissions can add, remove, and update data from any other applications — including
some native Android databases.

Many of the native databases have been made available as Content Providers, accessible by third-party
applications. This means that your applications can have access to the phone’s Contact Manager, media
player, and other native database once they’ve been granted permission.

By publishing your own data sources as Content Providers, you make it possible for you (and other
developers) to incorporate and extend your data in new applications.

Using Content Providers
Access to Content Providers is handled by the ContentResolver class.

The following sections demonstrate how to access a Content Resolver and how to use it to query and
transact with a Content Provider. They also demonstrate some practical examples using the native
Android Content Providers.

44712c06.indd 18944712c06.indd 189 10/20/08 4:11:21 PM10/20/08 4:11:21 PM

190

Chapter 6: Data Storage, Retrieval, and Sharing

Introducing Content Resolvers
Each application Context has a single ContentResolver, accessible using the getContentResolver
method, as shown in the following code snippet:

ContentResolver cr = getContentResolver();

Content Resolver includes several methods to transact and query Content Providers. You specify the
provider to interact using a URI.

A Content Provider’s URI is defi ned by its authority as defi ned in its application manifest node. An
authority URI is an arbitrary string, so most providers expose a CONTENT_URI property that includes its
authority.

Content Providers usually expose two forms of URI, one for requests against all the data and
another that specifi es only a single row. The form for the latter appends /<rowID> to the standard
CONTENT_URI.

Querying for Content
As in databases, query results are returned as Cursors over a result set. You can extract values from the
cursor using the techniques described previously within the database section on “Extracting Results
from a Cursor.”

Content Provider queries take a very similar form to database queries. Using the query method on the
ContentResolver object, pass in:

The URI of the content provider data you want to query ❑

A projection that represents the columns you want to include in the result set ❑

A ❑ where clause that defi nes the rows to be returned. You can include ? wild cards that will be
replaced by the values stored in the selection argument parameter.

An array of selection argument strings that will replace the ❑ ?’s in the where clause

A string that describes the order of the returned rows ❑

The following skeleton code demonstrates the use of a Content Resolver to apply a query to a Content
Provider:

// Return all rows
Cursor allRows = getContentResolver().query(MyProvider.CONTENT_URI,
 null, null, null, null);

// Return all columns for rows where column 3 equals a set value
// and the rows are ordered by column 5.
String where = KEY_COL3 + “=” + requiredValue;
String order = KEY_COL5;
Cursor someRows = getContentResolver().query(MyProvider.CONTENT_URI,
 null, where, null, order);

You’ll see some more practical examples of querying for content later in this chapter when the native
Android content providers are introduced.

44712c06.indd 19044712c06.indd 190 10/20/08 4:11:21 PM10/20/08 4:11:21 PM

191

Chapter 6: Data Storage, Retrieval, and Sharing

Adding, Updating, and Deleting Content
To perform transactions on Content Providers, use the delete, update, and insert methods on the
ContentResolver object.

Inserts

The Content Resolver offers two methods for inserting new records into your Content Provider —
insert and bulkInsert. Both methods accept the URI of the item type you’re adding; where the for-
mer takes a single new ContentValues object, the latter takes an array.

The simple insert method will return a URI to the newly added record, while bulkInsert returns the
number of successfully added items.

The following code snippet shows how to use the insert and bulkInsert methods:

// Create a new row of values to insert.
ContentValues newValues = new ContentValues();

// Assign values for each row.
newValues.put(COLUMN_NAME, newValue);
[... Repeat for each column ...]

Uri myRowUri = getContentResolver().insert(MyProvider.CONTENT_URI,
 newValues);

// Create a new row of values to insert.
ContentValues[] valueArray = new ContentValues[5];

// TODO: Create an array of new rows

int count = getContentResolver().bulkInsert(MyProvider.CONTENT_URI,
 valueArray);

Deletes

To delete a single record using the Content Resolver, call delete, passing in the URI of the row you
want to remove. Alternatively, you can specify a where clause to remove multiple rows. Both techniques
are shown in the following snippet:

// Remove a specific row.
getContentResolver().delete(myRowUri, null, null);

// Remove the first five rows.
String where = “_id < 5”;
getContentResolver().delete(MyProvider.CONTENT_URI, where, null);

Updates

Updates to a Content Provider are handled using the update method on a Content Resolver. The
update method takes the URI of the target Content Provider, a ContentValues object that maps col-
umn names to updated values, and a where clause that specifi es which rows to update.

44712c06.indd 19144712c06.indd 191 10/20/08 4:11:21 PM10/20/08 4:11:21 PM

192

Chapter 6: Data Storage, Retrieval, and Sharing

When executed, every matching row in the where clause will be updated using the values in the Con-
tent Values passed in and will return the number of successful updates.

// Create a new row of values to insert.
ContentValues newValues = new ContentValues();

// Create a replacement map, specifying which columns you want to
// update, and what values to assign to each of them.
newValues.put(COLUMN_NAME, newValue);

// Apply to the first 5 rows.
String where = “_id < 5”;

getContentResolver().update(MyProvider.CONTENT_URI, newValues, where,
 null);

Accessing Files in Content Providers
Content Providers represent fi les as fully qualifi ed URIs rather than raw fi le data. To insert a fi le
into a Content Provider, or access a saved fi le, use the Content Resolvers openOutputStream or
openInputStream methods, respectively. The process for storing a fi le is shown in the following
code snippet:

// Insert a new row into your provider, returning its unique URI.
Uri uri = getContentResolver().insert(MyProvider.CONTENT_URI,
 newValues);

try {
 // Open an output stream using the new row’s URI.
 OutputStream outStream = getContentResolver().openOutputStream(uri);
 // Compress your bitmap and save it into your provider.
 sourceBitmap.compress(Bitmap.CompressFormat.JPEG, 50, outStream);
}
catch (FileNotFoundException e) { }

Native Android Content Providers
Android exposes many Content Providers that supply access to the native databases.

You can use each of these Content Providers natively using the techniques described previously. Alter-
natively, the android.provider class includes convenience classes that simplify access to many of the
most useful providers, including:

Browser ❑ Use the browser Content Provider to read or modify bookmarks, browser history, or
web searches.

CallLog ❑ View or update the call history including both incoming and outgoing calls together
with missed calls and call details, like caller ID and call durations.

Contacts ❑ Use the Contacts provider to retrieve, modify, or store your contacts’ details.

44712c06.indd 19244712c06.indd 192 10/20/08 4:11:21 PM10/20/08 4:11:21 PM

193

Chapter 6: Data Storage, Retrieval, and Sharing

MediaStore ❑ The Media Store provides centralized, managed access to the multimedia on your
device, including audio, video, and images. You can store your own multimedia within the
Media Store and make it globally available.

Settings ❑ You can access the device’s preferences using the Settings provider. Using it, you can
view and modify Bluetooth settings, ring tones, and other device preferences.

You should use these native Content Providers wherever possible to ensure that your application inte-
grates seamlessly with other native and third-party applications.

While a detailed description of how to use each of these helpers is beyond the scope of this chapter, the
following sections describe how to use some of the more useful and powerful native Content Providers.

Using the Media Store Provider
The Android Media Store provides a managed repository for audio, video, and image fi les. Whenever
you add a new multimedia fi le to the Android fi lesystem, it should be added to the Media Store to
expose it to other applications.

The MediaStore class includes a number of convenience methods to simplify inserting fi les into the
Media Store. For example, the following code snippet shows how to insert an image directly into the
Media Store:

android.provider.MediaStore.Images.Media.insertImage(
 getContentResolver(),
 sourceBitmap,
 “my_cat_pic”,
 “Photo of my cat!”);

Using the Contacts Provider
Access to the Contact Manager is particularly powerful on a communications device. Android does
the right thing by exposing all the information available from the contacts database to any application
granted the READ_CONTACTS permission.

In the following example, an Activity gets a Cursor to every person in the contact database, creating an
array of Strings that holds each contact’s name and phone number.

To simplify extracting the data from the Cursor, Android supplies public static properties on the People
class that expose the column names.

// Get a cursor over every contact.
Cursor cursor = getContentResolver().query(People.CONTENT_URI,
 null, null, null, null);

// Let the activity manage the cursor lifecycle.
startManagingCursor(cursor);

// Use the convenience properties to get the index of the columns
int nameIdx = cursor.getColumnIndexOrThrow(People.NAME);

44712c06.indd 19344712c06.indd 193 10/20/08 4:11:21 PM10/20/08 4:11:21 PM

194

Chapter 6: Data Storage, Retrieval, and Sharing

int phoneIdx = cursor. getColumnIndexOrThrow(People.NUMBER);

String[] result = new String[cursor.getCount()];
if (cursor.moveToFirst())
 do {
 // Extract the name.
 String name = cursor.getString(nameIdx);
 // Extract the phone number.
 String phone = cursor.getString(phoneIdx);
 result[cursor.getPosition()] = name + “ (“ + phone + “)”;
 } while(cursor.moveToNext());

To run this code snippet, you need to add the READ_CONTACTS permission to your application.

As well as querying the contacts database, you can use this Content Provider to modify, delete, or insert
contact records.

Creating a New Content Provider
Create a new Content Provider by extending the abstract ContentProvider class. Override the onCreate
method to open or initialize the underlying data source you’re exposing with this new provider. The skel-
eton code for a new Content Provider is shown below:

import android.content.*;
import android.database.Cursor;
import android.net.Uri;
import android.database.SQLException;

public class MyProvider extends ContentProvider {

 @Override
 public boolean onCreate() {
 // TODO: Construct the underlying database.
 return true;
 }
}

You should also expose a public static CONTENT_URI variable that returns the full URI to this provider.
Content URIs must be unique between providers, so it’s good practice to base the URI path on your
package name. The general form for defi ning a Content Provider’s URI is

content://com.<CompanyName>.provider.<ApplicationName>/<DataPath>

For example:

content://com.paad.provider.myapp/items

Content URIs can represent either of two forms. The previous URI represents a request for all values of
that type (e.g., all items).

44712c06.indd 19444712c06.indd 194 10/20/08 4:11:21 PM10/20/08 4:11:21 PM

195

Chapter 6: Data Storage, Retrieval, and Sharing

Appending a trailing /<rownumber>, as shown below, represents a request for a single record (e.g., “the
fi fth item”).

content://com.paad.provider.myapp/items/5

It’s good form to support access to your provider using both these forms.

The simplest way to do this is using a UriMatcher. Confi gure the UriMatcher to parse URIs to deter-
mine their form when the provider is being accessed through a Content Resolver. The following snippet
shows the skeleton code for this pattern:

public class MyProvider extends ContentProvider {

 private static final String myURI =
 “content://com.paad.provider.myapp/items”;
 public static final Uri CONTENT_URI = Uri.parse(myURI);

 @Override
 public boolean onCreate() {
 // TODO: Construct the underlying database.
 return true;
 }

 // Create the constants used to differentiate between the different
 // URI requests.
 private static final int ALLROWS = 1;
 private static final int SINGLE_ROW = 2;

 private static final UriMatcher uriMatcher;

 // Populate the UriMatcher object, where a URI ending in ‘items’ will
 // correspond to a request for all items, and ‘items/[rowID]’
 // represents a single row.
 static {
 uriMatcher = new UriMatcher(UriMatcher.NO_MATCH);
 uriMatcher.addURI(“com.paad.provider.myApp”, “items”, ALLROWS);
 uriMatcher.addURI(“com.paad.provider.myApp”, “items/#”,
 SINGLE_ROW);
 }
}

You can use the same technique to expose alternative URIs for different subsets of data, or different
tables within your database from within the same Content Provider.

It’s also good practice to expose the names and indexes of the columns available in your provider to
simplify extracting information from Cursor results.

Exposing Access to the Data Source
You can expose queries and transactions with your Content Provider by implementing the delete,
insert, update, and query methods.

44712c06.indd 19544712c06.indd 195 10/20/08 4:11:21 PM10/20/08 4:11:21 PM

196

Chapter 6: Data Storage, Retrieval, and Sharing

These methods act as a generic interface to the underlying data source, allowing Android applications to
share data across application boundaries without having to publish separate interfaces for each applica-
tion. The most common scenario is to use a Content Provider to expose a private SQLite Database, but
within these methods you can access any source of data (including fi les or application instance variables).

The following code snippet shows the skeleton code for implementing queries and transactions for a
Content Provider. Notice that the UriMatcher object is used to refi ne the transaction and query requests.

@Override
public Cursor query(Uri uri,
 String[] projection,
 String selection,
 String[] selectionArgs,
 String sort) {

 // If this is a row query, limit the result set to the passed in row.
 switch (uriMatcher.match(uri)) {
 case SINGLE_ROW :
 // TODO: Modify selection based on row id, where:
 // rowNumber = uri.getPathSegments().get(1));
 }
 return null;
}

@Override
public Uri insert(Uri _uri, ContentValues _initialValues) {
 long rowID = [... Add a new item ...]

 // Return a URI to the newly added item.
 if (rowID > 0) {
 return ContentUris.withAppendedId(CONTENT_URI, rowID);
 }
 throw new SQLException(“Failed to add new item into “ + _uri);
}

@Override
public int delete(Uri uri, String where, String[] whereArgs) {
 switch (uriMatcher.match(uri)) {
 case ALLROWS:
 case SINGLE_ROW:
 default: throw new IllegalArgumentException(“Unsupported URI:” +
 uri);
 }
}

@Override
public int update(Uri uri, ContentValues values, String where,
 String[] whereArgs) {
 switch (uriMatcher.match(uri)) {
 case ALLROWS:
 case SINGLE_ROW:

44712c06.indd 19644712c06.indd 196 10/20/08 4:11:21 PM10/20/08 4:11:21 PM

197

Chapter 6: Data Storage, Retrieval, and Sharing

 default: throw new IllegalArgumentException(“Unsupported URI:” +
 uri);
 }
}

The fi nal step in creating a Content Provider is defi ning the MIME type that identifi es the data the pro-
vider returns.

Override the getType method to return a String that uniquely describes your data type. The type
returned should include two forms, one for a single entry and another for all the entries, following the
forms:

Single Item ❑

vnd.<companyname>.cursor.item/<contenttype>

All Items ❑

vnd.<companyName>.cursor.dir/<contenttype>

The following code snippet shows how to override the getType method to return the correct MIME
type based on the URI passed in:

@Override
public String getType(Uri _uri) {
 switch (uriMatcher.match(_uri)) {
 case ALLROWS: return “vnd.paad.cursor.dir/myprovidercontent”;
 case SINGLE_ROW: return “vnd.paad.cursor.item/myprovidercontent”;
 default: throw new IllegalArgumentException(“Unsupported URI: “ +
 _uri);
 }
}

Registering Your Provider
Once you have completed your Content Provider, it must be added to the application manifest.

Use the authorities tag to specify its address, as shown in the following XML snippet:

<provider android:name=”MyProvider”
 android:authorities=”com.paad.provider.myapp”/>

Creating and Using an Earthquake Content Provider
Having created an application that features a list of earthquakes, you have an excellent opportunity to
share this information with other applications.

By exposing these data through a Content Provider, you, and others, can create new applications based
on earthquake data without having to duplicate network traffi c and the associated XML parsing.

44712c06.indd 19744712c06.indd 197 10/20/08 4:11:21 PM10/20/08 4:11:21 PM

198

Chapter 6: Data Storage, Retrieval, and Sharing

Creating the Content Provider
The following example shows how to create an Earthquake Content Provider. Each quake will be stored
in an SQLite database.

 1. Open the Earthquake project, and create a new EarthquakeProvider class that extends
ContentProvider. Include stubs to override the onCreate, getType, query, insert,
delete, and update methods.

package com.paad.earthquake;

import android.content.*;
import android.database.Cursor;
import android.database.SQLException;
import android.database.sqlite.SQLiteOpenHelper;
import android.database.sqlite.SQLiteDatabase;
import android.database.sqlite.SQLiteQueryBuilder;
import android.net.Uri;
import android.text.TextUtils;
import android.util.Log;

public class EarthquakeProvider extends ContentProvider {

 @Override
 public boolean onCreate() {
 }

 @Override
 public String getType(Uri url) {
 }

 @Override
 public Cursor query(Uri url, String[] projection, String selection,
 String[] selectionArgs, String sort) {
 }

 @Override
 public Uri insert(Uri _url, ContentValues _initialValues) {
 }

 @Override
 public int delete(Uri url, String where, String[] whereArgs) {
 }

 @Override
 public int update(Uri url, ContentValues values,
 String where, String[] wArgs) {
 }
}

 2. Expose a content URI for this provider. This URI will be used to access the Content Provider
from within application components using a ContentResolver.

public static final Uri CONTENT_URI =
 Uri.parse(“content://com.paad.provider.earthquake/earthquakes”);

44712c06.indd 19844712c06.indd 198 10/20/08 4:11:21 PM10/20/08 4:11:21 PM

199

Chapter 6: Data Storage, Retrieval, and Sharing

 3. Create the database that will be used to store the earthquakes. Within the EathquakeProvider
class, create a new SQLiteDatabase instance, and expose public variables that describe the
column names and indexes. Include an extension of SQLiteOpenHelper to manage database
creation and version control.

// The underlying database
private SQLiteDatabase earthquakeDB;

private static final String TAG = “EarthquakeProvider”;
private static final String DATABASE_NAME = “earthquakes.db”;
private static final int DATABASE_VERSION = 1;
private static final String EARTHQUAKE_TABLE = “earthquakes”;

// Column Names
public static final String KEY_ID = “_id”;
public static final String KEY_DATE = “date”;
public static final String KEY_DETAILS = “details”;
public static final String KEY_LOCATION_LAT = “latitude”;
public static final String KEY_LOCATION_LNG = “longitude”;
public static final String KEY_MAGNITUDE = “magnitude”;
public static final String KEY_LINK = “link”;

// Column indexes
public static final int DATE_COLUMN = 1;
public static final int DETAILS_COLUMN = 2;
public static final int LONGITUDE_COLUMN = 3;
public static final int LATITUDE_COLUMN = 4;
public static final int MAGNITUDE_COLUMN = 5;
public static final int LINK_COLUMN = 6;

// Helper class for opening, creating, and managing
// database version control
private static class earthquakeDatabaseHelper extends SQLiteOpenHelper {
 private static final String DATABASE_CREATE =
 “create table “ + EARTHQUAKE_TABLE + “ (“
 + KEY_ID + “ integer primary key autoincrement, “
 + KEY_DATE + “ INTEGER, “
 + KEY_DETAILS + “ TEXT, “
 + KEY_LOCATION_LAT + “ FLOAT, “
 + KEY_LOCATION_LNG + “ FLOAT, “
 + KEY_MAGNITUDE + “ FLOAT, “
 + KEY_LINK + “ TEXT);”;

 public earthquakeDatabaseHelper(Context context, String name,
 CursorFactory factory, int version) {
 super(context, name, factory, version);
 }

 @Override
 public void onCreate(SQLiteDatabase db) {
 db.execSQL(DATABASE_CREATE);
 }

 @Override
 public void onUpgrade(SQLiteDatabase db, int oldVersion,

44712c06.indd 19944712c06.indd 199 10/20/08 4:11:21 PM10/20/08 4:11:21 PM

200

Chapter 6: Data Storage, Retrieval, and Sharing

 int newVersion) {
 Log.w(TAG, “Upgrading database from version “ + oldVersion + “ to “
 + newVersion + “, which will destroy all old data”);

 db.execSQL(“DROP TABLE IF EXISTS “ + EARTHQUAKE_TABLE);
 onCreate(db);
 }
}

 4. Create a UriMatcher to handle requests using different URIs. Include support for queries and
transactions over the entire data set (QUAKES) and a single record matching a quake index value
(QUAKE_ID).

// Create the constants used to differentiate between the different URI
// requests.
private static final int QUAKES = 1;
private static final int QUAKE_ID = 2;

private static final UriMatcher uriMatcher;

// Allocate the UriMatcher object, where a URI ending in ‘earthquakes’
// will correspond to a request for all earthquakes, and ‘earthquakes’
// with a trailing ‘/[rowID]’ will represent a single earthquake row.
static {
 uriMatcher = new UriMatcher(UriMatcher.NO_MATCH);
 uriMatcher.addURI(“com.paad.provider.Earthquake”, “earthquakes”,
 QUAKES);
 uriMatcher.addURI(“com.paad.provider.Earthquake”, “earthquakes/#”,
 QUAKE_ID);
}

 5. Override the getType method to return a String for each of the URI structures supported.

@Override
public String getType(Uri uri) {
 switch (uriMatcher.match(uri)) {
 case QUAKES:
 return “vnd.android.cursor.dir/vnd.paad.earthquake”;
 case QUAKE_ID:
 return “vnd.android.cursor.item/vnd.paad.earthquake”;
 default:
 throw new IllegalArgumentException(“Unsupported URI: “ + uri);
 }
}

 6. Override the provider’s onCreate handler to create a new instance of the database helper class
and open a connection to the database.

@Override
public boolean onCreate() {
 Context context = getContext();

 earthquakeDatabaseHelper dbHelper;
 dbHelper = new earthquakeDatabaseHelper(context, DATABASE_NAME, null,
 DATABASE_VERSION);

44712c06.indd 20044712c06.indd 200 10/20/08 4:11:22 PM10/20/08 4:11:22 PM

201

Chapter 6: Data Storage, Retrieval, and Sharing

 earthquakeDB = dbHelper.getWritableDatabase();
 return (earthquakeDB == null) ? false : true;
}

 7. Implement the query and transaction stubs. Start with the query method; it should decode the
request being made (all content or a single row) and apply the selection, projection, and sort-
order criteria parameters to the database before returning a result Cursor.

@Override
public Cursor query(Uri uri,
 String[] projection,
 String selection,
 String[] selectionArgs,
 String sort) {

 SQLiteQueryBuilder qb = new SQLiteQueryBuilder();

 qb.setTables(EARTHQUAKE_TABLE);

 // If this is a row query, limit the result set to the passed in row.
 switch (uriMatcher.match(uri)) {
 case QUAKE_ID:
 qb.appendWhere(KEY_ID + “=” + uri.getPathSegments().get(1));
 break;
 default: break;
 }

 // If no sort order is specified sort by date / time
 String orderBy;
 if (TextUtils.isEmpty(sort)) {
 orderBy = KEY_DATE;
 } else {
 orderBy = sort;
 }

 // Apply the query to the underlying database.
 Cursor c = qb.query(earthquakeDB,
 projection,
 selection, selectionArgs,
 null, null,
 orderBy);

 // Register the contexts ContentResolver to be notified if
 // the cursor result set changes.
 c.setNotificationUri(getContext().getContentResolver(), uri);

 // Return a cursor to the query result.
 return c;
}

 8. Now implement methods for inserting, deleting, and updating content. In this case, the process
is largely an exercise in mapping Content Provider transaction requests to database equivalents.

@Override
public Uri insert(Uri _uri, ContentValues _initialValues) {

44712c06.indd 20144712c06.indd 201 10/20/08 4:11:22 PM10/20/08 4:11:22 PM

202

Chapter 6: Data Storage, Retrieval, and Sharing

 // Insert the new row, will return the row number if
 // successful.
 long rowID = earthquakeDB.insert(EARTHQUAKE_TABLE, “quake”,
 _initialValues);

 // Return a URI to the newly inserted row on success.
 if (rowID > 0) {
 Uri uri = ContentUris.withAppendedId(CONTENT_URI, rowID);
 getContext().getContentResolver().notifyChange(uri, null);
 return uri;
 }
 throw new SQLException(“Failed to insert row into “ + _uri);
}

@Override
public int delete(Uri uri, String where, String[] whereArgs) {
 int count;

 switch (uriMatcher.match(uri)) {
 case QUAKES:
 count = earthquakeDB.delete(EARTHQUAKE_TABLE, where, whereArgs);
 break;

 case QUAKE_ID:
 String segment = uri.getPathSegments().get(1);
 count = earthquakeDB.delete(EARTHQUAKE_TABLE, KEY_ID + “=”
 + segment
 + (!TextUtils.isEmpty(where) ? “ AND (“
 + where + ‘)’ : “”), whereArgs);
 break;

 default: throw new IllegalArgumentException(“Unsupported URI: “ +
 uri);
 }

 getContext().getContentResolver().notifyChange(uri, null);
 return count;
}

@Override
public int update(Uri uri, ContentValues values, String where,
 String[] whereArgs) {
 int count;
 switch (uriMatcher.match(uri)) {
 case QUAKES:
 count = earthquakeDB.update(EARTHQUAKE_TABLE, values,
 where, whereArgs);
 break;

 case QUAKE_ID:
 String segment = uri.getPathSegments().get(1);
 count = earthquakeDB.update(EARTHQUAKE_TABLE, values, KEY_ID
 + “=” + segment
 + (!TextUtils.isEmpty(where) ? “ AND (“

44712c06.indd 20244712c06.indd 202 10/20/08 4:11:22 PM10/20/08 4:11:22 PM

203

Chapter 6: Data Storage, Retrieval, and Sharing

 + where + ‘)’ : “”), whereArgs);
 break;

 default: throw new IllegalArgumentException(“Unknown URI “ + uri);
 }

 getContext().getContentResolver().notifyChange(uri, null);
 return count;
}

 9. With the Content Provider fi nished, register it in the manifest by creating a new node within the
application tag.

<provider android:name=”.EarthquakeProvider”
 android:authorities=”com.paad.provider.earthquake” />

Using the Provider
You can now update the Earthquake Activity to use the Earthquake Provider to store quakes, and use
them to populate the List View.

 1. Within the Earthquake Activity, update the addNewQuake method. It should use the applica-
tion’s Content Resolver to insert each new earthquake into the provider. Move the existing
array control logic into a separate addQuakeToArray method.

private void addNewQuake(Quake _quake) {
 ContentResolver cr = getContentResolver();
 // Construct a where clause to make sure we don’t already have this
 // earthquake in the provider.
 String w = EarthquakeProvider.KEY_DATE + “ = “ +
 _quake.getDate().getTime();

 // If the earthquake is new, insert it into the provider.
 Cursor c = cr.query(EarthquakeProvider.CONTENT_URI,
 null, w, null, null);
 int dbCount = c.getCount();
 c.close();

 if (dbCount > 0) {
 ContentValues values = new ContentValues();

 values.put(EarthquakeProvider.KEY_DATE,
 _quake.getDate().getTime());
 values.put(EarthquakeProvider.KEY_DETAILS, _quake.getDetails());

 double lat = _quake.getLocation().getLatitude();
 double lng = _quake.getLocation().getLongitude();
 values.put(EarthquakeProvider.KEY_LOCATION_LAT, lat);
 values.put(EarthquakeProvider.KEY_LOCATION_LNG, lng);
 values.put(EarthquakeProvider.KEY_LINK, _quake.getLink());
 values.put(EarthquakeProvider.KEY_MAGNITUDE,
 _quake.getMagnitude());

 cr.insert(EarthquakeProvider.CONTENT_URI, values);

44712c06.indd 20344712c06.indd 203 10/20/08 4:11:22 PM10/20/08 4:11:22 PM

204

Chapter 6: Data Storage, Retrieval, and Sharing

 earthquakes.add(_quake);

 addQuakeToArray(_quake);
 }
}

private void addQuakeToArray(Quake _quake) {
 if (_quake.getMagnitude() > minimumMagnitude) {
 // Add the new quake to our list of earthquakes.
 earthquakes.add(_quake);

 // Notify the array adapter of a change.
 aa.notifyDataSetChanged();
 }
}

 2. Create a new loadQuakesFromProvider method that loads all the earthquakes from the Earth-
quake Provider and inserts them into the array list using the addQuakeToArray method created
in Step 1.

private void loadQuakesFromProvider() {
// Clear the existing earthquake array
earthquakes.clear();

ContentResolver cr = getContentResolver();

 // Return all the saved earthquakes
 Cursor c = cr.query(EarthquakeProvider.CONTENT_URI,
 null, null, null, null);

 if (c.moveToFirst())
 {
 do {
 // Extract the quake details.
 Long datems = c.getLong(EarthquakeProvider.DATE_COLUMN);
 String details;
 details = c.getString(EarthquakeProvider.DETAILS_COLUMN);
 Float lat = c.getFloat(EarthquakeProvider.LATITUDE_COLUMN);
 Float lng = c.getFloat(EarthquakeProvider.LONGITUDE_COLUMN);
 Double mag = c.getDouble(EarthquakeProvider.MAGNITUDE_COLUMN);
 String link = c.getString(EarthquakeProvider.LINK_COLUMN);

 Location location = new Location(“dummy”);
 location.setLongitude(lng);
 location.setLatitude(lat);

 Date date = new Date(datems);

 Quake q = new Quake(date, details, location, mag, link);
 addQuakeToArray(q);
 } while(c.moveToNext());
 }
 c.close();
}

44712c06.indd 20444712c06.indd 204 10/20/08 4:11:22 PM10/20/08 4:11:22 PM

205

Chapter 6: Data Storage, Retrieval, and Sharing

 3. Call loadQuakesFromProvider from onCreate to initialize the Earthquake List View at
start-up.

@Override
public void onCreate(Bundle icicle) {
 super.onCreate(icicle);
 setContentView(R.layout.main);

 earthquakeListView =
 (ListView)this.findViewById(R.id.earthquakeListView);

 earthquakeListView.setOnItemClickListener(new OnItemClickListener() {

 public void onItemClick(AdapterView _av, View _v,
 int _index, long arg3) {
 selectedQuake = earthquakes.get(_index);
 showDialog(QUAKE_DIALOG);
 }
 });

 int layoutID = android.R.layout.simple_list_item_1;
 aa = new ArrayAdapter<Quake>(this, layoutID , earthquakes);
 earthquakeListView.setAdapter(aa);

 loadQuakesFromProvider();

 updateFromPreferences();
 refreshEarthquakes();
}

 4. Finally, make a change to the refreshEarthquakes method so that it loads the saved earth-
quakes from the provider after clearing the array, but before adding any new quakes received.

private void refreshEarthquakes() {
 [... exiting refreshEarthquakes method ...]

 // Clear the old earthquakes
 earthquakes.clear();
 loadQuakesFromProvider();

 [... exiting refreshEarthquakes method ...]
}

Summary
In this chapter, you learned how to add a persistence layer to your applications.

Starting with the ability to save the Activity instance data between sessions using the save and
restore instance state handlers, you were then introduced to Shared Preferences. You used them to
save instance values and user preferences that can be used across your application components.

44712c06.indd 20544712c06.indd 205 10/20/08 4:11:22 PM10/20/08 4:11:22 PM

206

Chapter 6: Data Storage, Retrieval, and Sharing

Android provides a fully featured SQLite RDBMS to all applications. This small, effi cient, and robust
database lets you create relational databases to persist application data. Using Content Providers, you
learned how to share private data, particularly databases, across application boundaries.

All database and Content Provider queries are returned as Cursors; you learned how to perform que-
ries and extract data from the resulting Cursor objects.

Along the way, you also learned to:

Save and load fi les directly to and from the underlying fi lesystem. ❑

Include static fi les as external project resources. ❑

Create new SQLite databases. ❑

Interact with databases to insert, update, and delete rows. ❑

Use the native Content Providers included with Android to access and manage native data like ❑

media and contacts.

With a solid foundation in the fundamentals of Android development, the remainder of this book will
investigate some of the more interesting optional Android features.

Starting in the next chapter, you’ll be introduced to the geographic APIs. Android offers a rich suite
of geographical functionality including location-based services (such as GPS), forward and reverse
geocoding, as well as a fully integrated Google Maps implementation. Using Google Maps, you can
create map-based Activities that feature annotations to develop native map-mashup style applications.

44712c06.indd 20644712c06.indd 206 10/20/08 4:11:22 PM10/20/08 4:11:22 PM

Maps, Geocoding, and
Location-Based Services

One of the defi ning features of mobile phones is their portability, so it’s not surprising that some
of the most enticing Android features are the services that let you fi nd, contextualize, and map
physical locations.

You can create map-based Activities using Google Maps as a User Interface element. You have
full access to the map, allowing you to control display settings, alter the zoom level, and move the
centered location. Using Overlays, you can annotate maps and handle user input to provide map-
contextualized information and functionality.

Also covered in this chapter are the location-based services (LBS) — the services that let you fi nd
the device’s current location. They include technologies like GPS and Google’s cell-based location
technology. You can specify which location-sensing technology to use explicitly by name, or implic-
itly by defi ning a set of criteria in terms of accuracy, cost, and other requirements.

Maps and location-based services use latitude and longitude to pinpoint geographic locations,
but your users are more likely to think in terms of an address. Android provides a Geocoder that
supports forward and reverse geocoding. Using the Geocoder, you can convert back and forth
between latitude/longitude values and real-world addresses.

Used together, the mapping, geocoding, and location-based services provide a powerful toolkit
for incorporating your phone’s native mobility into your mobile applications.

 In this chapter, you’ll learn to:

Set up your emulator to test location-based services. ❑

Find and track the device location. ❑

Create proximity alerts. ❑

44712c07.indd 20744712c07.indd 207 10/20/08 4:11:04 PM10/20/08 4:11:04 PM

208

Chapter 7: Maps, Geocoding, and Location-Based Services

Turn geographical locations into street addresses and vice versa. ❑

Create and customize map-based Activities using MapView and MapActivity. ❑

Add Overlays to your maps. ❑

Using Location-Based Services
Location-based services (LBS) is an umbrella term used to describe the different technologies used to fi nd
the device’s current location. The two main LBS elements are:

LocationManager ❑ Provides hooks to the location-based services.

LocationProviders ❑ Each of which represents a different location-fi nding technology used to
determine the device’s current location.

Using the Location Manager, you can:

Obtain your current location. ❑

Track movement. ❑

Set proximity alerts for detecting movement into and out of a specifi ed area. ❑

Setting up the Emulator with Test Providers
Location-based services are dependant on device hardware for fi nding the current location. When
developing and testing with the emulator, your hardware is virtualized, and you’re likely to stay in
pretty much the same location.

To compensate, Android includes hooks that let you emulate Location Providers for testing location-
based applications. In this section, you’ll learn how to mock the position of the supported GPS provider.

If you’re planning on doing location-based application development and using the
Android emulator, this section will show how to create an environment that simu-
lates real hardware and location changes. In the remainder of this chapter, it will
be assumed that you have used the examples in this section to update the location
for, the GPS_PROVIDER within the emulator.

Updating Locations in Emulator Location Providers
Use the Location Controls available from the DDMS perspective in Eclipse (shown in Figure 7-1) to push
location changes directly into the test GPS_PROVIDER.

44712c07.indd 20844712c07.indd 208 10/20/08 4:11:04 PM10/20/08 4:11:04 PM

209

Chapter 7: Maps, Geocoding, and Location-Based Services

Figure 7-1

Figure 7-1 shows the Manual and KML tabs. Using the Manual tab, you can specify particular latitude/
longitude pairs. Alternatively, the KML and GPX tabs let you load KML (Keyhole Markup Language)
and GPX (GPS Exchange Format) fi les, respectively. Once loaded, you can jump to particular waypoints
(locations) or play back each location sequentially.

Most GPS systems record track fi les using GPX, while KML is used extensively online to defi ne
geographic information. You can handwrite your own KML fi le or generate one automatically using
Google Earth and fi nding directions between two locations.

All location changes applied using the DDMS Location Controls will be applied to the GPS receiver,
which must be enabled and active. Note that the GPS values returned by getLastKnownLocation will
not change unless at least one application has requested location updates.

Create an Application to Manage Test Location Providers
In this example, you’ll create a new project to set up the emulator to simplify testing other location-based
applications. Running this project will ensure that the GPS provider is active and updating regularly.

 1. Create a new Android project, TestProviderController, which includes a
TestProviderController Activity.

package com.paad.testprovidercontroller;

import java.util.List;
import android.app.Activity;
import android.content.Context;
import android.location.Criteria;
import android.location.Location;
import android.location.LocationManager;
import android.location.LocationListener;
import android.location.LocationProvider;

44712c07.indd 20944712c07.indd 209 10/20/08 4:11:05 PM10/20/08 4:11:05 PM

210

Chapter 7: Maps, Geocoding, and Location-Based Services

import android.os.Bundle;
import android.widget.TextView;

public class TestProviderController extends Activity {

 @Override
 public void onCreate(Bundle icicle) {
 super.onCreate(icicle);
 setContentView(R.layout.main);
 }

}

 2. Add an instance variable to store a reference to the LocationManager, then get that reference
to it from within the onCreate method. Add stubs for creating a new test provider and to
enable the GPS provider for testing.

LocationManager locationManager;

@Override
public void onCreate(Bundle icicle) {
 super.onCreate(icicle);
 setContentView(R.layout.main);

 String location_context = Context.LOCATION_SERVICE;
 locationManager = (LocationManager)getSystemService(location_context);
 testProviders();
}

public void testProviders() {}

 3. Add a FINE_LOCATION permission to test the providers.

<uses-permission android:name=”android.permission.ACCESS_FINE_LOCATION”/>

 4. Update the testProviders method to check the enabled status of each provider and return the
last known location; also request periodic updates for each provider to force Android to start
updating the locations for other applications. The methods used here are presented without
comment; you’ll learn more about how to use each of them in the remainder of this chapter.

public void testProviders() {
 TextView tv = (TextView)findViewById(R.id.myTextView);
 StringBuilder sb = new StringBuilder(“Enabled Providers:”);

 List<String> providers = locationManager.getProviders(true);

 for (String provider : providers) {

 locationManager.requestLocationUpdates(provider, 1000, 0,
 new LocationListener() {
 public void onLocationChanged(Location location) {}
 public void onProviderDisabled(String provider){}

44712c07.indd 21044712c07.indd 210 10/20/08 4:11:05 PM10/20/08 4:11:05 PM

211

Chapter 7: Maps, Geocoding, and Location-Based Services

 public void onProviderEnabled(String provider){}
 public void onStatusChanged(String provider, int status,
 Bundle extras){}
 });

 sb.append(“\n”).append(provider).append(“: “);

 Location location = locationManager.getLastKnownLocation(provider);
 if (location != null) {
 double lat = location.getLatitude();
 double lng = location.getLongitude();
 sb.append(lat).append(“, “).append(lng);
 } else {
 sb.append(“No Location”);
 }
 }
 tv.setText(sb);
}

 5. The fi nal step before you run the application is to update the main.xml layout resource to add
an ID for the text label you’re updating in Step 4.

<?xml version=”1.0” encoding=”utf-8”?>
<LinearLayout
 xmlns:android=”http://schemas.android.com/apk/res/android”
 android:orientation=”vertical”
 android:layout_width=”fi ll_parent”
 android:layout_height=”fi ll_parent”>
 <TextView
 android:id=”@+id/myTextView”
 android:layout_width=”fi ll_parent”
 android:layout_height=”wrap_content”
 android:text=”@string/hello”
 />
</LinearLayout>

 6. Run your application, and it should appear as shown in Figure 7-2.

Figure 7-2

 7. Android will now update the last known position for any applications using location-based ser-
vices. You can update the current location using the techniques described in the previous section.

The test provider controller application you just wrote needs to be restarted to refl ect any changes in the
current location. Below in this chapter, you’ll learn how to request updates based on the elapsed time
and distance traveled.

44712c07.indd 21144712c07.indd 211 10/20/08 4:11:05 PM10/20/08 4:11:05 PM

212

Chapter 7: Maps, Geocoding, and Location-Based Services

Selecting a Location Provider
Depending on the device, there may be several technologies that Android can use to determine the cur-
rent location. Each technology, or Location Provider, will offer different capabilities including power con-
sumption, monetary cost, accuracy, and the ability to determine altitude, speed, or heading information.

To get an instance of a specifi c provider, call getProvider, passing in the name:

String providerName = LocationManager.GPS_PROVIDER;
LocationProvider gpsProvider;
gpsProvider = locationManager.getProvider(providerName);

This is generally only useful for determining the abilities of a particular provider. Most Location
Manager methods require only a provider name to perform location-based services.

Finding the Available Providers
The LocationManager class includes static string constants that return the provider name for the two
most common Location Providers:

LocationManager.GPS_PROVIDER ❑

LocationManager.NETWORK_PROVIDER ❑

To get a list of names for all the providers available on the device, call getProviders, using a Boolean
to indicate if you want all, or only the enabled, providers to be returned:

boolean enabledOnly = true;
List<String> providers = locationManager.getProviders(enabledOnly);

Finding Providers Based on Requirement Criteria
In most scenarios, it’s unlikely that you will want to explicitly choose the Location Provider to use.
More commonly, you’ll specify the requirements that a provider must meet and let Android determine
the best technology to use.

Use the Criteria class to dictate the requirements of a provider in terms of accuracy (fi ne or coarse),
power use (low, medium, high), cost, and the ability to return values for altitude, speed, and bearing.

The following code creates Criteria that require coarse accuracy, low power consumption, and no need
for altitude, bearing, or speed. The provider is permitted to have an associated cost.

Criteria criteria = new Criteria();
criteria.setAccuracy(Criteria.ACCURACY_COARSE);
criteria.setPowerRequirement(Criteria.POWER_LOW);
criteria.setAltitudeRequired(false);
criteria.setBearingRequired(false);
criteria.setSpeedRequired(false);
criteria.setCostAllowed(true);

44712c07.indd 21244712c07.indd 212 10/20/08 4:11:05 PM10/20/08 4:11:05 PM

213

Chapter 7: Maps, Geocoding, and Location-Based Services

Having defi ned the required Criteria, you can use getBestProvider to return the best matching
Location Provider or getProviders to return all the possible matches. The following snippet demon-
strates using getBestProvider to return the best provider for your criteria where the Boolean lets you
restrict the result to a currently enabled provider:

String bestProvider = locationManager.getBestProvider(criteria, true);

If more than one Location Provider matches your criteria, the one with the greatest accuracy is
returned. If no Location Providers meet your requirements, the criteria are loosened, in the following
order, until a provider is found:

Power use ❑

Accuracy ❑

Ability to return bearing, speed, and altitude ❑

The criterion for allowing a device with monetary cost is never implicitly relaxed. If no provider is
found, null is returned.

To see a list of names for all the providers that match your criteria, you can use getProviders. It accepts
Criteria and returns a fi ltered String list of all available Location Providers that match them. As with the
getBestProvider call, if no matching providers are found, this call returns null.

List<String> matchingProviders = locationManager.getProviders(criteria,
 false);

Finding Your Location
The purpose of location-based services is to fi nd the physical location of the device.

Access to the location-based services is handled using the Location Manager system Service. To access
the Location Manager, request an instance of the LOCATION_SERVICE using the getSystemService
method, as shown in the following snippet:

String serviceString = Context.LOCATION_SERVICE;
LocationManager locationManager;
locationManager = (LocationManager)getSystemService(serviceString);

Before you can use the Location Manager, you need to add one or more uses-permission tags to your
manifest to support access to the LBS hardware.

The following snippet shows the fi ne and coarse permissions. Of the default providers, the GPS provider
requires fi ne permission, while the Network provider requires only coarse. An application that has
been granted fi ne permission will have coarse permission granted implicitly.

<uses-permission android:name=”android.permission.ACCESS_FINE_LOCATION”/>
<uses-permission android:name=”android.permission.ACCESS_COARSE_LOCATION”/>

44712c07.indd 21344712c07.indd 213 10/20/08 4:11:05 PM10/20/08 4:11:05 PM

214

Chapter 7: Maps, Geocoding, and Location-Based Services

You can fi nd the last location fi x determined by a particular Location Provider using the
getLastKnownLocation method, passing in the name of the Location Provider. The following
example fi nds the last location fi x taken by the GPS provider:

String provider = LocationManager.GPS_PROVIDER;
Location location = locationManager.getLastKnownLocation(provider);

Note that getLastKnownLocation does not ask the Location Provider to update the current posi-
tion. If the device has not recently updated the current position this value may be be out of date.

The Location object returned includes all the position information available from the provider that sup-
plied it. This can include latitude, longitude, bearing, altitude, speed, and the time the location fi x was
taken. All these properties are available using get methods on the Location object. In some instances,
additional details will be included in the extras Bundle.

“Where Am I?” Example
The following example — “Where Am I?” — features a new Activity that fi nds the device’s current
location using the GPS Location Provider. You will expand on this example throughout the chapter as
you learn new geographic functionality.

This example assumes that you have enabled the GPS_PROVIDER Location Provider using the tech-
niques shown previously in this chapter, or that you’re running it on a device that supports GPS and
has that hardware enabled.

 1. Create a new WhereAmI project with a WhereAmI Activity. This example uses the GPS pro-
vider (either mock or real), so modify the manifest fi le to include the uses-permission tag for
ACCESS_FINE_LOCATION.

<?xml version=”1.0” encoding=”utf-8”?>
<manifest xmlns:android=”http://schemas.android.com/apk/res/android”
 package=”com.paad.whereami”>
 <application
 android:icon=”@drawable/icon”>
 <activity
 android:name=”.WhereAmI”
 android:label=”@string/app_name”>
 <intent-fi lter>
 <action android:name=”android.intent.action.MAIN” />
 <category android:name=”android.intent.category.LAUNCHER” />
 </intent-fi lter>
 </activity>
 </application>

 <uses-permission android:name=”android.permission.ACCESS_FINE_LOCATION”/>

</manifest>

 2. Modify the main.xml layout resource to include an android:ID attribute for the TextView con-
trol so that you can access it from within the Activity.

<?xml version=”1.0” encoding=”utf-8”?>
<LinearLayout

44712c07.indd 21444712c07.indd 214 10/20/08 4:11:05 PM10/20/08 4:11:05 PM

215

Chapter 7: Maps, Geocoding, and Location-Based Services

 xmlns:android=”http://schemas.android.com/apk/res/android”
 android:orientation=”vertical”
 android:layout_width=”fi ll_parent”
 android:layout_height=”fi ll_parent”>
 <TextView
 android:id=”@+id/myLocationText”
 android:layout_width=”fi ll_parent”
 android:layout_height=”wrap_content”
 android:text=”@string/hello”
 />
</LinearLayout>

 3. Override the onCreate method of the WhereAmI Activity to get a reference to the Location
Manager. Call getLastKnownLocation to get the last location fi x value, and pass it in to the
updateWithNewLocation method stub.

package com.paad.whereami;

import android.app.Activity;
import android.content.Context;
import android.location.Location;
import android.location.LocationManager;
import android.os.Bundle;
import android.widget.TextView;

public class WhereAmI extends Activity {
 @Override
 public void onCreate(Bundle icicle) {
 super.onCreate(icicle);
 setContentView(R.layout.main);

 LocationManager locationManager;
 String context = Context.LOCATION_SERVICE;
 locationManager = (LocationManager)getSystemService(context);

 String provider = LocationManager.GPS_PROVIDER;
 Location location = locationManager.getLastKnownLocation(provider);

 updateWithNewLocation(location);
 }

 private void updateWithNewLocation(Location location) {
 }
}

 4. Fill in the updateWithNewLocation method to display the passed-in Location in the Text View
by extracting the latitude and longitude values.

private void updateWithNewLocation(Location location) {
 String latLongString;
 TextView myLocationText;
 myLocationText = (TextView)findViewById(R.id.myLocationText);
 if (location != null) {
 double lat = location.getLatitude();
 double lng = location.getLongitude();

44712c07.indd 21544712c07.indd 215 10/20/08 4:11:05 PM10/20/08 4:11:05 PM

216

Chapter 7: Maps, Geocoding, and Location-Based Services

 latLongString = “Lat:” + lat + “\nLong:” + lng;
 } else {
 latLongString = “No location found”;
 }
 myLocationText.setText(“Your Current Position is:\n” +
 latLongString);
}

 5. When running, your Activity should look like Figure 7-3.

Figure 7-3

Tracking Movement
Most location-sensitive applications will need to be reactive to user movement. Simply polling the
Location Manager will not force it to get new updates from the Location Providers.

Use the requestLocationUpdates method to get updates whenever the current location changes,
using a LocationListener. Location Listeners also contain hooks for changes in a provider’s status
and availability.

The requestLocationUpdates method accepts either a specifi c Location Provider name or a set of
Criteria to determine the provider to use.

To optimize effi ciency and minimize cost and power use, you can also specify the minimum time and
the minimum distance between location change updates.

The following snippet shows the skeleton code for requesting regular updates based on a minimum
time and distance.

String provider = LocationManager.GPS_PROVIDER;

int t = 5000; // milliseconds
int distance = 5; // meters

LocationListener myLocationListener = new LocationListener() {

 public void onLocationChanged(Location location) {
 // Update application based on new location.
 }

 public void onProviderDisabled(String provider){
 // Update application if provider disabled.

44712c07.indd 21644712c07.indd 216 10/20/08 4:11:05 PM10/20/08 4:11:05 PM

217

Chapter 7: Maps, Geocoding, and Location-Based Services

 }

 public void onProviderEnabled(String provider){
 // Update application if provider enabled.
 }

 public void onStatusChanged(String provider, int status,
 Bundle extras){
 // Update application if provider hardware status changed.
 }
};

locationManager.requestLocationUpdates(provider, t, distance,
 myLocationListener);

When the minimum time and distance values are exceeded, the attached Location Listener will execute
its onLocationChanged event.

You can request multiple location updates pointing to different Location Listeners and using different
minimum thresholds. A common design pattern is to create a single listener for your application that
broadcasts Intents to notify other components of location changes. This centralizes your listeners and
ensures that the Location Provider hardware is used as effi ciently as possible.

To stop location updates, call removeUpdates, as shown below. Pass in the Location Listener instance
you no longer want to have triggered.

locationManager.removeUpdates(myLocationListener);

Most GPS hardware incurs signifi cant power cost. To minimize this, you should disable updates
whenever possible in your application, specifi cally when location changes are being used to update
an Activity’s User Interface. You can improve performance further by extending the minimum time
between updates as long as possible.

Updating Your Location in “Where Am I?”
In the following example, “Where Am I?” is enhanced to track your current location by listening for
location changes. Updates are restricted to one every 2 seconds, and only when movement of more than
10 meters has been detected.

Rather than explicitly selecting the GPS provider, in this example, you’ll create a set of Criteria and let
Android choose the best provider available.

 1. Start by opening the WhereAmI Activity in the WhereAmI project. Update the onCreate
method to fi nd the best Location Provider that features high accuracy and draws as little power
as possible.

@Override
public void onCreate(Bundle icicle) {
 super.onCreate(icicle);

44712c07.indd 21744712c07.indd 217 10/20/08 4:11:05 PM10/20/08 4:11:05 PM

218

Chapter 7: Maps, Geocoding, and Location-Based Services

 setContentView(R.layout.main);

 LocationManager locationManager;
 String context = Context.LOCATION_SERVICE;
 locationManager = (LocationManager)getSystemService(context);

 Criteria criteria = new Criteria();
 criteria.setAccuracy(Criteria.ACCURACY_FINE);
 criteria.setAltitudeRequired(false);
 criteria.setBearingRequired(false);
 criteria.setCostAllowed(true);
 criteria.setPowerRequirement(Criteria.POWER_LOW);

 String provider = locationManager.getBestProvider(criteria, true);

 Location location = locationManager.getLastKnownLocation(provider);

 updateWithNewLocation(location);}

 2. Create a new LocationListener instance variable that fi res the existing
updateWithNewLocation method whenever a location change is detected.

private fi nal LocationListener locationListener = new LocationListener() {
 public void onLocationChanged(Location location) {
 updateWithNewLocation(location);
 }

 public void onProviderDisabled(String provider){
 updateWithNewLocation(null);
 }

 public void onProviderEnabled(String provider){ }
 public void onStatusChanged(String provider, int status,
 Bundle extras){ }
};

 3. Return to onCreate and execute requestLocationUpdates, passing in the new Location
Listener object. It should listen for location changes every 2 seconds but fi re only when it detects
movement of more than 10 meters.

@Override
public void onCreate(Bundle icicle) {
 super.onCreate(icicle);
 setContentView(R.layout.main);

 LocationManager locationManager;
 String context = Context.LOCATION_SERVICE;
 locationManager = (LocationManager)getSystemService(context);

 Criteria criteria = new Criteria();
 criteria.setAccuracy(Criteria.ACCURACY_FINE);
 criteria.setAltitudeRequired(false);
 criteria.setBearingRequired(false);
 criteria.setCostAllowed(true);

44712c07.indd 21844712c07.indd 218 10/20/08 4:11:05 PM10/20/08 4:11:05 PM

219

Chapter 7: Maps, Geocoding, and Location-Based Services

 criteria.setPowerRequirement(Criteria.POWER_LOW);

 String provider = locationManager.getBestProvider(criteria, true);

 Location location = locationManager.getLastKnownLocation(provider);

 updateWithNewLocation(location);

 locationManager.requestLocationUpdates(provider, 2000, 10,
 locationListener);
}

If you run the application and start changing the device location, you will see the Text View update
accordingly.

Using Proximity Alerts
It’s often useful to have your applications react when a user moves toward, or away from, a specifi c
location. Proximity alerts let your applications set triggers that are fi red when a user moves within or
beyond a set distance from a geographic location.

Internally, Android may use different Location Providers depending on how close you are to the outside
edge of your target area. This allows the power use and cost to be minimized when the alert is unlikely
to be fi red based on your distance from the interface.

To set a proximity alert for a given coverage area, select the center point (using longitude and latitude
values), a radius around that point, and an expiry time-out for the alert. The alert will fi re if the device
crosses over that boundary, both when it moves within the radius and when it moves beyond it.

When triggered, proximity alerts fi re Intents, most commonly broadcast Intents. To specify the Intent
to fi re, you use a PendingIntent, a class that wraps an Intent in a kind of method pointer, as shown in
the following code snippet:

Intent intent = new Intent(MY_ACTIVITY);
PendingIntent pendingIntent = PendingIntent.getBroadcast(this, -1, intent, 0);

The following example sets a proximity alert that never expires and triggers when the device moves
within 10 meters of its target:

private static String TREASURE_PROXIMITY_ALERT = “com.paad.treasurealert”;

private void setProximityAlert() {
 String locService = Context.LOCATION_SERVICE;
 LocationManager locationManager;
 locationManager = (LocationManager)getSystemService(locService);

 double lat = 73.147536;
 double lng = 0.510638;
 float radius = 100f; // meters

44712c07.indd 21944712c07.indd 219 10/20/08 4:11:05 PM10/20/08 4:11:05 PM

220

Chapter 7: Maps, Geocoding, and Location-Based Services

 long expiration = -1; // do not expire

 Intent intent = new Intent(TREASURE_PROXIMITY_ALERT);
 PendingIntent proximityIntent = PendingIntent.getBroadcast(this, -1,
 intent,
 0);
 locationManager.addProximityAlert(lat, lng, radius, expiration,
 proximityIntent);}

When the Location Manager detects that you have moved either within or beyond the specifi ed radius, the
packaged Intent will be fi red with an extra keyed as LocationManager.KEY_PROXIMITY_ENTERING
set to true or false accordingly.

To handle proximity alerts, you need to create a BroadcastReceiver, such as the one shown in the
following snippet:

public class ProximityIntentReceiver extends BroadcastReceiver {

 @Override
 public void onReceive (Context context, Intent intent) {
 String key = LocationManager.KEY_PROXIMITY_ENTERING;

 Boolean entering = intent.getBooleanExtra(key, false);
 [... perform proximity alert actions ...]
 }

}

To start listening for them, register your receiver, as shown in the snippet below:

IntentFilter filter = new IntentFilter(TREASURE_PROXIMITY_ALERT);
registerReceiver(new ProximityIntentReceiver(), filter);

Using the Geocoder
Geocoding lets you translate between street addresses and longitude/latitude map coordinates. This
can give you a recognizable context for the locations and coordinates used in location-based services
and map-based Activities.

The Geocoder class provides access to two geocoding functions:

Forward Geocoding ❑ Finds the latitude and longitude of an address.

Reverse Geocoding ❑ Finds the street address for a given latitude and longitude.

The results from these calls will be contextualized using a locale, where a locale is used to defi ne your
usual location and language. The following snippet shows how you set the locale when creating your
Geocoder. If you don’t specify a locale, it will assume your device’s default.

Geocoder geocoder = new Geocoder(getApplicationContext(),
 Locale.getDefault());

44712c07.indd 22044712c07.indd 220 10/20/08 4:11:05 PM10/20/08 4:11:05 PM

221

Chapter 7: Maps, Geocoding, and Location-Based Services

Both geocoding functions return a list of Address objects. Each list can contain several possible results,
up to a limit you specify when making the call.

Each Address object is populated with as much detail as the Geocoder was able to resolve. This can
include the latitude, longitude, phone number, and increasingly granular address details from country
to street and house number.

Geocoder lookups are performed synchronously, so they will block the calling thread. For slow data con-
nections, this can lead to an Application Unresponsive dialog. In most cases, it’s good form to move
these lookups into a Service or background thread, as shown in Chapter 8.

For clarity and brevity, the calls made in the code samples within this chapter are made on the main
application thread.

Reverse Geocoding
Reverse geocoding returns street addresses for physical locations, specifi ed by latitude/longitude pairs.
It provides a recognizable context for the locations returned by location-based services.

To perform a reverse lookup, you pass the target latitude and longitude to a Geocoder’s getFromLocation
method. It will return a list of possible matching addresses. If the Geocoder could not resolve any addresses
for the specifi ed coordinate, it will return null.

The following example shows how to reverse-geocode your last known location:

location = locationManager.getLastKnownLocation(LocationManager.GPS_PROVIDER);

double latitude = location.getLatitude();
double longitude = location.getLongitude();

Geocoder gc = new Geocoder(this, Locale.getDefault());

List<Address> addresses = null;
try {
 addresses = gc.getFromLocation(latitude, longitude, 10);
} catch (IOException e) {}

The accuracy and granularity of reverse lookups are entirely dependent on the quality of data in the
geocoding database; as such, the quality of the results may vary widely between different countries
and locales.

Forward Geocoding
Forward geocoding (or just geocoding) determines map coordinates for a given location.

What constitutes a valid location varies depending on the locale (geographic area) within which you’re
searching. Generally, it will include regular street addresses of varying granularity (from country to street
name and number), postcodes, train stations, landmarks, and hospitals. As a general guide, valid search
terms will be similar to the addresses and locations you can enter into the Google Maps search bar.

44712c07.indd 22144712c07.indd 221 10/20/08 4:11:05 PM10/20/08 4:11:05 PM

222

Chapter 7: Maps, Geocoding, and Location-Based Services

To do a forward-geocoding lookup, call getFromLocationName on a Geocoder instance. Pass in the
location you want the coordinates for and the maximum number of results to return, as shown in
the snippet below:

List<Address> result = geocoder.getFromLocationName(aStreetAddress, maxResults);

The returned list of Addresses can include multiple possible matches for the named location. Each
address result will include latitude and longitude and any additional address information available for
those coordinates. This is useful to confi rm that the correct location was resolved, as well as providing
address specifi cs when searching for landmarks.

As with reverse geocoding, if no matches are found, null will be returned. The availability, accuracy, and
granularity of geocoding results will depend entirely on the database available for the area you’re searching.

When doing forward lookups, the Locale specifi ed when creating the Geocoder object is particularly
important. The Locale provides the geographical context for interpreting your search requests, as the
same location names can exist in multiple areas. Where possible, consider selecting a regional Locale to
help avoid place name ambiguity.

Additionally, try to use as many address details as possible. For example, the following code snippet
demonstrates a forward geocode for a New York street address:

Geocoder fwdGeocoder = new Geocoder(this, Locale.US);
String streetAddress = “160 Riverside Drive, New York, New York”;

List<Address> locations = null;
try {
 locations = fwdGeocoder.getFromLocationName(streetAddress, 10);
} catch (IOException e) {}

For even more specifi c results, use the getFromLocationName overload, that lets you restrict your
search to within a geographical bounding box, as shown in the following snippet:

List<Address> locations = null;
try {
 locations = fwdGeocoder.getFromLocationName(streetAddress, 10,
 n, e, s, w);
} catch (IOException e) {}

This overload is particularly useful in conjunction with a MapView as you can restrict the search to
within the visible map.

Geocoding “Where Am I?”
Using the Geocoder, you can determine the street address at your current location. In this example,
you’ll further extend the “Where Am I?” project to include and update the current street address when-
ever the device moves.

Open the WhereAmI Activity. Modify the updateWithNewLocation method to instantiate a new
Geocoder object, and call the getFromLocation method, passing in the newly received location and
limiting the results to a single address.

44712c07.indd 22244712c07.indd 222 10/20/08 4:11:05 PM10/20/08 4:11:05 PM

223

Chapter 7: Maps, Geocoding, and Location-Based Services

Extract each line in the street address, as well as the locality, postcode, and country, and append this
information to an existing Text View string.

private void updateWithNewLocation(Location location) {
 String latLongString;
 TextView myLocationText;
 myLocationText = (TextView)findViewById(R.id.myLocationText);

 String addressString = “No address found”;

 if (location != null) {
 double lat = location.getLatitude();
 double lng = location.getLongitude();
 latLongString = “Lat:” + lat + “\nLong:” + lng;

 double latitude = location.getLatitude();
 double longitude = location.getLongitude();

 Geocoder gc = new Geocoder(this, Locale.getDefault());
 try {
 List<Address> addresses = gc.getFromLocation(latitude, longitude, 1);
 StringBuilder sb = new StringBuilder();
 if (addresses.size() > 0) {
 Address address = addresses.get(0);

 for (int i = 0; i < address.getMaxAddressLineIndex(); i++)
 sb.append(address.getAddressLine(i)).append(“\n”);

 sb.append(address.getLocality()).append(“\n”);
 sb.append(address.getPostalCode()).append(“\n”);
 sb.append(address.getCountryName());
 }
 addressString = sb.toString();
 } catch (IOException e) {}
 } else {
 latLongString = “No location found”;
 }
 myLocationText.setText(“Your Current Position is:\n” +
 latLongString + “\n” + addressString);
}

If you run the example now, it should appear as shown in Figure 7-4.

Figure 7-4

44712c07.indd 22344712c07.indd 223 10/20/08 4:11:05 PM10/20/08 4:11:05 PM

224

Chapter 7: Maps, Geocoding, and Location-Based Services

Creating Map-Based Activities
The MapView provides a compelling User Interface option for presentation of geographical data.

One of the most intuitive ways of providing context for a physical location or address is to display it on
a map. Using a MapView, you can create Activities that feature an interactive map.

Map Views support annotation using both Overlays and by pinning Views to geographical locations. Map
Views offer full programmatic control of the map display, letting you control the zoom, location, and dis-
play modes — including the option to display satellite, street, and traffi c views.

In the following sections, you’ll see how to use Overlays and the MapController to create dynamic
map-based Activities. Unlike online mashups, your map Activities will run natively on the device,
allowing you to leverage its hardware and mobility to provide a more customized and personal user
experience.

Introducing MapView and MapActivity
This section introduces several classes used to support Android maps:

MapView ❑ is the actual Map View (control).

MapActivity ❑ is the base class you extend to create a new Activity that can include a Map
View. The MapActivity class handles the application life cycle and background service
management required for displaying maps. As a result, you can only use a MapView within
MapActivity-derived Activities.

Overlay ❑ is the class used to annotate your maps. Using Overlays, you can use a Canvas to
draw onto any number of layers that are displayed on top of a Map View.

MapController ❑ is used to control the map, allowing you to set the center location and
zoom levels.

MyLocationOverlay ❑ is a special overlay that can be used to display the current position and
orientation of the device.

ItemizedOverlays ❑ and OverlayItems are used together to let you create a layer of map
markers, displayed using drawable with associated text.

Creating a Map-Based Activity
To use maps in your applications, you need to create a new Activity that extends MapActivity. Within it,
add a MapView to the layout to display a Google Maps interface element. The Android map library is not
a standard package; as an optional API, it must be explicitly included in the application manifest before it
can be used. Add the library to your manifest using a uses-library tag within the application node,
as shown in the XML snippet below:

<uses-library android:name=”com.google.android.maps”/>

44712c07.indd 22444712c07.indd 224 10/20/08 4:11:05 PM10/20/08 4:11:05 PM

225

Chapter 7: Maps, Geocoding, and Location-Based Services

Google Maps downloads the map tiles on demand; as a result, it implicitly requires permission to use
the Internet. To see map tiles in your Map View, you need to add a uses-permission tag to your appli-
cation manifest for android.permission.INTERNET, as shown below:

<uses-permission android:name=”android.permission.INTERNET”/>

Once you’ve added the library and confi gured your permission, you’re ready to create your new map-
based Activity.

MapView controls can only be used within an Activity that extends MapActivity. Override the onCreate
method to lay out the screen that includes a MapView, and override isRouteDisplayed to return true if
the Activity will be displaying routing information (such as traffi c directions).

The following skeleton code shows the framework for creating a new map-based Activity:

import com.google.android.maps.MapActivity;
import com.google.android.maps.MapController;
import com.google.android.maps.MapView;
import android.os.Bundle;

public class MyMapActivity extends MapActivity {
 private MapView mapView;
 private MapController mapController;

 @Override
 public void onCreate(Bundle icicle) {
 super.onCreate(icicle);
 setContentView(R.layout.map_layout);
 mapView = (MapView)findViewById(R.id.map_view);
 }

 @Override
 protected boolean isRouteDisplayed() {
 // IMPORTANT: This method must return true if your Activity
 // is displaying driving directions. Otherwise return false.
 return false;
 }
}

The corresponding layout fi le used to include the MapView is shown below. Note that you need to
include a maps API key in order to use a Map View in your application.

<?xml version=”1.0” encoding=”utf-8”?>
<LinearLayout
 xmlns:android=”http://schemas.android.com/apk/res/android”
 android:orientation=”vertical”
 android:layout_width=”fill_parent”
 android:layout_height=”fill_parent”>
 <com.google.android.maps.MapView
 android:id=”@+id/map_view”
 android:layout_width=”fill_parent”

44712c07.indd 22544712c07.indd 225 10/20/08 4:11:05 PM10/20/08 4:11:05 PM

226

Chapter 7: Maps, Geocoding, and Location-Based Services

 android:layout_height=”fill_parent”
 android:enabled=”true”
 android:clickable=”true”
 android:apiKey=”mymapapikey”
 />
</LinearLayout>

At the time of publication, it was unclear how developers would apply for map keys.
Invalid or disabled API keys will result in your MapView not loading the map image
tiles. Until this process is revealed, you can use any text as your API key value.

Figure 7-5 shows an example of a basic map-based Activity.

Figure 7-5

Android currently recommends that you include no more than one MapActivity and one MapView
in each application.

Confi guring and Using Map Views
The MapView class is a View that displays the actual map; it includes several options for deciding how
the map is displayed.

By default, the Map View will show the standard street map, as shown in Figure 7-5. In addition, you can
choose to display a satellite view, StreetView, and expected traffi c, as shown in the code snippet below:

mapView.setSatellite(true);
mapView.setStreetView(true);
mapView.setTraffic(true);

44712c07.indd 22644712c07.indd 226 10/20/08 4:11:05 PM10/20/08 4:11:05 PM

227

Chapter 7: Maps, Geocoding, and Location-Based Services

You can also query the Map View to fi nd the current and maximum available zoom level, as well as the
center point and currently visible longitude and latitude span (in decimal degrees). The latter (shown
below) is particularly useful for performing geographically limited Geocoder lookups:

GeoPoint center = mapView.getMapCenter();
int latSpan = mapView.getLatitudeSpan();
int longSpan = mapView.getLongitudeSpan();

You can also optionally display the standard map zoom controls. The following code snippet shows
how to get a reference to the Zoom Control View and pin it to a screen location. The Boolean parameter
lets you assign focus to the controls once they’re added.

int y = 10;
int x = 10;

MapView.LayoutParams lp;
lp = new MapView.LayoutParams(MapView.LayoutParams.WRAP_CONTENT,
 MapView.LayoutParams.WRAP_CONTENT,
 x, y,
 MapView.LayoutParams.TOP_LEFT);

View zoomControls = mapView.getZoomControls();
mapView.addView(zoomControls, lp);
mapView.displayZoomControls(true);

The technique used to pin the zoom controls to the MapView is covered in more detail later in this chapter.

Using the Map Controller
You use the Map Controller to pan and zoom a MapView. You can get a reference to a MapView’s control-
ler using getController, as shown in the following code snippet:

MapController mapController = myMapView.getController();

Map locations in the Android mapping classes are represented by GeoPoint objects, which contain lati-
tude and longitude measured in microdegrees (i.e., degrees multiplied by 1E6 [or 1,000,000]).

Before you can use the latitude and longitude values stored in the Location objects used by the location-
based services, you’ll need to convert them to microdegrees and store them as GeoPoints, as shown in
the following code snippet:

Double lat = 37.422006*1E6;
Double lng = -122.084095*1E6;
GeoPoint point = new GeoPoint(lat.intValue(), lng.intValue());

Re-center and zoom the MapView using the setCenter and setZoom methods available on the
MapView’s MapController, as shown in the snippet below:

mapController.setCenter(point);
mapController.setZoom(1);

When using setZoom, 1 represents the widest (or furthest away) zoom and 21 the tightest (nearest) view.

44712c07.indd 22744712c07.indd 227 10/20/08 4:11:05 PM10/20/08 4:11:05 PM

228

Chapter 7: Maps, Geocoding, and Location-Based Services

The actual zoom level available for a specifi c location depends on the resolution of Google’s maps and
imagery for that area. You can also use zoomIn and zoomOut to change the zoom level by one step.

The setCenter method will “jump” to a new location; to show a smooth transition, use animateTo as
shown in the code below:

mapController.animateTo(point);

Mapping “Where Am I?”
In the following code example, the “Where Am I?” project is extended again. This time you’ll add map-
ping functionality by transforming it into a Map Activity. As the device location changes, the map will
automatically re-center on the new position.

 1. Start by adding the uses-permission tag for Internet access to the application manifest. Also
import the Android maps library within the application tag.

<?xml version=”1.0” encoding=”utf-8”?>
<manifest xmlns:android=”http://schemas.android.com/apk/res/android”
 package=”com.paad.whereami”>
 <application
 android:icon=”@drawable/icon”>
 <activity
 android:name=”.WhereAmI”
 android:label=”@string/app_name”>
 <intent-fi lter>
 <action android:name=”android.intent.action.MAIN” />
 <category android:name=”android.intent.category.LAUNCHER” />
 </intent-fi lter>
 </activity>
 <uses-library android:name=”com.google.android.maps”/>
 </application>

 <uses-permission android:name=”android.permission.INTERNET”/>
 <uses-permission android:name=”android.permission.ACCESS_FINE_LOCATION”/>

</manifest>

 2. Change the inheritance of WhereAmI to descend from MapActivity instead of Activity. You’ll
also need to include an override for the isRouteDisplayed method. Because this Activity won’t
show routing directions, you can return false.

public class WhereAmI extends MapActivity {

 @Override
 protected boolean isRouteDisplayed() {
 return false;
 }

 [... existing Activity code ...]

}

44712c07.indd 22844712c07.indd 228 10/20/08 4:11:05 PM10/20/08 4:11:05 PM

229

Chapter 7: Maps, Geocoding, and Location-Based Services

 3. Modify the main.xml layout resource to include a MapView using the fully qualifi ed class name.
Be sure to include an android:apikey attribute within the com.android.MapView node. If
you have an Android maps API key, use it here.

<?xml version=”1.0” encoding=”utf-8”?>
<LinearLayout
 xmlns:android=”http://schemas.android.com/apk/res/android”
 android:orientation=”vertical”
 android:layout_width=”fi ll_parent”
 android:layout_height=”fi ll_parent”>
 <TextView
 android:id=”@+id/myLocationText”
 android:layout_width=”fi ll_parent”
 android:layout_height=”wrap_content”
 android:text=”@string/hello”
 />
 <com.google.android.maps.MapView
 android:id=”@+id/myMapView”
 android:layout_width=”fill_parent”
 android:layout_height=”fill_parent”
 android:enabled=”true”
 android:clickable=”true”
 android:apiKey=”myMapKey”
 />
</LinearLayout>

 4. Running the application now should display the original geolocation text, with a MapView
beneath it, as shown in Figure 7-6.

Figure 7-6

44712c07.indd 22944712c07.indd 229 10/20/08 4:11:05 PM10/20/08 4:11:05 PM

230

Chapter 7: Maps, Geocoding, and Location-Based Services

 5. Confi gure the Map View and store a reference to its MapController as an instance variable.
Set up the Map View display options to show the satellite and StreetView and zoom in for a
closer look.

MapController mapController;

@Override
public void onCreate(Bundle icicle) {
 super.onCreate(icicle);
 setContentView(R.layout.main);

 // Get a reference to the MapView
 MapView myMapView = (MapView)findViewById(R.id.myMapView);
 // Get the Map View’s controller
 mapController = myMapView.getController();

 // Configure the map display options
 myMapView.setSatellite(true);
 myMapView.setStreetView(true);
 myMapView.displayZoomControls(false);

 // Zoom in
 mapController.setZoom(17);

 LocationManager locationManager;
 String context = Context.LOCATION_SERVICE;
 locationManager = (LocationManager)getSystemService(context);

 Criteria criteria = new Criteria();
 criteria.setAccuracy(Criteria.ACCURACY_FINE);
 criteria.setAltitudeRequired(false);
 criteria.setBearingRequired(false);
 criteria.setCostAllowed(true);
 criteria.setPowerRequirement(Criteria.POWER_LOW);
 String provider = locationManager.getBestProvider(criteria, true);

 Location location = locationManager.getLastKnownLocation(provider);

 updateWithNewLocation(location);

 locationManager.requestLocationUpdates(provider, 2000, 10,
 locationListener);
}

 6. The fi nal step is to modify the updateWithNewLocation method to re-center the map to the
current location using the Map Controller.

private void updateWithNewLocation(Location location) {
 String latLongString;
 TextView myLocationText;
 myLocationText = (TextView)fi ndViewById(R.id.myLocationText);

44712c07.indd 23044712c07.indd 230 10/20/08 4:11:06 PM10/20/08 4:11:06 PM

231

Chapter 7: Maps, Geocoding, and Location-Based Services

 String addressString = “No address found”;

 if (location != null) {
 // Update the map location.
 Double geoLat = location.getLatitude()*1E6;
 Double geoLng = location.getLongitude()*1E6;
 GeoPoint point = new GeoPoint(geoLat.intValue(),
 geoLng.intValue());

 mapController.animateTo(point);

 double lat = location.getLatitude();
 double lng = location.getLongitude();
 latLongString = “Lat:” + lat + “\nLong:” + lng;

 double latitude = location.getLatitude();
 double longitude = location.getLongitude();

 Geocoder gc = new Geocoder(this, Locale.getDefault());
 try {
 List<Address> addresses = gc.getFromLocation(latitude, longitude, 1);
 StringBuilder sb = new StringBuilder();
 if (addresses.size() > 0) {
 Address address = addresses.get(0);

 for (int i = 0; i < address.getMaxAddressLineIndex(); i++)
 sb.append(address.getAddressLine(i)).append(“\n”);

 sb.append(address.getLocality()).append(“\n”);
 sb.append(address.getPostalCode()).append(“\n”);
 sb.append(address.getCountryName());
 }
 addressString = sb.toString();
 } catch (IOException e) {}
 } else {
 latLongString = “No location found”;
 }
 myLocationText.setText(“Your Current Position is:\n” +
 latLongString + “\n” + addressString);
}

Creating and Using Overlays
Overlays are a way to add annotations and click handling to MapViews. Each Overlay lets you draw
2D primitives including text, lines, images and shapes directly onto a canvas, which is then overlaid
onto a Map View.

You can add several Overlays onto a single map. All the Overlays assigned to a Map View are added
as layers, with newer layers potentially obscuring older ones. User clicks are passed through the stack
until they are either handled by an Overlay or registered as a click on the Map View itself.

44712c07.indd 23144712c07.indd 231 10/20/08 4:11:06 PM10/20/08 4:11:06 PM

232

Chapter 7: Maps, Geocoding, and Location-Based Services

Creating New Overlays
Each overlay is a canvas with a transparent background that you can layer on top of a Map View and
use to handle map touch events.

To add a new Overlay, create a new class that extends Overlay. Override the draw method to draw the
annotations you want to add, and override onTap to react to user clicks (generally when the user taps
an annotation added by this overlay).

The following code snippet shows the framework for creating a new Overlay that can draw annotations
and handle user clicks:

import android.graphics.Canvas;
import com.google.android.maps.MapView;
import com.google.android.maps.Overlay;

public class MyOverlay extends Overlay {

 @Override
 public void draw(Canvas canvas, MapView mapView, boolean shadow) {
 if (shadow == false) {
 [... Draw annotations on main map layer ...]
 }
 else {
 [... Draw annotations on the shadow layer ...]
 }
 }

 @Override
 public boolean onTap(GeoPoint point, MapView mapView) {
 // Return true if screen tap is handled by this overlay
 return false;
 }
}

Introducing Projections
The Canvas used to draw Overlay annotations is a standard Canvas that represents the visible display
surface. To add annotations based on physical locations, you need to convert between geographical
points and screen coordinates.

The Projection class lets you translate between latitude/longitude coordinates (stored as GeoPoints)
and x/y screen pixel coordinates (stored as Points).

A map’s Projection may change between subsequent calls to draw, so it’s good practice to get a new
instance each time. Get a Map View’s Projection by calling getProjection, as shown in the snippet below:

Projection projection = mapView.getProjection();

Use the fromPixel and toPixel methods to translate from GeoPoints to Points and vice versa.

44712c07.indd 23244712c07.indd 232 10/20/08 4:11:06 PM10/20/08 4:11:06 PM

233

Chapter 7: Maps, Geocoding, and Location-Based Services

For performance reasons, the toPixel Projection method is best used by passing a Point object to be
populated (rather than relying on the return value), as shown below:

Point myPoint = new Point();

// To screen coordinates
projection.toPixels(geoPoint, myPoint);

// To GeoPoint location coordinates
projection.fromPixels(myPoint.x, myPoint.y);

Drawing on the Overlay Canvas
Canvas drawing for Overlays is handled by overriding the Overlay’s draw handler.

The passed-in Canvas is the surface on which you draw your annotations, using the same techniques
introduced in Chapter 4 when creating custom User Interfaces for Views. The Canvas object includes
the methods for drawing 2D primitives on your map (including lines, text, shapes, ellipses, images,
etc.). Use Paint objects to defi ne the style and color.

The following code snippet uses a Projection to draw text and an ellipse at a given location:

@Override
public void draw(Canvas canvas, MapView mapView, boolean shadow) {
 Projection projection = mapView.getProjection();

 Double lat = -31.960906*1E6;
 Double lng = 115.844822*1E6;
 GeoPoint geoPoint = new GeoPoint(lat.intValue(), lng.intValue());

 if (shadow == false) {
 Point myPoint = new Point();
 projection.toPixels(geoPoint, myPoint);

 // Create and setup your paint brush
 Paint paint = new Paint();
 paint.setARGB(250, 255, 0, 0);
 paint.setAntiAlias(true);
 paint.setFakeBoldText(true);

 // Create the circle
 int rad = 5;
 RectF oval = new RectF(myPoint.x-rad, myPoint.y-rad,
 myPoint.x+rad, myPoint.y+rad);

 // Draw on the canvas
 canvas.drawOval(oval, paint);
 canvas.drawText(“Red Circle”, myPoint.x+rad, myPoint.y, paint);
 }
}

For more advanced drawing features, check out Chapter 11, where gradients, strokes, and fi lters are
introduced that provide powerful tools for drawing attractive and compelling map overlays.

44712c07.indd 23344712c07.indd 233 10/20/08 4:11:06 PM10/20/08 4:11:06 PM

234

Chapter 7: Maps, Geocoding, and Location-Based Services

Handling Map Tap Events
To handle map taps (user clicks), override the onTap event handler within the Overlay extension class.

The onTap handler receives two parameters:

A ❑ GeoPoint that contains the latitude/longitude of the map location tapped

The ❑ MapView that was tapped to trigger this event

When overriding onTap, the method should return true if it has handled a particular tap and false to
let another overlay handle it, as shown in the skeleton code below:

@Override
public boolean onTap(GeoPoint point, MapView mapView) {
 // Perform hit test to see if this overlay is handling the click
 if ([... perform hit test ...]) {
 [... execute on tap functionality ...]
 return true;
 }

 // If not handled return false
 return false;
}

Adding and Removing Overlays
Each MapView contains a list of Overlays currently displayed. You can get a reference to this list by calling
getOverlays, as shown in the snippet below:

List<Overlay> overlays = mapView.getOverlays();

Adding and removing items from the list is thread safe and synchronized, so you can modify and
query the list safely. Iterating over the list should still be done within a synchronization block synchro-
nized on the List.

To add an Overlay onto a Map View, create a new instance of the Overlay, and add it to the list, as
shown in the snippet below:

List<Overlay> overlays = mapView.getOverlays();

MyOverlay myOverlay = new MyOverlay();
overlays.add(myOverlay);
mapView.postInvalidate();

The added Overlay will be displayed the next time the Map View is redrawn, so it’s usually good practice
to call postInvalidate after you modify the list to update the changes on the map display.

Annotating “Where Am I?”
This fi nal modifi cation to “Where Am I?” creates and adds a new Overlay that displays a red circle at
the device’s current position.

44712c07.indd 23444712c07.indd 234 10/20/08 4:11:06 PM10/20/08 4:11:06 PM

235

Chapter 7: Maps, Geocoding, and Location-Based Services

 1. Start by creating a new MyPositionOverlay Overlay class in the WhereAmI project.

package com.paad.whereami;

import android.graphics.Canvas;
import android.graphics.Paint;
import android.graphics.Point;
import android.graphics.RectF;
import android.location.Location;
import com.google.android.maps.GeoPoint;
import com.google.android.maps.MapView;
import com.google.android.maps.Overlay;
import com.google.android.maps.Projection;

public class MyPositionOverlay extends Overlay {

 @Override
 public void draw(Canvas canvas, MapView mapView, boolean shadow) {
 }

 @Override
 public boolean onTap(GeoPoint point, MapView mapView) {
 return false;
 }
}

 2. Create a new instance variable to store the current Location, and add setter and getter methods
for it.

Location location;

public Location getLocation() {
 return location;
}
public void setLocation(Location location) {
 this.location = location;
}

 3. Override the draw method to add a small red circle at the current location.

private final int mRadius = 5;

@Override
public void draw(Canvas canvas, MapView mapView, boolean shadow) {
 Projection projection = mapView.getProjection();

 if (shadow == false) {
 // Get the current location
 Double latitude = location.getLatitude()*1E6;
 Double longitude = location.getLongitude()*1E6;
 GeoPoint geoPoint;
 geoPoint = new GeoPoint(latitude.intValue(),longitude.intValue());

 // Convert the location to screen pixels

44712c07.indd 23544712c07.indd 235 10/20/08 4:11:06 PM10/20/08 4:11:06 PM

236

Chapter 7: Maps, Geocoding, and Location-Based Services

 Point point = new Point();
 projection.toPixels(geoPoint, point);

 RectF oval = new RectF(point.x - mRadius, point.y - mRadius,
 point.x + mRadius, point.y + mRadius);

 // Setup the paint
 Paint paint = new Paint();
 paint.setARGB(250, 255, 0, 0);
 paint.setAntiAlias(true);
 paint.setFakeBoldText(true);

 Paint backPaint = new Paint();
 backPaint.setARGB(175, 50, 50, 50);
 backPaint.setAntiAlias(true);

 RectF backRect = new RectF(point.x + 2 + mRadius,
 point.y - 3*mRadius,
 point.x + 65, point.y + mRadius);

 // Draw the marker
 canvas.drawOval(oval, paint);
 canvas.drawRoundRect(backRect, 5, 5, backPaint);

 canvas.drawText(“Here I Am”, point.x + 2*mRadius, point.y, paint);
 }
 super.draw(canvas, mapView, shadow);
}

 4. Now open the WhereAmI Activity class, and add the MyPositionOverlay to the MapView.

Start by adding a new instance variable to store the MyPositionOverlay, then override onCreate
to create a new instance of the class, and add it to the MapView’s Overlay list.

MyPositionOverlay positionOverlay;

@Override
public void onCreate(Bundle icicle) {
 super.onCreate(icicle);
 setContentView(R.layout.main);

 MapView myMapView = (MapView)fi ndViewById(R.id.myMapView);
 mapController = myMapView.getController();

 myMapView.setSatellite(true);
 myMapView.setStreetView(true);
 myMapView.displayZoomControls(false);

 mapController.setZoom(17);

 // Add the MyPositionOverlay
 positionOverlay = new MyPositionOverlay();
 List<Overlay> overlays = myMapView.getOverlays();

44712c07.indd 23644712c07.indd 236 10/20/08 4:11:06 PM10/20/08 4:11:06 PM

237

Chapter 7: Maps, Geocoding, and Location-Based Services

 overlays.add(positionOverlay);

 LocationManager locationManager;
 String context = Context.LOCATION_SERVICE;
 locationManager = (LocationManager)getSystemService(context);

 Criteria criteria = new Criteria();
 criteria.setAccuracy(Criteria.ACCURACY_FINE);
 criteria.setAltitudeRequired(false);
 criteria.setBearingRequired(false);
 criteria.setCostAllowed(true);
 criteria.setPowerRequirement(Criteria.POWER_LOW);
 String provider = locationManager.getBestProvider(criteria, true);

 Location location = locationManager.getLastKnownLocation(provider);

 updateWithNewLocation(location);

 locationManager.requestLocationUpdates(provider, 2000, 10,
 locationListener);
}

 5. Finally, update the updateWithNewLocation method to pass the new location to the overlay.

private void updateWithNewLocation(Location location) {
 String latLongString;
 TextView myLocationText;
 myLocationText = (TextView)fi ndViewById(R.id.myLocationText);
 String addressString = “No address found”;

 if (location != null) {
 // Update my location marker
 positionOverlay.setLocation(location);

 // Update the map location.
 Double geoLat = location.getLatitude()*1E6;
 Double geoLng = location.getLongitude()*1E6;
 GeoPoint point = new GeoPoint(geoLat.intValue(),
 geoLng.intValue());

 mapController.animateTo(point);

 double lat = location.getLatitude();
 double lng = location.getLongitude();
 latLongString = “Lat:” + lat + “\nLong:” + lng;

 double latitude = location.getLatitude();
 double longitude = location.getLongitude();

 Geocoder gc = new Geocoder(this, Locale.getDefault());
 try {
 List<Address> addresses = gc.getFromLocation(latitude, longitude, 1);
 StringBuilder sb = new StringBuilder();

44712c07.indd 23744712c07.indd 237 10/20/08 4:11:06 PM10/20/08 4:11:06 PM

238

Chapter 7: Maps, Geocoding, and Location-Based Services

 if (addresses.size() > 0) {
 Address address = addresses.get(0);

 for (int i = 0; i < address.getMaxAddressLineIndex(); i++)
 sb.append(address.getAddressLine(i)).append(“\n”);

 sb.append(address.getLocality()).append(“\n”);
 sb.append(address.getPostalCode()).append(“\n”);
 sb.append(address.getCountryName());
 }
 addressString = sb.toString();
 } catch (IOException e) {}
 } else {
 latLongString = “No location found”;
 }
 myLocationText.setText(“Your Current Position is:\n” +
 latLongString + “\n” + addressString);
}

When run, your application will display your current device location with a red circle and supporting
text, as shown in Figure 7-7.

Figure 7-7

It’s worth noting that this is not the preferred technique for displaying your current location on a map.
This functionality is implemented natively by Android through the MyLocationOverlay class. If you
want to display and follow your current location, you should consider using this class (as shown in the
next section) instead of implementing it manually as shown here.

44712c07.indd 23844712c07.indd 238 10/20/08 4:11:06 PM10/20/08 4:11:06 PM

239

Chapter 7: Maps, Geocoding, and Location-Based Services

Introducing MyLocationOverlay
The MyLocationOverlay class is a special Overlay designed to show your current location and orienta-
tion on a MapView.

To use the My Location Overlay, you need to create a new instance, passing in the application Context
and target Map View, and add it to the MapView’s Overlay list, as shown below:

List<Overlay> overlays = mapView.getOverlays();
MyLocationOverlay myLocationOverlay = new MyLocationOverlay(this, mapView);
overlays.add(myLocationOverlay);

You can use the My Location Overlay to display both your current location (represented as a fl ashing
blue marker) and orientation (shown as a compass on the map display).

The following snippet shows how to enable both the compass and marker; in this instance, the Map
View’s MapController is also passed in, allowing the overlay to automatically scroll the map if the
marker moves off screen.

myLocationOverlay.enableCompass();
myLocationOverlay.enableMyLocation(mapView.getMapController());

Introducing ItemizedOverlays and OverlayItems
OverlayItems are used to supply simple maker functionality to your MapViews using the
ItemizedOverlay class.

You can create your own Overlays that draw markers onto a map, but ItemizedOverlays provide a
convenient shortcut, letting you assign a marker image and associated text to a particular geographical
position. The ItemizedOverlay instance handles the drawing, placement, click handling, focus con-
trol, and layout optimization of each OverlayItem marker for you.

At the time of going to print, the ItemizedOverlay/OverlayItem functionality
was not fully supported. While it was possible to implement each required class,
the markers were not displayed on the map.

To add an ItemizedOverlay marker layer to your map, start by creating a new class that extends
ItemizedOverlay<OverlayItem>, as shown in the skeleton code below:

import android.graphics.drawable.Drawable;
import com.google.android.maps.GeoPoint;
import com.google.android.maps.ItemizedOverlay;
import com.google.android.maps.OverlayItem;

public class MyItemizedOverlay extends ItemizedOverlay<OverlayItem> {

 public MyItemizedOverlay(Drawable defaultMarker) {
 super(defaultMarker);

44712c07.indd 23944712c07.indd 239 10/20/08 4:11:06 PM10/20/08 4:11:06 PM

240

Chapter 7: Maps, Geocoding, and Location-Based Services

 // Create each of the overlay items included in this layer.
 populate();
 }

 @Override
 protected OverlayItem createItem(int index) {
 switch (index) {
 case 1:
 Double lat = 37.422006*1E6;
 Double lng = -122.084095*1E6;
 GeoPoint point = new GeoPoint(lat.intValue(), lng.intValue());

 OverlayItem oi;
 oi = new OverlayItem(point, “Marker”, “Marker Text”);
 return oi;
 }

 return null;
 }

 @Override
 public int size() {
 // Return the number of markers in the collection
 return 1;
 }

}

ItemizedOverlay is a generic class that lets you create extensions based on any OverlayItem-
derived subclass.

Within the implementation, override size to return the number of markers to display and createItem
to create a new item based on the index of each marker. You will also need to make a call to populate
within the class’s constructor. This call is a requirement and is used to trigger the creation of each
OverlayItem; it must be called as soon as you have the data required to create all the items.

To add an ItemizedOverlay implementation to your map, create a new instance (passing in the default
drawable marker image to use), and add it to the map’s Overlay list, as shown in the following snippet:

List<Overlay> overlays = mapView.getOverlays();

MyItemizedOverlay markrs = new MyItemizedOverlay(r.getDrawable(R.drawable.marker));
overlays.add(markrs);

Pinning Views to the Map and Map Positions
Previously in this chapter, you saw how to add the Zoom View to a Map View by pinning it to a specifi c
screen location. You can pin any View-derived object to a Map View (including layouts and other View
Groups), attaching it to either a screen position or a geographical map location.

44712c07.indd 24044712c07.indd 240 10/20/08 4:11:06 PM10/20/08 4:11:06 PM

241

Chapter 7: Maps, Geocoding, and Location-Based Services

In the latter case, the View will move to follow its pinned position on the map, effectively acting as an
interactive map marker. As a more resource-intensive solution, this is usually reserved for supplying
the detail “balloons” often displayed on mashups to provide further detail when a marker is clicked.

Both pinning mechanisms are implemented by calling addView on the MapView, usually from the
onCreate or onRestore methods within the MapActivity containing it. Pass in the View you want
to pin and the layout parameters to use.

The MapView.LayoutParams parameters you pass in to addView determine how, and where, the View
is added to the map.

To add a new View to the map relative to the screen, specify a new MapView.LayoutParams including
arguments that set the height and width of the View, the x/y screen coordinates to pin to, and the align-
ment to use for positioning, as shown below:

int y = 10;
int x = 10;

MapView.LayoutParams screenLP;
screenLP = new MapView.LayoutParams(MapView.LayoutParams.WRAP_CONTENT,
 MapView.LayoutParams.WRAP_CONTENT,
 x, y,
 MapView.LayoutParams.TOP_LEFT);

EditText editText1 = new EditText(getApplicationContext());
editText1.setText(“Screen Pinned”);

mapView.addView(editText1, screenLP);

To pin a View relative to a physical map location, pass four parameters when constructing the new
MapView LayoutParams, representing the height, width, GeoPoint to pin to, and the layout alignment.

Double lat = 37.422134*1E6;
Double lng = -122.084069*1E6;
GeoPoint geoPoint = new GeoPoint(lat.intValue(), lng.intValue());

MapView.LayoutParams geoLP;
geoLP = new MapView.LayoutParams(MapView.LayoutParams.WRAP_CONTENT,
 MapView.LayoutParams.WRAP_CONTENT,
 geoPoint,
 MapView.LayoutParams.TOP_LEFT);

EditText editText2 = new EditText(getApplicationContext());
editText2.setText(“Location Pinned”);

mapView.addView(editText2, geoLP);

Panning the map will leave the fi rst TextView stationary in the upper left corner, while the second
TextView will move to remain pinned to a particular position on the map.

44712c07.indd 24144712c07.indd 241 10/20/08 4:11:06 PM10/20/08 4:11:06 PM

242

Chapter 7: Maps, Geocoding, and Location-Based Services

To remove a View from a MapView, call removeView, passing in the View instance you wish to remove,
as shown below:

mapView.removeView(editText2);

Mapping Earthquakes Example
The following step-by-step guide demonstrates how to build a map-based Activity for the Earthquake
project you started in Chapter 5. The new MapActivity will display a map of recent earthquakes using
techniques you learned within this chapter.

 1. Create a new earthquake_map.xml layout resource that includes a MapView, being sure to
include an android:id attribute and a android:apiKey attribute that contains your Android
Maps API key.

<?xml version=”1.0” encoding=”utf-8”?>
<LinearLayout
 xmlns:android=”http://schemas.android.com/apk/res/android”
 android:orientation=”vertical”
 android:layout_width=”fi ll_parent”
 android:layout_height=”fi ll_parent”>
 <com.google.android.maps.MapView
 android:id=”@+id/map_view”
 android:layout_width=”fi ll_parent”
 android:layout_height=”fi ll_parent”
 android:enabled=”true”
 android:clickable=”true”
 android:apiKey=”myapikey”
 />
</LinearLayout>

 2. Create a new EarthquakeMap Activity that inherits from MapActivity. Use setContentView
within onCreate to infl ate the earthquake_map resource you created in Step 1.

package com.paad.earthquake;

import android.os.Bundle;
import com.google.android.maps.MapActivity;

public class EarthquakeMap extends MapActivity {

 @Override
 public void onCreate(Bundle icicle) {
 super.onCreate(icicle);
 setContentView(R.layout.earthquake_map);
 }

 @Override
 protected boolean isRouteDisplayed() {
 return false;
 }

}

44712c07.indd 24244712c07.indd 242 10/20/08 4:11:06 PM10/20/08 4:11:06 PM

243

Chapter 7: Maps, Geocoding, and Location-Based Services

 3. Update the application manifest to include your new EarthquakeMap Activity and import the
map library.

<?xml version=”1.0” encoding=”utf-8”?>
<manifest xmlns:android=”http://schemas.android.com/apk/res/android”
 package=”com.paad.earthquake”>
 <application android:icon=”@drawable/icon”>
 <activity
 android:name=”.Earthquake”
 android:label=”@string/app_name”>
 <intent-fi lter>
 <action android:name=”android.intent.action.MAIN” />
 <category android:name=”android.intent.category.LAUNCHER” />
 </intent-fi lter>
 </activity>
 <activity android:name=”.Preferences”
 android:label=”Earthquake Preferences”/>
 <activity android:name=”.EarthquakeMap”
 android:label=”View Earthquakes”/>
 <provider android:name=”.EarthquakeProvider”
 android:authorities=”com.paad.provider.earthquake” />
 <uses-library android:name=”com.google.android.maps”/>
 </application>
 <uses-permission android:name=”android.permission.INTERNET”/>
</manifest>

 4. Add a new menu option to the Earthquake Activity to display the EarthquakeMap Activity.

 4.1. Start by adding a new string to the strings.xml resource for the menu text.

<?xml version=”1.0” encoding=”utf-8”?>
<resources>
 <string name=”app_name”>Earthquake</string>
 <string name=”quake_feed”>
 http://earthquake.usgs.gov/eqcenter/catalogs/1day-M2.5.xml
 </string>
 <string name=”menu_update”>Refresh Earthquakes</string>
 <string name=”auto_update_prompt”>Auto Update?</string>
 <string name=”update_freq_prompt”>Update Frequency</string>
 <string name=”min_quake_mag_prompt”>Minimum Quake Magnitude</string>
 <string name=”menu_preferences”>Preferences</string>
 <string name=”menu_earthquake_map”>Earthquake Map</string>
</resources>

 4.2. Then add a new menu identifi er before modifying the onCreateOptionsMenu han-
dler to add the new Menu Item. It should use the text defi ned in Step 4.1, and when
selected, it should fi re an Intent to explicitly start the EarthquakeMap Activity.

static final private int MENU_EARTHQUAKE_MAP = Menu.FIRST+2;

@Override
public boolean onCreateOptionsMenu(Menu menu) {
 super.onCreateOptionsMenu(menu);

 menu.add(0, MENU_UPDATE, Menu.NONE, R.string.menu_update);
 menu.add(0, MENU_PREFERENCES, Menu.NONE, R.string.menu_preferences);

44712c07.indd 24344712c07.indd 243 10/20/08 4:11:06 PM10/20/08 4:11:06 PM

244

Chapter 7: Maps, Geocoding, and Location-Based Services

 Intent startMap = new Intent(this, EarthquakeMap.class);
 menu.add(0, MENU_EARTHQUAKE_MAP,
 Menu.NONE,
 R.string.menu_earthquake_map).setIntent(startMap);
 return true;
}

 5. Now create a new EarthquakeOverlay class that extends Overlay. It will draw the position
and magnitude of each earthquake on the Map View.

package com.paad.earthquake;

import java.util.ArrayList;
import android.database.Cursor;
import android.database.DataSetObserver;
import android.graphics.Canvas;
import android.graphics.Paint;
import android.graphics.Point;
import android.graphics.RectF;
import com.google.android.maps.GeoPoint;
import com.google.android.maps.MapView;
import com.google.android.maps.Overlay;
import com.google.android.maps.Projection;

public class EarthquakeOverlay extends Overlay {

 @Override
 public void draw(Canvas canvas, MapView mapView, boolean shadow) {
 Projection projection = mapView.getProjection();

 if (shadow == false) {
 // TODO: Draw earthquakes
 }
 }
}

 5.1. Add a new constructor that accepts a Cursor to the current earthquake data, and
store that Cursor as an instance variable.

Cursor earthquakes;

public EarthquakeOverlay(Cursor cursor, ContentResolver resolver) {
 super();

 earthquakes = cursor;
}

 5.2. Create a new refreshQuakeLocations method that iterates over the results
Cursor and extracts the location of each earthquake, extracting the latitude and
longitude before storing each coordinate in a List of GeoPoints.

ArrayList<GeoPoint> quakeLocations;

private void refreshQuakeLocations() {
 if (earthquakes.moveToFirst())

44712c07.indd 24444712c07.indd 244 10/20/08 4:11:06 PM10/20/08 4:11:06 PM

245

Chapter 7: Maps, Geocoding, and Location-Based Services

 do {
 Double lat;
 lat = earthquakes.getFloat(EarthquakeProvider.LATITUDE_COLUMN) * 1E6;
 Double lng;
 lng = earthquakes.getFloat(EarthquakeProvider.LONGITUDE_COLUMN) * 1E6;

 GeoPoint geoPoint = new GeoPoint(lng.intValue(), lat.intValue());

 quakeLocations.add(geoPoint);

 } while(earthquakes.moveToNext());
}

 5.3. Call refreshQuakeLocations from the Overlay’s constructor. Also register a
DataSetObserver on the results Cursor that refreshes the Earthquake Location
list if a change in the Earthquake Cursor is detected.

public EarthquakeOverlay(Cursor cursor) {
 super();
 earthquakes = cursor;

 quakeLocations = new ArrayList<GeoPoint>();
 refreshQuakeLocations();
 earthquakes.registerDataSetObserver(new DataSetObserver() {
 @Override
 public void onChanged() {
 refreshQuakeLocations();
 }
 });
}

 5.4. Complete the EarthquakeOverlay by overriding the draw method to iterate
over the list of GeoPoints, drawing a marker at each earthquake location. In this
example, a simple red circle is drawn, but it could easily be modifi ed to include
additional information, such as by adjusting the size of each circle based on the
magnitude of the quake.

int rad = 5;

@Override
public void draw(Canvas canvas, MapView mapView, boolean shadow) {
 Projection projection = mapView.getProjection();

 // Create and setup your paint brush
 Paint paint = new Paint();
 paint.setARGB(250, 255, 0, 0);
 paint.setAntiAlias(true);
 paint.setFakeBoldText(true);

 if (shadow == false) {
 for (GeoPoint point : quakeLocations) {

 Point myPoint = new Point();
 projection.toPixels(point, myPoint);

44712c07.indd 24544712c07.indd 245 10/20/08 4:11:06 PM10/20/08 4:11:06 PM

246

Chapter 7: Maps, Geocoding, and Location-Based Services

 RectF oval = new RectF(myPoint.x-rad, myPoint.y-rad,
 myPoint.x+rad, myPoint.y+rad);

 canvas.drawOval(oval, paint);
 }
 }
}

 6. Return to the EarthquakeMap class. Within the onCreate method, create a Cursor that
returns the earthquakes you want to display on the map. Use this Cursor to create a new
EarthquakeOverlay before adding the new instance to the Map View’s list of overlays.

Cursor earthquakeCursor;

@Override
 public void onCreate(Bundle icicle) {
 super.onCreate(icicle);
 setContentView(R.layout.earthquake_map);

String earthquakeURI = EarthquakeProvider.CONTENT_URI;
 earthquakeCursor = getContentResolver().query(earthquakeURI,
 null, null, null, null);

 MapView earthquakeMap = (MapView)findViewById(R.id.map_view);
 EarthquakeOverlay eo = new EarthquakeOverlay(earthquakeCursor);
 earthquakeMap.getOverlays().add(eo);
}

 7. Finally, override onResume to call requery on the Earthquake result set whenever this Activity
becomes visible. Also, override onPause and onDestroy to optimize use of the Cursor resources.

@Override
public void onResume() {
 earthquakeCursor.requery();
 super.onResume();
}

@Override
public void onPause() {
 earthquakeCursor.deactivate();
 super.onPause();
}

@Override
public void onDestroy() {
 earthquakeCursor.close();
 super.onDestroy();
}

 8. If you run the application and select Earthquake Map from the main menu, your application
should appear as shown in Figure 7-8.

44712c07.indd 24644712c07.indd 246 10/20/08 4:11:06 PM10/20/08 4:11:06 PM

247

Chapter 7: Maps, Geocoding, and Location-Based Services

Figure 7-8

Summary
Location-based services, the Geocoder, and MapViews are available to create intuitive, location-aware
applications that feature geographical information.

This chapter introduced the Geocoder and showed how to perform forward and reverse geocoding
lookups to translate between map coordinates and street addresses. You were introduced to location-
based services, used to fi nd the current geographical position of the device. You also used them to track
movement and create proximity alerts.

Then you created interactive map applications. Using Overlays and Views, you annotated MapViews
with 2D graphics, as well as markers in the form of OverlayItems and Views (including ViewGroups
and layouts).

In Chapter 8, you’ll learn how to work from the background. You’ll be introduced to the Service com-
ponent and learn how to move processing onto background threads. To interact with the user while
hidden from view, you’ll use Toasts to display transient messages and the Notifi cation Manager to ring,
vibrate, and fl ash the phone.

44712c07.indd 24744712c07.indd 247 10/20/08 4:11:06 PM10/20/08 4:11:06 PM

44712c07.indd 24844712c07.indd 248 10/20/08 4:11:06 PM10/20/08 4:11:06 PM

Working in the Background

Because of the limited screen size of most mobile devices, typically only one application is vis-
ible and active on a device at any given time. This offers a perfect environment for applications
that run in the background without a User Interface — responding to events, polling for data, or
updating Content Providers.

Android offers the Service class to create application components specifi cally to handle opera-
tions and functionality that should run silently, without a User Interface. Android accords Services
a higher priority than inactive Activities, so they’re less likely to be killed when the system requires
resources. In fact, should the run time prematurely terminate a Service that’s been started, it will be
restarted as soon as suffi cient resources are available. By using Services, you can ensure that your
applications continue to run and respond to events, even when they’re not in active use.

Services run without a dedicated GUI, but, like Activities and Broadcast Receivers, they still
execute in the main thread of the application’s process. To help keep your applications responsive,
you’ll learn to move time-consuming processes (like network lookups) into background threads.

Android offers several techniques for application components (particularly Services) to communi-
cate with users without an Activity providing a direct User Interface. In this chapter, you’ll learn
how to use Notifi cations and Toasts to politely alert and update users, without interrupting the
active application.

Toasts are a transient, non-modal Dialog-box mechanism used to display information to users
without stealing focus from the active application. You’ll learn to display Toasts from any applica-
tion component to send unobtrusive on-screen messages to your users.

Where Toasts are silent and transient, Notifi cations represent a more robust mechanism for alert-
ing users. For many users, when they’re not actively using their mobile phones, they sit silent and
unwatched in a pocket or on a desk until it rings, vibrates, or fl ashes. Should a user miss these alerts,
status bar icons are used to indicate that an event has occurred. All of these attention-grabbing
antics are available within Android as Notifi cations.

44712c08.indd 24944712c08.indd 249 10/20/08 4:10:51 PM10/20/08 4:10:51 PM

250

Chapter 8: Working in the Background

Alarms provide a mechanism for fi ring Intents at set times, outside the control of your application life
cycle. You’ll learn to use Alarms to start Services, open Activities, or broadcast Intents based on either
the clock time or the time elapsed since device boot. An Alarm will fi re even after its owner application
has been closed, and can (if required) wake a device from sleep.

Introducing Services
Unlike Activities, which present a rich graphical interface to users, Services run in the background —
updating your Content Providers, fi ring Intents, and triggering Notifi cations. They are the perfect way
to perform regular processing or handle events even after your application’s Activities are invisible,
inactive, or have been closed.

With no visual interface, Services are started, stopped, and controlled from other application compo-
nents including other Services, Activities, and Broadcast Receivers. If your application regularly, or con-
tinuously, performs actions that don’t depend directly on user input, Services may be the answer.

Started Services receive higher priority than inactive or invisible Activities, making them less likely to
be terminated by the run time’s resource management. The only time Android will stop a Service pre-
maturely is when it’s the only way for a foreground Activity to gain required resources; if that happens,
your Service will be restarted automatically when resources become available.

Applications that update regularly but only rarely or intermittently need user interaction are good can-
didates for implementation as Services. MP3 players and sports-score monitors are examples of applica-
tions that should continue to run and update without an interactive visual component (Activity) visible.

Further examples can be found within the software stack itself; Android implements several Services
including the Location Manager, Media Controller, and the Notifi cation Manager.

Creating and Controlling Services
Services are designed to run in the background, so they need to be started, stopped, and controlled by
other application components.

In the following sections, you’ll learn how to create a new Service, and how to start and stop it using
Intents and the startService method. Later you’ll learn how to bind a Service to an Activity, provid-
ing a richer interface for interactivity.

Creating a Service
To defi ne a Service, create a new class that extends the Service base class. You’ll need to override
onBind and onCreate, as shown in the following skeleton class:

import android.app.Service;
import android.content.Intent;
import android.os.IBinder;

public class MyService extends Service {

 @Override
 public void onCreate() {

44712c08.indd 25044712c08.indd 250 10/20/08 4:10:51 PM10/20/08 4:10:51 PM

251

Chapter 8: Working in the Background

 // TODO: Actions to perform when service is created.
 }

 @Override
 public IBinder onBind(Intent intent) {
 // TODO: Replace with service binding implementation.
 return null;
 }
}

In most cases, you’ll also want to override onStart. This is called whenever the Service is started with
a call to startService, so it can be executed several times within the Service’s lifetime. You should
ensure that your Service accounts for this.

The snippet below shows the skeleton code for overriding the onStart method:

@Override
public void onStart(Intent intent, int startId) {
 // TODO: Actions to perform when service is started.
}

Once you’ve constructed a new Service, you have to register it in the application manifest.

Do this by including a service tag within the application node. You can use attributes on the service
tag to enable or disable the Service and specify any permissions required to access it from other applica-
tions using a requires-permission fl ag.

Below is the service tag you’d add for the skeleton Service you created above:

<service android:enabled=”true” android:name=”.MyService”></service>

Starting, Controlling, and Interacting with a Service
To start a Service, call startService; you can either implicitly specify a Service to start using an action
against which the Service is registered, or you can explicitly specify the Service using its class.

If the Service requires permissions that your application does not have, this call will throw a
SecurityException. The snippet below demonstrates both techniques available for starting a Service:

// Implicitly start a Service
startService(new Intent(MyService.MY_ACTION));
// Explicitly start a Service
startService(new Intent(this, MyService.class));

To use this example, you would need to include a MY_ACTION property in the MyService class and
use an Intent Filter to register it as a provider of MY_ACTION.

To stop a Service, use stopService, passing an Intent that defi nes the Service to stop. This next code
snippet fi rst starts and then stops a Service both explicitly and by using the component name returned
when calling startService:

ComponentName service = startService(new Intent(this, BaseballWatch.class));
// Stop a service using the service name.
stopService(new Intent(this, service.getClass()));

44712c08.indd 25144712c08.indd 251 10/20/08 4:10:51 PM10/20/08 4:10:51 PM

252

Chapter 8: Working in the Background

// Stop a service explicitly.
try {
 Class serviceClass = Class.forName(service.getClassName());
 stopService(new Intent(this, serviceClass));
} catch (ClassNotFoundException e) {}

If startService is called on a Service that’s already running, the Service’s onStart method will be
executed again. Calls to startService do not nest, so a single call to stopService will terminate it no
matter how many times startService has been called.

An Earthquake Monitoring Service Example
In this chapter, you’ll modify the Earthquake example you started in Chapter 5 (and continued to
enhance in Chapters 6 and 7). In this example, you’ll move the earthquake updating and processing
functionality into a separate Service component.

Later in this chapter, you’ll build additional functionality within this Service, starting by moving the
network lookup and XML parsing to a background thread. Later, you’ll use Toasts and Notifi cations to
alert users of new earthquakes.

 1. Start by creating a new EarthquakeService that extends Service.

package com.paad.earthquake;

import android.app.Service;
import android.content.Intent;
import android.os.IBinder;
import java.util.Timer;
import java.util.TimerTask;

public class EarthquakeService extends Service {

 @Override
 public void onStart(Intent intent, int startId) {
 // TODO: Actions to perform when service is started.
 }

 @Override
 public void onCreate() {
 // TODO: Initialize variables, get references to GUI objects
 }

 @Override
 public IBinder onBind(Intent intent) {
 return null;
 }
}

 2. Add this new Service to the manifest by adding a new service tag within the application node.

<service android:enabled=”true” android:name=”.EarthquakeService”></service>

 3. Move the refreshEarthquakes and addNewQuake methods out of the Earthquake Activity
and into the EarthquakeService.

44712c08.indd 25244712c08.indd 252 10/20/08 4:10:52 PM10/20/08 4:10:52 PM

253

Chapter 8: Working in the Background

You’ll need to remove the calls to addQuakeToArray and loadQuakesFromProvider
(leave both of these methods in the Earthquake Activity because they’re still required). In the
EarthquakeService also remove all references to the earthquakes ArrayList.

private void addNewQuake(Quake _quake) {
 ContentResolver cr = getContentResolver();
 // Construct a where clause to make sure we don’t already have this
 // earthquake in the provider.
 String w = EarthquakeProvider.KEY_DATE + “ = “ + _quake.getDate().getTime();

 // If the earthquake is new, insert it into the provider.
 Cursor c = cr.query(EarthquakeProvider.CONTENT_URI, null, w, null, null);
 if (c.getCount()==0){
 ContentValues values = new ContentValues();

 values.put(EarthquakeProvider.KEY_DATE, _quake.getDate().getTime());
 values.put(EarthquakeProvider.KEY_DETAILS, _quake.getDetails());

 double lat = _quake.getLocation().getLatitude();
 double lng = _quake.getLocation().getLongitude();
 values.put(EarthquakeProvider.KEY_LOCATION_LAT, lat);
 values.put(EarthquakeProvider.KEY_LOCATION_LNG, lng);
 values.put(EarthquakeProvider.KEY_LINK, _quake.getLink());
 values.put(EarthquakeProvider.KEY_MAGNITUDE, _quake.getMagnitude());

 cr.insert(EarthquakeProvider.CONTENT_URI, values);
 }
 c.close();
}

private void refreshEarthquakes() {
 // Get the XML
 URL url;
 try {
 String quakeFeed = getString(R.string.quake_feed);
 url = new URL(quakeFeed);

 URLConnection connection;
 connection = url.openConnection();

 HttpURLConnection httpConnection = (HttpURLConnection)connection;
 int responseCode = httpConnection.getResponseCode();

 if (responseCode == HttpURLConnection.HTTP_OK) {
 InputStream in = httpConnection.getInputStream();

 DocumentBuilderFactory dbf = DocumentBuilderFactory.newInstance();
 DocumentBuilder db = dbf.newDocumentBuilder();

 // Parse the earthquake feed.
 Document dom = db.parse(in);
 Element docEle = dom.getDocumentElement();

 // Get a list of each earthquake entry.
 NodeList nl = docEle.getElementsByTagName(“entry”);
 if (nl != null && nl.getLength() > 0) {

44712c08.indd 25344712c08.indd 253 10/20/08 4:10:52 PM10/20/08 4:10:52 PM

254

Chapter 8: Working in the Background

 for (int i = 0 ; i < nl.getLength(); i++) {
 Element entry = (Element)nl.item(i);
 Element title;
 title = (Element)entry.getElementsByTagName(“title”).item(0);
 Element g;
 g = (Element)entry.getElementsByTagName(“georss:point”).item(0);
 Element when;
 when = (Element)entry.getElementsByTagName(“updated”).item(0);
 Element link = (Element)entry.getElementsByTagName(“link”).item(0);

 String details = title.getFirstChild().getNodeValue();
 String hostname = “http://earthquake.usgs.gov”;
 String linkString = hostname + link.getAttribute(“href”);

 String point = g.getFirstChild().getNodeValue();
 String dt = when.getFirstChild().getNodeValue();
 SimpleDateFormat sdf;
 sdf = new SimpleDateFormat(“yyyy-MM-dd’T’hh:mm:ss’Z’“);
 Date qdate = new GregorianCalendar(0,0,0).getTime();
 try {
 qdate = sdf.parse(dt);
 } catch (ParseException e) {
 e.printStackTrace();
 }

 String[] location = point.split(“ “);
 Location l = new Location(“dummyGPS”);
 l.setLatitude(Double.parseDouble(location[0]));
 l.setLongitude(Double.parseDouble(location[1]));

 String magnitudeString = details.split(“ “)[1];
 int end = magnitudeString.length()-1;
 double magnitude;
 magnitude = Double.parseDouble(magnitudeString.substring(0, end));

 details = details.split(“,”)[1].trim();

 Quake quake = new Quake(qdate, details, l, magnitude, linkString);

 // Process a newly found earthquake
 addNewQuake(quake);
 }
 }
 }
 } catch (MalformedURLException e) {
 e.printStackTrace();
 } catch (IOException e) {
 e.printStackTrace();
 } catch (ParserConfigurationException e) {
 e.printStackTrace();
 } catch (SAXException e) {
 e.printStackTrace();
 }
 finally {
 }
}

44712c08.indd 25444712c08.indd 254 10/20/08 4:10:52 PM10/20/08 4:10:52 PM

255

Chapter 8: Working in the Background

 4. Within the Earthquake Activity, create a new refreshEarthquakes method. It should explicitly
start the EarthquakeService.

private void refreshEarthquakes() {
 startService(new Intent(this, EarthquakeService.class));
}

 5. Return to the EarthquakeService. Override the onStart and onCreate methods to support
a new Timer that will be used to update the earthquake list. Use the SharedPreference object
created in Chapter 6 to determine if the earthquakes should be regularly updated.

private Timer updateTimer;
private float minimumMagnitude;

@Override
public void onStart(Intent intent, int startId) {
 // Retrieve the shared preferences
 SharedPreferences prefs = getSharedPreferences(Preferences.USER_PREFERENCE,
 Activity.MODE_PRIVATE);

 int minMagIndex = prefs.getInt(Preferences.PREF_MIN_MAG, 0);
 if (minMagIndex < 0)
 minMagIndex = 0;

 int freqIndex = prefs.getInt(Preferences.PREF_UPDATE_FREQ, 0);
 if (freqIndex < 0)
 freqIndex = 0;

 boolean autoUpdate = prefs.getBoolean(Preferences.PREF_AUTO_UPDATE, false);

 Resources r = getResources();
 int[] minMagValues = r.getIntArray(R.array.magnitude);
 int[] freqValues = r.getIntArray(R.array.update_freq_values);

 minimumMagnitude = minMagValues[minMagIndex];
 int updateFreq = freqValues[freqIndex];

 updateTimer.cancel();
 if (autoUpdate) {
 updateTimer = new Timer(“earthquakeUpdates”);
 updateTimer.scheduleAtFixedRate(doRefresh, 0, updateFreq*60*1000);
 }
 else
 refreshEarthquakes();
};

private TimerTask doRefresh = new TimerTask() {
 public void run() {
 refreshEarthquakes();
 }
};

@Override
public void onCreate() {
 updateTimer = new Timer(“earthquakeUpdates”);
}

44712c08.indd 25544712c08.indd 255 10/20/08 4:10:52 PM10/20/08 4:10:52 PM

256

Chapter 8: Working in the Background

 6. The EarthquakeService will now update the earthquake provider each time it is asked to
refresh, as well as on an automated schedule (if one is specifi ed). This information is not yet
passed back to the Earthquake Activity’s ListView or the EathquakeMap Activity.

To alert those components, and any other applications interested in earthquake data, modify the
EarthquakeService to broadcast a new Intent whenever a new earthquake is added.

 6.1. Modify the addNewQuake method to call a new announceNewQuake method.

public static final String NEW_EARTHQUAKE_FOUND = “New_Earthquake_Found”;

private void addNewQuake(Quake _quake) {
 ContentResolver cr = getContentResolver();
 // Construct a where clause to make sure we don’t already have this
 // earthquake in the provider.
 String w = EarthquakeProvider.KEY_DATE +
 “ = “ + _quake.getDate().getTime();

 // If the earthquake is new, insert it into the provider.
 Cursor c = cr.query(EarthquakeProvider.CONTENT_URI, null, w, null, null);
 if (c.getCount()==0){
 ContentValues values = new ContentValues();

 values.put(EarthquakeProvider.KEY_DATE, _quake.getDate().getTime());
 values.put(EarthquakeProvider.KEY_DETAILS, _quake.getDetails());

 double lat = _quake.getLocation().getLatitude();
 double lng = _quake.getLocation().getLongitude();
 values.put(EarthquakeProvider.KEY_LOCATION_LAT, lat);
 values.put(EarthquakeProvider.KEY_LOCATION_LNG, lng);
 values.put(EarthquakeProvider.KEY_LINK, _quake.getLink());
 values.put(EarthquakeProvider.KEY_MAGNITUDE, _quake.getMagnitude());

 cr.insert(EarthquakeProvider.CONTENT_URI, values);
 announceNewQuake(_quake);
 }
 c.close();
}

private void announceNewQuake(Quake quake) {
}

 6.2. Within announceNewQuake, broadcast a new Intent whenever a new earthquake
is found.

private void announceNewQuake(Quake quake) {
 Intent intent = new Intent(NEW_EARTHQUAKE_FOUND);
 intent.putExtra(“date”, quake.getDate().getTime());
 intent.putExtra(“details”, quake.getDetails());
 intent.putExtra(“longitude”, quake.getLocation().getLongitude());
 intent.putExtra(“latitude”, quake.getLocation().getLatitude());
 intent.putExtra(“magnitude”, quake.getMagnitude());

 sendBroadcast(intent);
}

44712c08.indd 25644712c08.indd 256 10/20/08 4:10:52 PM10/20/08 4:10:52 PM

257

Chapter 8: Working in the Background

 7. That completes the EarthquakeService implementation. You still need to modify the two
Activity components to listen for the Service Intent broadcasts and refresh their displays
accordingly.

 7.1. Within the Earthquake Activity, create a new internal EarthquakeReceiver
class that extends BroadcastReceiver. Override the onReceive method to call
loadFromProviders to update the earthquake array and refresh the list.

public class EarthquakeReceiver extends BroadcastReceiver {

 @Override
 public void onReceive(Context context, Intent intent) {
 loadQuakesFromProvider();
 }
}

 7.2. Override the onResume method to register the new Receiver and update the
LiveView contents when the Activity becomes active. Override onPause to
unregister it when the Activity moves out of the foreground.

EarthquakeReceiver receiver;

@Override
public void onResume() {
 IntentFilter filter;
 filter = new IntentFilter(EarthquakeService.NEW_EARTHQUAKE_FOUND);
 receiver = new EarthquakeReceiver();
 registerReceiver(receiver, filter);

 loadQuakesFromProvider();
 super.onResume();
}

@Override
public void onPause() {
 unregisterReceiver(receiver);
 super.onPause();
}

 7.3. Do the same for the EarthquakeMap Activity, this time calling requery on the
result Cursor before invalidating the MapView whenever the Intent is received.

EarthquakeReceiver receiver;

@Override
public void onResume() {
 earthquakeCursor.requery();

 IntentFilter filter;
 filter = new IntentFilter(EarthquakeService.NEW_EARTHQUAKE_FOUND);
 receiver = new EarthquakeReceiver();
 registerReceiver(receiver, filter);

 super.onResume();

44712c08.indd 25744712c08.indd 257 10/20/08 4:10:52 PM10/20/08 4:10:52 PM

258

Chapter 8: Working in the Background

}

@Override
public void onPause() {
 earthquakeCursor.deactivate();
 super.onPause();
}

public class EarthquakeReceiver extends BroadcastReceiver {
 @Override
 public void onReceive(Context context, Intent intent) {
 earthquakeCursor.requery();
 MapView earthquakeMap = (MapView)findViewById(R.id.map_view);
 earthquakeMap.invalidate();
 }
}

Now when the Earthquake Activity is launched, it will start the Earthquake Service. This Service will
then continue to run, updating the earthquake Content Provider in the background, even after the
Activity is suspended or closed.

You’ll continue to upgrade and enhance the Earthquake Service throughout the chapter, fi rst using
Toasts and later Notifi cations.

At this stage, the earthquake processing is done in a Service, but it’s still being executed on the main thread.
Later in this chapter, you’ll learn how to move time-consuming operations onto background threads to
improve performance and avoid “Application Unresponsive” messages.

Binding Activities to Services
When an Activity is bound to a Service, it maintains a reference to the Service instance itself, allowing
you to make method calls on the running Service as you would any other instantiated class.

Binding is available for Activities that would benefi t from a more detailed interface with a Service. To
support binding for a Service, implement the onBind method as shown in the simple example below:

private final IBinder binder = new MyBinder();

@Override
public IBinder onBind(Intent intent) {
 return binder;
}

public class MyBinder extends Binder {
 MyService getService() {
 return MyService.this;
 }
}

The connection between the Service and Activity is represented as a ServiceConnection.
You’ll need to implement a new ServiceConnection, overriding the onServiceConnected

44712c08.indd 25844712c08.indd 258 10/20/08 4:10:52 PM10/20/08 4:10:52 PM

259

Chapter 8: Working in the Background

and onServiceDisconnected methods to get a reference to the Service instance once a connection
has been established.

// Reference to the service
private MyService serviceBinder;

// Handles the connection between the service and activity
private ServiceConnection mConnection = new ServiceConnection() {

 public void onServiceConnected(ComponentName className, IBinder service) {
 // Called when the connection is made.
 serviceBinder = ((MyService.MyBinder)service).getService();
 }

 public void onServiceDisconnected(ComponentName className) {
 // Received when the service unexpectedly disconnects.
 serviceBinder = null;
 }
};

To perform the binding, call bindService, passing in an Intent (either explicit or implicit) that selects
the Service to bind to and an instance of your new ServiceConnection implementation, as shown in
this skeleton code:

@Override
public void onCreate(Bundle icicle) {
 super.onCreate(icicle);

 // Bind to the service
 Intent bindIntent = new Intent(MyActivity.this, MyService.class);
 bindService(bindIntent, mConnection, Context.BIND_AUTO_CREATE);
}

Once the Service has been bound, all of its public methods and properties are available through the
serviceBinder object obtained from the onServiceConnected handler.

Android applications do not (normally) share memory, but in some cases, your application may want to
interact with (and bind to) Services running in different application processes.

You can communicate with a Service running in a different process using broadcast Intents or through
the extras Bundle in the Intent used to start the Service. If you need a more tightly coupled connection,
you can make a Service available for binding across application boundaries using AIDL. AIDL defi nes
the Service’s interface in terms of OS level primitives, allowing Android to transmit objects across pro-
cess boundaries. AIDL defi nitions are covered in Chapter 11.

Using Background Worker Threads
To ensure that your applications remain responsive, it’s good practice to move all slow, time-consuming
operations off the main application thread and onto a child thread.

44712c08.indd 25944712c08.indd 259 10/20/08 4:10:52 PM10/20/08 4:10:52 PM

260

Chapter 8: Working in the Background

All Android application components — including Activities, Services, and Broadcast Receivers — run
on the main application thread. As a result, time-consuming processing in any component will block all
other components including Services and the visible Activity.

Using background threads is vital to avoid the “Application Unresponsive” Dialog box described in
Chapter 2. Unresponsiveness is defi ned in Android as Activities that don’t respond to an input event
(such as a key press) within 5 seconds and Broadcast Receivers that don’t complete their onReceive
handlers within 10 seconds.

Not only do you want to avoid this scenario, you don’t want to even get close. Use background threads
for all time-consuming processing, including fi le operations, network lookups, database transactions,
and complex calculations.

Creating New Threads
You can create and manage child threads using Android’s Handler class and the threading classes
available within java.lang.Thread. The following skeleton code shows how to move processing onto
a child thread:

// This method is called on the main GUI thread.
private void mainProcessing() {
 // This moves the time consuming operation to a child thread.
 Thread thread = new Thread(null, doBackgroundThreadProcessing, “Background”);
 thread.start();
}

// Runnable that executes the background processing method.
private Runnable doBackgroundThreadProcessing = new Runnable() {
 public void run() {
 backgroundThreadProcessing();
 }
};

// Method which does some processing in the background.
private void backgroundThreadProcessing() {
 [... Time consuming operations ...]
}

Synchronizing Threads for GUI Operations
Whenever you’re using background threads in a GUI environment, it’s important to synchronize child
threads with the main application (GUI) thread before creating or modifying graphical components.

The Handler class allows you to post methods onto the thread in which the Handler was created. Using
the Handler class, you can post updates to the User Interface from a background thread using the Post
method. The following example shows the outline for using the Handler to update the GUI thread:

// Initialize a handler on the main thread.
private Handler handler = new Handler();

private void mainProcessing() {
 Thread thread = new Thread(null, doBackgroundThreadProcessing, “Background”);

44712c08.indd 26044712c08.indd 260 10/20/08 4:10:52 PM10/20/08 4:10:52 PM

261

Chapter 8: Working in the Background

 thread.start();
}
private Runnable doBackgroundThreadProcessing = new Runnable() {
 public void run() {
 backgroundThreadProcessing();
 }
};

// Method which does some processing in the background.
private void backgroundThreadProcessing() {
 [... Time consuming operations ...]
 handler.post(doUpdateGUI);
}

// Runnable that executes the update GUI method.
private Runnable doUpdateGUI = new Runnable() {
 public void run() {
 updateGUI();
 }
};

private void updateGUI() {
 [... Open a dialog or modify a GUI element ...]
}

The Handler class lets you delay posts or execute them at a specifi c time, using the postDelayed and
postAtTime methods, respectively.

In the specifi c case of actions that modify Views, the UIThreadUtilities class provides the
runOnUIThread method, which lets you force a method to execute on the same thread as the speci-
fi ed View, Activity, or Dialog.

Within your application components, Notifi cations and Intents are always received and handled on the
GUI thread. In all other cases, operations that explicitly interact with objects created on the GUI thread
(such as Views) or that display messages (like Toasts) must be invoked on the main thread.

Moving the Earthquake Service to a Background Thread
The following example shows how to move the network lookup and XML processing done in the
EarthquakeService onto a background thread:

 1. Rename the refreshEarthquakes method to doRefreshEarthquakes.

private void doRefreshEarthquakes() {
 [... previous refreshEarthquakes method ...]
}

 2. Create a new refreshEarthquakes method. It should start a background thread that executes
the newly named doRefreshEarthquakes method.

private void refreshEarthquakes() {
 Thread updateThread = new Thread(null, backgroundRefresh,
 “refresh_earthquake”);
 updateThread.start();

44712c08.indd 26144712c08.indd 261 10/20/08 4:10:52 PM10/20/08 4:10:52 PM

262

Chapter 8: Working in the Background

}

private Runnable backgroundRefresh = new Runnable() {
 public void run() {
 doRefreshEarthquakes();
 }
};

Let’s Make a Toast
Toasts are transient Dialog boxes that remain visible for only a few seconds before fading out. Toasts
don’t steal focus and are non-modal, so they don’t interrupt the active application.

Toasts are perfect for informing your users of events without forcing them to open an Activity or read
a Notifi cation. They provide an ideal mechanism for alerting users to events occurring in background
Services without interrupting foreground applications.

The Toast class includes a static makeText method that creates a standard Toast display window. Pass
the application Context, the text message to display, and the length of time to display it (LENGTH_SHORT
or LENGTH_LONG) in to the makeText method to construct a new Toast. Once a Toast has been created,
display it by calling show, as shown in the following snippet:

Context context = getApplicationContext();
String msg = “To health and happiness!”;
int duration = Toast.LENGTH_SHORT;
Toast toast = Toast.makeText(context, msg, duration);
toast.show();

Figure 8-1 shows a Toast. It will remain on screen for around 2 seconds before fading out. The applica-
tion behind it remains fully responsive and interactive while the Toast is visible.

Figure 8-1

44712c08.indd 26244712c08.indd 262 10/20/08 4:10:52 PM10/20/08 4:10:52 PM

263

Chapter 8: Working in the Background

Customizing Toasts
The standard Toast text message window is often suffi cient, but in many situations you’ll want to cus-
tomize its appearance and screen position. You can modify a Toast by setting its display position and
assigning it alternative Views or layouts.

The following snippet shows how to align a Toast to the bottom of the screen using the setGravity
method:

Context context = getApplicationContext();
String msg = “To the bride an groom!”;
int duration = Toast.LENGTH_SHORT;
Toast toast = Toast.makeText(context, msg, duration);
int offsetX = 0;
int offsetY = 0;
toast.setGravity(Gravity.BOTTOM, offsetX, offsetY);
toast.show();

When a text message just isn’t going to get the job done, you can specify a custom View or layout to use
a more complex, or more visual, display. Using setView on a Toast object, you can specify any View
(including layouts) to display using the transient message window mechanism.

For example, the following snippet assigns a layout, containing the CompassView widget from Chapter 4
along with a TextView, to be displayed as a Toast.

Context context = getApplicationContext();
String msg = “Cheers!”;
int duration = Toast.LENGTH_LONG;
Toast toast = Toast.makeText(context, msg, duration);
toast.setGravity(Gravity.TOP, 0, 0);

LinearLayout ll = new LinearLayout(context);
ll.setOrientation(LinearLayout.VERTICAL);

TextView myTextView = new TextView(context);
CompassView cv = new CompassView(context);

myTextView.setText(msg);

int lHeight = LinearLayout.LayoutParams.FILL_PARENT;
int lWidth = LinearLayout.LayoutParams.WRAP_CONTENT;

ll.addView(cv, new LinearLayout.LayoutParams(lHeight, lWidth));
ll.addView(myTextView, new LinearLayout.LayoutParams(lHeight, lWidth));

ll.setPadding(40, 50, 0, 50);

toast.setView(ll);
toast.show();

44712c08.indd 26344712c08.indd 263 10/20/08 4:10:52 PM10/20/08 4:10:52 PM

264

Chapter 8: Working in the Background

The resulting Toast will appear as shown in Figure 8-2.

Figure 8-2

Using Toasts in Worker Threads
As GUI components, Toasts must be opened on the GUI thread or risk throwing a cross thread excep-
tion. In the following example, a Handler is used to ensure that the Toast is opened on the GUI thread:

private void mainProcessing() {
 Thread thread = new Thread(null, doBackgroundThreadProcessing, “Background”);
 thread.start();
}

private Runnable doBackgroundThreadProcessing = new Runnable() {
 public void run() {
 backgroundThreadProcessing();
 }
};

private void backgroundThreadProcessing() {
 handler.post(doUpdateGUI);
}

// Runnable that executes the update GUI method.
private Runnable doUpdateGUI = new Runnable() {
 public void run() {
 Context context = getApplicationContext();
 String msg = “To open mobile development!”;
 int duration = Toast.LENGTH_SHORT;
 Toast.makeText(context, msg, duration).show();
 }
};

44712c08.indd 26444712c08.indd 264 10/20/08 4:10:52 PM10/20/08 4:10:52 PM

265

Chapter 8: Working in the Background

Introducing Notifications
Notifi cations are a way for your applications to alert users, without using an Activity. Notifi cations are
handled by the Notifi cation Manger, and currently include the ability to:

Create a new status bar icon. ❑

Display additional information (and launch an Intent) in the extended status bar window. ❑

Flash the lights/LEDs. ❑

Vibrate the phone. ❑

Sound audible alerts (ringtones, media store sounds). ❑

Notifi cations are the preferred way for invisible application components (Broadcast Receivers, Services,
and inactive Activities) to alert users that events have occurred that require attention.

As a User Interface metaphor, Notifi cations are particularly well suited to mobile devices. It’s likely
that your users will have their phones with them at all times but quite unlikely that they will be paying
attention to them, or your application, at any given time. Generally, users will have several applications
open in the background, and they won’t be paying attention to any of them.

In this environment, it’s important that your applications be able to alert users when specifi c events
occur that require their attention.

Notifi cations can be persisted through insistent repetition, or (more commonly) by using an icon on the
status bar. Status bar icons can be updated regularly or expanded to show additional information using
the expanded status bar window shown in Figure 8-3.

Figure 8-3

44712c08.indd 26544712c08.indd 265 10/20/08 4:10:52 PM10/20/08 4:10:52 PM

266

Chapter 8: Working in the Background

To display the expanded status bar view, click a status bar icon and drag it toward the bottom of the screen.
To “lock” it in place, ensure that you release your drag only after the window covers the entire screen. To
hide it, simply drag it back upward.

Introducing the Notifi cation Manager
The Notifi cation Manager is a system Service used to handle Notifi cations. Get a reference to it using the
getSystemService method, as shown in the snippet below:

String svcName = Context.NOTIFICATION_SERVICE;

NotificationManager notificationManager;
notificationManager = (NotificationManager)getSystemService(svcName);

Using the Notifi cation Manager, you can trigger new Notifi cations, modify existing ones, or remove
those that are no longer needed or wanted.

Creating Notifi cations
Creating and confi guring a new Notifi cation is done in three parts.

Firstly, you create a new Notifi cation object, passing in the icon to display in the status bar, along with
the status bar ticker-text, and the time of this Notifi cation, as shown in the following code snippet:

// Choose a drawable to display as the status bar icon
int icon = R.drawable.icon;
// Text to display in the status bar when the notification is launched
String tickerText = “Notification”;
// The extended status bar orders notification in time order
long when = System.currentTimeMillis();

Notification notification = new Notification(icon, tickerText, when);

The ticker-text will scroll along the status bar when the Notifi cation is fi red.

Secondly, confi gure the appearance of the Notifi cation within the extended status window using the
setLatestEventInfo method. This extended status window displays the icon and time defi ned in
the constructor and also shows a title and a details string. Notifi cations often represent a request for action
or attention, so you can specify a PendingIntent that will be fi red if a user clicks the Notifi cation item.

The code snippet below uses setLatestEventInfo to set these values:

Context context = getApplicationContext();
// Text to display in the extended status window
String expandedText = “Extended status text”;
// Title for the expanded status
String expandedTitle = “Notification Title”;
// Intent to launch an activity when the extended text is clicked
Intent intent = new Intent(this, MyActivity.class);
PendingIntent launchIntent = PendingIntent.getActivity(context, 0, intent, 0);

notification.setLatestEventInfo(context,

44712c08.indd 26644712c08.indd 266 10/20/08 4:10:52 PM10/20/08 4:10:52 PM

267

Chapter 8: Working in the Background

 expandedTitle,
 expandedText,
 launchIntent);

It’s good form to use one Notifi cation icon to represent multiple instances of the same event (e.g., receiving
multiple SMS messages). To demonstrate this to users, update the values set by setLatestEventInfo to
refl ect the most recent message and re-trigger the Notifi cation to update its values.

You can also use the number property to display the number of events a status bar icon represents.
Setting this value greater than 1, as shown below, overlays the values as a small number over the status
bar icon:

notification.number++;

As with all changes to a Notifi cation, you will need to re-trigger it to apply the change. To remove the
overlay, set the number value to 0 or -1.

Finally, you can enhance Notifi cations using various properties on the Notifi cation object to fl ash the device
LEDs, vibrate the phone, and play audio fi les. These advanced features are detailed later in this chapter.

Triggering Notifi cations
To fi re a Notifi cation, pass it in to the notify method on the NotificationManager along with an
integer reference ID, as shown in the following snippet:

int notificationRef = 1;
notificationManager.notify(notificationRef, notification);

To update a Notifi cation that’s already been fi red, re-trigger, passing the same reference ID. You can
pass in either the same Notifi cation object or an entirely new one. As long as the ID values are the same,
the new Notifi cation will be used to replace the status icon and extended status window details.

You also use the reference ID to cancel Notifi cations by calling the cancel method on the Notifi cation
Manager, as shown below:

notificationManager.cancel(notificationRef);

Canceling a Notifi cation removes its status bar icon and clears it from the extended status window.

Adding Notifi cations to the Earthquake Monitor
In the following example, the EarthquakeService is enhanced to trigger a Notifi cation for each new
earthquake. As well as displaying a status bar icon, the expanded Notifi cation view will display the
magnitude and location of the latest quake, and selecting it will open the Earthquake Activity.

 1. Within the EarthquakeService, start by creating a new Notification instance variable to
store the Notifi cation object used to control the status bar icon and extended status window
item details.

private Notification newEarthquakeNotification;
public static final int NOTIFICATION_ID = 1;

44712c08.indd 26744712c08.indd 267 10/20/08 4:10:52 PM10/20/08 4:10:52 PM

268

Chapter 8: Working in the Background

 2. Extend the onCreate method to create this Notifi cation object.

@Override
public void onCreate() {
 updateTimer = new Timer(“earthquakeUpdates”);

 int icon = R.drawable.icon;
 String tickerText = “New Earthquake Detected”;
 long when = System.currentTimeMillis();

 newEarthquakeNotification= new Notification(icon, tickerText, when);
}

 3. Now extend the announceNewQuake method to trigger the Notifi cation after each new earth-
quake is added to the Content Provider. Before initiating the Notifi cation, update the extended
details using setLatestEventInfo.

private void announceNewQuake(Quake quake) {
 String svcName = Context.NOTIFICATION_SERVICE;
 NotificationManager notificationManager;
 notificationManager = (NotificationManager)getSystemService(svcName);

 Context context = getApplicationContext();
 String expandedText = quake.getDate().toString();
 String expandedTitle = “M:” + quake.getMagnitude() + “ “ +
 quake.getDetails();
 Intent startActivityIntent = new Intent(this, Earthquake.class);
 PendingIntent launchIntent = PendingIntent.getActivity(context,
 0,
 startActivityIntent,
 0);

 newEarthquakeNotification.setLatestEventInfo(context,
 expandedTitle,
 expandedText,
 launchIntent);
 newEarthquakeNotification.when = java.lang.System.currentTimeMillis();

 notificationManager.notify(NOTIFICATION_ID, newEarthquakeNotification);

 Intent intent = new Intent(NEW_EARTHQUAKE_FOUND);
 intent.putExtra(“date”, quake.getDate().getTime());
 intent.putExtra(“details”, quake.getDetails());
 intent.putExtra(“longitude”, quake.getLocation().getLongitude());
 intent.putExtra(“latitude”, quake.getLocation().getLatitude());
 intent.putExtra(“magnitude”, quake.getMagnitude());

 sendBroadcast(intent);
}

 4. The fi nal step is to clear and disable Notifi cations within the two Activity classes. This is done to
dismiss the status icon when the application is active.

44712c08.indd 26844712c08.indd 268 10/20/08 4:10:52 PM10/20/08 4:10:52 PM

269

Chapter 8: Working in the Background

 4.1. Starting with the Earthquake Activity, modify the onCreate method to get a ref-
erence to the Notifi cation Manager.

NotificationManager notificationManager;

@Override
public void onCreate(Bundle icicle) {
 [... existing onCreate ...]

 String svcName = Context.NOTIFICATION_SERVICE;
 notificationManager = (NotificationManager)getSystemService(svcName);
}

 4.2. Modify the onReceive method of the EarthquakeReceiver. As this is only reg-
istered (so it will only execute) when the Activity is active, you can safely cancel
all Notifi cation earthquake Notifi cations here as soon as they’re triggered.

@Override
public void onReceive(Context context, Intent intent) {
 loadQuakesFromProvider();

 notificationManager.cancel(EarthquakeService.NOTIFICATION_ID);
}

 4.3. Next, extend the onResume method to cancel the Notifi cation when the Activity
becomes active.

@Override
public void onResume() {
 notificationManager.cancel(EarthquakeService.NOTIFICATION_ID);

 IntentFilter filter;
 filter = new IntentFilter(EarthquakeService.NEW_EARTHQUAKE_FOUND);
 receiver = new EarthquakeReceiver();
 registerReceiver(receiver, filter);
 super.onResume();
}
 4.4. Repeat the same process with the EarthquakeMap Activity.

NotificationManager notificationManager;

@Override
public void onCreate(Bundle icicle) {
 super.onCreate(icicle);
 setContentView(R.layout.earthquake_map);

 ContentResolver cr = getContentResolver();
 earthquakeCursor = cr.query(EarthquakeProvider.CONTENT_URI,
 null, null, null, null);

 MapView earthquakeMap = (MapView)findViewById(R.id.map_view);
 earthquakeMap.getOverlays().add(new EarthquakeOverlay(earthquakeCursor));

 String svcName = Context.NOTIFICATION_SERVICE;
 notificationManager = (NotificationManager)getSystemService(svcName);

44712c08.indd 26944712c08.indd 269 10/20/08 4:10:52 PM10/20/08 4:10:52 PM

270

Chapter 8: Working in the Background

}

@Override
public void onResume() {
 notificationManager.cancel(EarthquakeService.NOTIFICATION_ID);

 earthquakeCursor.requery();

 IntentFilter filter;
 filter = new IntentFilter(EarthquakeService.NEW_EARTHQUAKE_FOUND);
 receiver = new EarthquakeReceiver();
 registerReceiver(receiver, filter);

 super.onResume();
}

public class EarthquakeReceiver extends BroadcastReceiver {
 @Override
 public void onReceive(Context context, Intent intent) {
 notificationManager.cancel(EarthquakeService.NOTIFICATION_ID);

 earthquakeCursor.requery();
 MapView earthquakeMap = (MapView)findViewById(R.id.map_view);
 earthquakeMap.invalidate();
 }
}

Advanced Notifi cation Techniques
In the following sections, you’ll learn to enhance Notifi cations to provide additional alerting through
hardware, in particular, by making the device ring, fl ash, and vibrate.

As each enhancement is described, you will be provided with a code snippet that can be added to the
Earthquake example to provide user feedback on the severity of each earthquake as it’s detected.

To use the Notifi cation techniques described here without also displaying the status bar icon, simply
cancel the Notifi cation directly after triggering it. This stops the icon from displaying but doesn’t inter-
rupt the other effects.

Making Sounds
Using an audio alert to notify the user of a device event (like incoming calls) is a technique that pre-
dates the mobile, and has stood the test of time. Most native phone events from incoming calls to new
messages and low battery are announced by an audible ringtone.

Android lets you play any audio fi le on the phone as a Notifi cation by assigning a location URI to the
sound property, as shown in the snippet below:

notification.sound = ringURI;

To use your own custom audio, push the fi le onto your device, or include it as a raw resource, as
described in Chapter 6.

44712c08.indd 27044712c08.indd 270 10/20/08 4:10:52 PM10/20/08 4:10:52 PM

271

Chapter 8: Working in the Background

The following snippet can be added to the announceNewQuake method within the Earthquake Service
from the earlier example. It adds an audio component to the earthquake Notifi cation, ringing one of the
default phone ringtones if a signifi cant earthquake (one with magnitude greater than 6) occurs.

if (quake.getMagnitude() > 6) {
 Uri ringURI = Uri.fromFile(new File(“/system/media/audio/ringtones/ringer.mp3”));
 newEarthquakeNotification.sound = ringURI;
}

Vibrating the Phone
You can use the phone’s vibration function to execute a vibration pattern specifi c to your Notifi cation.
Android lets you control the pattern of a vibration; you can use vibration to convey information as well
as get the user’s attention.

To set a vibration pattern, assign an array of longs to the Notifi cation’s vibrate property. Construct
the array so that every alternate number is the length of time (in milliseconds) to vibrate or pause,
respectively.

Before you can use vibration in your application, you need to be granted permission. Add a
uses-permission to your application to request access to the device vibration using the following
code snippet:

<uses-permission android:name=”android.permission.VIBRATE”/>

The following example shows how to modify a Notifi cation to vibrate in a repeating pattern of 1 second
on, 1 second off, for 5 seconds total.

long[] vibrate = new long[] { 1000, 1000, 1000, 1000, 1000 };
notification.vibrate = vibrate;

You can take advantage of this fi ne-grained control to pass information to your users. In the following
update to the announceNewQuake method, the phone is set to vibrate in a pattern based on the power of
the quake. Earthquakes are measured on an exponential scale, so you’ll use the same scale when creat-
ing the vibration pattern.

For a barely perceptible magnitude 1 quake, the phone will vibrate for a fraction of a second; but for
magnitude 10, an earthquake that would split the earth in two, your users will have a head start on
the Apocalypse when their devices vibrate for a full 20 seconds. Most signifi cant quakes fall between
3 and 7 on the Richter scale, so the more likely scenario is a more reasonable 200-millisecond to 4-second
vibration duration range.

double vibrateLength = 100*Math.exp(0.53*quake.getMagnitude());
long[] vibrate = new long[] {100, 100, (long)vibrateLength };
newEarthquakeNotification.vibrate = vibrate;

The current Android Emulator does not visually or audibly indicate that the device is vibrating. To
confi rm that your Notifi cation is behaving appropriately, you can monitor the log for “Vibration
On”/“Vibration Off.”

44712c08.indd 27144712c08.indd 271 10/20/08 4:10:52 PM10/20/08 4:10:52 PM

272

Chapter 8: Working in the Background

Flashing the Lights
Notifi cations also include properties to confi gure the color and fl ash frequency of the device’s LED.

The ledARGB property can be used to set the LED’s color, while the ledOffMS and ledOnMS proper-
ties let you set the frequency and pattern of the fl ashing LED. You can turn the LED on by setting the
ledOnMS property to 1 and the ledOffMS property to 0, or turn it off by setting both properties to 0.

Once you have confi gured the LED settings, you must also add the FLAG_SHOW_LIGHTS fl ag to the
Notifi cation’s flags property.

The following code snippet shows how to turn on the red device LED:

notification.ledARGB = Color.RED;
notification.ledOffMS = 0;
notification.ledOnMS = 1;
notification.flags = notification.flags | Notification.FLAG_SHOW_LIGHTS;

Controlling the color and fl ash frequency is another opportunity to pass additional information to users.

In the Earthquake monitoring example, you can help your users perceive the nuances of an exponential
scale by also using the device’s LED to help convey the magnitude. In the snippet below, the color of
the LED depends on the size of the quake, and the frequency of the fl ashing is inversely related to the
power of the quake:

int color;
if (quake.getMagnitude() < 5.4)
 color = Color.GREEN;
else if (quake.getMagnitude() < 6)
 color = Color.YELLOW;
else
 color = Color.RED;

newEarthquakeNotification.ledARGB = color;
newEarthquakeNotification.ledOffMS = (int)vibrateLength;
newEarthquakeNotification.ledOnMS = (int)vibrateLength;
newEarthquakeNotification.flags = newEarthquakeNotification.flags |
 Notification.FLAG_SHOW_LIGHTS;

The current Android Emulator does not visually illustrate the LEDs. This makes it quite diffi cult to
confi rm that your LEDs are fl ashing correctly. In hardware, each device may have different limitations in
regard to setting the color of the LED. In such cases, as close an approximation as possible will be used.

Ongoing and Insistent Notifi cations
Notifi cations can be confi gured as ongoing and/or insistent by setting the FLAG_INSISTENT and
FLAG_ONGOING_EVENT fl ags.

Notifi cations fl agged as ongoing, as in the snippet below, are used to represent events that are currently
in progress (such as an incoming call). Ongoing events are separated from “normal” Notifi cations
within the extended status bar window.

notification.flags = notification.flags | Notification.FLAG_ONGOING_EVENT;

44712c08.indd 27244712c08.indd 272 10/20/08 4:10:52 PM10/20/08 4:10:52 PM

273

Chapter 8: Working in the Background

Insistent Notifi cations repeat continuously until canceled. The code snippet below shows how to set a
Notifi cation as insistent:

notification.flags = notification.flags | Notification.FLAG_INSISTENT;

Insistent Notifi cations are handled by continuously repeating the initial Notifi cation effects until the
Notifi cation is canceled. Insistent Notifi cations should be reserved for situations like Alarms, where
timely and immediate response is required.

Using Alarms
Alarms are an application independent way of fi ring Intents at predetermined times.

Alarms are set outside the scope of your applications, so they can be used to trigger application events
or actions even after your application has been closed. They can be particularly powerful in combina-
tion with Broadcast Receivers, allowing you to set Alarms that launch applications or perform actions
without applications needing to be open and active until they’re required.

For example, you can use Alarms to implement an alarm clock application, perform regular network
lookups, or schedule time-consuming or cost-bound operations at “off peak” times.

For timing operations that occur only during the lifetime of your applications, the Handler class in
combination with Timers and Threads is a better approach as it allows Android better control over system
resources.

Alarms in Android remain active while the device is in sleep mode and can optionally be set to wake
the device; however, all Alarms are canceled whenever the device is rebooted.

Alarm operations are handled through the AlarmManager, a system Service accessed via
getSystemService as shown below:

AlarmManager alarms = (AlarmManager)getSystemService(Context.ALARM_SERVICE);

To create a new Alarm, use the set method and specify an alarm type, trigger time, and a Pending
Intent to fi re when the Alarm triggers. If the Alarm you set occurs in the past, it will be triggered
immediately.

There are four alarm types available. Your selection will determine if the time value passed in the set
method represents a specifi c time or an elapsed wait:

RTC_WAKEUP ❑ Wakes up the device to fi re the Intent at the clock time specifi ed when setting
the Alarm.

RTC ❑ Will fi re the Intent at an explicit time, but will not wake the device.

ELAPSED_REALTIME ❑ The Intent will be fi red based on the amount of time elapsed since the
device was booted, but will not wake the device. The elapsed time includes any period of time
the device was asleep. Note that the time elapsed is since it was last booted.

ELAPSED_REALTIME_WAKEUP ❑ Will wake up the device if necessary and fi re the Intent
after a specifi ed length of time has passed since the device was booted.

44712c08.indd 27344712c08.indd 273 10/20/08 4:10:52 PM10/20/08 4:10:52 PM

274

Chapter 8: Working in the Background

The Alarm creation process is demonstrated in the snippet below:

int alarmType = AlarmManager.ELAPSED_REALTIME_WAKEUP;
long timeOrLengthofWait = 10000;
String ALARM_ACTION = “ALARM_ACTION”;
Intent intentToFire = new Intent(ALARM_ACTION);
PendingIntent pendingIntent = PendingIntent.getBroadcast(this, 0, intentToFire, 0);

alarms.set(alarmType, timeOrLengthofWait, pendingIntent);

When the Alarm goes off, the Pending Intent you specifi ed will be fi red. Setting a second Alarm using
the same Pending Intent replaces the preexisting Alarm.

To cancel an Alarm, call cancel on the Alarm Manager, passing in the Pending Intent you no longer
wish to trigger, as shown in the snippet below:

alarms.cancel(pendingIntent);

In the following code snippet, two Alarms are set and the fi rst one is subsequently canceled. The fi rst is
explicitly set to a specifi c time and will wake up the device in order to fi re. The second is set for 30 minutes
of time elapsed since the device was started, but will not wake the device if it’s sleeping.

AlarmManager alarms = (AlarmManager)getSystemService(Context.ALARM_SERVICE);

String MY_RTC_ALARM = “MY_RTC_ALARM”;
String ALARM_ACTION = “MY_ELAPSED_ALARM”;

PendingIntent rtcIntent = PendingIntent.getBroadcast(this, 0,
 new Intent(MY_RTC_ALARM),
 1);
PendingIntent elapsedIntent = PendingIntent.getBroadcast(this, 0,
 new Intent(ALARM_ACTION),
 1);

// Wakeup and fire intent in 5 hours.
Date t = new Date();
t.setTime(java.lang.System.currentTimeMillis() + 60*1000*5);
alarms.set(AlarmManager.RTC_WAKEUP, t.getTime(), rtcIntent);

// Fire intent in 30 mins if already awake.
alarms.set(AlarmManager.ELAPSED_REALTIME, 30*60*1000, elapsedIntent);

// Cancel the first alarm.
alarms.cancel(rtcIntent);

Using Alarms to Update Earthquakes
In this fi nal modifi cation to the Earthquake example, you’ll use Alarms to replace the Timer currently
used to schedule Earthquake network refreshes.

 1. Start by creating a new EarthquakeAlarmReceiver class that extends BroadcastReceiver.

44712c08.indd 27444712c08.indd 274 10/20/08 4:10:52 PM10/20/08 4:10:52 PM

275

Chapter 8: Working in the Background

package com.paad.earthquake;

import android.content.BroadcastReceiver;
import android.content.Context;
import android.content.Intent;

public class EarthquakeAlarmReceiver extends BroadcastReceiver {

}

 2. Override the onReceive method to explicitly start the EarthquakeService.

@Override
public void onReceive(Context context, Intent intent) {
 Intent startIntent = new Intent(context, EarthquakeService.class);
 context.startService(startIntent);
}

 3. Create a new public static String to defi ne the action that will be used to trigger the Broadcast
Receiver.

public static final String ACTION_REFRESH_EARTHQUAKE_ALARM =
 “com.paad.earthquake.ACTION_REFRESH_EARTHQUAKE_ALARM”;

 4. Add the new EarthquakeAlarmReceiver to the manifest, including an intent-filter tag
that listens for the action defi ned in Step 3.

<receiver android:name=”.EarthquakeAlarmReceiver”>
 <intent-filter>
 <action
 android:name=”com.paad.earthquake.ACTION_REFRESH_EARTHQUAKE_ALARM”
 />
 </intent-filter>
</receiver>

 5. Within the EarthquakeService, update the onCreate method to get a reference to the
AlarmManager, and create a new PendingIntent that will be fi red when the Alarm goes off.
You can also remove the timerTask initialization.

AlarmManager alarms;
PendingIntent alarmIntent;

@Override
public void onCreate() {
 int icon = R.drawable.icon;
 String tickerText = “New Earthquake Detected”;
 long when = System.currentTimeMillis();

 newEarthquakeNotification = new Notification(icon, tickerText, when);

 alarms = (AlarmManager)getSystemService(Context.ALARM_SERVICE);

 String ALARM_ACTION;
 ALARM_ACTION = EarthquakeAlarmReceiver.ACTION_REFRESH_EARTHQUAKE_ALARM;
 Intent intentToFire = new Intent(ALARM_ACTION);

44712c08.indd 27544712c08.indd 275 10/20/08 4:10:52 PM10/20/08 4:10:52 PM

276

Chapter 8: Working in the Background

 alarmIntent = PendingIntent.getBroadcast(this, 0, intentToFire, 0);
}

 6. Modify the onStart method to set an Alarm rather than use a Timer to schedule the next
refresh (if automated updates are enabled). Setting a new Intent with the same action will auto-
matically cancel the previous Alarm.

@Override
public void onStart(Intent intent, int startId) {
 SharedPreferences prefs = getSharedPreferences(Preferences.USER_PREFERENCE,
 Activity.MODE_PRIVATE);

 int minMagIndex = prefs.getInt(Preferences.PREF_MIN_MAG, 0);
 if (minMagIndex < 0)
 minMagIndex = 0;

 int freqIndex = prefs.getInt(Preferences.PREF_UPDATE_FREQ, 0);
 if (freqIndex < 0)
 freqIndex = 0;

 boolean autoUpdate = prefs.getBoolean(Preferences.PREF_AUTO_UPDATE, false);

 Resources r = getResources();
 int[] minMagValues = r.getIntArray(R.array.magnitude);
 int[] freqValues = r.getIntArray(R.array.update_freq_values);

 minimumMagnitude = minMagValues[minMagIndex];
 int updateFreq = freqValues[freqIndex];

 if (autoUpdate) {
 int alarmType = AlarmManager.ELAPSED_REALTIME_WAKEUP;
 long timeToRefresh = SystemClock.elapsedRealtime() + updateFreq*60*1000;
 alarms.set(alarmType, timeToRefresh, alarmIntent);
 }
 else
 alarms.cancel(alarmIntent);

 refreshEarthquakes();
};

 7. You can now remove the updateTimer instance variable and the TimerTask instance doRefresh.

Summary
Services are one of the most compelling reasons to develop applications on the Android platform. In
this chapter, you learned how to use these invisible application components to perform processing
while your applications are hidden in the background.

You were introduced to Toasts, a transient message box that lets you display information to users with-
out stealing focus or interrupting their workfl ow.

44712c08.indd 27644712c08.indd 276 10/20/08 4:10:53 PM10/20/08 4:10:53 PM

277

Chapter 8: Working in the Background

You used the Notifi cation Manager to send alerts to your users from within Services and Activities
using customized LEDs, vibration patterns, and audio fi les to convey detailed event information.

Using Alarms, you were able to preset events and actions on the device using Intents to broadcast
actions or start Activities or Services.

This chapter also demonstrated how to:

Bind a Service to an Activity to make use of a more detailed, structured interface. ❑

Ensure that your applications remain responsive by moving time-consuming processing like ❑

network lookups onto worker threads.

Use handlers to synchronize child threads with the main application GUI when performing ❑

operations using visual controls and Toasts.

Create insistent and ongoing Notifi cations. ❑

In Chapter 9, you’ll be introduced to the communications features of Android. Starting with a look
at the GTalk Service, you’ll learn how to send and receive text and data messages to transmit data
between devices. You’ll then investigate the SMS functionality available for you to send and receive
SMS text and data messages.

44712c08.indd 27744712c08.indd 277 10/20/08 4:10:53 PM10/20/08 4:10:53 PM

44712c08.indd 27844712c08.indd 278 10/20/08 4:10:53 PM10/20/08 4:10:53 PM

Peer-to-Peer Communication

In this chapter, you’ll learn to use Android’s peer-to-peer (P2P) text and data communication pro-
tocols, specifi cally, instant messaging and SMS (short messaging service). Using these technolo-
gies, you can create applications that can communicate between devices, including multiplayer
games and collaborative mobile social applications.

When this chapter was originally written, the Android SDK included a comprehensive instant
messaging (IM) service (powered by GTalk) that offered access to the instant messaging frame-
work. This included the ability to send and receive text messages, set user status through pres-
ence, and determine the presence of IM contacts. Unfortunately, owing to security concerns the
IM API has since been removed, though it’s expected that later releases of Android will expose
developer access to an IM framework. This chapter will show how earlier releases of Android
allowed this technology to be used for sending text IM messages and as a mechanism for broad-
casting Intents to remote Android devices — a mechanism that allowed you to create applications
that interact between devices in real time.

Android still offers full access to SMS functionality, letting you send and receive SMS text mes-
sages within your applications. Using the Android APIs, you can create your own SMS client
application to replace the native applications available as part of the software stack. Alternatively,
you can incorporate the messaging functionality within your own applications.

At the end of this chapter, you’ll use the SMS Manager in a detailed project that shows how to
create an emergency SMS responder. In emergency situations, it will let users quickly, or auto-
matically, respond to people asking after their safety.

44712c09.indd 27944712c09.indd 279 10/20/08 4:10:35 PM10/20/08 4:10:35 PM

280

Chapter 9: Peer-to-Peer Communication

Introducing Android Instant Messaging
Largely as a result of security concerns, developer access to the GTalk IM Service
has been restricted for Android SDK version 1.0. As a result, the functionality
described in this section will not be available to developers using the fi rst full
release of the Android SDK.

Rather than remove the affected sections, they have been left here in full as a guide
for use with future Android releases.

Later releases of Android will expose a full suite of instant messaging functionality through an XMPP
based IM Service. This will include management of contact rosters, presence notifi cation, and the trans-
mission and receipt of instant messages.

Google Talk (GTalk) is an instant messaging protocol for peer-to-peer (P2P) communication. Once con-
nected, GTalk maintains a persistent socket connection with the GTalk server, meaning fast response
times and low latency.

This section is based on an early SDK implementation that used GTalk. GTalk is based on the XMPP
protocol, but it’s a Google-specifi c variant that currently requires that users have a Gmail account.

What makes the GTalk Service particularly interesting for developers is the ability to broadcast Intents
over the air (OTA) between Android devices using data messaging. Data messages received by a remote
device are re-broadcast as Intents locally, meaning that this mechanism lets you broadcast an Intent on
a remote device.

The GTalk Service can be used to create your own multi-user, social, or collaborative applications. It
provides the framework for building a range of applications, including distributed emergency warning
systems, dynamic route guidance applications, family social networks, and augmented reality gaming
systems.

Android will eventually include all the interfaces needed to create a Google Talk Instant Messaging cli-
ent, including full control over presence management and subscription handling. You can, if you’re so
inclined, build a replacement for the native client — or simply use the relevant components within your
own applications.

Using the GTalk Service
Before you can access the GTalk Service, you need to import the gtalkservice library into your appli-
cation with a uses-library tag inside the application node of the project manifest, as shown below:

<uses-library android:name=”com.google.android.gtalkservice”/>

You also need to add the GTalk uses-permission tag, as shown in this XML snippet:

<uses-permission android:name=”android.permission.GTALK”/>

44712c09.indd 28044712c09.indd 280 10/20/08 4:10:35 PM10/20/08 4:10:35 PM

281

Chapter 9: Peer-to-Peer Communication

Android Instant Messaging functionality is exposed through various interfaces as described below:

IGTalkService ❑ Is used to create, access, and manage GTalk connections.

IGTalkConnection ❑ A GTalk Connection represents a persistent socket connection between
the device and the server it’s connecting to. The GTalk Service creates a default connection upon
start-up that you can access by calling getDefaultConnection on the GTalk Service object.

IImSession ❑ Most instant messaging functionality is handled through the IImSession inter-
face. It’s used to retrieve the IM roster, set the user presence, obtain the presence of contacts,
and manage chat sessions. Each GTalk Connection creates a default session, available through
the getDefaultSession method.

IChatSession ❑ All instant messaging chats are handled through the IChatSession interface.
New Chat Sessions are created by initiating new chats, or joining existing ones, from an IM
Session object. Using the Chat Session interface, you can send new chat messages, invite new
participants to a group chat, and return a list of people involved in a chat.

IChatListener ❑ Implement IChatListener to listen for messages in an IM Session or Chat
Session. The IChatListener interface handlers listen for incoming messages, new chat partici-
pants, and people leaving a chat.

IGroupChatInvitationListener ❑ Implement IGroupChatInvitationListener to
listen for invitations to join group chats. The onInvitationReceived handler is passed a
GroupChatInvitation that includes the username of the inviter, the room address, a “reason”
(usually the room description), and the password you need in order to join the group chat.

IRosterListener ❑ You can monitor your IM contacts roster, and the presence of the people
on it, by implementing the IRosterListener interface. The Roster Listener includes event han-
dlers that are fi red when there are changes in a contact’s presence as well as upon the addition
and removal of contacts from the roster.

Binding to the GTalk Service
To use the GTalk Service, it must be bound to your application component using bindService.

The bindService method accepts two input parameters, an Intent, which specifi es a component to
bind to, and a ServiceConnection implementation. The following skeleton code demonstrates the pat-
tern used to bind to the GTalk service:

IGTalkService gtalkService;

private void bindGTalk() {
 Intent i = new Intent();

 i.setComponent(GTalkServiceConstants.GTALK_SERVICE_COMPONENT);
 bindService(i, gTalkConnection, 0);
}

private ServiceConnection gTalkConnection = new ServiceConnection() {

44712c09.indd 28144712c09.indd 281 10/20/08 4:10:35 PM10/20/08 4:10:35 PM

282

Chapter 9: Peer-to-Peer Communication

 // When the service connects, get the default GTalk Session
 public void onServiceConnected(ComponentName className, IBinder service) {
 gtalkService = IGTalkService.Stub.asInterface(service);
 }

 // If the service disconnects
 public void onServiceDisconnected(ComponentName className) {
 gtalkService = null;
 }
};

A bound GTalk Service represents a connection between your application and the GTalk Service APIs.
Before you can use the Service to use Android’s Instant Messaging functionality, you need to initiate a
new GTalkConnection, as shown in the following section.

Making a GTalk Connection and Starting an IM Session
A GTalk Connection represents a conduit between the device and a GTalk server. An IM Session is the
message pathway used to handle all the instant message traffi c; all the instant messages for a given ses-
sion fl ow through this pipe.

You can create several different connections and multiple IM Sessions connecting to different GTalk
servers or IM providers.

Under normal circumstances, a device needs a single GTalk Connection supporting a single IM
Session that uses the device owner’s username. You can access the default connection and session
using getDefaultConnection and getDefaultSession on the GTalk Service and default connec-
tion, respectively, as shown in the snippet below:

IGTalkConnection gTalkConnection = gtalkService.getDefaultConnection();
IImSession imSession = gTalkConnection.getDefaultImSession();

IM Sessions are used to send text and data messages, set user presence, manage the IM contact roster,
and manage group chats.

The IM Session is your primary interface for handling instant messaging in Android applications. As
a result, the following code snippet shows a more typical implementation of the ServiceConnection
used to bind the GTalk Service to an application. It ensures that an IM Session object is always valid.

private IGTalkConnection gTalkConnection = null;
private IImSession imSession = null;

private ServiceConnection gTalkServiceConnection = new ServiceConnection() {

 // When the service connects, get the default GTalk session.
 public void onServiceConnected(ComponentName className, IBinder service) {
 IGTalkService gtalkService = IGTalkService.Stub.asInterface(service);
 try {
 gTalkConnection = gtalkService.getDefaultConnection();
 imSession = gTalkConnection.getDefaultImSession();
 } catch (RemoteException e) { }

44712c09.indd 28244712c09.indd 282 10/20/08 4:10:35 PM10/20/08 4:10:35 PM

283

Chapter 9: Peer-to-Peer Communication

 }

 // When the service disconnects, clear the GTalk session.
 public void onServiceDisconnected(ComponentName className) {
 gTalkConnection = null;
 imSession = null;
 }
};

Introducing Presence and the Contact Roster
Presence is a lightweight mechanism used in instant messaging to broadcast a user’s availability.

Originally, presence was represented as a simple fl ag that indicated when a user was logged on and
available to chat. This has gradually evolved into a more detailed status indicator that lets users describe
their availability more accurately by indicating if they’re available, busy, away from the computer, or
offl ine. The recent popularity of applications like FriendFeed and Twitter has resulted in presence being
expanded to include custom messages that can describe anything from a user’s current activity to the
music they’re listening to.

Users can see the presence of all the people in their contact roster. The contact roster is a list of all the
contacts with whom a user has an agreement to exchange messages and share presence information.

When adding someone to their roster, users are implicitly subscribing to updates of that person’s pres-
ence, and changes to their own presence are propagated to all the contacts on their roster.

Instant messaging is an inherently portable technology — a user’s presence and contact roster are
maintained by the GTalk server, so the roster on an Android device is synchronized with Gmail chat
and any desktop IM clients.

Managing the Contact Roster
Developers can access the contact roster to determine the presence of any of a user’s IM contacts, moni-
tor presence updates, add new contacts, remove existing ones, and handle subscription requests.

Accessing the IM Contact Roster
When it's made available, the contact roster should be accessible through a native Content Provider
using the helper class android.provider.Im.Contacts. You can query it as you would any other
Content Provider.

In the following snippet, you can see how to iterate over the roster to fi nd the presence of each IM contact:

Uri uri = android.provider.Im.Contacts.CONTENT_URI_CHAT_CONTACTS;
Cursor c = managedQuery(uri, null, null, null);
if (c.moveToFirst()) {
 do {
 String username = c.getString(c.getColumnIndexOrThrow(Contacts.USERNAME));
 int presence = c.getInt(c.getColumnIndexOrThrow(Contacts.PRESENCE_STATUS));

 if (presence == Contacts.AVAILABLE) {

44712c09.indd 28344712c09.indd 283 10/20/08 4:10:35 PM10/20/08 4:10:35 PM

284

Chapter 9: Peer-to-Peer Communication

 // TODO: Do something
 }

 } while (c.moveToNext());
}

Monitoring the Roster for Changes
To monitor the roster for changes and presence updates, implement an IRosterListener and register
it with an IM Session using addRemoteRosterListener, as shown in the skeleton code below:

IRosterListener listener = new IRosterListener.Stub() {
 public void presenceChanged(String contact) throws RemoteException {
 // TODO Update the presence icon for the user.
 }

 public void rosterChanged() throws RemoteException {
 // TODO Update the roster UI.
 }

 public void selfPresenceChanged() throws RemoteException {
 // TODO Update the user’s presence.
 }
};

try {
 imSession.addRemoteRosterListener(listener);
} catch (RemoteException e) { }

The Roster Listener includes event handlers that will be triggered when a contact has been added or
removed from the current user’s roster, when a contact’s presence has changed, and if the user’s pres-
ence has changed.

Adding Contacts to a Roster
To add a new contact to the user’s roster, use addContact, specifying the contact username and a per-
sonal nickname to customize their entry on the roster, as shown below:

imSession.addContact(“jim@dundermifflin.com”, “Big Tuna”, null);

The specifi ed nickname is private and will only be visible to the device user.

People are only added to the roster after they’ve approved the request to become an instant messaging
contact. After you attempt to add a contact, the target user receives an invitation (represented as a sub-
scription request) that he or she can either approve or decline.

If the target user accepts the invitation, your user is placed in the target user’s roster (and vice versa),
and he or she will be able to exchange instant messages and receive presence updates.

Subscription requests are asynchronous, so you’ll need to listen for changes in the roster to determine
when a subscription request has been granted.

44712c09.indd 28444712c09.indd 284 10/20/08 4:10:35 PM10/20/08 4:10:35 PM

285

Chapter 9: Peer-to-Peer Communication

Handling Subscription Requests
Requests from others to add the device user to their contact lists should be presented to the user for his
or her explicit approval or rejection.

Once the user has indicated his or her preference, you can approve or decline subscription requests
using the approveSubscriptionRequest and declineSubscriptionRequest methods on an IM
Session. As shown below, both methods take a contact name as a parameter; the approve method also
accepts an optional nickname for the new contact being added.

imSession.approveSubscriptionRequest(sender, “nickname”, null);
imSession.declineSubscriptionRequest(sender);

Removing and Blocking Contacts
In these times of fl eeting attention and fi ckle friendships, there may come a time when a contact once
added to a roster is no longer considered worthy of the honor. In extreme cases, users may choose to
block all messages from a particular user.

Call removeContact from an IM Session to remove a contact from the user’s roster and unsubscribe
from his or her presence updates.

imSession.removeContact(“whathaveyoudoneforme@lately.com”);

When ignoring someone isn’t enough, users can choose to block their messages entirely. The
blockContact method effectively reverses the initial subscription-request approval and automatically
denies any new subscription requests:

imSession.blockContact(“ex@girlfriend.com”);

Blocked contacts are added to the users “blocked list,” which, like the roster itself, resides on the server.
A contact blocked from Android will also be blocked in all other Google Talk clients.

Managing the User’s Presence
The presence of the logged-in IM Session user is available using the getPresence method, as shown in
the snippet below:

Presence p = imSession.getPresence();

This Presence object can be used to determine the user’s IM visibility, his status, and any custom
status message.

To change the user’s presence, modify the Presence object and transmit it to the instant messaging
server by calling setPresence on the IM Session.

The following code snippet shows how to set the user presence to DO_NOT_DISTURB and specifi es a cus-
tom status message:

String customMessage = “Developing applications for Android. Professionally”;
p.setStatus(Presence.Show.DND, customMessage);
imSession.setPresence(p);

44712c09.indd 28544712c09.indd 285 10/20/08 4:10:35 PM10/20/08 4:10:35 PM

286

Chapter 9: Peer-to-Peer Communication

Changes to a user’s presence won’t take effect until after they’ve been committed on the server. The best
practice is to use a Roster Listener to react to the change in the user’s presence once it’s been applied on
the server side.

Managing Chat Sessions
Chat Sessions are created within IM Sessions and are used to manage and participate in person-to-person
chats and chat rooms. All text-based instant message chats are handled using the IChatSession inter-
face, which offers methods for sending text or data messages and inviting new participants into a chat.
You can attach a Chat Listener to a Chat Session to listen to the messages associated with it.

Handling Chat Sessions is particularly useful for integrating text messaging within your own applica-
tions. Using a Chat Session, you can create a chat room for multiplayer games, or integrate person-to-
person messaging within a mobile social networking application.

Starting or Joining a Chat Session
A Chat Session represents the conduit through which all instant messaging communication with a tar-
get user passes, so you can only maintain a single Chat Session per contact per IM Session.

New Chat Sessions are created through an IM Session, using the getChatSession or
createChatSession methods.

If a Chat Session already exists for a given contact, retrieve it by passing in the username of the person
with whom you wish to converse, as shown in the following snippet. If there is no active Chat Session
with the specifi ed user, this method returns null.

IChatSession cs = imSession.getChatSession(targetContactEmailAddress);

If you haven’t established a Chat Session with a particular user, create one using the
createChatSession method, passing in the target contact’s username. If the IM Session is unable to
create a new Chat Session, this method will return null.

IChatSession chatSession = imSession.createChatSession(targetContactEmailAddress);

The following pattern checks to see if there is an existing Chat Session with a target user before creat-
ing a new one if necessary:

IChatSession chatSession = imSession.getChatSession(targetContactEmailAddress);
if (chatSession == null)
 chatSession = imSession.createChatSession(targetContactEmailAddress);

Group Chat Sessions are also represented using the IChatSession interface, but they’re handled a
little differently. Group chat functionality is explored in more detail later in this chapter.

Sending Instant Text Messages
Once you have an active Chat Session, use the sendChatMessage method to send messages to the
contact(s) in that session, as shown in the following code snippet:

chatSession.sendChatMessage(“Hello World!”);

44712c09.indd 28644712c09.indd 286 10/20/08 4:10:35 PM10/20/08 4:10:35 PM

287

Chapter 9: Peer-to-Peer Communication

The message text specifi ed will be transmitted to all the contacts involved in the current Chat Session.

Receiving Instant Text Messages
To listen for incoming messages, implement the IChatListener interface, overriding its
newMessageReceived handler. You can register this interface with either a specifi c Chat Session or the
more generic IM Session using the addRemoteChatListener method.

The following snippet shows the skeleton code for creating and registering a new Chat Listener inter-
face for both a specifi c Chat Session and an IM Session. Note that the IChatListener interface includes
a Stub class that you should extend when creating your own Chat Listener implementation.

IChatListener chatListener = new IChatListener.Stub() {

 public void newMessageReceived(String from, String body) {
 // TODO Handle incoming messages.
 }

 // Required group chat implementation stubs.
 public void convertedToGroupChat(String oldJid,
 String groupChatRoom,
 long groupId) {}
 public void participantJoined(String groupChatRoom, String nickname) {}
 public void participantLeft(String groupChatRoom, String nickname) {}
 public void chatClosed(String groupChatRoom) throws RemoteException {}
 public void chatRead(String arg0) throws RemoteException {}
};

// Add Chat Listener to the chat session.
chatSession.addRemoteChatListener(chatListener);

// Add Chat Listener to the instant messaging session.
imSession.addRemoteChatListener(chatListener);

Chat Listeners registered with an IM Session receive every message received by any Chat Session associ-
ated with that session, so the message handling here should be fairly generic. In contrast, listeners regis-
tered to a single Chat Session are only notifi ed of messages and events relevant to that specifi c session.

Chat Rooms and Group Chats
Chat rooms are an excellent way to encourage a sense of community within a collaborative or multi-
user application.

The GTalk Service supports chat rooms and group chats. They are managed using the same
IChatSession interface used for simple P2P Chat Sessions.

To create a new chat room, use the createGroupChatSession method on an IM Session, passing in a
nickname for the room and a list of users to invite, as shown in the following snippet:

String nickname = “Android Development”;
String[] contacts = { “bill”, “fred” };
imSession.createGroupChatSession(nickname, contacts);

44712c09.indd 28744712c09.indd 287 10/20/08 4:10:35 PM10/20/08 4:10:35 PM

288

Chapter 9: Peer-to-Peer Communication

Alternatively, you may want to join group chats that others have invited you to. Use the
IGroupChatInvitationListener interface to listen for group chat invitations. Each invitation
includes the address and password needed to join an existing chat room.

To join an existing chat room, use the joinGroupChatSession method from an active IM Session,
passing in the address of the room you want to join, a nickname for you to identify it, and the pass-
word required to join, as shown in the following snippet:

imSession.joinGroupChatSession(address, nickname, password);

The following skeleton code shows how to register a Group Chat Invitation Listener on an active IM
Session to listen for, and accept, invitations to join chat rooms.

IGroupChatInvitationListener listener = new IGroupChatInvitationListener.Stub() {
 public boolean onInvitationReceived(GroupChatInvitation _invite)
 throws RemoteException {
 String address = _invite.getRoomAddress();
 String password = _invite.getPassword();
 String nickname = _invite.getInviter();
 imSession.joinGroupChatSession(address, nickname, password);
 return true;
 }
};

try {
 imSession.addGroupChatInvitationListener(listener);
} catch (RemoteException e) { }

Managing Group Chat Sessions
You can get a list of participants in a Chat Session using the getParticipants method. You can also
send text or data messages to each chat member as you would in a normal chat, as well as invite new
members using inviteContact. The leave method lets you exit a chat room and end the session.

As with normal chats, you can listen to chat room messages by implementing and registering an
IChatListener. As well as listening for chat messages, you can react to people joining or leaving
the room.

The following skeleton code shows the implementation of a Chat Listener highlighting the group chat
event handlers:

IChatListener groupChatListener = new IChatListener.Stub() {
 // Fired when a one-to-one chat becomes a group chat.
 public void convertedToGroupChat(String oldJid,
 String groupChatRoom,
 long groupId) throws RemoteException {
 // TODO Notify user that the conversation is now a group chat.
 }

 // Fired when a new person joins a chat room.
 public void participantJoined(String groupChatRoom, String nickname)
 throws RemoteException {

44712c09.indd 28844712c09.indd 288 10/20/08 4:10:35 PM10/20/08 4:10:35 PM

289

Chapter 9: Peer-to-Peer Communication

 // TODO Notify user that a new participant has joined the conversation.
 }

 // Fired when a participant leaves a chat room.
 public void participantLeft(String groupChatRoom, String nickname)
 throws RemoteException {
 // TODO Notify user a chat participant left.
 }

 // Fired when the group chat is closed
 public void chatClosed(String groupChatRoom) throws RemoteException {
 // TODO Close the chat.
 }

 public void chatRead(String arg0) throws RemoteException { }

 public void newMessageReceived(String from, String body) { }
};

Sending and Receiving Data Messages
The GTalk Service includes functionality to transmit data messages between applications running on
different devices. These data messages are handled separately from normal text chat messages and are
invisible to users.

The functionality described in this section was removed prior to the version
1.0 release of the Android SDK. This is largely because of the security implica-
tions associated with the ability to remotely execute code on a target device. It is
expected that this API will be exposed for developer access in future releases of
Android, although it may differ from the implementation described here.

GTalk data messages are a mechanism that lets you broadcast Intents over the air (OTA) to remote user
devices. On the target device, the GTalk Service extracts the Intent from the received message and re-
broadcasts it locally, where it’s handled by the Intent resolution mechanism in the same way as locally
broadcast Intents. The process is illustrated in Figure 9-1.

Source Device

My
Application IMSessionIntent

Target Device

GTalkService Broadcast
Receiver

IntentGTalk
Server

OTA

Figure 9-1

The result is an interface for broadcasting Intents on remote devices using instant messenger contacts.
The broadcast Intent will be received by any Broadcast Receiver registered for the action represented by
the Intent.

44712c09.indd 28944712c09.indd 289 10/20/08 4:10:35 PM10/20/08 4:10:35 PM

290

Chapter 9: Peer-to-Peer Communication

By extending the reach of your applications beyond the scope of the device on which they’re running,
you take on additional responsibilities to ensure that your applications are well behaved, and to take all
possible precautions to ensure that your applications aren’t open to exploitation by those looking to use
this mechanism maliciously.

Data messages are an excellent way to support multi-user applications on distributed mobile devices,
thanks to the low latency and rapid response times provided by the instant messaging architecture.

Transmitting Data Messages
The best practice is to create custom actions to use when broadcasting an Intent to a remote device, such
as the one shown in the snippet below:

public static final String ACTION_OTA_ELIMINATE = “com.paad.ota_eliminate_action”;

The next snippet shows how to create a simple Intent that will be packaged within a data message to
transmit the above action to a remote device:

Intent intent = new Intent(ACTION_OTA_ELIMINATE);

As with normal broadcast Intents, you can package additional information within the Intent using the
extras Bundle. These extras will be included in the Intent when it’s re-broadcast on the remote device.

intent.putExtra(“long”, String.valueOf(location.getLatitude()));
intent.putExtra(“lat”, String.valueOf(location.getLatitude()));
intent.putExtra(“target”, “Sarah Conner”);
intent.putExtra(“sender”, gTalk.getUsername());

Only String extras are currently supported in the OTA Intent broadcast mechanism. Non-string extras
will be disregarded before transmission and won’t be available on the target device.

Send the message using the sendDataMessage method, passing in the target username and the Intent
to broadcast. The sendDataMessage is available on IM Session or Chat Session objects, as shown below:

String username = “T1000@sky.net”;

// Send to target user.
imSession.sendDataMessage(username, intent);

// Send to all chat room participants.
chatSession.sendDataMessage(intent);

Receiving Data Messages
To listen for data messages, register a Broadcast Receiver that fi lters on the action String included in a
transmitted Intent.

GTalk data messages are processed as normal broadcast Intents, so they have no sender information asso-
ciated when they’re received by a Broadcast Receiver. If you require such metadata, you should include
them in the extras Bundle of the source Intent as was done in the code shown in the previous section.

44712c09.indd 29044712c09.indd 290 10/20/08 4:10:35 PM10/20/08 4:10:35 PM

291

Chapter 9: Peer-to-Peer Communication

The following skeleton code shows how to register a simple Broadcast Receiver implementation that can
handle the Intent transmitted in the previous example:

BroadcastReceiver otaGTalkIntentReceiver = new BroadcastReceiver() {
 @Override
 public void onReceive(Context _context, Intent _intent) {
 if (_intent.getAction().equals(ACTION_OTA_ELIMINATE)) {
 String sender = _intent.getStringExtra(“sender”);
 String target = _intent.getStringExtra(“target”);

 String lat = _intent.getStringExtra(“lat”);
 String lng = _intent.getStringExtra(“long”);
 Location location = new Location(LocationManager.GPS_PROVIDER);
 location.setLatitude(Double.parseDouble(lat));
 location.setLongitude(Double.parseDouble(lng));

 // TODO: Do something with the data transmitted.
 }
 }
};

IntentFilter filter = new IntentFilter(ACTION_OTA_ELIMINATE);
registerReceiver(otaGTalkIntentReceiver, filter);

Introducing SMS
If you own a mobile phone that’s less than two decades old, chances are you’re familiar with SMS mes-
saging. SMS (short messaging service) is now one of the most-used features on mobile phones, with
many people favoring it over making phone calls.

SMS technology is designed to send short text messages between mobile phones. It provides support for
sending both text messages (designed to be read by people) and data messages (meant to be consumed
by applications).

As a mature mobile technology, there’s a lot of information out there that describes the technical details
of how an SMS message is constructed and transmitted over the air. Rather than rehash that here, the
following sections focus on the practicalities of sending and receiving text and data messages within
Android.

Using SMS in Your Application
Android offers full access to SMS functionality from within your applications with the SMSManager.
Using the SMS Manager, you can replace the native SMS application or create new applications that
send text messages, react to incoming texts, or use SMS as a data transport layer.

SMS message delivery is not timely, so SMS is not really suitable for anything that requires real-time
responsiveness. That said, the widespread adoption and resiliency of SMS networks make it a particularly
good tool for delivering content to non-Android users and reducing the dependency on third-party servers.

44712c09.indd 29144712c09.indd 291 10/20/08 4:10:35 PM10/20/08 4:10:35 PM

292

Chapter 9: Peer-to-Peer Communication

As a ubiquitous technology, SMS offers a mechanism you can use to send text messages to other mobile
phone users, irrespective of whether they have Android phones.

Compared to the instant messaging mechanism available through the GTalk Service, using SMS to pass
data messages between applications is slow, possibly expensive, and suffers from high latency. On the
other hand, SMS is supported by almost every phone on the planet, so where latency is not an issue,
and updates are infrequent, SMS data messages are an excellent alternative.

Sending SMS Messages
SMS messaging in Android is handled by the SmsManager. You can get a reference to the SMS Manager
using the static method SmsManger.getDefault, as shown in the snippet below.

SmsManager smsManager = SmsManager.getDefault();

To send SMS messages, your applications require the SEND_SMS permission. To request this permission,
add it to the manifest using a uses-permission tag, as shown below:

<uses-permission android:name=”android.permission.SEND_SMS”/>

Sending Text Messages
To send a text message, use sendTextMessage from the SMS Manager, passing in the address (phone
number) of your recipient and the text message you want to send, as shown in the snippet below:

String sendTo = “5551234”;
String myMessage = “Android supports programmatic SMS messaging!”;

smsManager.sendTextMessage(sendTo, null, myMessage, null, null);

The second parameter can be used to specify the SMS service center to use; entering null as shown in
the previous snippet uses the default service center for your carrier.

The fi nal two parameters let you specify Intents to track the transmission and successful delivery of
your messages.

To react to these Intents, create and register Broadcast Receivers as shown in the next section.

Tracking and Confi rming SMS Message Delivery
To track the transmission and delivery success of your outgoing SMS messages, implement and register
Broadcast Receivers that listen for the actions you specify when creating the Pending Intents you pass
in to the sendTextMessage method.

The fi rst Pending Intent parameter, sentIntent, is fi red when the message is either successfully sent or
fails to send. The result code for the Broadcast Receiver that receives this Intent will be one of:

Activity.RESULT_OK ❑ To indicate a successful transmission.

SmsManager.RESULT_ERROR_GENERIC_FAILURE ❑ To indicate a nonspecifi c failure.

44712c09.indd 29244712c09.indd 292 10/20/08 4:10:35 PM10/20/08 4:10:35 PM

293

Chapter 9: Peer-to-Peer Communication

SmsManager.RESULT_ERROR_RADIO_OFF ❑ When the connection radio is turned off.

SmsManager.RESULT_ERROR_NULL_PDU ❑ To indicate a PDU failure.

The second Pending Intent parameter, deliveryIntent, is fi red only after the destination recipient
receives your SMS message.

The following code snippet shows a typical pattern for sending an SMS and monitoring the success of
its transmission and delivery:

String SENT_SMS_ACTION = “SENT_SMS_ACTION”;
String DELIVERED_SMS_ACTION = “DELIVERED_SMS_ACTION”;

// Create the sentIntent parameter
Intent sentIntent = new Intent(SENT_SMS_ACTION);
PendingIntent sentPI = PendingIntent.getBroadcast(getApplicationContext(),
 0,
 sentIntent,
 0);

// Create the deliveryIntent parameter
Intent deliveryIntent = new Intent(DELIVERED_SMS_ACTION);
PendingIntent deliverPI = PendingIntent.getBroadcast(getApplicationContext(),
 0,
 deliveryIntent,
 0);

// Register the Broadcast Receivers
registerReceiver(new BroadcastReceiver() {
 @Override
 public void onReceive(Context _context, Intent _intent) {
 switch (getResultCode()) {
 case Activity.RESULT_OK:
 [… send success actions …]; break;
 case SmsManager.RESULT_ERROR_GENERIC_FAILURE:
 [… generic failure actions …]; break;
 case SmsManager.RESULT_ERROR_RADIO_OFF:
 [… radio off failure actions …]; break;
 case SmsManager.RESULT_ERROR_NULL_PDU:
 [… null PDU failure actions …]; break;
 }
 }
 },
 new IntentFilter(SENT_SMS_ACTION));

registerReceiver(new BroadcastReceiver() {
 @Override
 public void onReceive(Context _context, Intent _intent) {
 [… SMS delivered actions …]
 }
 },
 new IntentFilter(DELIVERED_SMS_ACTION));

// Send the message
smsManager.sendTextMessage(sendTo, null, myMessage, sentPI, deliverPI);

44712c09.indd 29344712c09.indd 293 10/20/08 4:10:36 PM10/20/08 4:10:36 PM

294

Chapter 9: Peer-to-Peer Communication

Monitoring Outgoing SMS Messages
The Android debugging bridge supports sending SMS messages between multiple emulator instances.
To send an SMS from one emulator to another, specify the port number of the target emulator as the
“to” address when sending a new message.

Android will automatically route your message to the target emulator instance, where it’ll be handled
as a normal SMS.

Conforming to the Maximum SMS Message Size
SMS text messages are normally limited to 160 characters, so longer messages need to be broken into a
series of smaller parts. The SMS Manager includes the divideMessage method, which accepts a string
as an input and breaks it into an ArrayList of messages wherein each is less than the allowable size. Use
sendMultipartTextMessage to transmit the array of messages, as shown in the snippet below:

ArrayList<String> messageArray = smsManager.divideMessage(myMessage);
ArrayList<PendingIntent> sentIntents = new ArrayList<PendingIntent>();
for (int i = 0; i < messageArray.size(); i++)
 sentIntents.add(sentPI);

smsManager.sendMultipartTextMessage(sendTo,
 null,
 messageArray,
 sentIntents, null);

The sentIntent and deliveryIntent parameters in the sendMultipartTextMessage method are
ArrayLists that can be used to specify different Pending Intents to fi re for each message part.

Sending Data Messages
You can send binary data via SMS using the sendDataMessage method on an SMS Manager. The
sendDataMessage method works much like sendTextMessage, but includes additional parameters
for the destination port and an array of bytes that constitute the data you want to send.

The following skeleton code shows the basic structure of sending a data message:

Intent sentIntent = new Intent(SENT_SMS_ACTION);
PendingIntent sentPI = PendingIntent.getBroadcast(getApplicationContext(),
 0,
 sentIntent,
 0);

short destinationPort = 80;
byte[] data = [… your data …];
smsManager.sendDataMessage(sendTo, null, destinationPort, data, sentPI, null);

Listening for SMS Messages
When a new SMS message is received by the device, a new broadcast Intent is fi red with the
android.provider.Telephony.SMS_RECEIVED action. Note that this is a String literal, SDK 1.0 does
not include a reference to this string so you must specify it explicitly when using it in your applications.

44712c09.indd 29444712c09.indd 294 10/20/08 4:10:36 PM10/20/08 4:10:36 PM

295

Chapter 9: Peer-to-Peer Communication

For an application to listen for SMS Intent broadcasts, it fi rst needs to be have the RECEIVE_SMS permis-
sion granted. Request this permission by adding a uses-permission tag to the application manifest, as
shown in the following snippet:

<uses-permission
 android:name=”android.permission.RECEIVE_SMS”/>

The SMS broadcast Intent includes the incoming SMS details. To extract the array of SmsMessage
objects packaged within the SMS broadcast Intent bundle, use the pdu key to extract an array of SMS
pdus, each of which represents an SMS message. To convert each pdu byte array into an SMS Message
object, call SmsMessage.createFromPdu, passing in each byte array as shown in the snippet below:

Bundle bundle = intent.getExtras();
if (bundle != null) {
 Object[] pdus = (Object[]) bundle.get(“pdus”);
 SmsMessage[] messages = new SmsMessage[pdus.length];
 for (int i = 0; i < pdus.length; i++)
 messages[i] = SmsMessage.createFromPdu((byte[]) pdus[i]);
}

Each SmsMessage object contains the SMS message details, including the originating address (phone
number), time stamp, and the message body.

The following example shows a Broadcast Receiver implementation whose onReceive handler checks
incoming SMS texts that start with the string @echo, and then sends the same text back to the phone
that sent it:

public class IncomingSMSReceiver extends BroadcastReceiver {
 private static final String queryString = “@echo “;
 private static final String SMS_RECEIVED = “android.provider.Telephony.SMS_RECEIVED”;

 public void onReceive(Context _context, Intent _intent) {
 if (_intent.getAction().equals(SMS_RECEIVED)) {
 SmsManager sms = SmsManager.getDefault();

 Bundle bundle = _intent.getExtras();
 if (bundle != null) {
 Object[] pdus = (Object[]) bundle.get(“pdus”);
 SmsMessage[] messages = new SmsMessage[pdus.length];
 for (int i = 0; i < pdus.length; i++)
 messages[i] = SmsMessage.createFromPdu((byte[]) pdus[i]);

 for (SmsMessage message : messages) {
 String msg = message.getMessageBody();
 String to = message.getOriginatingAddress();

 if (msg.toLowerCase().startsWith(queryString)) {
 String out = msg.substring(queryString.length());
 sms.sendTextMessage(to, null, out, null, null);
 }
 }
 }
 }
 }
}

44712c09.indd 29544712c09.indd 295 10/20/08 4:10:36 PM10/20/08 4:10:36 PM

296

Chapter 9: Peer-to-Peer Communication

To listen for incoming messages, register the Broadcast Receiver using an Intent Filter that listens for
the android.provider.Telephony.SMS_RECEIVED action String, as shown in the code snippet below:

final String SMS_RECEIVED = “android.provider.Telephony.SMS_RECEIVED”;
IntentFilter filter = new IntentFilter(SMS_RECEIVED);
BroadcastReceiver receiver = new IncomingSMSReceiver();
registerReceiver(receiver, filter);

Simulating Incoming SMS Messages
There are two techniques available for simulating incoming SMS messages in the emulator. The fi rst
was described previoulsy in this section; you can send an SMS message from one emulator to another
by using its port number as the destination address.

Alternatively, you can use the Android debug tools introduced in Chapter 2 to simulate incoming SMS
messages from arbitrary numbers, as shown in Figure 9-2.

Figure 9-2

Handling Data SMS Messages

For security reasons, the version 1 release has restricted access to receiving data
messages. The following section has been left to indicate how likely future func-
tionality may be made available.

Data messages are received in the same way as a normal SMS text message and are extracted in the
same way as shown in the above section.

To extract the data transmitted within a data SMS, use the getUserData and getUserDataHeader
methods, as shown in the following snippet:

byte[] data = msg.getUserData();
SmsHeader header = msg.getUserDataHeader();

44712c09.indd 29644712c09.indd 296 10/20/08 4:10:36 PM10/20/08 4:10:36 PM

297

Chapter 9: Peer-to-Peer Communication

The getUserData method returns a byte array of the data included in the message, while
getUserDataHeader returns an array of metadata elements used to describe the data contained in
the message.

Emergency Responder SMS Example
In this example, you’ll create an SMS application that turns an Android phone into an emergency
response beacon.

Once fi nished, the next time you’re in unfortunate proximity to an alien invasion or fi nd yourself in a
robot-uprising scenario, you can set your phone to automatically respond to your friends’ and family
members’ pleas for a status update with a friendly message (or a desperate cry for help).

To make things easier for your would-be saviors, you’ll use location-based services to tell your rescu-
ers exactly where to fi nd you. The robustness of SMS network infrastructure makes SMS an excellent
option for applications like this where reliability and accessibility are critical.

 1. Start by creating a new EmergencyResponder project that features an EmergencyResponder
Activity.

package com.paad.emergencyresponder;

import java.io.IOException;
import java.util.ArrayList;
import java.util.Locale;
import java.util.concurrent.locks.ReentrantLock;
import java.util.List;
import android.app.Activity;
import android.app.PendingIntent;
import android.content.Context;
import android.content.Intent;
import android.content.IntentFilter;

import android.content.BroadcastReceiver;
import android.content.SharedPreferences;
import android.location.Address;
import android.location.Geocoder;
import android.location.Location;
import android.location.LocationManager;

import android.os.Bundle;
import android.telephony.gsm.SmsManager;
import android.telephony.gsm.SmsMessage;
import android.view.View;
import android.view.View.OnClickListener;
import android.widget.ArrayAdapter;
import android.widget.Button;
import android.widget.CheckBox;
import android.widget.ListView;

public class EmergencyResponder extends Activity {

 @Override

44712c09.indd 29744712c09.indd 297 10/20/08 4:10:36 PM10/20/08 4:10:36 PM

298

Chapter 9: Peer-to-Peer Communication

 public void onCreate(Bundle icicle) {
 super.onCreate(icicle);
 setContentView(R.layout.main);
 }
}

 2. Add permissions for fi nding your location as well as sending and receiving incoming SMS mes-
sages to the project manifest.

<?xml version=”1.0” encoding=”utf-8”?>
<manifest xmlns:android=”http://schemas.android.com/apk/res/android”
 package=”com.paad.emergencyresponder”>
 <application android:icon=”@drawable/icon”
 android:label=”@string/app_name”>
 <activity android:name=”.EmergencyResponder”
 android:label=”@string/app_name”>
 <intent-filter>
 <action android:name=”android.intent.action.MAIN” />
 <category android:name=”android.intent.category.LAUNCHER” />
 </intent-filter>
 </activity>
 </application>

 <uses-permission
 android:name=”android.permission.ACCESS_GPS”/>

 <uses-permission
 android:name=”android.permission.ACCESS_LOCATION”/>

 <uses-permission
 android:name=”android.permission.RECEIVE_SMS”/>

 <uses-permission android:name=”android.permission.SEND_SMS”/>

</manifest>

 3. Modify the main.xml layout resource. Include a List View to show the people requesting a
status update and a series of buttons that users can press to send response SMS messages. Use
external resource references to fi ll in the button text; you’ll create them in Step 4.

<?xml version=”1.0” encoding=”utf-8”?>
<RelativeLayout
 xmlns:android=”http://schemas.android.com/apk/res/android”
 android:layout_width=”fill_parent”
 android:layout_height=”fill_parent”>
 <TextView
 android:id=”@+id/labelRequestList”
 android:layout_width=”fill_parent”
 android:layout_height=”wrap_content”
 android:text=”These people want to know if you’re ok”
 android:layout_alignParentTop=”true”/>
 <LinearLayout
 android:id=”@+id/buttonLayout”

44712c09.indd 29844712c09.indd 298 10/20/08 4:10:36 PM10/20/08 4:10:36 PM

299

Chapter 9: Peer-to-Peer Communication

 xmlns:android=”http://schemas.android.com/apk/res/android”
 android:orientation=”vertical”
 android:layout_width=”fill_parent”
 android:layout_height=”wrap_content”
 android:padding=”5px”
 android:layout_alignParentBottom=”true”>
 <CheckBox
 android:id=”@+id/checkboxSendLocation”
 android:layout_width=”fill_parent”
 android:layout_height=”wrap_content”
 android:text=”Include Location in Reply”/>
 <Button
 android:id=”@+id/okButton”
 android:layout_width=”fill_parent”
 android:layout_height=”wrap_content”
 android:text=”@string/respondAllClearButtonText”/>
 <Button
 android:id=”@+id/notOkButton”
 android:layout_width=”fill_parent”
 android:layout_height=”wrap_content”
 android:text=”@string/respondMaydayButtonText”/>
 <Button
 android:id=”@+id/autoResponder”
 android:layout_width=”fill_parent”
 android:layout_height=”wrap_content”
 android:text=”Setup Auto Responder”/>
 </LinearLayout>
 <ListView
 android:id=”@+id/myListView”
 android:layout_width=”fill_parent”
 android:layout_height=”fill_parent”
 android:layout_below=”@id/labelRequestList”
 android:layout_above=”@id/buttonLayout”/>
</RelativeLayout>

 4. Update the external strings.xml resource to include the text for each button and default
response messages to use when responding, with “I’m safe” or “I’m in danger” messages.
You should also defi ne the incoming message text to use when detecting requests for status
responses.

<?xml version=”1.0” encoding=”utf-8”?>
<resources>
 <string name=”app_name”>Emergency Responder</string>

 <string name=”respondAllClearButtonText”>I am Safe and Well</string>
 <string name=”respondMaydayButtonText”>MAYDAY! MAYDAY! MAYDAY!</string>

 <string name=”respondAllClearText”>I am safe and well. Worry not!</string>
 <string name=”respondMaydayText”>Tell my mother I love her.</string>

 <string name=”querystring”>are you ok?</string>
</resources>

44712c09.indd 29944712c09.indd 299 10/20/08 4:10:36 PM10/20/08 4:10:36 PM

300

Chapter 9: Peer-to-Peer Communication

 5. At this point, the GUI will be complete, so starting the application should show you the screen
shown in Figure 9-3.

Figure 9-3

 6. Create a new Array List of Strings within the EmergencyResponder Activity to store the phone
numbers of the incoming requests for your status. Bind the Array List to the List View, using an
Array Adapter in the Activity’s onCreate method, and create a new ReentrantLock object to
ensure thread safe handling of the Array List.

Take the opportunity to get a reference to the Check Box and to add Click Listeners for each
of the response buttons. Each button should call the respond method, while the Setup Auto
Responder button should call the startAutoResponder stub.

ReentrantLock lock;

CheckBox locationCheckBox;

ArrayList<String> requesters;
ArrayAdapter<String> aa;

@Override
public void onCreate(Bundle icicle) {
 super.onCreate(icicle);
 setContentView(R.layout.main);

 lock = new ReentrantLock();
 requesters = new ArrayList<String>();
 wireUpControls();
}

private void wireUpControls() {
 locationCheckBox = (CheckBox)findViewById(R.id.checkboxSendLocation);

44712c09.indd 30044712c09.indd 300 10/20/08 4:10:36 PM10/20/08 4:10:36 PM

301

Chapter 9: Peer-to-Peer Communication

 ListView myListView = (ListView)findViewById(R.id.myListView);

 int layoutID = android.R.layout.simple_list_item_1;
 aa = new ArrayAdapter<String>(this, layoutID, requesters);

 myListView.setAdapter(aa);

 Button okButton = (Button)findViewById(R.id.okButton);
 okButton.setOnClickListener(new OnClickListener() {
 public void onClick(View arg0) {
 respond(true, locationCheckBox.isChecked());
 }
 });

 Button notOkButton = (Button)findViewById(R.id.notOkButton);
 notOkButton.setOnClickListener(new OnClickListener() {
 public void onClick(View arg0) {
 respond(false, locationCheckBox.isChecked());
 }
 });

 Button autoResponderButton = (Button)findViewById(R.id.autoResponder);
 autoResponderButton.setOnClickListener(new OnClickListener() {
 public void onClick(View arg0) {
 startAutoResponder();
 }
 });
}

public void respond(boolean _ok, boolean _includeLocation) {}

private void startAutoResponder() {}

 7. Next, implement a Broadcast Receiver that will listen for incoming SMS messages.

 7.1 Start by creating a new static string variable to store the incoming SMS message intent
action.

public static final String SMS_RECEIVED =
 “android.provider.Telephony.SMS_RECEIVED”;

 7.2 Then create a new Broadcast Receiver as a variable in the EmergencyResponder
Activity. The receiver should listen for incoming SMS messages and call the
requestRecieved method when it sees SMS messages containing the “are you safe”
String you defi ned as an external resource in Step 4.

BroadcastReceiver emergencyResponseRequestReceiver = new BroadcastReceiver() {

 @Override
 public void onReceive(Context _context, Intent _intent) {
 if (_intent.getAction().equals(SMS_RECEIVED)) {
 String queryString = getString(R.string.querystring);

 Bundle bundle = _intent.getExtras();
 if (bundle != null) {

44712c09.indd 30144712c09.indd 301 10/20/08 4:10:36 PM10/20/08 4:10:36 PM

302

Chapter 9: Peer-to-Peer Communication

 Object[] pdus = (Object[]) bundle.get(“pdus”);
 SmsMessage[] messages = new SmsMessage[pdus.length];
 for (int i = 0; i < pdus.length; i++)
 messages[i] = SmsMessage.createFromPdu((byte[]) pdus[i]);

 for (SmsMessage message : messages) {
 if (message.getMessageBody().toLowerCase().contains(queryString)) {
 requestReceived(message.getOriginatingAddress());
 }
 }
 }
 }
 }

};

public void requestReceived(String _from) {}

 8. Update the onCreate method of the Emergency Responder Activity to register the Broadcast
Receiver created in Step 7.

@Override
public void onCreate(Bundle icicle) {
 super.onCreate(icicle);
 setContentView(R.layout.main);

 lock = new ReentrantLock();
 requesters = new ArrayList<String>();
 wireUpControls();

 IntentFilter filter = new IntentFilter(SMS_RECEIVED);
 registerReceiver(emergencyResponseRequestReceiver, filter);
}

 9. Update the requestReceived method stub so that it adds the originating number of each
status request’s SMS to the “requesters” Array List.

public void requestReceived(String _from) {
 if (!requesters.contains(_from)) {
 lock.lock();
 requesters.add(_from);
 aa.notifyDataSetChanged();
 lock.unlock();
 }
}

 10. The Emergency Responder Activity should now be listening for status request SMS messages
and adding them to the List View as they arrive. Start the application and use the DDMS
emulator control to simulate incoming SMS messages, as shown in Figure 9-4.

44712c09.indd 30244712c09.indd 302 10/20/08 4:10:36 PM10/20/08 4:10:36 PM

303

Chapter 9: Peer-to-Peer Communication

Figure 9-4

 11. Now update the Activity to let users respond to these status requests.

Start by completing the respond method stub you created in Step 6. It should iterate over the
Array List of status requesters and send a new SMS message to each. The SMS message text
should be based on the response strings you defi ned as resources in Step 4. Fire the SMS using
an overloaded respond method that you’ll complete in the next step.

public void respond(boolean _ok, boolean _includeLocation) {
 String okString = getString(R.string.respondAllClearText);
 String notOkString = getString(R.string.respondMaydayText);

 String outString = _ok ? okString : notOkString;

 ArrayList<String> requestersCopy = (ArrayList<String>)requesters.clone();

 for (String to : requestersCopy)
 respond(to, outString, _includeLocation);
}

private void respond(String _to, String _response, boolean _includeLocation) {}

 12. Update the respond method that handles the sending of each response SMS.

Start by removing each potential recipient from the “requesters” Array List before sending
the SMS. If you are responding with your current location, use the Location Manager to fi nd it
before sending a second SMS with your current position as raw longitude/latitude points and a
geocoded address.

public void respond(String _to, String _response, boolean _includeLocation) {
 // Remove the target from the list of people we need to respond to.
 lock.lock();
 requesters.remove(_to);
 aa.notifyDataSetChanged();

44712c09.indd 30344712c09.indd 303 10/20/08 4:10:36 PM10/20/08 4:10:36 PM

304

Chapter 9: Peer-to-Peer Communication

 lock.unlock();

 SmsManager sms = SmsManager.getDefault();

 // Send the message
 sms.sendTextMessage(_to, null, _response, null, null);

 StringBuilder sb = new StringBuilder();

 // Find the current location and send it as SMS messages if required.
 if (_includeLocation) {
 String ls = Context.LOCATION_SERVICE;
 LocationManager lm = (LocationManager)getSystemService(ls);
 Location l = lm.getLastKnownLocation(LocationManager.GPS_PROVIDER);

 sb.append(“I’m @:\n”);
 sb.append(l.toString() + “\n”);

 List<Address> addresses;
 Geocoder g = new Geocoder(getApplicationContext(), Locale.getDefault());
 try {
 addresses = g.getFromLocation(l.getLatitude(), l.getLongitude(), 1);
 if (addresses != null) {
 Address currentAddress = addresses.get(0);
 if (currentAddress.getMaxAddressLineIndex() > 0) {
 for (int i = 0; i < currentAddress.getMaxAddressLineIndex(); i++) {
 sb.append(currentAddress.getAddressLine(i));
 sb.append(“\n”);
 }
 }
 else {
 if (currentAddress.getPostalCode() != null)
 sb.append(currentAddress.getPostalCode());
 }
 }
 } catch (IOException e) {}

 ArrayList<String> locationMsgs = sms.divideMessage(sb.toString());
 for (String locationMsg : locationMsgs)
 sms.sendTextMessage(_to, null, locationMsg, null, null);
 }
}

At the time of production, sendTextMessage required a non-null value for the fourth parameter
(sentIntent). In this example, this parameter is added in Step 13, so running the application now
will cause it to throw an exception.

 13. In emergencies, it’s important that messages get through. Improve the robustness of the appli-
cation by including auto-retry functionality. Monitor the success of your SMS transmissions so
that you can re-broadcast a message if it doesn’t successfully send.

44712c09.indd 30444712c09.indd 304 10/20/08 4:10:36 PM10/20/08 4:10:36 PM

305

Chapter 9: Peer-to-Peer Communication

 13.1. Start by creating a new public static String in the Emergency Responder Activity to be
used as a local “SMS Sent” action.

public static final String SENT_SMS = “com.paad.emergencyresponder.SMS_SENT”;

 13.2. Update the respond method to include a new PendingIntent that broadcasts the
action created in the previous step when the SMS transmission has completed. The
packaged Intent should include the intended recipient’s number as an extra.

public void respond(String _to, String _response, boolean _includeLocation) {
 // Remove the target from the list of people we need to respond to.
 lock.lock();
 requesters.remove(_to);
 aa.notifyDataSetChanged();
 lock.unlock();

 SmsManager sms = SmsManager.getDefault();

 Intent intent = new Intent(SENT_SMS);
 intent.putExtra(“recipient”, _to);

 PendingIntent sentIntent = PendingIntent.getBroadcast(getApplicationContext(),
 0,
 intent,
 0);

 // Send the message
 sms.sendTextMessage(_to, null, _response, sentIntent, null);

 StringBuilder sb = new StringBuilder();

 if (_includeLocation) {
 [… existing respond method that finds the current location …]
 ArrayList<String> locationMsgs = sms.divideMessage(sb.toString());
 for (String locationMsg : locationMsgs)
 sms.sendTextMessage(_to, null, locationMsg, sentIntent, null);
 }
}

 13.3. Then implement a new Broadcast Receiver to listen for this broadcast Intent. Override
its onReceive handler to confi rm that the SMS was successfully delivered; if it wasn’t,
then add the intended recipient back on to the requesters Array List.

private BroadcastReceiver attemptedDeliveryReceiver = new BroadcastReceiver()
{
 @Override
 public void onReceive(Context _context, Intent _intent) {
 if (_intent.getAction().equals(SENT_SMS)) {
 if (getResultCode() != Activity.RESULT_OK) {
 String recipient = _intent.getStringExtra(“recipient”);
 requestReceived(recipient);
 }
 }
 }
};

44712c09.indd 30544712c09.indd 305 10/20/08 4:10:36 PM10/20/08 4:10:36 PM

306

Chapter 9: Peer-to-Peer Communication

 13.4. Finally, register the new Broadcast Receiver by extending the onCreate method of the
Emergency Responder Activity.

@Override
public void onCreate(Bundle icicle) {
 super.onCreate(icicle);
 setContentView(R.layout.main);

 lock = new ReentrantLock();
 requesters = new ArrayList<String>();
 wireUpControls();

 IntentFilter filter = new IntentFilter(SMS_RECEIVED);
 registerReceiver(emergencyResponseRequestReceiver, filter);

 IntentFilter attemptedDeliveryfilter = new IntentFilter(SENT_SMS);
 registerReceiver(attemptedDeliveryReceiver, attemptedDeliveryfilter);
}

You can now run the application. To test it, you need to open two emulator instances with the applica-
tion running in one of them.

Use the DDMS emulator controls to mimic sending an “are you safe” message from one emulator to the
other (using its port number as the originating number). When you press one of the response buttons,
you should see a new SMS message appear in the mimicked emulator.

Automating the Emergency Responder
In the following example, you’ll fi ll in the code behind the Set up Auto Responder button added in the
previous example, to let the Emergency Responder automatically respond to status update requests.

 1. Start by creating a new autoresponder.xml layout resource that will be used to lay out the auto-
matic response confi guration window. Include an EditText for entering a status message to
send, a Spinner to choose the auto-response expiry time, and a CheckBox to let users choose if
they want to include their location in the automated responses.

<?xml version=”1.0” encoding=”utf-8”?>
<LinearLayout
 xmlns:android=”http://schemas.android.com/apk/res/android”
 android:orientation=”vertical”
 android:layout_width=”fill_parent”
 android:layout_height=”fill_parent”>
 <TextView
 android:layout_width=”fill_parent”
 android:layout_height=”wrap_content”
 android:text=”Respond With”/>
 <EditText
 android:id=”@+id/responseText”
 android:layout_width=”fill_parent”
 android:layout_height=”wrap_content”/>
 <CheckBox
 android:id=”@+id/checkboxLocation”

44712c09.indd 30644712c09.indd 306 10/20/08 4:10:36 PM10/20/08 4:10:36 PM

307

Chapter 9: Peer-to-Peer Communication

 android:layout_width=”fill_parent”
 android:layout_height=”wrap_content”
 android:text=”Transmit Location”/>
 <TextView
 android:layout_width=”fill_parent”
 android:layout_height=”wrap_content”
 android:text=”Auto Respond For”/>
 <Spinner
 android:id=”@+id/spinnerRespondFor”
 android:layout_width=”fill_parent”
 android:layout_height=”wrap_content”
 android:drawSelectorOnTop=”true”/>
 <LinearLayout
 xmlns:android=”http://schemas.android.com/apk/res/android”
 android:orientation=”horizontal”
 android:layout_width=”fill_parent”
 android:layout_height=”wrap_content”>
 <Button
 android:id=”@+id/okButton”
 android:layout_width=”wrap_content”
 android:layout_height=”wrap_content”
 android:text=”Enable”/>
 <Button
 android:id=”@+id/cancelButton”
 android:layout_width=”wrap_content”
 android:layout_height=”wrap_content”
 android:text=”Disable”/>
 </LinearLayout>
</LinearLayout>

 2. Update the application’s string.xml resource to defi ne a name for an application
SharedPreference and strings to use for each of its keys.

<?xml version=”1.0” encoding=”utf-8”?>
<resources>
 <string name=”app_name”>Emergency Responder</string>

 <string name=”respondAllClearButtonText”>I am Safe and Well</string>
 <string name=”respondMaydayButtonText”>MAYDAY! MAYDAY! MAYDAY!</string>

 <string name=”respondAllClearText”>I am safe and well. Worry not!</string>
 <string name=”respondMaydayText”>Tell my mother I love her.</string>

 <string name=”querystring”>”are you ok?”</string>

 <string name=”user_preferences”>com.paad.emergencyresponder.preferences</string>
 <string name=”includeLocationPref”>PREF_INCLUDE_LOC</string>
 <string name=”responseTextPref”>PREF_RESPONSE_TEXT</string>
 <string name=”autoRespondPref”>PREF_AUTO_RESPOND</string>
 <string name=”respondForPref”>PREF_RESPOND_FOR</string>
</resources>

You should also take this opportunity to externalize the strings used for labels within the layout.

44712c09.indd 30744712c09.indd 307 10/20/08 4:10:36 PM10/20/08 4:10:36 PM

308

Chapter 9: Peer-to-Peer Communication

 3. Then create a new arrays.xml resource, and create arrays to use for populating the Spinner.

<resources>
 <string-array name=”respondForDisplayItems”>
 <item>- Disabled -</item>
 <item>Next 5 minutes</item>
 <item>Next 15 minutes</item>
 <item>Next 30 minutes</item>
 <item>Next hour</item>
 <item>Next 2 hours</item>
 <item>Next 8 hours</item>
 </string-array>

 <array name=”respondForValues”>
 <item>0</item>
 <item>5</item>
 <item>15</item>
 <item>30</item>
 <item>60</item>
 <item>120</item>
 <item>480</item>
 </array>
</resources>

 4. Now create a new AutoResponder Activity, populating it with the layout you created in Step 1.

package com.paad.emergencyresponder;

import android.app.Activity;
import android.app.AlarmManager;
import android.app.PendingIntent;
import android.content.res.Resources;
import android.content.Context;
import android.content.Intent;
import android.content.IntentFilter;
import android.content.BroadcastReceiver;
import android.content.SharedPreferences;
import android.content.SharedPreferences.Editor;
import android.os.Bundle;
import android.view.View;
import android.widget.ArrayAdapter;
import android.widget.Button;
import android.widget.CheckBox;
import android.widget.EditText;
import android.widget.Spinner;

public class AutoResponder extends Activity {

 @Override
 public void onCreate(Bundle icicle) {
 super.onCreate(icicle);
 setContentView(R.layout.autoresponder);
 }

}

44712c09.indd 30844712c09.indd 308 10/20/08 4:10:36 PM10/20/08 4:10:36 PM

309

Chapter 9: Peer-to-Peer Communication

 5. Update onCreate further to get references to each of the controls in the layout and wire up the
Spinner using the arrays defi ned in Step 3. Create two new stub methods, savePreferences
and updateUIFromPreferences, that will be updated to save the auto-responder settings
to a named SharedPreference and apply the saved SharedPreferences to the current UI,
respectively.

Spinner respondForSpinner;
CheckBox locationCheckbox;
EditText responseTextBox;

@Override
public void onCreate(Bundle icicle) {
 super.onCreate(icicle);
 setContentView(R.layout.autoresponder);

 5.1. Start by getting references to each View.

 respondForSpinner = (Spinner)findViewById(R.id.spinnerRespondFor);
 locationCheckbox = (CheckBox)findViewById(R.id.checkboxLocation);
 responseTextBox = (EditText)findViewById(R.id.responseText);

 5.2. Populate the Spinner to let users select the auto-responder expiry time.

 ArrayAdapter<CharSequence> adapter = ArrayAdapter.createFromResource(
 this,
 R.array.respondForDisplayItems,
 android.R.layout.simple_spinner_item);

 adapter.setDropDownViewResource(android.R.layout.simple_spinner_dropdown_item);
 respondForSpinner.setAdapter(adapter);

 5.3. Now wire up the OK and Cancel buttons to let users save or cancel setting changes.

 Button okButton = (Button) findViewById(R.id.okButton);
 okButton.setOnClickListener(new View.OnClickListener() {
 public void onClick(View view) {
 savePreferences();
 setResult(RESULT_OK, null);
 finish();
 }
 });

 Button cancelButton = (Button) findViewById(R.id.cancelButton);
 cancelButton.setOnClickListener(new View.OnClickListener() {
 public void onClick(View view) {
 respondForSpinner.setSelection(-1);
 savePreferences();
 setResult(RESULT_CANCELED, null);
 finish();
 }
 });

44712c09.indd 30944712c09.indd 309 10/20/08 4:10:36 PM10/20/08 4:10:36 PM

310

Chapter 9: Peer-to-Peer Communication

 5.4. Finally, make sure that when the Activity starts, it updates the GUI to represent the cur-
rent settings.

 // Load the saved preferences and update the UI
 updateUIFromPreferences();

 5.5. Close off the onCreate method, and add the updateUIFromPreferences and
savePreferences stubs.

}

private void updateUIFromPreferences() {}

private void savePreferences() {}

 6. Next, complete the two stub methods from Step 5. Start with updateUIFromPreferences; it
should read the current saved AutoResponder preferences and apply them to the UI.

private void updateUIFromPreferences() {
 // Get the saves settings
 String preferenceName = getString(R.string.user_preferences);
 SharedPreferences sp = getSharedPreferences(preferenceName, 0);

 boolean autoRespond = sp.getBoolean(getString(R.string.autoRespondPref), false);
 String respondText = sp.getString(getString(R.string.responseTextPref), “”);
 boolean includeLoc = sp.getBoolean(getString(R.string.includeLocationPref),
 false);
 int respondForIndex = sp.getInt(getString(R.string.respondForPref), 0);

 // Apply the saved settings to the UI
 if (autoRespond)
 respondForSpinner.setSelection(respondForIndex);
 else
 respondForSpinner.setSelection(0);

 locationCheckbox.setChecked(includeLoc);
 responseTextBox.setText(respondText);
}

 7. Complete the savePreferences stub to save the current UI settings to a Shared Preferences fi le.

private void savePreferences() {
 // Get the current settings from the UI
 boolean autoRespond = respondForSpinner.getSelectedItemPosition() > 0;
 int respondForIndex = respondForSpinner.getSelectedItemPosition();
 boolean includeLoc = locationCheckbox.isChecked();
 String respondText = responseTextBox.getText().toString();

 // Save them to the Shared Preference file
 String preferenceName = getString(R.string.user_preferences);
 SharedPreferences sp = getSharedPreferences(preferenceName, 0);

 Editor editor = sp.edit();

44712c09.indd 31044712c09.indd 310 10/20/08 4:10:36 PM10/20/08 4:10:36 PM

311

Chapter 9: Peer-to-Peer Communication

 editor.putBoolean(getString(R.string.autoRespondPref), autoRespond);
 editor.putString(getString(R.string.responseTextPref), respondText);
 editor.putBoolean(getString(R.string.includeLocationPref), includeLoc);
 editor.putInt(getString(R.string.respondForPref), respondForIndex);
 editor.commit();

 // Set the alarm to turn off the autoresponder
 setAlarm(respondForIndex);
}

private void setAlarm(int respondForIndex) {}

 8. The setAlarm stub from Step 8 is used to create a new Alarm that fi res an Intent that should
result in the AutoResponder being disabled.

You’ll need to create a new Alarm object and a BroadcastReceiver that listens for it before
disabling the auto-responder accordingly.

 8.1. Start by creating the action String that will represent the Alarm Intent.

public static final String alarmAction =
 “com.paad.emergencyresponder.AUTO_RESPONSE_EXPIRED”;

 8.2. Then create a new Broadcast Receiver instance that listens for an Intent that includes
the action specifi ed in Step 7. When this Intent is received, it should modify the auto-
responder settings to disable the automatic response.

private BroadcastReceiver stopAutoResponderReceiver = new BroadcastReceiver() {
 @Override
 public void onReceive(Context context, Intent intent) {
 if (intent.getAction().equals(alarmAction)) {
 String preferenceName = getString(R.string.user_preferences);
 SharedPreferences sp = getSharedPreferences(preferenceName, 0);

 Editor editor = sp.edit();
 editor.putBoolean(getString(R.string.autoRespondPref), false);
 editor.commit();
 }
 }
};

 8.3. Finally, complete the setAlarm method. It should cancel the existing alarm if the auto-
responder is turned off; otherwise, it should update it with the latest expiry time.

PendingIntent intentToFire;

private void setAlarm(int respondForIndex) {
 // Create the alarm and register the alarm intent receiver.

 AlarmManager alarms = (AlarmManager)getSystemService(ALARM_SERVICE);

 if (intentToFire == null) {
 Intent intent = new Intent(alarmAction);

44712c09.indd 31144712c09.indd 311 10/20/08 4:10:36 PM10/20/08 4:10:36 PM

312

Chapter 9: Peer-to-Peer Communication

 intentToFire = PendingIntent.getBroadcast(getApplicationContext(),
 0,intent,0);

 IntentFilter filter = new IntentFilter(alarmAction);

 registerReceiver(stopAutoResponderReceiver, filter);
 }

 if (respondForIndex < 1)
 // If “disabled” is selected, cancel the alarm.
 alarms.cancel(intentToFire);
 else {
 // Otherwise find the length of time represented by the selection and
 // and set the alarm to trigger after that time has passed.
 Resources r = getResources();
 int[] respondForValues = r.getIntArray(R.array.respondForValues);
 int respondFor = respondForValues [respondForIndex];

 long t = System.currentTimeMillis();
 t = t + respondFor*1000*60;

 // Set the alarm.
 alarms.set(AlarmManager.RTC_WAKEUP, t, intentToFire);
 }
}

 9. That completes the AutoResponder, but before you can use it, you’ll need to add it to your
application manifest.

<?xml version=”1.0” encoding=”utf-8”?>
<manifest
 xmlns:android=”http://schemas.android.com/apk/res/android”
 package=”com.paad.emergencyresponder”>
 <application
 android:icon=”@drawable/icon”
 android:label=”@string/app_name”>
 <activity
 android:name=”.EmergencyResponder”
 android:label=”@string/app_name”>
 <intent-filter>
 <action android:name=”android.intent.action.MAIN” />
 <category android:name=”android.intent.category.LAUNCHER” />
 </intent-filter>
 </activity>
 <activity
 android:name=”.AutoResponder”
 android:label=”Auto Responder Setup”/>
 </application>

 <uses-permission android:name=”android.permission.ACCESS_GPS”/>
 <uses-permission android:name=”android.permission.ACCESS_LOCATION”/>
 <uses-permission android:name=”android.permission.RECEIVE_SMS”/>
 <uses-permission android:name=”android.permission.SEND_SMS”/>

</manifest>

44712c09.indd 31244712c09.indd 312 10/20/08 4:10:36 PM10/20/08 4:10:36 PM

313

Chapter 9: Peer-to-Peer Communication

 10. To enable the auto-responder, return to the Emergency Responder Activity and update the
startAutoResponder method stub that you created in the previous example. It should open
the AutoResponder Activity you just created.

private void startAutoResponder() {
 startActivityForResult(new Intent(EmergencyResponder.this,
 AutoResponder.class), 0);
}

 11. If you start your project, you should now be able to bring up the Auto Responder settings win-
dow to set the auto-response settings. It should appear as shown in Figure 9-5.

Figure 9-5

 12. The fi nal step is to update the requestReceived method in the Emergency Responder Activity
to check if the auto-responder has been enabled.

If it has, the requestReceived method should automatically execute the respond method,
using the message and location settings defi ned in the application’s SharedPreferences.

public void requestReceived(String _from) {
 if (!requesters.contains(_from)) {
 lock.lock();
 requesters.add(_from);
 aa.notifyDataSetChanged();
 lock.unlock();

 // Check for auto-responder
 String preferenceName = getString(R.string.user_preferences);
 SharedPreferences prefs = getSharedPreferences(preferenceName, 0);

 String autoRespondPref = getString(R.string.autoRespondPref)
 boolean autoRespond = prefs.getBoolean(autoRespondPref, false);

 if (autoRespond) {
 String responseTextPref = getString(R.string.responseTextPref);
 String includeLocationPref = getString(R.string.includeLocationPref);

 String respondText = prefs.getString(responseTextPref, “”);

44712c09.indd 31344712c09.indd 313 10/20/08 4:10:36 PM10/20/08 4:10:36 PM

314

Chapter 9: Peer-to-Peer Communication

 boolean includeLoc = prefs.getBoolean(includeLocationPref, false);

 respond(_from, respondText, includeLoc);
 }
 }
}

You should now have a fully functional interactive and automated emergency responder.

You can test it in the same way as described in the previous example by using a second emulator instance
to receive the response messages, and the emulator controls to send the requests for status updates.

Summary
Technologies like SMS and instant messaging are providing an increasingly versatile platform for per-
son-to-person communication.

Android lets you use these text-based communication channels to create applications that let users send
messages using instant messengers and SMS texts, as well as supplying an invisible data conduit for
your applications to exchange data between devices.

In this chapter, you learned how to connect to IM Sessions using the GTalk Service and how to send
and receive text and data messages using these sessions. You learned about presence, how to set your
own presence, and how to fi nd the presence of the contacts on the IM roster.

You also used the SMS Manager to send and receive text and data messages from your applications.

This chapter also showed you how future SDK release may allow you to:

Add and remove instant messaging contacts. ❑

Block contacts and monitor the roster for changes. ❑

Manage group chats and chat rooms. ❑

Chapter 10 explores access to the low-level mobile hardware.

Using the phone’s telephony services, you’ll initiate new calls and monitor both outgoing and incoming
calls. You’ll be introduced to Android’s multimedia capabilities and use the media API to play back and
record a variety of media resources.

You’ll also learn how to interact with the Sensor Manager to access the compass and accelerometer
before investigating network management using the Wi-Fi and Bluetooth APIs.

44712c09.indd 31444712c09.indd 314 10/20/08 4:10:36 PM10/20/08 4:10:36 PM

Accessing Android Hardware

Android’s application-neutral APIs provide low-level access to the increasingly diverse hardware
commonly available on mobile devices. The ability to monitor and control these hardware fea-
tures provides a great incentive for application development on the Android platform.

The hardware APIs available include:

A telephony package that provides access to calls and phone status. ❑

A multimedia playback and recording library. ❑

Access to the device camera for taking pictures and previewing video. ❑

Extensible support for sensor hardware. ❑

Accelerometer and compass APIs to monitor orientation and movement. ❑

Communications libraries for managing Bluetooth, network, and Wi-Fi hardware. ❑

In this chapter, you’ll take a closer look at some of these hardware APIs. In particular, you’ll learn
how to play and record multimedia content including audio, video, and still images, as well as
use the camera to capture images and preview and capture live video.

You’ll also learn how to monitor hardware sensors using the Sensor Manager. The accelerom-
eter and compass sensors will be used to determine changes in the device orientation and accel-
eration — which is extremely useful for creating motion-based User Interfaces — and lets you
add new dimensions to your location-based applications.

Finally, you’ll take a closer look at the communication hardware by examining the telephony
package for monitoring phone state and phone calls, as well as seeing what’s available in the
Bluetooth, networking, and Wi-Fi APIs.

44712c10.indd 31544712c10.indd 315 10/20/08 4:10:17 PM10/20/08 4:10:17 PM

316

Chapter 10: Accessing Android Hardware

Using the Media APIs
The only modern technology that can compete with mobile phones for ubiquity is the portable digital
media player. As a result, the multimedia capabilities of portable devices are a signifi cant consideration
for many consumers.

Android’s open platform- and provider-agnostic philosophy ensures that it offers a multimedia library
capable of playing and recording a wide range of media formats, both locally and streamed.

Android exposes this library to your applications, providing comprehensive multimedia functionality
including recording and playback of audio, video, and still-image media stored locally, within an appli-
cation, or streamed over a data connection.

At the time of print, Android supported the following multimedia formats:

JPEG ❑

PNG ❑

OGG ❑

Mpeg 4 ❑

3GPP ❑

MP3 ❑

Bitmap ❑

Playing Media Resources
Multimedia playback in Android is handled by the MediaPlayer class. You can play back media stored
as application resources, local fi les, or from a network URI.

To play a media resource, create a new Media Player instance, and assign it a media source to play
using the setDataSource method. Before you can start playback, you need to call prepare, as shown
in the following code snippet:

String MEDIA_FILE_PATH = Settings.System.DEFAULT_RINGTONE_URI.toString();
MediaPlayer mpFile = new MediaPlayer();

try {
 mpFile.setDataSource(MEDIA_FILE_PATH);
 mpFile.prepare();
 mpFile.start();
}
catch (IllegalArgumentException e) {}
catch (IllegalStateException e) {}
catch (IOException e) {}

Alternatively, the static create methods work as shortcuts, accepting media resources as a parameter and
preparing them for playback, as shown in the following example, which plays back an application resource:

MediaPlayer mpRes = MediaPlayer.create(context, R.raw.my_sound);

44712c10.indd 31644712c10.indd 316 10/20/08 4:10:17 PM10/20/08 4:10:17 PM

317

Chapter 10: Accessing Android Hardware

Note that if you use a create method to generate your MediaPlayer object, prepare is called for you.

Once a Media Player is prepared, call start as shown below to begin playback of the associated
media resource.

mpRes.start();

mpFile.start();

The Android Emulator simulates audio playback using the audio output of your development platform.

The Media Player includes stop, pause, and seek methods to control playback, as well as methods to
fi nd the duration, position, and image size of the associated media.

To loop or repeat playback, use the setLooping method.

When playing video resources, getFrame will take a screen grab of video media at the specifi ed frame
and return a bitmap resource.

Once you’ve fi nished with the Media Player, be sure to call release to free the associated resources, as
shown below:

mpRes.release();
mpFile.release();

Since Android only supports a limited number of simultaneous Media Player objects, not releasing
them can cause runtime exceptions.

On Android devices, the Media Player always plays audio using the standard output device —
the speaker or connected Bluetooth headset. It’s not currently possible to play audio into a phone
conversation.

Recording Multimedia
Multimedia recording is handled by the aptly named MediaRecorder class. To record audio or video,
create a new Media Recorder object, as shown in the following code snippet:

MediaRecorder mediaRecorder = new MediaRecorder();

Before you can record any media in Android, your application needs the RECORD_AUDIO and / or
RECORD_VIDEO permissions. Add uses-permission tags for each of them, as appropriate, in your
application manifest.

 <uses-permission android:name=”android.permission.RECORD_AUDIO”/>
 <uses-permission android:name=”android.permission.RECORD_VIDEO”/>

The ability to record video has been restricted for the version 1.0 release of
Android; however, Audio recording is still available.

44712c10.indd 31744712c10.indd 317 10/20/08 4:10:17 PM10/20/08 4:10:17 PM

318

Chapter 10: Accessing Android Hardware

The Media Recorder can be used to confi gure the video and audio sources (generally the camera and
microphone), output format, video size and frame rate, and the video and audio encoders to use.

The following code snippet shows how to confi gure a Media Recorder to record audio from the micro-
phone using the default format and encoder:

The emulator supports recording of audio using the microphone device attached to your development
platform.

// Set the audio source.
mediaRecorder.setAudioSource(MediaRecorder.AudioSource.MIC);
// Set the output format.
mediaRecorder.setOutputFormat(MediaRecorder.OutputFormat.DEFAULT);
// Set the audio encoders to use.
mediaRecorder.setAudioEncoder(MediaRecorder.AudioEncoder.DEFAULT);

Once you’ve defi ned your input source and output format, assign a fi le to store the recorded media
using the setOutputFile method as shown below:

mediaRecorder.setOutputFile(“myoutputfile.mp4”);

The setOutputFile method must be called before prepare and after
setOutputFormat or it will throw an Illegal State Exception.

To begin recording, call prepare followed by the start method, as shown below:

mediaRecorder.prepare();
mediaRecorder.start();

When you’re fi nished, call stop to end the playback, followed by release to free the Media Recorder
resources:

mediaRecorder.stop();
mediaRecorder.release();

When recording video, it’s generally considered good practice to display a preview of the recorded
video in real time. Using the setPreviewDisplay method, you can assign a Surface to display
the video preview.

As with any other resource, media fi les created by your application will be unavailable to others. As a
result, it’s good practice to use the Media Store Content Provider to assign metadata, select a fi le loca-
tion, and publish the recorded media to share recordings with other applications.

To do that, after recording new media create a new ContentValues object to add a new record to the
Media Store. The metadata you specify here can include the details including the title, time stamp, and
geocoding information for your new media fi le, as shown in the code snippet below:

ContentValues content = new ContentValues(3);
content.put(Audio.AudioColumns.TITLE, “TheSoundandtheFury”);

44712c10.indd 31844712c10.indd 318 10/20/08 4:10:17 PM10/20/08 4:10:17 PM

319

Chapter 10: Accessing Android Hardware

content.put(Audio.AudioColumns.DATE_ADDED,
 System.currentTimeMillis() / 1000);
content.put(Audio.Media.MIME_TYPE, “audio/amr”);

You must also specify the absolute path of the media fi le being added:

content.put(MediaStore.Audio.Media.DATA,
 “myoutputfile.mp4”);

Get access to the application’s ContentResolver, and use it to insert this new row into the Media Store
as shown in the following code snippet:

ContentResolver resolver = getContentResolver();
Uri uri = resolver.insert(Audio.Media.EXTERNAL_CONTENT_URI, content);

Once the media fi le has been inserted into the media store you should announce it’s availability using a
broadcast Intent as shown below:

sendBroadcast(new Intent(Intent.ACTION_MEDIA_SCANNER_SCAN_FILE, uri));

Using the Camera
The popularity of digital cameras (particularly within phone handsets) has caused their prices to drop
just as their size has shrunk dramatically. It’s now becoming diffi cult to even fi nd a mobile phone with-
out a camera, and Android devices are unlikely to be exceptions.

To access the camera hardware, you need to add the CAMERA permission to your application manifest, as
shown here:

<uses-permission android:name=”android.permission.CAMERA”/>

This grants access to the Camera Service. The Camera class lets you adjust camera settings, take pic-
tures, and manipulate streaming camera previews.

To access the Camera Service, use the static open method on the Camera class. When your application
has fi nished with the camera, remember to relinquish your hold on the Service by calling release fol-
lowing the simple use pattern shown in the code snippet below:

Camera camera = Camera.open();
 [… Do things with the camera …]
camera.release();

Controlling Camera Settings
The current camera settings are available as a Camera.Parameters object. Call the getParameters
method on the Camera to access the current parameters.

44712c10.indd 31944712c10.indd 319 10/20/08 4:10:17 PM10/20/08 4:10:17 PM

320

Chapter 10: Accessing Android Hardware

You can use the set* methods on the returned Parameters to modify the settings. To apply changes,
call setParameters, passing in the modifi ed values as shown below:

Camera.Parameters parameters = camera.getParameters();
parameters.setPictureFormat(PixelFormat.JPEG);
camera.setParameters(parameters);

The Camera Parameters can be used to specify the image and preview size, image format, and preview
frame rate.

Using the Camera Preview
Access to the camera’s streaming video means that you can incorporate live video into your applica-
tions. Some of the most exciting early Android applications have used this functionality as the basis for
augmenting reality.

The camera preview can be displayed in real time onto a Surface, as shown in the code snippet below:

camera.setPreviewDisplay(mySurface);
camera.startPreview();
[…]
camera.stopPreview();

You’ll learn more about Surfaces in the following chapter, although Android includes an excellent
example of using a SurfaceView to display the camera preview in real time. This example is available
in the graphics/CameraPreview project in the SDK API demos.

You can also assign a PreviewCallback to be fi red for each preview frame, allowing you to manipu-
late or display each preview frame individually. Call the setPreviewCallback method on the Camera
object, passing in a new PreviewCallback implementation overriding the onPreviewFrame method
as shown here:

camera.setPreviewCallback(new PreviewCallback() {

 public void onPreviewFrame(byte[] _data, Camera _camera) {
 // TODO Do something with the preview image.
 }
});

Taking a Picture
Take a picture by calling takePicture on a Camera object, passing in a ShutterCallback and
PictureCallback implementations for the RAW and JPEG-encoded images. Each picture callback
will receive a byte array representing the image in the appropriate format, while the shutter callback is
triggered immediately after the shutter is closed.

private void takePicture() {
 camera.takePicture(shutterCallback, rawCallback, jpegCallback);
}

ShutterCallback shutterCallback = new ShutterCallback() {

44712c10.indd 32044712c10.indd 320 10/20/08 4:10:17 PM10/20/08 4:10:17 PM

321

Chapter 10: Accessing Android Hardware

 public void onShutter() {
 // TODO Do something when the shutter closes.
 }
};

PictureCallback rawCallback = new PictureCallback() {
 public void onPictureTaken(byte[] _data, Camera _camera) {
 // TODO Do something with the image RAW data.
 }
};

PictureCallback jpegCallback = new PictureCallback() {
 public void onPictureTaken(byte[] _data, Camera _camera) {
 // TODO Do something with the image JPEG data.
 }
};

Introducing the Sensor Manager
The Sensor Manager is used to manage the sensor hardware available on an Android device. Use
getSystemService to get a reference to the Sensor Service as shown in the code snippet below:

String service_name = Context.SENSOR_SERVICE;
SensorManager sensorManager = (SensorManager)getSystemService(service_name);

The following sections look closely at how to use the Sensor Manager to monitor orientation and accelera-
tion, but the pattern shown here can be used to monitor sensor results from any available hardware sensor:

SensorListener mySensorListener = new SensorListener() {
 public void onSensorChanged(int sensor, float[] values) {
 // TODO Deal with sensor value changes
 }

 public void onAccuracyChanged(int sensor, int accuracy) {
 // TODO Auto-generated method stub
 }
};

The SensorListener interface is used to listen for Sensor value and accuracy changes.

Implement the onSensorChanged method to react to value changes. The sensor parameter identifi es
the sensor that triggered the event, while the values float array contains the new values detected by
that sensor.

Implement onAccuracyChanged to react to changes in a sensor’s accuracy. The sensor parameter
again identifi es the sensor that triggered the event, while the accuracy parameter indicates the new
accuracy of that sensor using one of the constants:

SensorManager.SENSOR_STATUS_ACCURACY_HIGH ❑ Indicates that the sensor is reporting with
the highest possible accuracy.

SensorManager.SENSOR_STATUS_ACCURACY_LOW ❑ Indicates that the sensor is reporting with
low accuracy and needs to be calibrated.

44712c10.indd 32144712c10.indd 321 10/20/08 4:10:17 PM10/20/08 4:10:17 PM

322

Chapter 10: Accessing Android Hardware

SensorManager.SENSOR_STATUS_ACCURACY_MEDIUM ❑ Indicates that the sensor data is of
average accuracy, and that calibration might improve the readings.

SensorManager.SENSOR_STATUS_UNRELIABLE ❑ Indicates that the sensor data is unreliable,
meaning that either calibration is required or readings are not currently possible.

The Sensor Manager includes constants to help identify the sensor triggering the change event. The fol-
lowing list includes the sensors for which constants are currently defi ned. Some or all of these sensors
will be available to your applications depending on the hardware available on the host device:

SensorManager.SENSOR_ACCELEROMETER ❑ Is an accelerometer sensor that returns the cur-
rent acceleration along three axes in meters per second squared (m/s2). The accelerometer is
explored in greater detail later in this chapter.

SensorManager.SENSOR_ORIENTATION ❑ Is an orientation sensor that returns the current ori-
entation on three axes in degrees. The orientation sensor is explored in greater detail later in this
chapter.

SensorManager.SENSOR_LIGHT ❑ Is an ambient-light sensor that returns a single value
describing the ambient illumination in lux.

SensorManager.SENSOR_MAGNETIC_FIELD ❑ Is a sensor used to determine the current mag-
netic fi eld measured in microteslas (μT) along three axes.

SensorManager.SENSOR_PROXIMITY ❑ Is a proximity sensor that returns a single value
describing the distance between the device and the target object in meters (m).

SensorManager.SENSOR_TEMPERATURE ❑ Is a thermometer sensor that returns the ambient
temperature in degrees Celsius (˚C).

To receive notifi cations of changes from a particular sensor, create a Sensor Listener as described previ-
ously, and register it with the Sensor Manager specifying the sensor that should trigger the Listener
and the rate at which the sensor should update, as shown in the following code snippet:

sensorManager.registerListener(mySensorListener,
 SensorManager.SENSOR_TRICORDER,
 SensorManager.SENSOR_DELAY_FASTEST);

The Sensor Manager includes the following constants (shown in descending order of responsiveness) to
let you select a suitable update rate:

SensorManager.SENSOR_DELAY_FASTEST ❑ Specifi es the fastest possible sensor update rate.

SensorManager.SENSOR_DELAY_GAME ❑ Selects an update rate suitable for use in controlling
games.

SensorManager.SENSOR_DELAY_NORMAL ❑ Specifi es the default update rate.

SensorManager.SENSOR_DELAY_UI ❑ Specifi es a rate suitable for updating UI features.

The rate you select is not binding; the Sensor Manager may return results faster or slower than you
specify, though it will tend to be faster. To minimize the associated resource cost of using the sensor in
your application you should try to select the slowest suitable rate.

44712c10.indd 32244712c10.indd 322 10/20/08 4:10:17 PM10/20/08 4:10:17 PM

323

Chapter 10: Accessing Android Hardware

An overloaded registerListener method is also available that applies the default (SENSOR_DELAY_
NORMAL) update rate, as shown below:

sensorManager.registerListener(mySensorListener,
SensorManager.SENSOR_TRICORDER);

Using the Accelerometer and Compass
Input based on movement and orientation is an exciting innovation for mobile applications. It’s a tech-
nique that has become possible thanks to the incorporation of compass and accelerometer sensors in
modern devices.

Accelerometers and compasses are used to provide functionality based on changes in device orienta-
tion and movement. A recent trend is to use this functionality to provide alternative input techniques
from more traditional touch-screen-, trackball-, and keyboard-based approaches. In recent years, these
sensors have become increasingly common, having found their way into game controllers like the Nin-
tendo Wii and mobile handsets like the Apple iPhone.

The availability of compass and accelerometer values depends on the hardware upon which your appli-
cation runs. When available, they are exposed through the SensorManager class, allowing you to:

Determine the current orientation of the hardware. ❑

Monitor for changes in orientation. ❑

Know which direction the user is facing. ❑

Monitor acceleration — changes in movement speed — in any direction: vertically, laterally, or ❑

longitudinally.

This opens some intriguing possibilities for your applications. By monitoring orientation, direction, and
movement, you can:

Use the compass and accelerometer to determine your speed and direction. Used with the maps ❑

and location-based services, you can create interfaces that incorporate direction and movement
as well as location.

Create User Interfaces that adjust dynamically to suit the orientation of your device. Android ❑

already alters the native screen orientation when the device is rotated from portrait to landscape
or vice versa.

Monitor for rapid acceleration to detect if a device has been dropped or thrown. ❑

Measure movement or vibration. For example, you could create an application that lets you lock ❑

your device; if any movement is detected while it’s locked, it could send an alert IM message
that includes its current location.

Create User Interface controls that use physical gestures and movement as input. ❑

44712c10.indd 32344712c10.indd 323 10/20/08 4:10:17 PM10/20/08 4:10:17 PM

324

Chapter 10: Accessing Android Hardware

Introducing Accelerometers
Accelerometers, as their name suggests, are used to measure acceleration.

Acceleration is defi ned as the rate of change of velocity, so they measure how quickly the speed of the
device is changing in a given direction. Using an accelerometer, you can detect movement and, more
usefully, the rate of change of the speed of that movement.

It’s important to note that accelerometers do not measure velocity, so you can’t measure speed directly
based on a single accelerometer reading. Instead, you need to measure changes in acceleration over time.

Generally, you’ll be interested in acceleration changes relative to a rest state, or rapid movement (signi-
fi ed by rapid changes in acceleration) such as gestures used for user input. In the former case, you’ll
often need to calibrate the device to calculate the initial orientation and acceleration to take those effects
into account in future results.

Accelerometers are unable to differentiate between acceleration due to movement and gravity. As a
result, an accelerometer detecting acceleration on the Z-axis (up/down) will read –9.8 m/s2 when it’s at
rest (this value is available as the SensorManager.STANDARD_GRAVITY constant).

Detecting Acceleration Changes
Acceleration can be measured along three directional axes: forward–backward (longitudinal), left–right
(lateral), and up–down (vertical). The Sensor Manager reports sensor changes in all three directions (as
illustrated in Figure 10-1):

Y

X

Z

Figure 10-1

44712c10.indd 32444712c10.indd 324 10/20/08 4:10:17 PM10/20/08 4:10:17 PM

325

Chapter 10: Accessing Android Hardware

Vertical ❑ Upward or downward, where positive represents upward movement such as the
device being lifted up.

Longitudinal ❑ Forward or backward acceleration, where forward acceleration is positive. This
represents a device fl at on its back, facing up, and in portrait orientation being moved along the
desk in the direction of the top of the device.

Lateral ❑ Sideways (left or right) acceleration, where positive values represent movement
toward the right of the device, and negative values show movement toward the left. In the same
confi guration as described in longitudinal movement, positive lateral movement would be cre-
ated by moving the device along the surface to your right.

The Sensor Manager considers the device “at rest” when it is sitting face up on a fl at surface in portrait
orientation.

As described previously, you can monitor changes in acceleration using Sensor Listeners. Register an
extension of the SensorListener class with the Sensor Manager, using the SENSOR_ACCELEROMETER
fl ag to request updates of accelerometer values and a sensor update rate as shown in the following code
snippet:

SensorManager sm = (SensorManager)getSystemService(Context.SENSOR_SERVICE);
sm.registerListener(mySensorListener,
 SensorManager.SENSOR_ACCELEROMETER,
 SensorManager.SENSOR_DELAY_UI);

Your Sensor Listener must implement the onSensorChanged method that will be triggered when the
changes in acceleration along any of the three axes described previously are detected.

The onSensorChanged method receives a float array that contains the current acceleration along all
three axes in smoothed and raw formats. The Sensor Manager includes index constants that you can
use to extract the acceleration value you require, as shown in the following code snippet:

SensorListener mySensorListener = new SensorListener() {
 public void onSensorChanged(int sensor, float[] values) {
 if (sensor == SensorManager.SENSOR_ACCELEROMETER) {
 float xAxis = values[SensorManager.DATA_X];
 float yAxis = values[SensorManager.DATA_Y];
 float zAxis = values[SensorManager.DATA_Z];

 float raw_xAxis = values[SensorManager.RAW_DATA_X];
 float raw_yAxis = values[SensorManager.RAW_DATA_Y];
 float raw_zAxis = values[SensorManager.RAW_DATA_Z];

 // TODO apply the acceleration changes to your application.
 }
 }

 public void onAccuracyChanged(int sensor, int accuracy) { }
};

44712c10.indd 32544712c10.indd 325 10/20/08 4:10:17 PM10/20/08 4:10:17 PM

326

Chapter 10: Accessing Android Hardware

Creating a Speedometer
While an accelerometer won’t tell you your current speed, you can calculate a rough estimate by moni-
toring changes in acceleration over time. In the following example, you’ll create a simple speedometer
using the accelerometers to determine the current speed based on acceleration changes.

The sensitivity and responsiveness of the hardware accelerometers will limit the accuracy and effective-
ness of this application, but the techniques it uses should give you a better understanding of how to use
the accelerometer sensors for something more useful.

Because accelerometers measure the change in velocity in a given direction, you can establish your
current speed by determining how long each acceleration value has been applied. For those mathemati-
cally inclined, you’re fi nding the second derivative of the acceleration changes.

For example, if you accelerate at a steady rate of 1 m/s2 after 10 seconds, your speed will be 10 m/s (or
36 km/h). When your speed becomes steady, your acceleration should return to zero. In the real world,
acceleration rarely stops and starts in an instant, nor does it remain constant, so you’ll need to adjust
your velocity calculations as the measured acceleration changes.

 1. Start by creating a new Speedometer project with a Speedometer Activity. Modify the main.xml
layout resource to display a single, centered line of large, bold text that will be used to display
your current speed.

<?xml version=”1.0” encoding=”utf-8”?>
<LinearLayout
 xmlns:android=”http://schemas.android.com/apk/res/android”
 android:orientation=”vertical”
 android:layout_width=”fill_parent”
 android:layout_height=”fill_parent” >
 <TextView
 android:id=”@+id/myTextView”
 android:gravity=”center”
 android:layout_width=”fill_parent”
 android:layout_height=”fill_parent”
 android:textStyle=”bold”
 android:textSize=”40sp”
 android:text=”CENTER”
 android:editable=”false”
 android:singleLine=”true”
 android:layout_margin=”10px”/>
 />
</LinearLayout>

 2. Within the Speedometer Activity, create instance variables to store references to the TextView
and the SensorManager. Also create variables to record the current acceleration, velocity, and
the last update time.

SensorManager sensorManager;
TextView myTextView;

float appliedAcceleration = 0;
float currentAcceleration = 0;
float velocity = 0;
Date lastUpdate;

44712c10.indd 32644712c10.indd 326 10/20/08 4:10:17 PM10/20/08 4:10:17 PM

327

Chapter 10: Accessing Android Hardware

 3. Create a new updateVelocity method that calculates the velocity change since the last update
based on the current acceleration.

private void updateVelocity() {
 // Calculate how long this acceleration has been applied.
 Date timeNow = new Date(System.currentTimeMillis());
 long timeDelta = timeNow.getTime()-lastUpdate.getTime();
 lastUpdate.setTime(timeNow.getTime());

 // Calculate the change in velocity at the
 // current acceleration since the last update.
 float deltaVelocity = appliedAcceleration * (timeDelta/1000);
 appliedAcceleration = currentAcceleration;

 // Add the velocity change to the current velocity.
 velocity += deltaVelocity;

 // Convert from meters per second to miles per hour.
 double mph = (Math.round(velocity / 1.6 * 3.6));

 myTextView.setText(String.valueOf(mph) + “mph”);
}

 4. Create a new SensorListener implementation that updates the current acceleration (and
derived velocity) whenever a change in acceleration is detected.

Because a speedometer will most likely be used while the device is mounted vertically, with the
screen face perpendicular to the ground, measure negative acceleration along the Z-axis.

private final SensorListener sensorListener = new SensorListener() {

double calibration - Double.NAN;

 public void onSensorChanged(int sensor, float[] values) {
 double x = values[SensorManager.DATA_X];
 double y = values[SensorManager.DATA_Y];
 double z = values[SensorManager.DATA_Z];
 double a = -1*Math.sqrt(Math.pow(x, 2) +
 Math.pow(y, 2) +
 Math.pow(z, 2));
 if (calibration == Double.NaN)
 calibration = a;
 else {
 updateVelocity();
 currentAcceleration = (float)a;
 }
 }

 public void onAccuracyChanged(int sensor, int accuracy) {}

};

 5. Update the onCreate method to register your new Listener for accelerometer updates using the
SensorManager. Take the opportunity to get a reference to the Text View.

@Override
public void onCreate(Bundle icicle) {

44712c10.indd 32744712c10.indd 327 10/20/08 4:10:17 PM10/20/08 4:10:17 PM

328

Chapter 10: Accessing Android Hardware

 super.onCreate(icicle);
 setContentView(R.layout.main);

 myTextView = (TextView)findViewById(R.id.myTextView);
 lastUpdate = new Date(System.currentTimeMillis());

 sensorManager = (SensorManager)getSystemService(Context.SENSOR_SERVICE);
 sensorManager.registerListener(sensorListener,
 SensorManager.SENSOR_ACCELEROMETER,
 SensorManager.SENSOR_DELAY_FASTEST);
}

 6. Create a new Timer that updates the speed based on the current acceleration every second.
Because this will update a GUI element, you’ll need to create a new updateGUI method that
synchronizes with the GUI thread using a Handler before updating the Text View.

Handler handler = new Handler();

@Override
public void onCreate(Bundle icicle) {
 super.onCreate(icicle);
 setContentView(R.layout.main);

 myTextView = (TextView)findViewById(R.id.myTextView);
 lastUpdate = new Date(System.currentTimeMillis());

 sensorManager = (SensorManager)getSystemService(Context.SENSOR_SERVICE);
 sensorManager.registerListener(sensorListener,
 SensorManager.SENSOR_ACCELEROMETER,
 SensorManager.SENSOR_DELAY_FASTEST);

 Timer updateTimer = new Timer(“velocityUpdate”);
 updateTimer.scheduleAtFixedRate(new TimerTask() {
 public void run() {
 updateGUI();
 }
 }, 0, 1000);
}

private void updateGUI()}
 //Convert from m/s to mph
 final double mph = (Math.round(100*velocity / 1.6*3.6)) / 100;

 //Update the GUI
 handler.post(new Runnable() {
 public void run() {
 myTextView.setText(String.valueOf(mph) + “mph”);
 }
 });
}

Once you’re fi nished, you’ll want to test this out. Given that keeping constant watch on your handset
while, driving, cycling, or running is a Bad Idea, you should consider some further enhancements to
the speedometer before you take it on the road.

44712c10.indd 32844712c10.indd 328 10/20/08 4:10:17 PM10/20/08 4:10:17 PM

329

Chapter 10: Accessing Android Hardware

Consider incorporating vibration or media player functionality to shake or beep with intensity propor-
tional to your current speed, or simply log speed changes as they happen for later review.

If you’re feeling particularly adventurous, consider integrating your speedometer into a map to track
your speed along a journey using different colored lines to represent your speed along the way.

Determining Your Orientation
The orientation sensors are a combination of a built-in compass that provides the yaw (heading) and the
accelerometers that help determine pitch and roll.

If you’ve done a bit of trigonometry, you’ve got the skills required to calculate the device orientation
based on the accelerometer values along the three axes. If you enjoyed trig as much as I did, you’ll be
happy to learn that Android does these calculations for you.

The device orientation is reported along all three dimensions, as illustrated in Figure 10-2:

Heading ❑ The heading (also bearing or yaw) is the direction the device is facing around the
Z-axis, where 0/360 degrees is North, 90 degrees is East, 180 degrees is South, and 270 degrees
is West.

Pitch ❑ Pitch represents the angle of the device around the Y-axis. The tilt angle returned shows
0 degrees when the device is fl at on its back, –90 degrees when standing upright (top of device
pointing at the ceiling), 90 degrees when the device is upside down, and 180/–180 degrees
when the device is face down.

Roll ❑ The roll represents the device’s sideways tilt between –90 and 90 degrees on the X-axis.
The tilt is 0 degrees when the device is fl at on its back, –90 degrees when the screen faces left,
and 90 degrees when the screen faces right.

X

Y

Z

Pitch

Heading

Roll

Figure 10-2

44712c10.indd 32944712c10.indd 329 10/20/08 4:10:17 PM10/20/08 4:10:17 PM

330

Chapter 10: Accessing Android Hardware

As implied by the preceding list, the Sensor Manager considers the device at rest (heading, pitch, roll at
0 degrees) when it is fl at on its back. To monitor device orientation, register a Sensor Listener with the
Sensor Manager, specifying the SENSOR_ORIENTATION fl ag, as shown in the following code snippet:

SensorManager sm = (SensorManager)getSystemService(Context.SENSOR_SERVICE);
sm.registerListener(myOrientationListener,
 SensorManager.SENSOR_ORIENTATION,
 SensorManager.SENSOR_DELAY_NORMAL);

The onSensorChanged method in your SensorListener implementation will receive a float array
containing the current orientation, along the three axes described above, whenever the device’s orienta-
tion changes.

Within this float array, use the Sensor Manager constants DATA_X, DATA_Y, and DATA_Z to fi nd the
roll, pitch, and heading (yaw) respectively. Use the corresponding RAW_DATA_* constants to fi nd the
unsmoothed / unfi ltered values as shown in the following code snippet:

SensorListener myOrientationListener = new SensorListener() {
 public void onSensorChanged(int sensor, float[] values) {
 if (sensor == SensorManager.SENSOR_ORIENTATION) {
 float rollAngle = values[SensorManager.DATA_X];
 float pitchAngle = values[SensorManager.DATA_Y];
 float headingAngle = values[SensorManager.DATA_Z];

 float raw_rollAngle = values[SensorManager.RAW_DATA_X];
 float raw_pitchAngle= values[SensorManager.RAW_DATA_Y];
 float raw_headingAngle = values[SensorManager.RAW_DATA_Z];
 // TODO apply the orientation changes to your application.
 }
 }

 public void onAccuracyChanged(int sensor, int accuracy) { }
};

Creating a Compass and Artifi cial Horizon
In Chapter 4, you created a simple CompassView to experiment with owner-drawn controls. In this
example, you’ll extend the functionality of the CompassView to display the device pitch and roll, before
using it to display the current device orientation.

 1. Open the Compass project you created in Chapter 4. You will be making changes to the
CompassView as well as the Compass Activity used to display it. To ensure that the View and
controller remain as decoupled as possible, the CompassView won’t be linked to the sensors
directly; instead, it will be updated by the Activity.

Start by adding fi eld variables and get/set methods for pitch and roll to the CompassView.
float pitch = 0;
float roll = 0;

public float getPitch() {
 return pitch;
}

44712c10.indd 33044712c10.indd 330 10/20/08 4:10:17 PM10/20/08 4:10:17 PM

331

Chapter 10: Accessing Android Hardware

public void setPitch(float pitch) {
 this.pitch = pitch;
}

public float getRoll() {
 return roll;
}
public void setRoll(float roll) {
 this.roll = roll;
}

 2. Update the onDraw method to include two circles that will be used to indicate the pitch and roll
values.

@Override
protected void onDraw(Canvas canvas) {

 [… Existing onDraw method …]

 2.1. Create a new circle that’s half-fi lled and rotates in line with the sideways tilt.

 RectF rollOval = new RectF((getMeasuredWidth()/3)-getMeasuredWidth()/7,
 (getMeasuredHeight()/2)-getMeasuredWidth()/7,
 (getMeasuredWidth()/3)+getMeasuredWidth()/7,
 (getMeasuredHeight()/2)+getMeasuredWidth()/7
);
 markerPaint.setStyle(Paint.Style.STROKE);
 canvas.drawOval(rollOval, markerPaint);
 markerPaint.setStyle(Paint.Style.FILL);
 canvas.save();
 canvas.rotate(roll, getMeasuredWidth()/3, getMeasuredHeight()/2);
 canvas.drawArc(rollOval, 0, 180, false, markerPaint);

 canvas.restore();

 2.2. Create a new circle that starts half-fi lled and varies between full and empty based on
the current pitch.

 RectF pitchOval = new RectF((2*mMeasuredWidth/3)-mMeasuredWidth/7,
 (getMeasuredHeight()/2)-getMeasuredWidth()/7,
 (2*getMeasuredWidth()/3)+getMeasuredWidth()/7,
 (getMeasuredHeight()/2)+getMeasuredWidth()/7
);
 markerPaint.setStyle(Paint.Style.STROKE);
 canvas.drawOval(pitchOval, markerPaint);
 markerPaint.setStyle(Paint.Style.FILL);
 canvas.drawArc(pitchOval, 0-pitch/2, 180+(pitch), false, markerPaint);
 markerPaint.setStyle(Paint.Style.STROKE);
}

That completes the changes to the CompassView. If you run the application now, it should appear
as shown in Figure 10-3. This screen capture was taken while the device was facing due East, with a
45-degree roll and 10-degree backward pitch.

44712c10.indd 33144712c10.indd 331 10/20/08 4:10:18 PM10/20/08 4:10:18 PM

332

Chapter 10: Accessing Android Hardware

Figure 10-3

 1. Now you’ll be updating the Compass Activity to use the Sensor Manager to listen for orienta-
tion changes and pass them through to the CompassView. Start by adding local fi eld variables
to store the current roll, pitch, and heading as well as references to the CompassView and
SensorManager.

float pitch = 0;
float roll = 0;
float heading = 0;

CompassView compassView;
SensorManager sensorManager;

 2. Create a new updateOrientation method that takes new heading, pitch, and roll values to
update the fi eld variables and apply them to the CompassView.

private void updateOrientation(float _roll,
 float _pitch,
 float _heading) {
 heading = _heading;
 pitch = _pitch;
 roll = _roll;

 if (compassView!= null) {
 compassView.setBearing(heading);
 compassView.setPitch(pitch);
 compassView.setRoll(roll);
 compassView.invalidate();
 }
}

 3. Update the onCreate method to get references to the CompassView and SensorManager, as
well as initializing the heading, pitch, and roll values.

@Override
public void onCreate(Bundle icicle) {
 super.onCreate(icicle);

44712c10.indd 33244712c10.indd 332 10/20/08 4:10:18 PM10/20/08 4:10:18 PM

333

Chapter 10: Accessing Android Hardware

 setContentView(R.layout.main);

 compassView = (CompassView)this.findViewById(R.id.compassView);
 sensorManager = (SensorManager)getSystemService(Context.SENSOR_SERVICE);
 updateOrientation(0, 0, 0);
}

 4. Create a new fi eld variable that instantiates a new SensorListener implementation that calls
the updateOrientation method.

private final SensorListener sensorListener = new SensorListener() {

 public void onSensorChanged(int sensor, float[] values) {
 updateOrientation(values[SensorManager.DATA_X],
 values[SensorManager.DATA_Y],
 values[SensorManager.DATA_Z]);
 }

 public void onAccuracyChanged(int sensor, int accuracy) {}

};

 5. Then override the onResume method to register the SensorListener to listen for orientation
changes when the Activity is visible. Also override onStop to prevent updates when the Activ-
ity has been suspended.

@Override
protected void onResume()
{
 super.onResume();
 sensorManager.registerListener(sensorListener,
 SensorManager.SENSOR_ORIENTATION,
 SensorManager.SENSOR_DELAY_FASTEST);
}

@Override
protected void onStop()
{
 sensorManager.unregisterListener(sensorListener);
 super.onStop();
}

If you run the application now, you should see the three face dials update dynamically when the orien-
tation of the device changes. Unfortunately, it’s not currently possible to emulate the sensor hardware,
so this application will only update when running on supported hardware.

Android Telephony
The telephony APIs let your applications access the underlying telephone hardware, making it pos-
sible to create your own dialer — or integrate call handling and phone state monitoring into your
applications.

44712c10.indd 33344712c10.indd 333 10/20/08 4:10:18 PM10/20/08 4:10:18 PM

334

Chapter 10: Accessing Android Hardware

Due to security concerns, the current Android SDK does not allow you to create your own “in call”
application — the screen that is displayed when an incoming call is received or an outgoing call has
been initiated.

Rather than creating a new dialer implementation, the following sections focus on how to monitor and
control phone, service, and cell events in your applications to augment and manage the native phone-
handling functionality.

Making Phone Calls
The best practice is to use Intents to launch a dialer application to initiate new phone calls. There are
two Intent actions you can use to dial a number; in both cases, you should specify the number to dial
using the tel: schema as the data component of the Intent:

Intent.ACTION_CALL ❑ Automatically initiates the call, displaying the in-call application. You
should only use this action if you are replacing the native dialer, otherwise you should use the
ACTION_DIAL action as described below. Your application must have the CALL_PHONE permis-
sion granted to broadcast this action.

Intent.ACTION_DIAL ❑ Rather than dial the number immediately, this action starts a dialer
application, passing in the specifi ed number but allowing the dialer application to manage
the call initialization (the default dialer asks the user to explicitly initiate the call). This action
doesn’t require any permissions and is the standard way applications should initiate calls.

The following skeleton code shows the basic technique for dialing a number:

Intent intent = new Intent(Intent.ACTION_DIAL, Uri.parse(“tel:1234567”));
startActivity(intent);

By using Intents to announce your intention to dial a number, your application can remain fully decou-
pled from a particular hardware implementation used to initiate the call. For example, should you replace
the existing dialer with a hybrid that allows IP-based telephony, using Intents to dial a number from other
applications will let you leverage that new functionality without needing to change each application.

Monitoring Phone State and Phone Activity
The Android telephony API lets you monitor phone state, retrieve incoming phone numbers, and man-
age calls. Access to the telephony APIs is managed by the Telephony Manager, accessible using the
getSystemService method as shown below:

String srvcName = Context.TELEPHONY_SERVICE;
TelephonyManager telephonyManager =
 (TelephonyManager)getSystemService(srvcName);

In order to monitor and manage phone state, your application will need a READ_PHONE_STATE permis-
sion, as shown in the following XML code snippet:

<uses-permission android:name=”android.permission.READ_PHONE_STATE”/>

44712c10.indd 33444712c10.indd 334 10/20/08 4:10:18 PM10/20/08 4:10:18 PM

335

Chapter 10: Accessing Android Hardware

Changes to the phone state are announced to other components using the PhoneStateListener class.
Extend the PhoneStateListener to listen for, and respond to, phone state change events including call
state (ringing, off hook, etc.), cell location changes, voice-mail and call-forwarding status, phone service
changes, and changes in mobile signal strength.

To react to phone state change events, create a new Phone State Listener implementation, and override
the event handlers of the events you want to react to. Each handler receives parameters that indicate the
new phone state, such as the current cell location, call state, or signal strength.

The following code highlights the available state change handlers in a skeleton Phone State Listener
implementation:

PhoneStateListener phoneStateListener = new PhoneStateListener() {
 public void onCallForwardingIndicatorChanged(boolean cfi) {}
 public void onCallStateChanged(int state, String incomingNumber) {}
 public void onCellLocationChanged(CellLocation location) {}
 public void onDataActivity(int direction) {}
 public void onDataConnectionStateChanged(int state) {}
 public void onMessageWaitingIndicatorChanged(boolean mwi) {}
 public void onServiceStateChanged(ServiceState serviceState) {}
 public void onSignalStrengthChanged(int asu) {}
};

Once you’ve created your own Phone State Listener, register it with the Telephony Manager using a bit-
mask to indicate the events you want to listen for, as shown in the following code snippet:

telephonyManager.listen(phoneStateListener,
 PhoneStateListener.LISTEN_CALL_FORWARDING_INDICATOR |
 PhoneStateListener.LISTEN_CALL_STATE |
 PhoneStateListener.LISTEN_CELL_LOCATION |
 PhoneStateListener.LISTEN_DATA_ACTIVITY |
 PhoneStateListener.LISTEN_DATA_CONNECTION_STATE |
 PhoneStateListener.LISTEN_MESSAGE_WAITING_INDICATOR |
 PhoneStateListener.LISTEN_SERVICE_STATE |
 PhoneStateListener.LISTEN_SIGNAL_STRENGTH);

To unregister a listener, call listen and pass in PhoneStateListener.LISTEN_NONE as the bit fi eld
parameter, as shown below:

telephonyManager.listen(phoneStateListener, PhoneStateListener.LISTEN_NONE);

In the following sections, you’ll learn how to use the Phone State Listener to monitor incoming calls,
track cell location changes, and monitor service changes.

Monitoring Phone Calls
One of the most popular reasons for monitoring phone state changes is to detect, and react to, incoming
and outgoing phone calls.

44712c10.indd 33544712c10.indd 335 10/20/08 4:10:18 PM10/20/08 4:10:18 PM

336

Chapter 10: Accessing Android Hardware

Calls can be detected through changes in the phone’s call state. Override the onCallStateChanged
method in a Phone State Listener implementation, and register it as shown below to receive notifi ca-
tions when the call state changes:

PhoneStateListener callStateListener = new PhoneStateListener() {
 public void onCallStateChanged(int state, String incomingNumber) {
 // TODO React to incoming call.
 }
};

telephonyManager.listen(callStateListener,
PhoneStateListener.LISTEN_CALL_STATE);

The onCallStateChanged handler receives the phone number associated with incoming calls, and the
state parameter represents the current call state as one of the following three values:

TelephonyManager.CALL_STATE_IDLE ❑ When the phone is neither ringing nor in a call

TelephonyManager.CALL_STATE_RINGING ❑ When the phone is ringing

TelephonyManager.CALL_STATE_OFFHOOK ❑ If the phone is currently on a call

Tracking Cell Location Changes
You can get notifi cations whenever the current cell location changes by overriding
onCellLocationChanged on a Phone State Listener implementation. Before you can register to
listen for cell location changes, you need to add the ACCESS_COARSE_LOCATION permission to your
application manifest.

<uses-permission android:name=”android.permission.ACCESS_COARSE_LOCATION”/>

The onCellLocationChanged handler receives a CellLocation object that includes methods for
extracting the cell ID (getCid) and the current LAC (getLac).

The following code snippet shows how to implement a Phone State Listener to monitor cell location
changes, displaying a Toast that includes the new location’s cell ID:

PhoneStateListener cellLocationListener = new PhoneStateListener() {
 public void onCellLocationChanged(CellLocation location) {
 GsmCellLocation gsmLocation = (GsmCellLocation)location;
 Toast.makeText(getApplicationContext(),
 String.valueOf(gsmLocation.getCid()),
 Toast.LENGTH_LONG).show();
 }
};
telephonyManager.listen(cellLocationListener,
 PhoneStateListener.LISTEN_CELL_LOCATION);

Tracking Service Changes
The onServiceStateChanged handler tracks the service details for the device’s cell service. Use the
ServiceState parameter to fi nd details of the current service state.

44712c10.indd 33644712c10.indd 336 10/20/08 4:10:18 PM10/20/08 4:10:18 PM

337

Chapter 10: Accessing Android Hardware

The getState method on the Service State object returns the current service state as one of:

ServiceState.STATE_IN_SERVICE ❑ Normal phone service is available.

ServiceState.STATE_EMERGENCY_ONLY ❑ Phone service is available but only for emergency
calls.

ServiceState.STATE_OUT_OF_SERVICE ❑ No cell phone service is currently available.

ServiceState.STATE_POWER_OFF ❑ The phone radio is turned off (usually when airplane
mode is enabled).

A series of getOperator* methods is available to retrieve details on the operator supplying the cell
phone service, while getRoaming tells you if the device is currently using a roaming profi le.

The following example shows how to register for service state changes and displays a Toast showing
the operator name of the current phone service:

PhoneStateListener serviceStateListener = new PhoneStateListener() {
 public void onServiceStateChanged(ServiceState serviceState) {
 if (serviceState.getState() == ServiceState.STATE_IN_SERVICE) {
 String toastText = serviceState.getOperatorAlphaLong();
 Toast.makeText(getApplicationContext(), toastText, Toast.LENGTH_SHORT);
 }
 }
};

telephonyManager.listen(serviceStateListener,
 PhoneStateListener.LISTEN_SERVICE_STATE);

Monitoring Data Connectivity and Activity
As well as voice and service details, you can monitor changes in mobile data connectivity and mobile
data transfer by implementing a PhoneStateListener.

The Phone State Listener includes two event handlers for monitoring the device data connection. Over-
ride onDataActivity to track data transfer activity, and onDataConnectionStateChanged to request
notifi cations for data connection state changes.

The following skeleton code shows both handlers overridden, with switch statements demonstrating
each of the possible values for the state and direction parameters passed in to each event:

PhoneStateListener dataStateListener = new PhoneStateListener() {
 public void onDataActivity(int direction) {
 switch (direction) {
 case TelephonyManager.DATA_ACTIVITY_IN : break;
 case TelephonyManager.DATA_ACTIVITY_OUT : break;
 case TelephonyManager.DATA_ACTIVITY_INOUT : break;
 case TelephonyManager.DATA_ACTIVITY_NONE : break;
 }
 }

 public void onDataConnectionStateChanged(int state) {

44712c10.indd 33744712c10.indd 337 10/20/08 4:10:18 PM10/20/08 4:10:18 PM

338

Chapter 10: Accessing Android Hardware

 switch (state) {
 case TelephonyManager.DATA_CONNECTED : break;
 case TelephonyManager.DATA_CONNECTING : break;
 case TelephonyManager.DATA_DISCONNECTED : break;
 case TelephonyManager.DATA_SUSPENDED : break;
 }
 }
};

telephonyManager.listen(dataStateListener,
 PhoneStateListener.LISTEN_DATA_ACTIVITY |
 PhoneStateListener.LISTEN_DATA_CONNECTION_STATE);

Accessing Phone Properties and Status
The Telephony Manager also provides access to several static phone properties. You can obtain the cur-
rent value of any of the phone state details described previously. The following code snippet shows how
to extract the current incoming call number if the phone is ringing:

String incomingCall = null;
if (telephonyManager.getCallState() == TelephonyManager.CALL_STATE_RINGING)
 incomingCall = telephonyManager.getLine1Number();

You can also access SIM and network operator details, network information, and voice-mail details. The
following code snippet shows the framework used to access the current network details:

String srvcName = Context.TELEPHONY_SERVICE;
TelephonyManager telephonyManager = (TelephonyManager)getSystemService(srvcName);

String networkCountry = telephonyManager.getNetworkCountryIso();
String networkOperatorId = telephonyManager.getNetworkOperator();
String networkName = telephonyManager.getNetworkOperatorName();
int networkType = telephonyManager.getNetworkType();

Controlling the Phone
There are times when you need access to the underlying phone hardware to effect changes rather than
simply monitoring them.

Access to the underlying Phone hardware was removed shortly before the release
of Android SDK version 1. It is expected that basic phone interaction including
answering and hanging up the phone will be available in a subsequent API release.

The following section is based on an earlier API release that included phone hard-
ware interaction support. It has been included to serve as a guide for likely future
implementations.

The Phone class in Android provides this interface, letting you control hardware settings, handle
incoming calls, initiate new outgoing calls, hang up calls in progress, handle conference calls, and a
variety of other Phone functionalities.

44712c10.indd 33844712c10.indd 338 10/20/08 4:10:18 PM10/20/08 4:10:18 PM

339

Chapter 10: Accessing Android Hardware

Replacing the basic phone functionality is a complex process. Rather than delve into this in detail, this
section focuses on some of the more useful functions that can be particularly powerful when used
within applications that augment rather than replace the existing functionality.

To access the phone hardware, use the Phone class, available through the Telephony Manager using the
getPhone method as shown in the following code snippet:

Phone phone = telephonyManager.getPhone();

Once you have a reference to the Phone object, you can initiate calls using the call or dial method or
end them by calling endCall.

Answering, Dismissing, and Ending Calls
The following code snippet shows how to use the Phone State Listener to listen for incoming calls and
reject them if they’re from a particular place:

final String badPrefix = “+234”;

PhoneStateListener callBlockListener = new PhoneStateListener() {
 public void onCallStateChanged(int state, String incomingNumber) {
 if (state == TelephonyManager.CALL_STATE_RINGING) {
 Phone phone = telephonyManager.getPhone();
 if (incomingNumber.startsWith(badPrefix)) {
 phone.endCall();
 }
 }
 }
};

telephonyManager.listen(callBlockListener,
PhoneStateListener.LISTEN_CALL_STATE);

Using Bluetooth
In this section, you’ll learn how to interact directly with Bluetooth devices including other phones
and Bluetooth headsets. Using Bluetooth, you can pair with other devices within range, initiate an
RFCOMMSocket, and transmit and receive streams of data from or for your applications.

The Bluetooth libraries have been removed for the Android version 1.0 release. The
following sections are based on earlier SDK releases and are included as a guide to
functionality that is expected to be made available in subsequent releases.

Introducing the Bluetooth Service
The Android Bluetooth service is represented by the BluetoothDevice class.

44712c10.indd 33944712c10.indd 339 10/20/08 4:10:18 PM10/20/08 4:10:18 PM

340

Chapter 10: Accessing Android Hardware

Bluetooth is a system service accessed using the getSystemService method. Get a reference to the
BluetoothDevice by passing in the Context.BLUETOOTH constant as the service name parameter, as
shown in the following code snippet:

String context = Context.BLUETOOTH_SERVICE;
final BluetoothDevice bluetooth = (BluetoothDevice)getSystemService(context);

To use the Bluetooth Service, your application needs to have the BLUETOOTH permission as shown here:

<uses-permission android:name=”android.permission.BLUETOOTH”/>

Controlling the Local Bluetooth Device
The Bluetooth Device offers several methods that let you control the Bluetooth hardware.

The enable and disable methods let you enable or disable the Bluetooth adapter. The getName and
setName methods let you modify the local device name, and getAddress can be used to determine
the local device address. You can fi nd and change the discovery mode and discovery time-out settings
using the getMode and getDiscoverableTimeout methods and their setter equivalents.

The following code snippet enables the Bluetooth adapter and waits until it has connected before
changing the device name and setting the mode to “discoverable”:

bluetooth.enable(new IBluetoothDeviceCallback.Stub() {

 public void onCreateBondingResult(String _address, int _result)
 throws RemoteException
 {
 String friendlyName = bluetooth.getRemoteName(_address);
 }

 public void onEnableResult(int _result) throws RemoteException {
 if (_result == BluetoothDevice.RESULT_SUCCESS) {
 bluetooth.setName(“BLACKFANG”);
 bluetooth.setMode(BluetoothDevice.MODE_DISCOVERABLE);
 }
 }

});

Discovering and Bonding with Bluetooth Devices
Before you can establish a data communications socket, the local Bluetooth device must fi rst discover,
connect, and bond with the remote device.

Discovery
Looking for remote devices to connect to is called discovery. For other devices to discover your handset, you
need to set the mode to “discoverable” or “connectable” using the setMode method as shown previously.

44712c10.indd 34044712c10.indd 340 10/20/08 4:10:18 PM10/20/08 4:10:18 PM

341

Chapter 10: Accessing Android Hardware

To discover other devices, initiate a discovery session using the startDiscovery or
startPeriodicDiscovery methods, as shown below:

if (discoverPeriodically)
 bluetooth.startPeriodicDiscovery();
else
 bluetooth.startDiscovery(true);

Both of these calls are asynchronous, broadcasting a REMOTE_DEVICE_FOUND_ACTION whenever a new
remote Bluetooth device is discovered.

To get a list of the remote devices that have been discovered, call listRemoteDevices on the Bluetooth
device object. The returned String array contains the address of each remote device found. You can fi nd
their “friendly” names by passing in the device address to getRemoteName.

Bonding
Bonding, also known as pairing, lets you create an authenticated connection between two Bluetooth
devices using a four-digit PIN. This ensures that your Bluetooth connections aren’t hijacked.

Android requires you to bond with remote devices before you can establish application-layer communi-
cation sessions such as RFCOMM.

To bond with a remote device, call the createBonding method on the Bluetooth Device after using
setPin to set the unique identifi er PIN to use for this pairing request. To abort the bonding attempt,
call cancelBonding and use cancelPin to re-set the PIN if required.

Once a remote device has been bonded, it will be added to the native database and will automatically
bond with the local device if it is discovered in the future.

In the following code snippet, the Bluetooth Service is queried for a list of all the available remote
devices. The list is then checked to see if any of these devices are not yet bonded with the local
Bluetooth service, in which case, pairing is initiated.

String[] devices = bluetooth.listRemoteDevices();

for (String device : devices) {
 if (!bluetooth.hasBonding(device)) {
 // Set the pairing PIN. In real life it’s probably a smart
 // move to make this user enterable and dynamic.
 bluetooth.setPin(device, new byte[] {1,2,1,2});
 bluetooth.createBonding(device, new IBluetoothDeviceCallback.Stub() {

 public void onCreateBondingResult(String _address, int _result)
 throws RemoteException {
 if (_result == BluetoothDevice.RESULT_SUCCESS) {
 String connectText = “Connected to “ + bluetooth.getRemoteName(_address);
 Toast.makeText(getApplicationContext(), connectText, Toast.LENGTH_SHORT);
 }

44712c10.indd 34144712c10.indd 341 10/20/08 4:10:18 PM10/20/08 4:10:18 PM

342

Chapter 10: Accessing Android Hardware

 }

 public void onEnableResult(int _result) throws RemoteException {}

 });
 }
}

To listen for remote-device bonding requests, implement and register a BroadcastListener that fi lters
for the ACTION_PAIRING_REQUEST Intent.

Managing Bluetooth Connections
Calling listRemoteDevices returns a list of the currently discovered devices, while listBondings
returns the address of each remote device currently bonded to the local device. As a shortcut,
hasBonding lets you specify a device address and returns true if you have bonded with it.

Further details on each device can be found using the lastSeen and lastUsed methods. These meth-
ods return the last time a device was seen (through discovery) or accessed.

Use removeBonding to sever a bond with a remote device. This will also close any application layer
communications sockets you’ve established.

Communication with Bluetooth
The most likely reason for bonding to a remote Bluetooth device is to communicate with it.

Bluetooth data transfer is handled using the RfcommSocket class, which provides a wrapper for the
Bluetooth radiofrequency communications (RFCOMM) protocol that supports RS232 serial communica-
tion over an underlying Logical Link Control and Adaptation Protocol (L2CAP) layer.

In practice, this alphabet soup provides a mechanism for opening communication sockets between two
paired Bluetooth devices.

In order for an RFCOMM communication channel to be established, a listening port on one device must
be connected to an outgoing port on the other. As a result, for bidirectional communication, two socket
connections must be established.

Opening a Socket Connection
Before you can transfer data between Bluetooth devices, you need to open a new RFCommSocket.

Start by creating a new RFCommSocket object and calling its create method. This constructs a new
socket for you to use on your Bluetooth device, returning a FileDescriptor for transferring data.

The FileDescriptor is the lowest-level representation of an I/O source. You can create any of the I/O
class objects (FileStream, DataOutputStream, etc.) using a FileDescriptor as a constructor param-
eter. Later you’ll use one of these I/O classes to transfer data with a remote device.

44712c10.indd 34244712c10.indd 342 10/20/08 4:10:18 PM10/20/08 4:10:18 PM

343

Chapter 10: Accessing Android Hardware

The following skeleton code shows the basic RFCommSocket implementation that creates a new socket
connection ready to either initiate or respond to communications requests:

FileDescriptor localFile;
RfcommSocket localSocket = new RfcommSocket();
try {
 localFile = localSocket.create();
} catch (IOException e) { }

Once the socket has been created, you need to either bind it to the local device to listen for connection
requests or initiate a connection with a remote device.

Listening for Data
To listen for incoming data, use the bind method to create a socket to use as a listening port for the
local device. If this is successful, use the listen method to open the socket to start listening for incom-
ing data transfer requests.

Once you’ve initialized your listener socket, use the accept method to check for, and respond to, any
incoming socket connection requests.

The accept method takes a new RfcommSocket object that will be used to represent the remote socket
connection, and a time-out for a connection request to be received. If a successful connection is made,
accept returns a FileDescriptor that represents the input stream. Use this File Descriptor to process
the incoming data stream from the remote device.

The following skeleton code shows how to confi gure a new socket that listens for, and accepts, an
incoming socket connection:

FileDescriptor localFile;
FileDescriptor remoteFile;

RfcommSocket localSocket = new RfcommSocket();
try {
 localFile = localSocket.create();
 localSocket.bind(null);
 localSocket.listen(1);
 RfcommSocket remotesocket = new RfcommSocket();
 remoteFile = localSocket.accept(remotesocket, 10000);
}
catch (IOException e) { }

If no connection request is made within the time-out period, accept returns null.

Transmitting Data
To transmit data using an RfcommSocket, use the connect method to specify a bonded remote device
address and port number to transmit data to. The connection request can also be made asynchronously
using the connectAsync method to initiate the connection; waitForAsyncConnect can then be used
to block on a separate thread until a response is received.

44712c10.indd 34344712c10.indd 343 10/20/08 4:10:18 PM10/20/08 4:10:18 PM

344

Chapter 10: Accessing Android Hardware

Once a connection has been established, you can transmit data with any of the I/O output classes using
the local socket’s FileDescriptor as a constructor parameter, as shown in the following code snippet:

FileDescriptor localFile;
String remoteAddress = bluetooth.listBondings()[0];

RfcommSocket localSocket = new RfcommSocket();
try {
 localFile = localSocket.create();
 // Select an unused port
 if (localSocket.connect(remoteAddress, 0)) {
 FileWriter output = new FileWriter(localFile);
 output.write(“Hello, Android”);
 output.close();
 }
} catch (IOException e) { }

Using a Bluetooth Headset
Wireless headsets are one of the most common uses of Bluetooth on mobile phones.

The BluetoothHeadset class provides specialized support for interacting with Bluetooth headsets. In
this context, a headset includes any headset or hands-free device.

To use the Bluetooth headset API, create a new BluetoothHeadset object on your application context,
as shown in the code snippet below:

BluetoothHeadset headset = new BluetoothHeadset(this);

This object will act as a proxy to the Bluetooth Headset Service that services any Bluetooth headsets
bonded with the system.

Android only supports a single headset connection at a time, but you can change the connected headset
using this API. Call connectHeadset, passing in the address of the headset to connect to, as shown in
the code snippet below:

headset.connectHeadset(address, new IBluetoothHeadsetCallback.Stub() {

 public void onConnectHeadsetResult(String _address, int _resultCode)
 throws RemoteException {
 if (_resultCode == BluetoothHeadset.RESULT_SUCCESS) {
 // Connected to a new headset device.
 }
 }

});

44712c10.indd 34444712c10.indd 344 10/20/08 4:10:18 PM10/20/08 4:10:18 PM

345

Chapter 10: Accessing Android Hardware

The Headset Service is not guaranteed to be connected to a headset at all times, so it’s good practice to
use the getState method to confi rm a valid connection before performing any actions, as shown in the
code snippet below:

if (headset.getState() == BluetoothHeadset.STATE_CONNECTED) {
 // TODO Perform actions on headset.
}

When you’ve fi nished interacting with the headset, you should always call close on the
BluetoothHeadset object to let the proxy unbind from the underlying service:

BluetoothHeadset headset = new BluetoothHeadset(this);
// [… Perform headset actions …]
headset.close();

Managing Network and Wi-Fi Connections
The incredible growth of Internet services and the ubiquity of mobile devices has made mobile Internet
access an increasingly prevalent feature on mobile phones.

With the speed, reliability, and cost of Internet connectivity dependent on the network technology
being used (Wi-Fi, GPRS, 3G), letting your applications know and manage these connections can help
to ensure that they run effi ciently and responsively.

Android provides access to the underlying network state, broadcasting Intents to notify applica-
tion components of changes in network connectivity and offering control over network settings and
connections.

Android networking is principally handled using the ConnectivityManager, a Service that lets
you monitor the connectivity state, set your preferred network connection, and manage connectivity
failover.

Later you’ll learn how to use the WifiManager to monitor and control the device’s Wi-Fi connectivity
specifi cally. The Wi-Fi Manager lets you see and modify the confi gured Wi-Fi networks, manage the
active connection, and perform access point scans.

Monitoring and Managing Your Internet Connectivity
The ConnectivityManager represents the Network Connectivity Service. It’s used to monitor the state
of network connections, confi gure failover settings, and control the network radios.

To access the Connectivity Manager, call getSystemService, passing in
Context.CONNECTIVITY_SERVICE as the service name, as shown in the code snippet below:

String service = Context.CONNECTIVITY_SERVICE;
ConnectivityManager connectivity = (ConnectivityManager)getSystemService(service);

44712c10.indd 34544712c10.indd 345 10/20/08 4:10:18 PM10/20/08 4:10:18 PM

346

Chapter 10: Accessing Android Hardware

Before it can use the Connectivity Manager, your application will need Read and Write network state
access permissions to be added to the manifest, as shown below:

<uses-permission android:name=”android.permission.ACCESS_NETWORK_STATE”/>
<uses-permission android:name=”android.permission.CHANGE_NETWORK_STATE”/>

Managing Active Connections
The Connectivity Manager provides a high-level view of the available network connections. Using the
getActiveNetworkInfo or getNetworkInfo methods, you query NetworkInfo objects that include
details on the currently active network or on an inactive network of the type specifi ed.

In both cases, the NetworkInfo returned includes methods that indicate the connection status and net-
work type of the specifi ed network.

Confi guring Network Preferences and Controlling Hardware
The Connectivity Manager can also be used to control network hardware and confi gure failover preferences.

Android will attempt to connect to the preferred network whenever an authorized application requests
an Internet connection. You can set the preferred network using the setNetworkPreference method
and specifying the network you would prefer to connect to, as shown in the code snippet below:

connectivity.setNetworkPreference(NetworkPreference.PREFER_WIFI);

If the preferred connection is unavailable, or connectivity on this network is lost, Android will auto-
matically attempt to connect to the secondary network.

You can control the availability of the network types, using the setRadio method. This method lets
you set the state of the radio associated with a particular network (Wi-Fi, mobile, etc.). For example, in
the following code snippet, the Wi-Fi radio is turned off and the mobile radio is turned on:

connectivity.setRadio(NetworkType.WIFI, false);
connectivity.setRadio(NetworkType.MOBILE, true);

Monitoring Network Connectivity
One of the most useful functions of the Connectivity Manager is to notify applications of changes in
network connectivity.

To monitor network connectivity, create your own Broadcast Receiver implementation that listens for
ConnectivityManager.CONNECTIVITY_ACTION Intents. Such Intents include several extras that pro-
vide additional details on the change to the connectivity state:

ConnectivityManager.EXTRA_IS_FAILOVER ❑ Is a Boolean that returns true if the current
connection is the result of a failover from a preferred network.

ConnectivityManager.EXTRA_NO_CONNECTIVITY ❑ Is a Boolean that returns true if the
device is not connected to any network.

44712c10.indd 34644712c10.indd 346 10/20/08 4:10:18 PM10/20/08 4:10:18 PM

347

Chapter 10: Accessing Android Hardware

ConnectivityManager.EXTRA_REASON ❑ If this broadcast represents a connection failure, this
string value includes a description of why the connection attempt failed.

ConnectivityManager.EXTRA_NETWORK_INFO ❑ This returns a NetworkInfo object contain-
ing more fi ne-grained details on the network associated with the current connectivity event.

ConnectivityManager.EXTRA_OTHER_NETWORK_INFO ❑ After a network disconnection, this
value will return a NetworkInfo object populated with the details for the possible failover net-
work connection.

ConnectivityManager.EXTRA_EXTRA_INFO ❑ Contains additional network-specifi c extra con-
nection details.

Android SDK beta 0.9 included a NetworkConnectivityListener that encapsulated this functionality.
This class has been removed for version 1.0.

Managing Your Wi-Fi
The WifiManager represents the Android Wi-Fi Connectivity Service. It can be used to confi gure Wi-Fi
network connections, manage the current Wi-Fi connection, scan for access points, and monitor changes
in Wi-Fi connectivity.

As with the Connectivity Manager, access the Wi-Fi Manager using the getSystemService method,
passing in the Context.WIFI_SERVICE constant, as shown in the following code snippet:

String service = Context.WIFI_SERVICE;
final WifiManager wifi = (WifiManager)getSystemService(service);

To use the Wi-Fi Manager, your application must have uses-permissions for Read/Write Wi-Fi state
access included in its manifest.

<uses-permission android:name=”android.permission.ACCESS_WIFI_STATE”/>
<uses-permission android:name=”android.permission.CHANGE_WIFI_STATE”/>

You can use the Wi-Fi Manager to enable or disable your Wi-Fi hardware using the setWifiEnabled
method, or request the current Wi-Fi state using the getWifiState or isWifiEnabled methods as
shown in the code snippet below:

if (!wifi.isWifiEnabled())
 if (wifi.getWifiState() != WifiManager.WIFI_STATE_ENABLING)
 wifi.setWifiEnabled(true);

The following sections begin with tracking the current Wi-Fi connection status and monitoring changes
in signal strength. Later you’ll also learn how to scan for and connect to specifi c access points.

While these functions may be suffi cient for most developers, the WifiManager also provides low-level
access to the Wi-Fi network confi gurations, giving you full control over each confi guration setting and
allowing you to completely replace the native Wi-Fi management application. Later in the section, you’ll
be introduced to the API used to create, delete, and modify network confi gurations.

44712c10.indd 34744712c10.indd 347 10/20/08 4:10:18 PM10/20/08 4:10:18 PM

348

Chapter 10: Accessing Android Hardware

Monitoring Wi-Fi Connectivity
The Wi-Fi Manager broadcasts Intents whenever the connectivity status of the Wi-Fi network changes,
using the following actions:

WifiManager.WIFI_STATE_CHANGED_ACTION ❑ Indicates that the Wi-Fi hardware status has
changed, moving between enabling, enabled, disabling, disabled, and unknown. It includes two
extra values keyed on EXTRA_WIFI_STATE and EXTRA_PREVIOUS_STATE that provide the pre-
vious and new Wi-Fi states.

WifiManager.SUPPLICANT_CONNECTION_CHANGE_ACTION ❑ This Intent is broadcast when-
ever the connection state with the active supplicant (access point) changes. It is fi red when a
new connection is established or an existing connection is lost using the EXTRA_NEW_STATE
Boolean extra that returns true in the former case.

WifiManager.NETWORK_STATE_CHANGED_ACTION ❑ The network state change broadcast is
fi red whenever the Wi-Fi connectivity state changes. This Intent includes two extras — the fi rst
EXTRA_NETWORK_INFO includes a NetworkInfo object that details the current network state,
while the second EXTRA_BSSID includes the BSSID of the access point you’re connected to.

WifiManager.RSSI_CHANGED_ACTION ❑ You can monitor the current signal strength of the
connected Wi-Fi network by listening for the RSSI_CHANGED_ACTION Intent. This Broadcast
Intent includes an integer extra, EXTRA_NEW_RSSI, that holds the current signal strength. To
use this signal strength, you should use the calculateSignalLevel static method on the
Wi-Fi Manager to convert it to an integer value on a scale you specify.

Creating and Managing Wi-Fi Connections and Confi gurations
You can use the Wi-Fi Manager to manage the confi gured network settings and control which networks
to connect to. Once connected, you can interrogate the active network connection to get additional
details of its confi guration and settings.

Get a list of the current network confi gurations using getConfiguredNetworks. The list of
Wifi Configuration objects returned includes the network ID, SSID, and other details for each
confi guration.

To use a particular network confi guration, use the enableNetwork method, passing in the network ID
to use and specifying true for the disableAllOthers parameter as shown below:

// Get a list of available configurations
List<WifiConfiguration> configurations = wifi.getConfiguredNetworks();
// Get the network ID for the first one.
if (configurations.size() > 0) {
 int netID = configurations.get(0).networkId;
 // Enable that network.
 boolean disableAllOthers = true;
 wifi.enableNetwork(netID, disableAllOtherstrue);
}

Once an active network connection has been established, use the getConnectionInfo method to return
information on the active connection’s status. The returned WifiInfo object includes the BSSID, Mac
address, and IP address of the current access point, as well as the current link speed and signal strength.

44712c10.indd 34844712c10.indd 348 10/20/08 4:10:18 PM10/20/08 4:10:18 PM

349

Chapter 10: Accessing Android Hardware

The following code snippet queries the currently active Wi-Fi connection and displays a Toast showing
the connection speed and signal strength:

WifiInfo info = wifi.getConnectionInfo();
if (info.getBSSID() != null) {
 int strength = WifiManager.calculateSignalLevel(info.getRssi(), 5);
 int speed = info.getLinkSpeed();
 String units = WifiInfo.LINK_SPEED_UNITS;
 String ssid = info.getSSID();

 String toastText = String.format(“Connected to {0} at {1}{2}. Strength {3}/5”,
 ssid, speed, units, strength);

 Toast.makeText(this, toastText, Toast.LENGTH_LONG);
}

Scanning for Hotspots
You can use the Wi-Fi Manager to conduct access point scans using the startScan method.

An Intent with the SCAN_RESULTS_AVAILABLE_ACTION action will be broadcast to asynchronously
announce that the scan is complete and results are available.

Call getScanResults to get those results as a list of ScanResult objects.

Each ScanResult includes the details retrieved for each access point detected, including link speed,
signal strength, SSID, and the authentication techniques supported.

The following skeleton code shows how to initiate a scan for access points that displays a Toast indicat-
ing the total number of access points found and the name of the Access Point with the strongest signal:

// Register a broadcast receiver that listens for scan results.
registerReceiver(new BroadcastReceiver() {

 @Override
 public void onReceive(Context context, Intent intent) {
 List<ScanResult> results = wifi.getScanResults();
 ScanResult bestSignal = null;
 for (ScanResult result : results) {
 if (bestSignal == null ||
 WifiManager.compareSignalLevel(bestSignal.level, result.level) < 0)
 bestSignal = result;
 }

 String toastText = String.format(“{0} networks found. {1} is the strongest.”,
 results.size(), bestSignal.SSID);

 Toast.makeText(getApplicationContext(), toastText, Toast.LENGTH_LONG);
 }

}, new IntentFilter(WifiManager.SCAN_RESULTS_AVAILABLE_ACTION));

// Initiate a scan.
wifi.startScan();

44712c10.indd 34944712c10.indd 349 10/20/08 4:10:18 PM10/20/08 4:10:18 PM

350

Chapter 10: Accessing Android Hardware

Managing Wi-Fi Network Confi gurations
To connect to a Wi-Fi network, you need to create and register a confi guration. Normally your users
would do this using the native Wi-Fi confi guration settings, but there’s no reason you can’t expose the
same functionality within your own applications, or for that matter replace the native Wi-Fi confi gura-
tion Activity entirely.

Network confi gurations are stored as WifiConfiguration objects. The following is a non-exhaustive
list of some of the public fi elds available for each Wi-Fi Confi guration:

BSSID ❑ Specifi es the BSSID for an access point.

SSID ❑ The SSID for a particular network

networkId ❑ A unique identifi er used to identify this network confi guration on the current
device

priority ❑ The priority of each network confi guration when choosing which of several access
points to connect to

status ❑ The current status of this network connection, will be one of
WifiConfiguration.Status.ENABLED, WifiConfiguration.Status.DISABLED, or
WifiConfiguration.Status.CURRENT

The confi guration object also contains the supported authentication technique, as well as the keys used
previously to authenticate with this access point.

The addNetwork method lets you specify a new confi guration to add to the current list; similarly,
updateNetwork lets you update a network confi guration by passing in a WifiConfiguration that’s
sparsely populated with a network ID and the values you want to change.

You can also use removeNetwork, passing in a network ID, to remove a confi guration.

To persist any changes made to the network confi gurations, you must call saveConfiguration.

Controlling Device Vibration
In Chapter 8, you learned how to create Notifi cations that can trigger vibration to provide additional
user feedback when signaling events. In some circumstances, you may wish to vibrate the device inde-
pendently of Notifi cations. Vibrating the device is an excellent way to provide haptic user feedback and
is particularly popular as a feedback mechanism for games.

To control device vibration, your applications need the VIBRATE permission. Add this to your applica-
tion manifest using the code snippet below:

<uses-permission android:name=”android.permission.VIBRATE”/>

Device vibration is controlled through the Vibrator class, accessible using the getSystemService
method, as shown in the following code snippet:

String vibratorService = Context.VIBRATOR_SERVICE;
Vibrator vibrator = (Vibrator)getSystemService(vibratorService);

44712c10.indd 35044712c10.indd 350 10/20/08 4:10:18 PM10/20/08 4:10:18 PM

351

Chapter 10: Accessing Android Hardware

Call vibrate to start device vibration; you can pass in either a vibration duration or pattern of alter-
nating vibration/pause sequences along with an optional index parameter that will repeat the pattern
starting at the index specifi ed. Both techniques are demonstrated below:

long[] pattern = {1000, 2000, 4000, 8000, 16000 };
vibrator.vibrate(pattern, 0);
vibrator.vibrate(1000); // Vibrate for 1 second

To cancel vibration, you can call cancel. Alternatively, exiting your application will automatically can-
cel any vibration it has initiated.

Summary
In this chapter, you learned how to monitor and control some of the hardware services available on
Android devices.

Beginning with the media APIs, you learned about Android’s multimedia capabilities including play-
back and recording using the Media Player and Media Recorder classes.

You were introduced to the Camera APIs that can be used to change camera settings, initiate live cam-
era previews, and take photos.

With the Sensor Manager, you used the accelerometer and compass hardware to determine the device’s
orientation and acceleration, as well as monitoring and interpreting changes to detect device movement.

Finally, you examined the underlying communications hardware APIs available in Android. This
included an introduction to the telephony APIs and an overview of the Bluetooth, network, and Wi-Fi
managers for monitoring and controlling device connectivity.

This chapter also included:

Monitoring phone state information, including cell location, phone state, and service state. ❑

Controlling the Bluetooth device to discover, bond, and transmit information between local and ❑

remote Bluetooth devices.

Managing Bluetooth headsets. ❑

Managing Wi-Fi confi gurations, searching for access points, and managing Wi-Fi connections. ❑

Controlling device vibration to provide haptic feedback. ❑

In the fi nal chapter, you’ll be introduced to some of the advanced Android features. You’ll learn more
about security and how to use AIDL to facilitate interprocess communication. You’ll learn about
Android’s User Interface and graphics capabilities by exploring animations and advanced Canvas
drawing techniques. Finally, you’ll be introduced to the SurfaceView and touch-screen input
functionality.

44712c10.indd 35144712c10.indd 351 10/20/08 4:10:18 PM10/20/08 4:10:18 PM

44712c10.indd 35244712c10.indd 352 10/20/08 4:10:18 PM10/20/08 4:10:18 PM

Advanced Android
Development

In this chapter, you’ll be returning to some of the possibilities touched on in previous chapters
and explore some of the topics that deserve more attention.

In the fi rst six chapters, you learned the fundamentals of creating mobile applications for Android
devices. In Chapters 7 through 10, you were introduced to some of the more powerful optional APIs,
including location-based services, maps, instant messaging, and hardware monitoring and control.

You’ll start this chapter by taking a closer look at security, in particular, how permissions work
and how to use them to secure your own applications.

Next you’ll examine the Android Interface Defi nition Language (AIDL) and learn how to cre-
ate rich application interfaces that support full object-based interprocess communication (IPC)
between Android applications running in different processes.

You’ll then take a closer look at the rich toolkit available for creating User Interfaces for your
Activities. Starting with animations, you’ll learn how to apply tweened animations to Views and
View Groups, and construct frame-by-frame cell-based animations.

Next is an in-depth examination of the possibilities available with Android’s raster graphics
engine. You’ll be introduced to the drawing primitives available before learning some of the more
advanced possibilities available with Paint. You’ll learn how to use transparency and create gra-
dient Shaders and bitmap brushes. You’ll be introduced to mask and color fi lters, as well as Path
Effects and the possibilities of using different transfer modes.

You’ll then delve a little deeper into the design and execution of more complex User Interface
Views, learning how to create three-dimensional and high frame-rate interactive controls using
the Surface View, and how to use the touch screen, trackball, and device keys to create intuitive
input possibilities for your UIs.

44712c11.indd 35344712c11.indd 353 10/20/08 4:09:56 PM10/20/08 4:09:56 PM

354

Chapter 11: Advanced Android Development

Paranoid Android
Much of Android’s security is native to the underlying Linux kernel. Resources are sandboxed to their
owner applications, making them inaccessible from other applications. Android provides broadcast
Intents, Services, and Content Providers to let you relax these strict process boundaries, using the per-
mission mechanism to maintain application-level security.

You’ve already used the permission system to request access to native system services — notably the
location-based services and contacts Content Provider — for your applications.

The following sections provide a more detailed look at the security available. For a comprehensive view,
the Android documentation provides an excellent resource that describes the security features in depth
at code.google.com/android/devel/security.html.

Linux Kernel Security
Each Android package has a unique Linux userID assigned to it during installation. This has the effect
of sandboxing the process and the resources it creates, so that it can’t affect (or be affected by) other
applications.

Because of this kernel-level security, you need to take additional steps to communicate between appli-
cations. Enter Content Providers, broadcast Intents, and AIDL interfaces. Each of these mechanisms
opens a tunnel for information to fl ow between applications. Android permissions act as border
guards at either end to control the traffi c allowed through these tunnels.

Introducing Permissions
Permissions are an application-level security mechanism that lets you restrict access to application com-
ponents. Permissions are used to prevent malicious applications from corrupting data, gaining access
to sensitive information, or making excessive (or unauthorized) use of hardware resources or external
communication channels.

As you’ve learned in earlier chapters, many of Android’s native components have permission require-
ments. The native permission strings used by native Android Activities and Services can be found as
static constants in the android.Manifest.permission class.

To use permission-protected components, you need to add uses-permission tags to application mani-
fests, specifying the permission string that each application requires.

When an application package is installed, the permissions requested in its manifest are analyzed and
granted (or denied) by checks with trusted authorities and user feedback.

Unlike many existing mobile platforms, all Android permission checks are done at installation. Once
an application is installed, the user will not be prompted to reevaluate those permissions.

There’s no guarantee that your application will be granted the permissions it requests, so it’s good prac-
tice to write defensive code that ensures it fails gracefully in these circumstances.

44712c11.indd 35444712c11.indd 354 10/20/08 4:09:57 PM10/20/08 4:09:57 PM

355

Chapter 11: Advanced Android Development

Declaring and Enforcing Permissions
Before you can assign a permission to an application component, you need to defi ne it within your
manifest using the permission tag as shown in the following code snippet:

<permission
 android:name=”com.paad.DETONATE_DEVICE”
 android:protectionLevel=”dangerous”
 android:label=”Self Destruct”
 android:description=”@string/detonate_description”>
</permission>

Within the permission tag, you can specify the level of access that the permission will permit (normal,
dangerous, signature, signatureOrSystem), a label, and an external resource containing the
description that explains the risks of granting this permission.

To include permission requirements for your own application components, use the permission attri-
bute in the application manifest. Permission constraints can be enforced throughout your application,
most usefully at application interface boundaries, for example:

Activities ❑ Add a permission to limit the ability of other applications to launch an Activity.

Broadcast Receivers ❑ Control which applications can send broadcast Intents to your receiver.

Content Providers ❑ Limit Read access and Write operations on Content Providers.

Services ❑ Limit the ability of other applications to start, or bind to, a Service.

In each case, you can add a permission attribute to the application component in the manifest, specify-
ing a required permission string to access each component, as shown below in a manifest excerpt that
shows a permission requirement for an Activity:

<activity
 android:name=”.MyActivity”
 android:label=”@string/app_name”
 android:permission=”com.paad.DETONATE_DEVICE”>
</activity>

Content Providers let you set readPermission and writePermission attributes to offer a more granu-
lar control over Read/Write access.

Enforcing Permissions with Broadcasting Intents
As well as requiring permissions for Intents to be received by your Broadcast Receivers, you can also
attach a permission string to each Intent you broadcast.

When calling sendIntent, you can supply a permission string required by Broadcast Receivers before
they can receive the Intent. This process is shown below:

sendBroadcast(myIntent, REQUIRED_PERMISSION);

44712c11.indd 35544712c11.indd 355 10/20/08 4:09:57 PM10/20/08 4:09:57 PM

356

Chapter 11: Advanced Android Development

Using AIDL to Support IPC for Services
One of the more interesting possibilities of Services is the idea of running independent background
processes to supply processing, data lookup, or other useful functionality to multiple independent
applications.

In Chapter 8, you learned how to create Services for your applications. Here, you’ll learn how to use the
Android Interface Defi nition Language (AIDL) to support interprocess communication (IPC) between
Services and application components. This will give your Services the ability to support multiple appli-
cations across process boundaries.

To pass objects between processes, you need to deconstruct them into OS-level primitives that the
underlying operating system (OS) can then marshal across application boundaries.

AIDL is used to simplify the code that lets your processes exchange objects. It’s similar to interfaces like
COM or Corba in that it lets you create public methods within your Services that can accept and return
object parameters and return values between processes.

Implementing an AIDL Interface
AIDL supports the following data types:

Java language primitives (❑ int, boolean, float, char, etc.)

String ❑ and CharSequence values

List ❑ (including generic) objects, where each element is a supported type. The receiving class
will always receive the List object instantiated as an ArrayList.

Map ❑ (not including generic) objects in which each key and element is a supported type. The
receiving class will always receive the Map object instantiated as a HashMap.

AIDL-generated interfaces (covered later). An import statement is always needed for these. ❑

Classes that implement the ❑ Parcelable interface (covered next). An import statement is always
needed for these.

The following sections demonstrate how to make your application classes AIDL-compatible by imple-
menting the Parcelable interface, before creating an AIDL interface defi nition and implementing that
interface within your Service.

Passing Custom Class Objects
To pass non-native objects between processes, they must implement the Parcelable interface. This lets
you decompose your objects into primitive types stored within a Parcel that can be marshaled across
process boundaries.

Implement the writeToParcel method to decompose your class object, then implement the public
static Creator fi eld (which implements a new Parcelable.Creator class), which will create a new
object based on an incoming Parcel.

44712c11.indd 35644712c11.indd 356 10/20/08 4:09:57 PM10/20/08 4:09:57 PM

357

Chapter 11: Advanced Android Development

The following code snippet shows a basic example of using the Parcelable interface for the Quake
class you’ve been using in the ongoing Earthquake example:

package com.paad.earthquake;

import java.util.Date;
import android.location.Location;
import android.os.Parcel;
import android.os.Parcelable;

public class Quake implements Parcelable {
 private Date date;
 private String details;
 private Location location;
 private double magnitude;
 private String link;

 public Date getDate() { return date; }
 public String getDetails() { return details; }
 public Location getLocation() { return location; }
 public double getMagnitude() { return magnitude; }
 public String getLink() { return link; }

 public Quake(Date _d, String _det, Location _loc, double _mag, String _link) {
 date = _d;
 details = _det;
 location = _loc;
 magnitude = _mag;
 link = _link;
 }

 @Override
 public String toString(){
 SimpleDateFormat sdf = new SimpleDateFormat(“HH.mm”);
 String dateString = sdf.format(date);
 return dateString + “:” + magnitude + “ “ + details;
 }

 private Quake(Parcel in) {
 date.setTime(in.readLong());
 details = in.readString();
 magnitude = in.readDouble();
 Location location = new Location(“gps”);
 location.setLatitude(in.readDouble());
 location.setLongitude(in.readDouble());
 link= in.readString();
 }

 public void writeToParcel(Parcel out, int flags) {
 out.writeLong(date.getTime());
 out.writeString(details);
 out.writeDouble(magnitude);

44712c11.indd 35744712c11.indd 357 10/20/08 4:09:57 PM10/20/08 4:09:57 PM

358

Chapter 11: Advanced Android Development

 out.writeDouble(location.getLatitude());
 out.writeDouble(location.getLongitude());
 out.writeString(link);
 }

 public static final Parcelable.Creator<Quake> CREATOR =
 new Parcelable.Creator<Quake>() {
 public Quake createFromParcel(Parcel in) {
 return new Quake(in);
 }

 public Quake[] newArray(int size) {
 return new Quake[size];
 }
 };

 public int describeContents() {
 return 0;
 }

}

Now that you’ve got a Parcelable class, you need to create an AIDL defi nition to make it available when
defi ning your Service’s AIDL interface.

The following code snippet shows the contents of the Quake.aidl fi le you need to create for the Quake
class defi ned above:

package com.paad.earthquake;

parcelable Quake;

Remember that when you’re passing class objects between processes, the client process must understand
the defi nition of the object being passed.

Creating the AIDL Defi nition
In this section, you will be defi ning a new AIDL interface defi nition for a Service you’d like to use
across processes.

Start by creating a new .aidl fi le within your project. This will defi ne the methods and fi elds to include
in an Interface that your Service will implement.

The syntax for creating AIDL defi nitions is similar to that used for standard Java interface defi nitions.

Start by specifying a fully qualifi ed package name, then import all the packages required. Unlike
normal Java interfaces, AIDL defi nitions need to import packages for any class or interface that isn’t a
native Java type even if it’s defi ned in the same project.

Defi ne a new interface, adding the properties and methods you want to make available.

44712c11.indd 35844712c11.indd 358 10/20/08 4:09:57 PM10/20/08 4:09:57 PM

359

Chapter 11: Advanced Android Development

Methods can take zero or more parameters and return void or a supported type. If you defi ne a method
that takes one or more parameters, you need to use a directional tag to indicate if the parameter is a
value or reference type using the in, out, and inout keywords.

Where possible, you should limit the direction of each parameter, as marshaling parameters is an expen-
sive operation.

The following sample shows a basic AIDL defi nition for the IEarthquakeService.aidl fi le:

package com.paad.earthquake;

import com.paad.earthquake.Quake;

interface IEarthquakeService {
 List<Quake> getEarthquakes();

 void refreshEarthquakes();
}

Implementing and Exposing the IPC Interface
If you’re using the ADT plug-in, saving the AIDL fi le will automatically code-generate a Java interface
fi le. This interface will include an inner Stub class that implements the interface as an abstract class.

Have your Service extend the Stub and implement the functionality required. Typically, this will be
done using a private fi eld variable within the Service whose functionality you’ll be exposing.

The following code snippet shows an implementation of the IEarthquakeService AIDL defi nition
created above:

IBinder myEarthquakeServiceStub = new IEarthquakeService.Stub() {
 public void refreshEarthquakes() throws RemoteException {
 EarthquakeService.this.refreshEarthquakes();
 }

 public List<Quake> getEarthquakes() throws RemoteException {
 ArrayList<Quake> result = new ArrayList<Quake>();

 ContentResolver cr = EarthquakeService.this.getContentResolver();
 Cursor c = cr.query(EarthquakeProvider.CONTENT_URI, null, null, null, null);
 if (c.moveToFirst())
 do {

 Double lat = c.getDouble(EarthquakeProvider.LATITUDE_COLUMN);
 Double lng = c.getDouble(EarthquakeProvider.LONGITUDE_COLUMN);
 Location location = new Location(“dummy”);
 location.setLatitude(lat);
 location.setLongitude(lng);

 String details = c.getString(EarthquakeProvider.DETAILS_COLUMN);

44712c11.indd 35944712c11.indd 359 10/20/08 4:09:57 PM10/20/08 4:09:57 PM

360

Chapter 11: Advanced Android Development

 String link = c.getString(EarthquakeProvider.LINK_COLUMN);

 double magnitude = c.getDouble(EarthquakeProvider.MAGNITUDE_COLUMN);

 long datems = c.getLong(EarthquakeProvider.DATE_COLUMN);
 Date date = new Date(datems);

 result.add(new Quake(date, details, location, magnitude, link));
 } while(c.moveToNext());

 return result;
 }
};

There are several considerations when implementing these methods:

All exceptions will remain local to the implementing process; they will not be propagated to the ❑

calling application.

All IPC calls are synchronous. If you know that the process is likely to be time-consuming, you ❑

should consider wrapping the synchronous call in an asynchronous wrapper or moving the
processing on the receiver side onto a background thread.

With the functionality implemented, you need to expose this interface to client applications. Expose the
IPC-enabled Service interface by overriding the onBind method within our service implementation to
return an instance of the interface.

The code snippet below demonstrates the onBind implementation for the EarthquakeService:

@Override
public IBinder onBind(Intent intent) {
 return myEarthquakeServiceStub;
}

To use the IPC Service from within an Activity, you must bind it as shown in the following code snippet
taken from the Earthquake Activity:

IEarthquakeService earthquakeService = null;

private void bindService() {
 bindService(new Intent(IEarthquakeService.class.getName()),
 serviceConnection, Context.BIND_AUTO_CREATE);
}

private ServiceConnection serviceConnection = new ServiceConnection() {
 public void onServiceConnected(ComponentName className,
 IBinder service) {
 earthquakeService = IEarthquakeService.Stub.asInterface(service);
 }

 public void onServiceDisconnected(ComponentName className) {

44712c11.indd 36044712c11.indd 360 10/20/08 4:09:57 PM10/20/08 4:09:57 PM

361

Chapter 11: Advanced Android Development

 earthquakeService = null;
 }
};

Using Internet Services
Software as a service, or cloud computing, is becoming increasingly popular as companies try to reduce
the cost overheads associated with installation, upgrades, and maintenance of deployed software. The
result is a range of rich Internet services with which you can build thin mobile applications that enrich
online services with the personalization available from your mobile.

The idea of using a middle tier to reduce client-side load is not a novel one, and happily there are many
Internet-based options to supply your applications with the level of service you need.

The sheer volume of Internet services available makes it impossible to list them all here (let alone look
at them in any detail), but the following list shows some of the more mature and interesting Internet
services currently available:

Google’s gData Services ❑ As well as the native Google applications, Google offers Web APIs
for access to their calendar, spreadsheet, Blogger, and Picasaweb platforms. These APIs collec-
tively make use of Google’s standardized gData framework, a form of Read/Write XML data
communication.

Yahoo! Pipes ❑ Yahoo! Pipes offers a graphical web-based approach to XML feed manipulation.
Using pipes, you can fi lter, aggregate, analyze, and otherwise manipulate XML feeds and out-
put them in a variety of formats to be consumed by your applications.

The Google App Engine ❑ Using the Google App Engine, you can create cloud-hosted web ser-
vices that shift complex processing away from your mobile client. Doing so reduces the load on
your system resources but comes at the price of Internet-connection dependency.

Amazon Web Services ❑ Amazon offers a range of cloud-based services, including a rich API
for accessing its media database of books, CDs, and DVDs. Amazon also offers a distributed
storage solution (S3) and an elastic compute cloud (EC2).

Building Rich User Interfaces
Mobile phone User Interfaces have improved dramatically in recent years, thanks not least of all to the
iPhone’s innovative take on mobile UI.

In this section, you’ll learn how to use more advanced UI visual effects like Shaders, translucency, ani-
mations, touch screens, and OpenGL to add a level of polish to your Activities and Views.

Working with Animations
Back in Chapter 3, you learned how to defi ne animations as external resources. Now, eight chapters
later, you get the opportunity to put them to use.

44712c11.indd 36144712c11.indd 361 10/20/08 4:09:57 PM10/20/08 4:09:57 PM

362

Chapter 11: Advanced Android Development

Android offers two kinds of animation:

Frame-by-Frame Animations ❑ Traditional cell-based animations in which a different Drawable
is displayed in each frame. Frame-by-frame animations are displayed within a View, using its
Canvas as a projection screen.

Tweened Animations ❑ Tweened animations are applied to Views, letting you defi ne a series of
changes in position, size, rotation, and opacity that animate the View contents.

Both animation types are restricted to the original bounds of the View they’re applied to. Rotations,
translations, and scaling transformations that extend beyond the original boundaries of the View will
result in the contents being clipped.

Introducing Tweened Animations
Tweened Animations offer a simple way to provide depth, movement, or feedback to your users at a
minimal resource cost.

Using animations to apply a set of orientation, scale, position, and opacity changes is much less
resource-intensive than manually redrawing the Canvas to achieve similar effects, not to mention far
simpler to implement.

Tweened animations are commonly used to:

Transition between Activities. ❑

Transition between layouts within an Activity. ❑

Transition between different content displayed within the same View. ❑

Provide user feedback such as: ❑

A rotating hourglass View to indicate progress ❑

or

“Shaking” an input box to indicate an incorrect or invalid data entry. ❑

Creating Tweened Animations
Tweened animations are created using the Animation class. The following list explains the animation
types available:

AlphaAnimation ❑ Lets you animate a change in the Views transparency (opacity or alpha
blending).

RotateAnimation ❑ Lets you spin the selected View canvas in the XY plane.

ScaleAnimation ❑ Allows you to zoom in to or out from the selected View.

TranslateAnimation ❑ Lets you move the selected View around the screen (although it will
only be drawn within its original bounds).

Android offers the AnimationSet class to group and confi gure animations to be run as a set. You can
defi ne the start time and duration of each animation used within a set to control the timing and order
of the animation sequence.

44712c11.indd 36244712c11.indd 362 10/20/08 4:09:57 PM10/20/08 4:09:57 PM

363

Chapter 11: Advanced Android Development

It’s important to set the start offset and duration for each child animation, or they will all start and
complete at the same time.

The following code and XML snippets demonstrate how to create the same animation sequence in code
or as an external resource:

// Create the AnimationSet
AnimationSet myAnimation = new AnimationSet(true);

// Create a rotate animation.
RotateAnimation rotate = new RotateAnimation(0, 360,
 RotateAnimation.RELATIVE_TO_SELF,0.5f,
 RotateAnimation.RELATIVE_TO_SELF,0.5f
);
rotate.setFillAfter(true);
rotate.setDuration(1000);

// Create a scale animation
ScaleAnimation scale = new ScaleAnimation(1, 0,
 1, 0,
 ScaleAnimation.RELATIVE_TO_SELF, 0.5f,
 ScaleAnimation.RELATIVE_TO_SELF, 0.5f
);
scale.setFillAfter(true);
scale.setDuration(500);
scale.setStartOffset(500);

// Create an alpha animation
AlphaAnimation alpha = new AlphaAnimation(1, 0);
scale.setFillAfter(true);
scale.setDuration(500);
scale.setStartOffset(500);

// Add each animation to the set
myAnimation.addAnimation(rotate);
myAnimation.addAnimation(scale);
myAnimation.addAnimation(alpha);

The code snippet above implements the same animation sequence shown in the following XML snippet:

<?xml version=”1.0” encoding=”utf-8”?>
<set
 xmlns:android=”http://schemas.android.com/apk/res/android”
 android:shareInterpolator=”true”>
 <rotate
 android:fromDegrees=”0”
 android:toDegrees=”360”
 android:pivotX=”50%”
 android:pivotY=”50%”
 android:startOffset=”0”
 android:duration=”1000” />
 <scale
 android:fromXScale=”1.0”
 android:toXScale=”0.0”

44712c11.indd 36344712c11.indd 363 10/20/08 4:09:57 PM10/20/08 4:09:57 PM

364

Chapter 11: Advanced Android Development

 android:fromYScale=”1.0”
 android:toYScale=”0.0”
 android:pivotX=”50%”
 android:pivotY=”50%”
 android:startOffset=”500”
 android:duration=”500” />
 <alpha
 android:fromAlpha=”1.0”
 android:toAlpha=”0.0”
 android:startOffset=”500”
 android:duration=”500” />
</set>

As you can see, it’s generally both easier and more intuitive to create your animation sequences using
an external animation resource.

Applying Tweened Animations
Animations can be applied to any View by calling its startAnimation method and passing in the Ani-
mation or Animation Set to apply.

Animation sequences will run once and then stop, unless you modify this behavior using the
setRepeatMode and setRepeatCount methods on the Animation or Animation Set. You can force an
animation to loop or ping-pong by setting the repeat mode of RESTART or REVERSE. Setting the repeat
count controls the number of times the animation will repeat.

The following code snippet shows an Animation that repeats indefi nitely:

myAnimation.setRepeatMode(Animation.RESTART);
myAnimation.setRepeatCount(Animation.INFINITE);

myView.startAnimation(myAnimation);

Using Animation Listeners
The AnimationListener lets you create an event handler that’s fi red when an animation begins or
ends. This lets you perform actions before or after an animation has completed, such as changing the
View contents or chaining multiple animations.

Call setAnimationListener on an Animation object, and pass in a new implementation of
AnimationListener, overriding onAnimationEnd, onAnimationStart, and onAnimationRepeat as
required.

The following skeleton code shows the basic implementation of an Animation Listener:

myAnimation.setAnimationListener(new AnimationListener() {

 public void onAnimationEnd(Animation _animation) {
 // TODO Do something after animation is complete.
 }

 public void onAnimationRepeat(Animation _animation) {

44712c11.indd 36444712c11.indd 364 10/20/08 4:09:57 PM10/20/08 4:09:57 PM

365

Chapter 11: Advanced Android Development

 // TODO Do something when the animation repeats.
 }

 public void onAnimationStart(Animation _animation) {
 // TODO Do something when the animation starts.
 }

});

Animated Sliding User Interface Example
In this example, you’ll create a new Activity that uses an Animation to smoothly change the content of
the User Interface based on the direction pressed on the D-pad.

 1. Start by creating a new ContentSlider project featuring a ContentSlider Activity.

package com.paad.contentslider;

import android.app.Activity;
import android.view.KeyEvent;
import android.os.Bundle;
import android.view.animation.Animation;
import android.view.animation.Animation.AnimationListener;
import android.view.animation.AnimationUtils;
import android.widget.TextView;

public class ContentSlider extends Activity {
 @Override
 public void onCreate(Bundle icicle) {
 super.onCreate(icicle);
 setContentView(R.layout.main);
 }
}

 2. Next, modify the main.xml layout resource. It should contain a single TextView with the text
bold, centered, and relatively large.

<?xml version=”1.0” encoding=”utf-8”?>
<LinearLayout
 xmlns:android=”http://schemas.android.com/apk/res/android”
 android:orientation=”vertical”
 android:layout_width=”fill_parent”
 android:layout_height=”fill_parent”>
 <TextView
 android:id=”@+id/myTextView”
 android:layout_width=”fill_parent”
 android:layout_height=”fill_parent”
 android:gravity=”center”
 android:textStyle=”bold”
 android:textSize=”30sp”
 android:text=”CENTER”
 android:editable=”false”
 android:singleLine=”true”
 android:layout_margin=”10px”
 />
</LinearLayout>

44712c11.indd 36544712c11.indd 365 10/20/08 4:09:57 PM10/20/08 4:09:57 PM

366

Chapter 11: Advanced Android Development

 3. Then create a series of animations that slides the current View out of, and the next View into,
the frame for each direction: left, right, up, and down. Each animation should have its own fi le.

 3.1. Create slide_bottom_in.xml.

<set xmlns:android=”http://schemas.android.com/apk/res/android”
 android:interpolator=”@android:anim/accelerate_interpolator”>
 <translate
 android:fromYDelta=”-100%p”
 android:toYDelta=”0”
 android:duration=”700”
 />
</set>

 3.2. Create slide_bottom_out.xml.

<set xmlns:android=”http://schemas.android.com/apk/res/android”
 android:interpolator=”@android:anim/accelerate_interpolator”>
 <translate
 android:fromYDelta=”0”
 android:toYDelta=”100%p”
 android:duration=”700”
 />
</set>

 3.3. Create slide_top_in.xml.

<set xmlns:android=”http://schemas.android.com/apk/res/android”
 android:interpolator=”@android:anim/accelerate_interpolator”>
 <translate
 android:fromYDelta=”100%p”
 android:toYDelta=”0”
 android:duration=”700”
 />
</set>

 3.4. Create slide_top_out.xml.

<set xmlns:android=”http://schemas.android.com/apk/res/android”
 android:interpolator=”@android:anim/accelerate_interpolator”>
 <translate
 android:fromYDelta=”0”
 android:toYDelta=”-100%p”
 android:duration=”700”
 />
</set>

 3.5. Create slide_left_in.xml.

<set xmlns:android=”http://schemas.android.com/apk/res/android”
 android:interpolator=”@android:anim/accelerate_interpolator”>
 <translate
 android:fromXDelta=”100%p”
 android:toXDelta=”0”
 android:duration=”700”
 />
</set>

44712c11.indd 36644712c11.indd 366 10/20/08 4:09:57 PM10/20/08 4:09:57 PM

367

Chapter 11: Advanced Android Development

 3.6. Create slide_left_out.xml.

<set xmlns:android=”http://schemas.android.com/apk/res/android”
 android:interpolator=”@android:anim/accelerate_interpolator”>
 <translate
 android:fromXDelta=”0”
 android:toXDelta=”-100%p”
 android:duration=”700”
 />
</set>

 3.7. Create slide_right_in.xml.

<set xmlns:android=”http://schemas.android.com/apk/res/android”
 android:interpolator=”@android:anim/accelerate_interpolator”>
 <translate
 android:fromXDelta=”-100%p”
 android:toXDelta=”0”
 android:duration=”700”
 />
</set>

 3.8. Create slide_right_out.xml.

<set xmlns:android=”http://schemas.android.com/apk/res/android”
 android:interpolator=”@android:anim/accelerate_interpolator”>
 <translate
 android:fromXDelta=”0”
 android:toXDelta=”100%p”
 android:duration=”700”
 />
</set>

 4. Return to the ContentSlider Activity and get references to the TextView and each of the ani-
mations you created in Step 3.

Animation slideInLeft;
Animation slideOutLeft;
Animation slideInRight;
Animation slideOutRight;
Animation slideInTop;
Animation slideOutTop;
Animation slideInBottom;
Animation slideOutBottom;
TextView myTextView;

@Override
public void onCreate(Bundle icicle) {
 super.onCreate(icicle);
 setContentView(R.layout.main);

 slideInLeft = AnimationUtils.loadAnimation(this, R.anim.slide_left_in);
 slideOutLeft = AnimationUtils.loadAnimation(this, R.anim.slide_left_out);
 slideInRight = AnimationUtils.loadAnimation(this, R.anim.slide_right_in);
 slideOutRight = AnimationUtils.loadAnimation(this, R.anim.slide_right_out);
 slideInTop = AnimationUtils.loadAnimation(this, R.anim.slide_top_in);
 slideOutTop = AnimationUtils.loadAnimation(this, R.anim.slide_top_out);

44712c11.indd 36744712c11.indd 367 10/20/08 4:09:57 PM10/20/08 4:09:57 PM

368

Chapter 11: Advanced Android Development

 slideInBottom = AnimationUtils.loadAnimation(this, R.anim.slide_bottom_in);
 slideOutBottom = AnimationUtils.loadAnimation(this,
 R.anim.slide_bottom_out);

 myTextView = (TextView)findViewById(R.id.myTextView);
}

Each screen transition consists of two animations chained together: sliding out the old text
before sliding in the new text. Rather than create multiple Views, you can change the value of
the View once it’s “off screen” before sliding it back in from the opposite side.

 5. Create a new method that applies a slide-out animation and waits for it to complete before
modifying the text and initiating the slide-in animation.

private void applyAnimation(Animation _out, Animation _in, String _newText) {
 final String text = _newText;
 final Animation in = _in;

 // Ensure the text stays out of screen when the slide-out
 // animation has completed.
 _out.setFillAfter(true);

 // Create a listener to wait for the slide-out animation to complete.
 _out.setAnimationListener(new AnimationListener() {

 public void onAnimationEnd(Animation _animation) {
 // Change the text
 myTextView.setText(text);
 // Slide it back in to view
 myTextView.startAnimation(in);
 }

 public void onAnimationRepeat(Animation _animation) {}

 public void onAnimationStart(Animation _animation) {}
 });

 // Apply the slide-out animation
 myTextView.startAnimation(_out);
}

 6. The text displayed can represent nine positions. To keep track of the current location, create an
enum for each position and an instance variable to track it.

TextPosition textPosition = TextPosition.Center;
enum TextPosition { UpperLeft, Top, UpperRight,
 Left, Center, Right,
 LowerLeft, Bottom, LowerRight };

 7. Create a new method movePosition that takes the current position, and the direction to move,
and calculates the new position. It should then execute the appropriate animation sequence cre-
ated in Step 5.

private void movePosition(TextPosition _current,
 TextPosition _directionPressed) {

44712c11.indd 36844712c11.indd 368 10/20/08 4:09:57 PM10/20/08 4:09:57 PM

369

Chapter 11: Advanced Android Development

 Animation in;
 Animation out;
 TextPosition newPosition;

 if (_directionPressed == TextPosition.Left){
 in = slideInLeft;
 out = slideOutLeft;
 }
 else if (_directionPressed == TextPosition.Right){
 in = slideInRight;
 out = slideOutRight;
 }
 else if (_directionPressed == TextPosition.Top){
 in = slideInTop;
 out = slideOutTop;
 }
 else {
 in = slideInBottom;
 out = slideOutBottom;
 }

 int newPosValue = _current.ordinal();
 int currentValue = _current.ordinal();

 // To simulate the effect of ‘tilting’ the device moving in one
 // direction should make text for the opposite direction appear.
 // Ie. Tilting right should make left appear.
 if (_directionPressed == TextPosition.Bottom)
 newPosValue = currentValue - 3;
 else if (_directionPressed == TextPosition.Top)
 newPosValue = currentValue + 3;
 else if (_directionPressed == TextPosition.Right) {
 if (currentValue % 3 != 0)
 newPosValue = currentValue - 1;
 }
 else if (_directionPressed == TextPosition.Left) {
 if ((currentValue+1) % 3 != 0)
 newPosValue = currentValue + 1;
 }

 if (newPosValue != currentValue &&
 newPosValue > -1 &&
 newPosValue < 9){
 newPosition = TextPosition.values()[newPosValue];

 applyAnimation(in, out, newPosition.toString());
 textPosition = newPosition;
 }
}

 8. Wire up the D-pad by overriding the Activity’s onKeyDown handler to listen for key presses and
trigger movePosition accordingly.

@Override
public boolean onKeyDown(int _keyCode, KeyEvent _event) {

44712c11.indd 36944712c11.indd 369 10/20/08 4:09:57 PM10/20/08 4:09:57 PM

370

Chapter 11: Advanced Android Development

 if (super.onKeyDown(_keyCode, _event))
 return true;

 if (_event.getAction() == KeyEvent.ACTION_DOWN){
 switch (_keyCode) {
 case (KeyEvent.KEYCODE_DPAD_LEFT):
 movePosition(textPosition, TextPosition.Left); return true;
 case (KeyEvent.KEYCODE_DPAD_RIGHT):
 movePosition(textPosition, TextPosition.Right); return true;
 case (KeyEvent.KEYCODE_DPAD_UP):
 movePosition(textPosition, TextPosition.Top); return true;
 case (KeyEvent.KEYCODE_DPAD_DOWN):
 movePosition(textPosition, TextPosition.Bottom); return true;
 }
 }
 return false;
}

Running the application now will show a screen displaying “Center”; pressing any of the four direc-
tions will slide out this text and display the appropriate new position.

As an extra step, you could wire up the accelerometer sensor rather than relying on pressing the D-pad.

Animating Layouts and View Groups
A LayoutAnimation is used to animate View Groups, applying a single Animation (or Animation Set)
to each child View in a predetermined sequence.

Use a LayoutAnimationController to specify an Animation (or Animation Set) that’s applied to each
child View in a View Group. Each View it contains will have the same animation applied, but you can
use the Layout Animation Controller to specify the order and start time for each View.

Android includes two LayoutAnimationController classes.

LayoutAnimationController ❑ Lets you select the start offset of each View (in milliseconds)
and the order (forward, reverse, and random) to apply the animation to each child View.

GridLayoutAnimationController ❑ Is a derived class that lets you assign the animation
sequence of the child Views using grid row and column references.

Creating Layout Animations
To create a new Layout Animation, start by defi ning the Animation to apply to each child view. Then
create a new LayoutAnimation, either in code or as an external animation resource, that references the
animation to apply and defi nes the order and timing in which to apply it.

The following XML snippets show the defi nition of a simple animation stored as popin.xml in the res/
anim folder, and a layout animation stored as popinlayout.xml.

The Layout Animation applies a simple “pop-in” animation randomly to each child View of any View
Group it’s assigned to.

44712c11.indd 37044712c11.indd 370 10/20/08 4:09:57 PM10/20/08 4:09:57 PM

371

Chapter 11: Advanced Android Development

res/anim/popin.xml
<set xmlns:android=”http://schemas.android.com/apk/res/android”
 android:interpolator=”@android:anim/accelerate_interpolator”>
 <scale
 android:fromXScale=”0.0” android:toXScale=”1.0”
 android:fromYScale=”0.0” android:toYScale=”1.0”
 android:pivotX=”50%”
 android:pivotY=”50%”
 android:duration=”400”
 />
</set>

res/anim/popinlayout.xml
<layoutAnimation xmlns:android=”http://schemas.android.com/apk/res/android”
 android:delay=”0.5”
 android:animationOrder=”random”
 android:animation=”@anim/popin” />

Using Layout Animations
Once you’ve defi ned a Layout Animation, you can apply it to a ViewGroup either in code or in the lay-
out XML resource. In XML this is done using the android:layoutAnimation tag in the layout defi ni-
tion, as shown in the following XML snippet:

android:layoutAnimation=”@anim/popinlayout”

To set a Layout Animation in code, call setLayoutAnimation on the View Group, passing in a refer-
ence to the LayoutAnimation object you want to apply.

In both cases, the Layout Animation will execute once, when the View Group is fi rst laid out. You can
force it to execute again by calling scheduleLayoutAnimation on the ViewGroup object. The anima-
tion will be executed the next time the View Group is laid out.

Layout Animations also support Animation Listeners.

In the following code snippet, a ViewGroup’s animation is re-run with a listener attached to trigger
additional actions once it’s complete:

aViewGroup.setLayoutAnimationListener(new AnimationListener() {

 public void onAnimationEnd(Animation _animation) {
 // TODO: Actions on animation complete.
 }

 public void onAnimationRepeat(Animation _animation) {}

 public void onAnimationStart(Animation _animation) {}
});

aViewGroup.scheduleLayoutAnimation();

44712c11.indd 37144712c11.indd 371 10/20/08 4:09:57 PM10/20/08 4:09:57 PM

372

Chapter 11: Advanced Android Development

Creating and Using Frame-by-Frame Animations
Frame-by-frame animations are akin to traditional cell-based cartoons where an image is chosen for each
frame. Where tweened animations use the target View to supply the content of the animation, frame-by-
frame animations let you specify a series of Drawable objects that are used as the background to a View.

The AnimationDrawable class is used to create a new frame-by-frame animation presented as a
Drawable resource.

You can defi ne your Animation Drawable resource as an external resource in your project’s drawable
folder using XML. Use the animation-list tag to group a collection of item tags, each of which uses a
drawable attribute to defi ne an image to display, and a duration attribute to specify the time (in mil-
liseconds) to display it.

The following XML snippet shows how to create a simple animation that displays a rocket taking off
(rocket images not included). The fi le is stored as res/drawable/animated_rocket.xml:

<animation-list xmlns:android=”http://schemas.android.com/apk/res/android”
 android:oneshot=”false”>
 <item android:drawable=”@drawable/rocket1” android:duration=”500” />
 <item android:drawable=”@drawable/rocket2” android:duration=”500” />
 <item android:drawable=”@drawable/rocket3” android:duration=”500” />
 </animation-list>

To display your animation, set it as the background to a View using the setBackgroundResource
method, as shown in the following code snippet:

ImageView image = (ImageView)findViewById(R.id.my_animation_frame);
image.setBackgroundResource(R.drawable.animated_rocket);

Alternatively, use the setBackgroundDrawable to use a Drawable instance instead of a resource refer-
ence. Run the animation calling its start method, as shown in the code snippet below:

AnimationDrawable animation = (AnimationDrawable)image.getBackground();
animation.start();

Using Themes to Skin Your Applications
The multifunction nature of a mobile device means users will be running and switching between many
applications created by a range of different developers. Themes are a way of ensuring that your applica-
tions present a consistent look and feel.

To apply a theme, set the android:theme attribute on either the application or an individual
activity tag in the manifest, as shown in the code snippet below:

<manifest xmlns:android=”http://schemas.android.com/apk/res/android”
 package=”com.google.android.home”>
 <application
 android:theme=”@android:style/Theme.Light” >
 <activity
 android:theme=”@android:style/Theme.Black” >

44712c11.indd 37244712c11.indd 372 10/20/08 4:09:58 PM10/20/08 4:09:58 PM

373

Chapter 11: Advanced Android Development

 </activity>
 </application>
</manifest>

Android includes several predefi ned themes as part of the base package, including:

Theme.Black ❑ Features a black background with white foreground controls and text.

Theme.Light ❑ Features a white background with dark borders and text.

Theme.Translucent ❑ Features a partially transparent Form.

You can set the theme of an Activity at run time, but it’s generally not recommended, as Android uses
your Activity’s theme for intra-Activity animations, which happens before your application is loaded. If
you do apply a theme programmatically, be sure to do so before you lay out the Activity as shown in the
code snippet below:

protected void onCreate(Bundle icicle) {
 super.onCreate(icicle);
 setTheme(android.R.style.Theme_Translucent);
 setContentView(R.layout.main);
}

If you don’t apply a theme to your application or any of its Activities, it will use the default theme
android.R.style.Theme.

Advanced Canvas Drawing
You were introduced to the Canvas class in Chapter 4, where you learned how to create your own
Views. The Canvas was also used in Chapter 7 to annotate Overlays for MapViews.

The concept of the Canvas is a common metaphor used in graphics programming and generally con-
sists of three basic drawing components:

Canvas ❑ Supplies the draw methods that paint drawing primitives onto the underlying bitmap.

Paint ❑ Also referred to as a “brush,” Paint lets you specify how a primitive is drawn on the
bitmap.

Bitmap ❑ Is the surface being drawn on.

Most of the advanced techniques described in this chapter involve variations and modifi cations to the
Paint object that let you add depth and texture to otherwise fl at raster drawings.

The Android drawing API supports translucency, gradient fi lls, rounded rectangles, and anti-aliasing.
Unfortunately, owing to resource limitations, it does not yet support vector graphics; instead, it uses
traditional raster-style repaints.

The result of this raster approach is improved effi ciency, but changing a Paint object will not affect
primitives that have already been drawn; it will only affect new elements.

If you’ve got a Windows development background, the two-dimensional (2D) drawing capabilities of
Android are roughly equivalent to those available in GDI+.

44712c11.indd 37344712c11.indd 373 10/20/08 4:09:58 PM10/20/08 4:09:58 PM

374

Chapter 11: Advanced Android Development

What Can You Draw?
The Canvas class wraps up the bitmap that’s used as a surface for your artistic endeavors; it also
exposes the draw* methods used to implement your designs.

Without going into detail on each of the draw methods, the following list provides a taste of the primi-
tives available:

drawARGB / drawRGB / drawColor ❑ Fill the canvas with a single color.

drawArc ❑ Draws an arc between two angles within an area bounded by a rectangle.

drawBitmap ❑ Draws a bitmap on the Canvas. You can alter the appearance of the target bit-
map by specifying a target size or using a matrix to transform it.

drawBitmapMesh ❑ Draws a bitmap using a mesh that lets you manipulate the appearance of
the target by moving points within it.

drawCircle ❑ Draws a circle of a specifi ed radius centered on a given point.

drawLine(s) ❑ Draws a line (or series of lines) between two points.

drawOval ❑ Draws an oval bounded by the rectangle specifi ed.

drawPaint ❑ Fills the entire Canvas with the specifi ed Paint.

drawPath ❑ Draws the specifi ed Path. A Path object is often used to hold a collection of draw-
ing primitives within a single object.

drawPicture ❑ Draws a Picture object within the specifi ed rectangle.

drawPosText ❑ Draws a text string specifying the offset of each character.

drawRect ❑ Draws a rectangle.

drawRoundRect ❑ Draws a rectangle with rounded edges.

drawText ❑ Draws a text string on the Canvas. The text font, size, color, and rendering proper-
ties are all set in the Paint object used to render the text.

drawTextOnPath ❑ Draws text that follows along a specifi ed path.

drawVertices ❑ Draws a series of tri-patches specifi ed as a series of vertex points.

Each of these drawing methods lets you specify a Paint object to render it. In the following sections,
you’ll learn how to create and modify Paint objects to get the most out of your drawing.

Getting the Most from Your Paint
The Paint class represents a paint brush and palette. It lets you choose how to render the primitives
you draw onto the canvas using the draw methods described above. By modifying the Paint object,
you can control the color, style, font, and special effects used when drawing. Most simply, setColor
lets you select the color of a Paint while the style of a Paint object (controlled using setStyle) lets you
decide if you want to draw only the outline of a drawing object (STROKE), just the fi lled portion (FILL),
or both (STROKE_AND_FILL).

44712c11.indd 37444712c11.indd 374 10/20/08 4:09:58 PM10/20/08 4:09:58 PM

375

Chapter 11: Advanced Android Development

Beyond these simple controls, the Paint class also supports transparency and can also be modifi ed
using a variety of Shaders, fi lters, and effects to provide a rich palette of complex paints and brushes.

The Android SDK includes several excellent projects that demonstrate most of the features available in
the Paint class. They are available in the graphics subfolder of the API demos at

[sdk root folder]\samples\ApiDemos\src\com\android\samples\graphics

In the following sections, you’ll learn what some of these features are and how to use them. These sec-
tions outline what can be achieved (such as gradients and edge embossing) without exhaustively listing
all possible alternatives.

Using Translucency
All colors in Android include an opacity component (alpha channel).

You defi ne an alpha value for a color when you create it using the argb or parseColor methods
shown below:

// Make color red and 50% transparent
int opacity = 127;
int intColor = Color.argb(opacity, 255, 0, 0);
int parsedColor = Color.parseColor(“#7FFF0000”);

Alternatively, you can set the opacity of an existing Paint object using the setAlpha method:

// Make color 50% transparent
int opacity = 127;
myPaint.setAlpha(opacity);

Creating a paint color that’s not 100 percent opaque means that any primitive drawn with it will be par-
tially transparent — making whatever is drawn beneath it partially visible.

You can use transparency effects in any class or method that uses colors including Paint colors, Shaders,
and Mask Filters.

Introducing Shaders
Extensions of the Shader class let you create Paints that fi ll drawn objects with more than a single solid
color.

The most common use of Shaders is to defi ne gradient fi lls; gradients are an excellent way to add depth
and texture to 2D drawings. Android includes three gradient Shaders as well as a Bitmap Shader and a
Compose Shader.

Trying to describe painting techniques seems inherently futile, so have a look at Figure 11-1 to get
an idea of how each of the Shaders works. Represented from left to right are LinearGradient,
RadialGradient, and SweepGradient.

44712c11.indd 37544712c11.indd 375 10/20/08 4:09:58 PM10/20/08 4:09:58 PM

376

Chapter 11: Advanced Android Development

Not included in the image in Figure 11-1 is the ComposeShader, which lets you create a composite
of multiple Shaders and the BitmapShader that lets you create a paint brush based on a bitmap image.

To use a Shader when drawing, apply it to a Paint using the setShader method, as shown in the fol-
lowing code snippet:

Paint shaderPaint = new Paint();
shaderPaint.setShader(myLinearGradient);

Anything you draw with this Paint will be fi lled with the Shader you specifi ed rather than the paint color.

Figure 11-1

Defi ning Gradient Shaders
As shown above, using gradient Shaders lets you fi ll drawings with an interpolated color range;
you can defi ne the gradient as either a simple transition between two colors, as shown in the
LinearGradientShader in the following code snippet:

int colorFrom = Color.BLACK;
int colorTo = Color.WHITE;

LinearGradient linearGradientShader = new LinearGradient(x1, y1, x2, y2,
 colorFrom,
 colorTo,
 TileMode.CLAMP);

or as a more complex series of colors distributed at set proportions, as shown in the following example
of a RadialGradientShader:

int[] gradientColors = new int[3];
gradientColors[0] = Color.GREEN;

44712c11.indd 37644712c11.indd 376 10/20/08 4:09:58 PM10/20/08 4:09:58 PM

377

Chapter 11: Advanced Android Development

gradientColors[1] = Color.YELLOW;
gradientColors[2] = Color.RED;

float[] gradientPositions = new float[3];
gradientPositions[0] = 0.0f;
gradientPositions[1] = 0.5f;
gradientPositions[2] = 1.0f;

RadialGradient radialGradientShader = new RadialGradient(centerX, centerY, radius,
 gradientColors,
 gradientPositions,
 TileMode.CLAMP);

Each of the gradient Shaders (linear, radial, and sweep) lets you defi ne the gradient fi ll using either of
these techniques.

Using Shader Tile Modes
The brush sizes of the gradient Shaders are defi ned using explicit bounding rectangles or center points
and radius lengths; the Bitmap Shader implies a brush size through its bitmap size.

If the area defi ned by your Shader brush is smaller than the area being fi lled, the TileMode determines
how the remaining area will be covered.

CLAMP ❑ Uses the edge colors of the Shader to fi ll the extra space.

MIRROR ❑ Flips the Shader image horizontally and vertically so that each image seams with the
last.

REPEAT ❑ Repeats the Shader image horizontally and vertically, but doesn’t fl ip it.

Using MaskFilters
The MaskFilter classes let you assign edge effects to your Paint.

Extensions to MaskFilter apply transformations to the alpha-channel of a Paint along its outer edge.
Android includes the following Mask Filters:

BlurMaskFilter ❑ Specifi es a blur style and radius to feather the edges of your Paint.

EmbossMaskFilter ❑ Specifi es the direction of the light source and ambient light level to add
an embossing effect.

To apply a Mask Filter, use the setMaskFilter method, passing in a MaskFilter object. The following
code snippet applies an EmbossMaskFilter to an existing Paint:

// Set the direction of the light source
float[] direction = new float[]{ 1, 1, 1 };
// Set the ambient light level
float light = 0.4f;
// Choose a level of specularity to apply
float specular = 6;

44712c11.indd 37744712c11.indd 377 10/20/08 4:09:58 PM10/20/08 4:09:58 PM

378

Chapter 11: Advanced Android Development

// Apply a level of blur to apply to the mask
float blur = 3.5f;
EmbossMaskFilter emboss = new EmbossMaskFilter(direction, light, specular, blur);

// Apply the mask
myPaint.setMaskFilter(emboss);

The FingerPaint API demo included in the SDK is an excellent example of how to use MaskFilters.
It demonstrates the effect of both the emboss and blur fi lters.

Using ColorFilters
Where MaskFilters are transformations of the alpha-channel of a Paint, a ColorFilter applies a
transformation to each of the RGB channels. All ColorFilter-derived classes ignore the alpha-channel
when performing their transformations.

Android includes three Color Filters:

ColorMatrixColorFilter ❑ Lets you specify a 4 × 5 ColorMatrix to apply to a Paint.
ColorMatrixes are commonly used to perform image processing programmatically and are
useful as they support chaining transformations using matrix multiplication.

LightingColorFilter ❑ Multiplies the RGB channels by the fi rst color before adding the sec-
ond. The result of each transformation will be clamped to between 0 and 255.

PorterDuffColorFilter ❑ Lets you use any one of the 16 Porter-Duff rules for digital image
compositing to apply a specifi ed color to the Paint.

Apply ColorFilters using the setColorFilter method as shown below:

myPaint.setColorFilter(new LightingColorFilter(Color.BLUE, Color.RED));

There is an excellent example of using a Color Filter and Color Matrixes in the ColorMatrixSample
API example.

Using PathEffects
The effects so far have affected the way the Paint fi lls a drawing; PathEffects are used to control how
its outline (or stroke) is drawn.

Path Effects are particularly useful for drawing Path primitives, but they can be applied to any Paint to
affect the way the stroke is drawn.

Using Path Effects, you can change the appearance of a shape’s corners and control the appearance of
the outline. Android includes several Path Effects including:

CornerPathEffect ❑ Lets you smooth sharp corners in the shape of a primitive by replacing
sharp edges with rounded corners.

DashPathEffect ❑ Rather than drawing a solid outline, you can use the DashPathEffect to
create an outline of broken lines (dashes/dots). You can specify any repeating pattern of solid/
empty line segments.

44712c11.indd 37844712c11.indd 378 10/20/08 4:09:58 PM10/20/08 4:09:58 PM

379

Chapter 11: Advanced Android Development

DiscretePathEffect ❑ Similar to the DashPathEffect, but with added randomness. Speci-
fi es the length of each segment and a degree of deviation from the original path to use when
drawing it.

PathDashPathEffect ❑ This effect lets you defi ne a new shape (path) to use as a stamp to out-
line the original path.

The following effects let you combine multiple Path Effects to a single Paint.

SumPathEffect ❑ Adds two effects to a path in sequence, such that each effect is applied to the
original path and the two results are combined.

ComposePathEffect ❑ Compose applies fi rst one effect and then applies the second effect to
the result of the fi rst.

Path Effects that modify the shape of the object being drawn will change the area of the affected shape.
This ensures that any fi ll effects being applied to the same shape are drawn within the new bounds.

Path Effects are applied to Paint objects using the setPathEffect method as shown below:

borderPaint.setPathEffect(new CornerPathEffect(5));

The Path Effects API sample gives an excellent guide to how to apply each of these effects.

Changing the Xfermode
Change a Paint’s Xfermode to affect the way it paints new colors on top of what’s already on the Canvas.

Under normal circumstances, painting on top of an existing drawing will layer the new shape on top. If
the new Paint is fully opaque, it will totally obscure the paint underneath; if it’s partially transparent, it
will tint the colors underneath.

The following Xfermode subclasses let you change this behavior:

AvoidXfermode ❑ Specifi es a color and tolerance to force your Paint to avoid drawing over (or
only draw over) it.

PixelXorXfermode ❑ Applies a simple pixel XOR operation when covering existing colors.

PorterDuffXfermode ❑ This is a very powerful transfer mode with which you can use any of
the 16 Porter-Duff rules for image composition to control how the paint interacts with the exist-
ing canvas image.

To apply transfer modes, use the setXferMode method as shown in the sample below:

AvoidXfermode avoid = new AvoidXfermode(Color.BLUE, 10, AvoidXfermode.Mode.AVOID);
borderPen.setXfermode(avoid);

Improving Paint Quality with Anti-Aliasing
When you create a new Paint object, you can pass in several fl ags that affect the way the Paint will
be rendered. One of the most interesting is the ANTI_ALIAS_FLAG, which ensures that diagonal lines
drawn with this paint are anti-aliased to give a smooth appearance (at the cost of performance).

44712c11.indd 37944712c11.indd 379 10/20/08 4:09:58 PM10/20/08 4:09:58 PM

380

Chapter 11: Advanced Android Development

Anti-aliasing is particularly important when drawing text, as anti-aliased text can be signifi cantly eas-
ier to read. To create even smoother text effects, you can apply the SUBPIXEL_TEXT_FLAG, which will
apply subpixel anti-aliasing.

You can also set both of these fl ags manually using the setSubpixelText and setAntiAlias meth-
ods, as shown below:

myPaint.setSubpixelText(true);
myPaint.setAntiAlias(true);

Hardware Acceleration for 2D Graphics
In a boon for 2D graphics enthusiasts everywhere, Android lets you request that your application
always be rendered using hardware acceleration.

If hardware acceleration is available on the device, setting this fl ag will cause every View within the
Activity to be rendered using hardware. This has the side effect of dramatically improving the speed of
your graphics while reducing the load on the system processor.

Turn it on by applying the Window.FEATURE_OPENGL fl ag to your Activity using the
requestWindowFeature method, as shown below:

myActivity.requestWindowFeature(Window.FEATURE_OPENGL);

Unfortunately, Good Things seldom come for free, and this is no exception.

Not all the 2D drawing primitives available in Android are supported by hardware (notably most of the
Path Effects described previously).

Also, as your entire Activity is being effectively rendered as a single Canvas, invalidate requests on any
View will cause the whole Activity to be redrawn.

Canvas Drawing Best Practice
2D owner-draw operations tend to be expensive in terms of processor use; ineffi cient drawing routines
can block the GUI thread and have a detrimental effect on application responsiveness. This is particu-
larly true in a resource-constrained environment with a single, limited processor.

You need to be aware of the resource drain and CPU-cycle cost of your onDraw methods, to ensure you
don’t end up with an attractive application that’s completely unresponsive.

A lot of techniques exist to help minimize the resource drain associated with owner-drawn controls.
Rather than focus on general principles, I’ll describe some Android specifi c considerations for ensuring
that you can create activities that look good and remain interactive (note that this list is not exhaustive):

Consider Hardware Acceleration ❑ OpenGL hardware acceleration support for 2D graphics is
a Good Thing, so you should always consider if it’s suitable for your Activity. Good candidates
are Activities consisting of a single View with rapid, time-consuming updates. Be sure that the
primitives you use are supported by hardware.

44712c11.indd 38044712c11.indd 380 10/20/08 4:09:58 PM10/20/08 4:09:58 PM

381

Chapter 11: Advanced Android Development

Consider Size and Orientation ❑ When you’re designing your Views and Overlays, be sure to
consider (and test!) how they will look at different resolutions and sizes.

Create Static Objects Once ❑ Object creation in Android is particularly expensive. Where pos-
sible, create drawing objects like Paint objects, Paths, and Shaders once, rather than recreating
them each time the View is invalidated.

Remember ❑ onDraw Is Expensive Performing the onDraw method is an expensive process
that forces Android to perform several image composition and bitmap construction operations.
Many of the following points suggest ways to modify the appearance of your Canvas without
having to redraw it:

Use Canvas Transforms ❑ Use canvas transforms like rotate and translate to sim-
plify complex relational positioning of elements on your canvas. For example, rather
than positioning and rotating each text element around a clock face, simply rotate the
canvas 22.5 degrees, and draw the text in the same place.

Use Animations ❑ Consider using Animations to perform pre-set transformations of
your View rather than manually redrawing it. Scale, rotation, and translation Anima-
tions can be performed on any View within an Activity and provide a resource-effi cient
way to provide zoom, rotate, or shake effects.

Consider Using Bitmaps and 9 Patches ❑ If your Views feature static backgrounds, you
should consider using a Drawable like a bitmap or scalable 9 patch rather than manu-
ally drawing it.

Advanced Compass Face Example
Early in Chapter 4, you created a simple compass. In the last chapter, you returned to it, extending it to
display the pitch and roll using the accelerometer hardware.

The UI of the View used in those examples was kept simple to keep the code in those chapters as clear
as possible.

In the following example, you’ll make some signifi cant changes to the CompassView’s onDraw method
to change it from a simple, fl at compass into a dynamic artifi cial horizon, as shown in Figure 11-2.

Figure 11-2

44712c11.indd 38144712c11.indd 381 10/20/08 4:09:58 PM10/20/08 4:09:58 PM

382

Chapter 11: Advanced Android Development

As the previous image is limited to black and white, you’ll need to create the control in order to see the
full effect.

 1. Start by modifying the colors.xml resource fi le to include color values for the border gradient,
the glass compass shading, the sky, and the ground. Also update the colors used for the border
and the face markings.

<?xml version=”1.0” encoding=”utf-8”?>
<resources>
 <color name=”text_color”>#FFFF</color>
 <color name=”background_color”>#F000</color>
 <color name=”marker_color”>#FFFF</color>
 <color name=”shadow_color”>#7AAA</color>

 <color name=”outer_border”>#FF444444</color>
 <color name=”inner_border_one”>#FF323232</color>
 <color name=”inner_border_two”>#FF414141</color>
 <color name=”inner_border”>#FFFFFFFF</color>

 <color name=”horizon_sky_from”>#FFA52A2A</color>
 <color name=”horizon_sky_to”>#FFFFC125</color>
 <color name=”horizon_ground_from”>#FF5F9EA0</color>
 <color name=”horizon_ground_to”>#FF00008B</color>
</resources>

 2. The Paint and Shader objects used for the sky and ground in the artifi cial horizon are created
based on the size of the current View, so they’re not static like the Paint objects you created in
Chapter 4. Instead of creating Paint objects, construct the gradient arrays and colors they use.

int[] borderGradientColors;
float[] borderGradientPositions;

int[] glassGradientColors;
float[] glassGradientPositions;

int skyHorizonColorFrom;
int skyHorizonColorTo;
int groundHorizonColorFrom;
int groundHorizonColorTo;

 3. Update the CompassView’s initCompassView method to initialize the variables created in Step
2 using the resources from Step 1. The existing method code can be left largely intact, with some
changes to the textPaint, circlePaint, and markerPaint variables, as highlighted below:

protected void initCompassView() {
 setFocusable(true);
 // Get external resources
 Resources r = this.getResources();

 circlePaint = new Paint(Paint.ANTI_ALIAS_FLAG);
 circlePaint.setColor(R.color.background_color);
 circlePaint.setStrokeWidth(1);
 circlePaint.setStyle(Paint.Style.STROKE);

 northString = r.getString(R.string.cardinal_north);

44712c11.indd 38244712c11.indd 382 10/20/08 4:09:58 PM10/20/08 4:09:58 PM

383

Chapter 11: Advanced Android Development

 eastString = r.getString(R.string.cardinal_east);
 southString = r.getString(R.string.cardinal_south);
 westString = r.getString(R.string.cardinal_west);

 textPaint = new Paint(Paint.ANTI_ALIAS_FLAG);
 textPaint.setColor(r.getColor(R.color.text_color));
 textPaint.setFakeBoldText(true);
 textPaint.setSubpixelText(true);
 textPaint.setTextAlign(Align.LEFT);

 textHeight = (int)textPaint.measureText(“yY”);

 markerPaint = new Paint(Paint.ANTI_ALIAS_FLAG);
 markerPaint.setColor(r.getColor(R.color.marker_color));
 markerPaint.setAlpha(200);
 markerPaint.setStrokeWidth(1);
 markerPaint.setStyle(Paint.Style.STROKE);
 markerPaint.setShadowLayer(2, 1, 1, r.getColor(R.color.shadow_color));

 3.1. Create the color and position arrays that will be used by a radial Shader to paint the
outer border.

 borderGradientColors = new int[4];
 borderGradientPositions = new float[4];

 borderGradientColors[3] = r.getColor(R.color.outer_border);
 borderGradientColors[2] = r.getColor(R.color.inner_border_one);
 borderGradientColors[1] = r.getColor(R.color.inner_border_two);
 borderGradientColors[0] = r.getColor(R.color.inner_border);
 borderGradientPositions[3] = 0.0f;
 borderGradientPositions[2] = 1-0.03f;
 borderGradientPositions[1] = 1-0.06f;
 borderGradientPositions[0] = 1.0f;

 3.2. Now create the radial gradient color and position arrays that will be used to create
the semitransparent “glass dome” that sits on top of the View to give it the illusion of
depth.

 glassGradientColors = new int[5];
 glassGradientPositions = new float[5];

 int glassColor = 245;
 glassGradientColors[4] = Color.argb(65, glassColor, glassColor, glassColor);
 glassGradientColors[3] = Color.argb(100, glassColor, glassColor, glassColor);
 glassGradientColors[2] = Color.argb(50, glassColor, glassColor, glassColor);
 glassGradientColors[1] = Color.argb(0, glassColor, glassColor, glassColor);
 glassGradientColors[0] = Color.argb(0, glassColor, glassColor, glassColor);
 glassGradientPositions[4] = 1-0.0f;
 glassGradientPositions[3] = 1-0.06f;
 glassGradientPositions[2] = 1-0.10f;
 glassGradientPositions[1] = 1-0.20f;
 glassGradientPositions[0] = 1-1.0f;

44712c11.indd 38344712c11.indd 383 10/20/08 4:09:58 PM10/20/08 4:09:58 PM

384

Chapter 11: Advanced Android Development

 3.3. Finally, get the colors you’ll use to create the linear gradients that will represent the sky
and the ground in the artifi cial horizon.

 skyHorizonColorFrom = r.getColor(R.color.horizon_sky_from);
 skyHorizonColorTo = r.getColor(R.color.horizon_sky_to);

 groundHorizonColorFrom = r.getColor(R.color.horizon_ground_from);
 groundHorizonColorTo = r.getColor(R.color.horizon_ground_to);
}

 4. Before you start drawing the face, create a new enum that stores each of the cardinal directions.

private enum CompassDirection { N, NNE, NE, ENE,
 E, ESE, SE, SSE,
 S, SSW, SW, WSW,
 W, WNW, NW, NNW }

Now you need to completely replace the existing onDraw method. You’ll start by fi guring out some size-
based values including the center of the View, the radius of the circular control, and the rectangles that
will enclose the outer (heading) and inner (tilt and roll) face elements.

@Override
protected void onDraw(Canvas canvas) {

 1. Calculate the width of the outer (heading) ring based on the size of the font used to draw the
heading values.

 float ringWidth = textHeight + 4;

 2. Then calculate the height and width of the View, and use those values to establish the radius of
the inner and outer face dials, as well as create the bounding boxes for each face.

 int height = getMeasuredHeight();
 int width =getMeasuredWidth();

 int px = width/2;
 int py = height/2;
 Point center = new Point(px, py);

 int radius = Math.min(px, py)-2;

 RectF boundingBox = new RectF(center.x - radius,
 center.y - radius,
 center.x + radius,
 center.y + radius);

 RectF innerBoundingBox = new RectF(center.x - radius + ringWidth,
 center.y - radius + ringWidth,
 center.x + radius - ringWidth,
 center.y + radius - ringWidth);

 float innerRadius = innerBoundingBox.height()/2;

44712c11.indd 38444712c11.indd 384 10/20/08 4:09:58 PM10/20/08 4:09:58 PM

385

Chapter 11: Advanced Android Development

 3. With the dimensions of the View established, it’s time to start drawing the faces.

Start from the bottom layer at the outside, and work your way in and up, starting with the
outer face (heading). Create a new RadialGradient Shader using the colors and positions you
defi ned in Step 3.2 in the previous code sample, and assign that Shader to a new Paint before
using it to draw a circle.

 RadialGradient borderGradient = new RadialGradient(px, py, radius,
 borderGradientColors,
 borderGradientPositions,
 TileMode.CLAMP);
 Paint pgb = new Paint();
 pgb.setShader(borderGradient);

 Path outerRingPath = new Path();
 outerRingPath.addOval(boundingBox, Direction.CW);

 canvas.drawPath(outerRingPath, pgb);

 4. Next you need to draw the artifi cial horizon. The horizon is created by dividing the circular face
into two sections, one representing the sky and the other the ground. The proportion of each
section depends on the current pitch.

Start by creating the Shader and Paint objects that will be used to draw the sky and earth.

 LinearGradient skyShader = new LinearGradient(center.x,
 innerBoundingBox.top,
 center.x,
 innerBoundingBox.bottom,
 skyHorizonColorFrom,
 skyHorizonColorTo,
 TileMode.CLAMP);
 Paint skyPaint = new Paint();
 skyPaint.setShader(skyShader);

 LinearGradient groundShader = new LinearGradient(center.x,
 innerBoundingBox.top,
 center.x,
 innerBoundingBox.bottom,
 groundHorizonColorFrom,
 groundHorizonColorTo,
 TileMode.CLAMP);
 Paint groundPaint = new Paint();
 groundPaint.setShader(groundShader);

 5. Now normalize the pitch and roll values to clamp them within ±90 degrees and ±180 degrees,
respectively.

 float tiltDegree = pitch;
 while (tiltDegree > 90 || tiltDegree < -90)
 {
 if (tiltDegree > 90) tiltDegree = -90 + (tiltDegree - 90);
 if (tiltDegree < -90) tiltDegree = 90 - (tiltDegree + 90);
 }

 float rollDegree = roll;

44712c11.indd 38544712c11.indd 385 10/20/08 4:09:58 PM10/20/08 4:09:58 PM

386

Chapter 11: Advanced Android Development

 while (rollDegree > 180 || rollDegree < -180)
 {
 if (rollDegree > 180) rollDegree = -180 + (rollDegree - 180);
 if (rollDegree < -180) rollDegree = 180 - (rollDegree + 180);
 }

 6. Create paths that will fi ll each segment of the circle (ground and sky). The proportion of each
segment should be related to the clamped pitch.

 Path skyPath = new Path();
 skyPath.addArc(innerBoundingBox,
 -tiltDegree,
 (180 + (2 * tiltDegree)));

 7. Spin the canvas around the center in the opposite direction to the current roll, and draw the sky
and ground paths using the Paints you created in Step 4.

 canvas.rotate(-rollDegree, px, py);
 canvas.drawOval(innerBoundingBox, groundPaint);
 canvas.drawPath(skyPath, skyPaint);
 canvas.drawPath(skyPath, markerPaint);

 8. Next is the face marking. Start by calculating the start and end points for the horizontal horizon
markings.

 int markWidth = radius / 3;
 int startX = center.x - markWidth;
 int endX = center.x + markWidth;

 9. To make the horizon values easier to read, you should ensure that the pitch scale always starts
at the current value. The following code calculates the position of the interface between the
ground and sky on the horizon face:

 double h = innerRadius*Math.cos(Math.toRadians(90-tiltDegree));
 double justTiltY = center.y - h;

 10. Find the number of pixels that represents each degree of tilt.

 float pxPerDegree = (innerBoundingBox.height()/2)/45f;

 11. Now iterate over 180 degrees, centered on the current tilt value, to give a sliding scale of pos-
sible pitch.

 for (int i = 90; i >= -90; i -= 10)
 {
 double ypos = justTiltY + i*pxPerDegree;

 // Only display the scale within the inner face.
 if ((ypos < (innerBoundingBox.top + textHeight)) ||
 (ypos > innerBoundingBox.bottom - textHeight))
 continue;

 // Draw a line and the tilt angle for each scale increment.
 canvas.drawLine(startX, (float)ypos, endX, (float)ypos, markerPaint);
 int displayPos = (int)(tiltDegree - i);

44712c11.indd 38644712c11.indd 386 10/20/08 4:09:58 PM10/20/08 4:09:58 PM

387

Chapter 11: Advanced Android Development

 String displayString = String.valueOf(displayPos);
 float stringSizeWidth = textPaint.measureText(displayString);
 canvas.drawText(displayString,
 (int)(center.x-stringSizeWidth/2),
 (int)(ypos)+1,
 textPaint);
 }

 12. Now draw a thicker line at the earth/sky interface. Change the stroke thickness of the
markerPaint object before drawing the line (then set it back to the previous value).

 markerPaint.setStrokeWidth(2);
 canvas.drawLine(center.x - radius / 2,
 (float)justTiltY,
 center.x + radius / 2,
 (float)justTiltY,
 markerPaint);
 markerPaint.setStrokeWidth(1);

 13. To make it easier to read the exact roll, you should draw an arrow and display a text string that
shows the exact value.

Create a new Path, and use the moveTo / lineTo methods to construct an open arrow that
points straight up. Draw the path and a text string that shows the current roll.

 // Draw the arrow
 Path rollArrow = new Path();
 rollArrow.moveTo(center.x - 3, (int)innerBoundingBox.top + 14);
 rollArrow.lineTo(center.x, (int)innerBoundingBox.top + 10);
 rollArrow.moveTo(center.x + 3, innerBoundingBox.top + 14);
 rollArrow.lineTo(center.x, innerBoundingBox.top + 10);
 canvas.drawPath(rollArrow, markerPaint);
 // Draw the string
 String rollText = String.valueOf(rollDegree);
 double rollTextWidth = textPaint.measureText(rollText);
 canvas.drawText(rollText,
 (float)(center.x - rollTextWidth / 2),
 innerBoundingBox.top + textHeight + 2,
 textPaint);

 14. Spin the canvas back to upright so that you can draw the rest of the face markings.

 canvas.restore();

 15. Draw the roll dial markings by rotating the canvas 10 degrees at a time to draw either a mark or
a value. When you’ve completed the face, restore the canvas to its upright position.

 canvas.save();
 canvas.rotate(180, center.x, center.y);
 for (int i = -180; i < 180; i += 10)
 {
 // Show a numeric value every 30 degrees
 if (i % 30 == 0) {
 String rollString = String.valueOf(i*-1);
 float rollStringWidth = textPaint.measureText(rollString);

44712c11.indd 38744712c11.indd 387 10/20/08 4:09:58 PM10/20/08 4:09:58 PM

388

Chapter 11: Advanced Android Development

 PointF rollStringCenter = new PointF(center.x-rollStringWidth / 2,
 innerBoundingBox.top+1+textHeight);

 canvas.drawText(rollString,
 rollStringCenter.x, rollStringCenter.y,
 textPaint);
 }
 // Otherwise draw a marker line
 else {
 canvas.drawLine(center.x, (int)innerBoundingBox.top,
 center.x, (int)innerBoundingBox.top + 5,
 markerPaint);
 }

 canvas.rotate(10, center.x, center.y);
 }
 canvas.restore();

 16. The fi nal step in creating the face is drawing the heading markers around the outside edge.

 canvas.save();
 canvas.rotate(-1*(bearing), px, py);

 double increment = 22.5;

 for (double i = 0; i < 360; i += increment)
 {
 CompassDirection cd = CompassDirection.values()[(int)(i / 22.5)];
 String headString = cd.toString();

 float headStringWidth = textPaint.measureText(headString);
 PointF headStringCenter = new PointF(center.x - headStringWidth / 2,
 boundingBox.top + 1 + textHeight);

 if (i % increment == 0)
 canvas.drawText(headString,
 headStringCenter.x, headStringCenter.y,
 textPaint);
 else
 canvas.drawLine(center.x, (int)boundingBox.top,
 center.x, (int)boundingBox.top + 3,
 markerPaint);

 canvas.rotate((int)increment, center.x, center.y);
 }
 canvas.restore();

 17. With the face complete, you get to add some fi nishing touches.

Start by adding a “glass dome” over the top to give the illusion of a watch face. Using the radial
gradient array you constructed earlier, create a new Shader and Paint object. Use them to
draw a circle over the inner face that makes it look like it’s covered in glass.

 RadialGradient glassShader = new RadialGradient(px, py,
 (int)innerRadius,

44712c11.indd 38844712c11.indd 388 10/20/08 4:09:58 PM10/20/08 4:09:58 PM

389

Chapter 11: Advanced Android Development

 glassGradientColors,
 glassGradientPositions,
 TileMode.CLAMP);
 Paint glassPaint = new Paint();
 glassPaint.setShader(glassShader);

 canvas.drawOval(innerBoundingBox, glassPaint);

 18. All that’s left is to draw two more circles as clean borders for the inner and outer face boundar-
ies. Then restore the canvas to upright, and fi nish the onDraw method.

 // Draw the outer ring
 canvas.drawOval(boundingBox, circlePaint);

 // Draw the inner ring
 circlePaint.setStrokeWidth(2);
 canvas.drawOval(innerBoundingBox, circlePaint);

 canvas.restore();
}

Bringing Map Overlays to Life
In Chapter 7, you learned how to use Overlays to add annotation layers to MapViews. The Canvas used
for annotating MapView Overlays is the same class as the one used to draw new View controls. As a
result, all of the advanced features described so far in this section can be used to enhance map Overlays.

That means you can use any of the draw methods, transparency, Shaders, Color Masks, and Filter
Effects to create rich Overlays using the Android graphics framework.

Interacting with Overlays
Touch-screen interaction in MapViews is handled individually by each of its Overlays. To handle map
taps within an Overlay, override the onTap event.

The following code snippet shows an onTap implementation that receives the map coordinates of the
tap and the MapView on which the tap occurred:

@Override
public boolean onTap(GeoPoint point, MapView map) {
 // Get the projection to convert to and from screen coordinates
 Projection projection = map.getProjection();

 // Return true if we handled this onTap()
 return [… hit test passed …];
}

The MapView can be used to obtain the Projection of the map when it was tapped. Used in conjunction
with the GeoPoint parameter, you can determine the position on screen of the real-world longitude
and latitude pressed.

44712c11.indd 38944712c11.indd 389 10/20/08 4:09:58 PM10/20/08 4:09:58 PM

390

Chapter 11: Advanced Android Development

The onTap method of an Overlay derived class should return true if it has handled the tap (and false
otherwise). If none of the Overlays assigned to a MapView return true, the tap event will be handled by
the MapView itself, or failing that, by the Activity.

Introducing SurfaceView
Under normal circumstances, your applications’ Views are all drawn on the same GUI thread. This
main application thread is also used for all user interaction (such as button clicks or text entry).

In Chapter 8, you learned how to move blocking processes onto background threads. Unfortunately,
you can’t do this with the onDraw method of a View, as modifying a GUI element from a background
thread is explicitly disallowed.

When you need to update the View’s UI rapidly, or the rendering code blocks the GUI thread for
too long, the SurfaceView class is the answer. A Surface View wraps a Surface object rather than
a Canvas. This is important because Surfaces can be drawn onto from background threads. This is
particularly useful for resource-intensive operations, or where rapid updates or high frame rates are
required, such as when using 3D graphics, creating games, or previewing the camera in real time.

The ability to draw independently of the GUI thread comes at the price of additional memory consump-
tion, so while it’s a useful — sometimes necessary — way to create custom Views, Surface Views should
be used with caution.

When Should You Use the SurfaceView?
A SurfaceView can be used in exactly the same way as any View-derived class. You can apply anima-
tions and place them in layouts as you would any other View.

The Surface encapsulated by the SurfaceView supports drawing, using most of the standard Canvas
methods described previously in this chapter, and also supports the full OpenGL ES library.

Using OpenGL, you can draw any supported 2D or 3D object onto the Surface, relying on hardware
acceleration (where available) to signifi cantly improve performance compared to simulating the same
effects on a 2D canvas.

SurfaceViews are particularly useful for displaying dynamic 3D images, such as those featured in appli-
cations like Google Earth, or featured in interactive games that provide immersive experiences. It’s also
the best choice for displaying real-time camera previews.

Creating a New SurfaceView Control
To create a new SurfaceView, create a new class that extends SurfaceView and implements
SurfaceHolder.Callback.

The SurfaceHolder callback notifi es the View when the underlying Surface is created and destroyed,
passing a reference to the SurfaceHolder object that contains the currently valid Surface.

A typical Surface View design pattern includes a Thread-derived class that accepts a reference to the
current SurfaceHolder and independently updates it.

44712c11.indd 39044712c11.indd 390 10/20/08 4:09:58 PM10/20/08 4:09:58 PM

391

Chapter 11: Advanced Android Development

The following skeleton code shows a Surface View implementation for drawing using the Canvas. A
new Thread-derived class is created within the Surface View control, and all UI updates are handled
within this new class.

import android.content.Context;
import android.graphics.Canvas;
import android.view.SurfaceHolder;
import android.view.SurfaceView;

public class MySurfaceView extends SurfaceView implements SurfaceHolder.Callback {

 private SurfaceHolder holder;
 private MySurfaceViewThread mySurfaceViewThread;
 private boolean hasSurface;

 MySurfaceView(Context context) {
 super(context);
 init();
 }

 private void init() {
 // Create a new SurfaceHolder and assign this class as its callback.
 holder = getHolder();
 holder.addCallback(this);
 hasSurface = false;
 }

 public void resume() {
 // Create and start the graphics update thread.
 if (mySurfaceViewThread == null) {
 mySurfaceViewThread = new MySurfaceViewThread();

 if (hasSurface == true)
 mySurfaceViewThread.start();
 }
 }

 public void pause() {
 // Kill the graphics update thread
 if (mySurfaceViewThread != null) {
 mySurfaceViewThread.requestExitAndWait();
 mySurfaceViewThread = null;
 }
 }

 public void surfaceCreated(SurfaceHolder holder) {
 hasSurface = true;
 if (mySurfaceViewThread != null)
 mySurfaceViewThread.start();
 }

 public void surfaceDestroyed(SurfaceHolder holder) {
 hasSurface = false;

44712c11.indd 39144712c11.indd 391 10/20/08 4:09:58 PM10/20/08 4:09:58 PM

392

Chapter 11: Advanced Android Development

 pause();
 }

 public void surfaceChanged(SurfaceHolder holder, int format, int w, int h) {
 if (mySurfaceViewThread != null)
 mySurfaceViewThread.onWindowResize(w, h);
 }

 class MySurfaceViewThread extends Thread {
 private boolean done;

 MySurfaceViewThread() {
 super();
 done = false;
 }

 @Override
 public void run() {
 SurfaceHolder surfaceHolder = holder;

 // Repeat the drawing loop until the thread is stopped.
 while (!done) {
 // Lock the surface and return the canvas to draw onto.
 Canvas canvas = surfaceHolder.lockCanvas();

 // TODO: Draw on the canvas!

 // Unlock the canvas and render the current image.
 surfaceHolder.unlockCanvasAndPost(canvas);
 }
 }

 public void requestExitAndWait() {
 // Mark this thread as complete and combine into
 // the main application thread.
 done = true;
 try {
 join();
 } catch (InterruptedException ex) { }
 }

 public void onWindowResize(int w, int h) {
 // Deal with a change in the available surface size.
 }
 }
}

Creating 3D Controls with SurfaceView
Android includes full support for the OpenGL ES 3D rendering framework including support for hard-
ware acceleration on devices that offer it. The SurfaceView control provides a Surface onto which you
can render your OpenGL scenes.

44712c11.indd 39244712c11.indd 392 10/20/08 4:09:58 PM10/20/08 4:09:58 PM

393

Chapter 11: Advanced Android Development

OpenGL is commonly used in desktop applications to provide dynamic 3D interfaces and animations.
Resource-constrained devices don’t have the capacity for polygon handling that’s available on desktop
PCs and gaming devices that feature dedicated 3D graphics processors. Within your applications, con-
sider the load your 3D SurfaceView will be placing on your processor, and attempt to keep the total
number of polygons being displayed, and the rate at which they’re updated, as low as possible.

Creating a Doom clone for Android is well out of the scope of this book, so I’ll leave it to you to test the
limits of what’s possible in a mobile 3D User Interface. Check out the GLSurfaceView API Demo exam-
ple included in the SDK distribution to see an example of the OpenGL ES framework in action.

Creating Interactive Controls
Anyone who’s used a mobile phone will be painfully aware of the challenges associated with design-
ing intuitive User Interfaces for mobile devices. Touch screens have been available on mobiles for many
years, but it’s only recently that touch-enabled devices have been designed to be used by fi ngers rather
than styluses.

Full physical keyboards have also become common, with the compact size of the slide-out or fl ip-out
keyboard introducing its own challenges.

As an open framework, Android is expected to be available on a wide variety of devices featuring
many different permutations of input technologies including touch screens, D-pads, trackballs, and
keyboards.

The challenge for you as a developer is to create intuitive User Interfaces that make the most of the
whatever input hardware is available, while introducing as little hardware dependence as possible.

The techniques described in this section show how to listen for (and react to) user input from key
presses, trackball events, and touch-screen taps using the following event handlers in Views and
Activities:

onKeyDown ❑ Called when any hardware key is pressed.

onKeyUp ❑ Called when any hardware key is released.

onTrackballEvent ❑ Triggered by movement on the trackball.

onTouchEvent ❑ The touch-screen event handler, triggered when the touch screen is touched,
released, or dragged.

Using the Touch Screen
Mobile touch screens have existed since the days of the Apple Newton and the Palm Pilot, although
their usability has had mixed reviews. Recently this technology has enjoyed a popular resurgence, with
devices like the Nintendo DS and the Apple iPhone using touch screens in innovative ways.

Modern mobiles are all about fi nger input — a design principle that assumes users will be using their
fi ngers rather than a specialized stylus to touch the screen.

44712c11.indd 39344712c11.indd 393 10/20/08 4:09:58 PM10/20/08 4:09:58 PM

394

Chapter 11: Advanced Android Development

Finger-based touch makes interaction less precise and is often based more on movement than simple
contact. Android’s native applications make extensive use of fi nger-based touch-screen interfaces,
including the use of dragging motions to scroll lists or perform actions.

To create a View or Activity that uses touch-screen interaction, override the onTouchEvent handler as
shown in the skeleton code below:

@Override
public boolean onTouchEvent(MotionEvent event) {
 return super.onTouchEvent(event);
}

Return true if you have handled the screen press; otherwise, return false to pass events through a
stack of Views and Activities until the touch has been successfully handled.

Processing Touch Events
The onTouchEvent handler is fi red when the user fi rst touches the screen, once each time the position
changes, and again when the contact ends.

The action property of the MotionEvent parameter refl ects which of these event types has triggered
the handler. To determine the initiating touch action, call getAction on the Motion Event parameter,
and compare it to the static MotionEvent action values, as shown in the following skeleton code:

@Override
public boolean onTouchEvent(MotionEvent event) {

 int action = event.getAction();

 switch (action) {
 case (MotionEvent.ACTION_DOWN) : // Touch screen pressed
 break;
 case (MotionEvent.ACTION_UP) : // Touch screen touch ended
 break;
 case (MotionEvent.ACTION_MOVE) : // Contact has moved across screen
 break;
 case (MotionEvent.ACTION_CANCEL) : // Touch event cancelled
 break;

 }

 return super.onTouchEvent(event);
}

The Motion Event also includes the coordinates of the current screen contact. You can access these
coordinates using the getX and getY methods. These methods return the coordinate relative to the
responding View or Activity; alternatively, getRawX and getRawY return the absolute screen coordi-
nates. Both techniques are shown in the following code snippet:

// Relative screen coordinates.
int xPos = (int)event.getX();
int yPos = (int)event.getY();

44712c11.indd 39444712c11.indd 394 10/20/08 4:09:58 PM10/20/08 4:09:58 PM

395

Chapter 11: Advanced Android Development

// Absolute screen coordinates.
int xPosRaw = (int)event.getRawX();
int yPosRaw = (int)event.getRawY();

The Motion Event parameter also includes the pressure being applied to the screen using getPressure,
a method that returns a value usually between 0 (no pressure) and 1 (normal pressure).

Depending on the calibration of the hardware, it’s possible to return values greater than 1.

Finally, you can also determine the normalized size of the current contact area using the getSize
method. This method returns a value between 0 and 1, where 0 suggests a very precise measurement
and 1 indicates a possible “fat touch” event in which the user may not have intended to press anything.

Tracking Movement
Whenever the current touch contact position, pressure, or size changes, a new onTouchEvent is trig-
gered with an ACTION_MOVE action.

As well as the fi elds described previously, the Motion Event parameter can include historical values.
This history represents all the movement events that have occurred between the previous onTouchEv-
ent and this one, allowing Android to buffer rapid movement changes to provide fi ne-grained capture
of movement data.

You can fi nd the size of the history by calling getHistorySize, which returns the number of movement
positions available for the current event. You can then obtain the times, pressures, sizes, and positions
of each of the historical events, using a series of getHistorical* methods and passing in the position
index, as shown in the following code snippet:

int historySize = event.getHistorySize();

for (int i = 0; i < historySize; i++) {
 long time = event.getHistoricalEventTime(i);
 float pressure = event.getHistoricalPressure(i);
 float x = event.getHistoricalX(i);
 float y = event.getHistoricalY(i);
 float size = event.getHistoricalSize(i);

 // TODO: Do something with each point
}

The normal pattern used for handling movement events is to process each of the historical events fi rst,
followed by the current Motion Event values, as shown in the following code snippet:

@Override
public boolean onTouchEvent(MotionEvent event) {

 int action = event.getAction();

 switch (action) {
 case (MotionEvent.ACTION_MOVE)
 {
 int historySize = event.getHistorySize();

44712c11.indd 39544712c11.indd 395 10/20/08 4:09:59 PM10/20/08 4:09:59 PM

396

Chapter 11: Advanced Android Development

 for (int i = 0; i < historySize; i++) {
 float x = event.getHistoricalX(i);
 float y = event.getHistoricalY(i);
 processMovement(x, y);
 }

 float x = event.getX();
 float y = event.getY();
 processMovement(x, y);

 return true;
 }
 }

 return super.onTouchEvent(event);
}

private void processMovement(float _x, float _y) {
 // Todo: Do something on movement.
}

Android includes two excellent examples of using the touch screen in the Fingerpaint and
Touch Paint API Demos.

Using the OnTouchListener
You can listen for touch events without subclassing an existing View by attaching an OnTouchListener
to any View object, using the setOnTouchListener method. The following code snippet demonstrates
how to assign a new OnTouchListener implementation to an existing View within an Activity:

myView.setOnTouchListener(new OnTouchListener() {

 public boolean onTouch(View _view, MotionEvent _event) {
 // TODO Respond to motion events
 return false;
 }

});

Using the Device Keys and Buttons (Including D-Pad)
Button and key-press events for all hardware keys are handled by the onKeyDown and onKeyUp han-
dlers of the active Activity or the focused view. This includes keyboard keys, D-pad, volume, back, dial,
and hang-up buttons. The only exception is the Home key, which is reserved to ensure that users can
never get locked within an application.

To have your View or Activity react to button presses, override the onKeyUp and onKeyDown event han-
dlers as shown in the following skeleton code:

@Override
public boolean onKeyDown(int _keyCode, KeyEvent _event) {
 // Perform on key pressed handling, return true if handled

44712c11.indd 39644712c11.indd 396 10/20/08 4:09:59 PM10/20/08 4:09:59 PM

397

Chapter 11: Advanced Android Development

 return false
}

@Override
public boolean onKeyUp(int _keyCode, KeyEvent _event) {
 // Perform on key released handling, return true if handled
 return false;
}

The keyCode parameter contains the value of the key being pressed; compare it to the static key code
values available from the KeyEvent class to perform key-specifi c processing.

The KeyEvent parameter also includes the isAltPressed, isShiftPressed, and isSymPressed
methods to determine if the function, shift, and symbol metakeys are also being held. The static
isModifierKey method accepts the keyCode and determines if this key event was triggered by the
user pressing one of these modifi er keys.

Using the OnKeyListener
To respond to key presses within Views in your Activity, implement an OnKeyListener, and assign it
to a View using the setOnKeyListener method. Rather than implementing a separate method for key-
press and key-release events, the OnKeyListener uses a single onKey event, as shown below:

myView.setOnKeyListener(new OnKeyListener() {

 public boolean onKey(View v, int keyCode, KeyEvent event)
 {
 // TODO Process key press event, return true if handled
 return false;
 }
});

Use the keyCode parameter to fi nd the key pressed. The KeyEvent parameter is used to determine if
the key has been pressed or released, where ACTION_DOWN represents a key press, and ACTION_UP sig-
nals its release.

Using the Trackball
Many mobile devices offer a trackball as a useful alternative (or addition) to the touch screen and
D-pad. Trackball events are handled by overriding the onTrackballEvent method in your View or
Activity.

Like touch events, trackball movement is included in a MotionEvent parameter. In this case, the
MotionEvent contains the relative movement of the trackball since the last trackball event, normalized
so that 1 represents the equivalent movement caused by the user pressing the D-pad key.

Vertical change can be obtained using the getY method, and horizontal scrolling is available through
the getX method, as shown in the following skeleton code:

@Override
public boolean onTrackballEvent(MotionEvent _event) {

44712c11.indd 39744712c11.indd 397 10/20/08 4:09:59 PM10/20/08 4:09:59 PM

398

Chapter 11: Advanced Android Development

 float vertical = _event.getY();
 float horizontal = _event.getX();

 // TODO: Process trackball movement.

 return false;
}

Summary
This fi nal chapter has served as a catch-all for some of the more complex Android features that were
glossed over in earlier chapters.

You learned more about Android’s security mechanisms, in particular, examining the permissions
mechanism used to control access to Content Providers, Services, Activities, Intent Receivers, and
broadcast Intents.

You explored the possibilities of interprocess communication using the Android Interface Defi nition
Language to create rich interfaces between application components.

Much of the last part of the chapter focused on the Canvas class, as some of the more complex features
available in the 2D drawing library were exposed. This included an examination of the drawing primi-
tives available and a closer look at the possibilities of the Paint class.

You learned to use transparency and create gradient Shaders before looking at Mask Filters, Color Filters,
and Path Effects. You also learned how to use hardware acceleration on 2D canvas-based Views, as well
as some Canvas drawing best-practice techniques.

You were then introduced to the SurfaceView — a graphical control that lets you render graphics onto
a surface from a background thread. This led to an introduction of rendering 3D graphics using the
OpenGL ES framework and using the Surface View to provide live camera previews.

Finally, you learned the details for providing interactivity within your Activities and View by listening
for and interpreting touch screen, track ball, and key press events.

In particular, you learned:

Some of the possibilities of using the Internet as a data source, or processing middle tier, to keep ❑

your applications lightweight and information-rich.

How to animate Views and ViewGroups using tweened animations. ❑

How to create frame-by-frame animations. ❑

Which drawing primitives you can use to draw on a canvas. ❑

How to get the most out of the ❑ Paint object using translucency, Shaders, Mask Filters, Color
Filters, and Path Effects.

Some of the best-practice techniques for drawing on the canvas. ❑

That you can apply hardware acceleration to 2D graphics drawing. ❑

44712c11.indd 39844712c11.indd 398 10/20/08 4:09:59 PM10/20/08 4:09:59 PM

Index

SYMBOLS AND
NUMBERS
@ (at), 61
| (pipe), 65
- (hyphen), 63
2D (two-dimensional) graphics

of Android, 8
hardware acceleration for, 380

3D (three-dimensional) graphics
of Android, 8
with SurfaceView , 392–393

9 (nine) patches, 381

A
AAPT (Android Asset Packaging

Tool), 42
AbsoluteLayout class, 79
acceleration, 324
accelerometers

Android features, 6
animating sliding user interface

example, 370
constants, 322
creating Speedometer, 326–329
defi ned, 323
using, 324–325

access. See also security
Content Provider, 189
exposing data source, 195–197
fi les in Content Providers, 192
hardware. See hardware APIs
Location Manager, 213
permission tags, 48
phone properties, 338
retrieving Shared Preferences,

161–162
scanning for Wi-Fi hotspots, 349

accuracy
fi nding Location Providers based on,

212–213
Sensor Manager, 321–322

actions
anonymous, 130–132
making phone calls, 334
monitoring Wi-Fi connectivity, 348
native Activity, 120–121
native broadcast, 135–136
passing responsibility, 124
strings, 132–133
tag, 121
transmitting data messages, 290

active connections, 346–347
active lifetime, 72–73

active processes, 52
active state, 69
Activities

binding to background Services,
258–259

classes, 73
creating, 66–67
creating Compass and artifi cial

horizon, 330–333
creating earthquake viewer,

148–156
creating UIs with Views, 77–78
defi ned, 46, 76
Dialog-themed, 144
Emergency Responder, 297–314
environment considerations, 34
launching with Intents, 114–121
life-cycle, 68–73
map-based, 224–226
permissions, 355
runtime confi guration changes,

64–65
saving state, 162–165
sliding user interface example,

365–370
Speedometer, 326–329
“Where Am I?” example, 214–216

Activity base class, 27
Activity Manager, 35–36
Activity Menus. See also menus

adding to to-do list example,
107–112

Context Menus, 105–107
defi ned, 101–104

activity tags, 47
activityCreator, 42
ActivityGroup, 73
adapters

Bluetooth, 339–345
database, 177–179
introducing, 136–141
summary, 157

ADB (Android Debug Bridge), 42–43
adding Overlays, 234
adding rows, 182–183
address geocoding, 220–223
ADT (Android Developer Tool) plug-in,

21–24
advanced Android development. See

Android, advanced development
AIDL (Android Interface Defi nition

Language), 356–361
Alarms

automating Emergency Responder,
311–312

background Services, 273–274
updating earthquake example with,

274–276
AlertDialog class

creating earthquake viewer, 148–156
defi ned, 145–146

alerts
Notifi cations, 265–273
proximity, 219–220

alpha, 57–58
Amazon Web Services, 361
Android, 1–17

applications. See applications
background, 2–3
Content Providers, 192–194
database design considerations, 180
developing for, 9–11
development framework, 11–16
hardware APIs. See hardware APIs
menu system, 99–101
native applications, 4–5
OHA, 8–9
open platform for mobile

development, 4
overview, 1–2
running, 9
SDK features, 5–8
summary, 17
what it isn’t, 3

Android, advanced development,
353–398

animating layouts and View Groups,
370–372

animating sliding user interface
example, 365–370

animations, 361–365
Canvas drawing, 373–374
Canvas drawing, best practices,

380–381
compass face example, 381–389
hardware acceleration for 2D

graphics, 380
improving paint quality with anti-

aliasing, 379–380
interactive controls, 393–398
Internet Services, 361
IPC support with AIDL, 356–361
map Overlays, 389–390
overview, 353
painting, 374–379
security, 354–355
skinning applications with themes,

372–373
summary, 398
SurfaceView, 390–393

44712bindex.indd 39944712bindex.indd 399 10/20/08 11:54:49 PM10/20/08 11:54:49 PM

400

Android, getting started

Android, getting started, 19–44
application types, 29–30
creating fi rst activity, 24–29
developing for, 30–37
development tools, 42–43
overview, 19–20
summary, 44
to-do list example, 37–41
what you need to begin, 20–24

Android Asset Packaging Tool
(AAPT), 42

Android Debug Bridge (ADB), 42–43
Android Developer Tool (ADT) plug-in,

21–24
Android Dialog, 143–147
Android Interface Defi nition Language

(AIDL), 356–361
animations

advanced development, 361–365
animating layouts and View Groups,

370–372
animating sliding user interface

example, 365–370
Canvas drawing, best practices, 381
externalizing, 57–59
skinning applications with themes,

372–373
annotations. See Overlays
anonymous actions, 130–132
answering calls, 339
anti-aliasing, 379–380
APIs (Application Programming

Interfaces)
Android libraries, 15–16
hardware. See hardware APIs
SDK contents, 12

application layers
vs. Android, 3
decoupling with Content Providers,

189
in software stack, 14

application manifest, 134
Application Programming Interfaces

(APIs). See APIs (Application
Programming Interfaces)

Application Unresponsive dialog, 133
applications, 45–73

Activity classes, 73
Activity creation, 66–67
Activity life cycle, 68–73
application manifest, 46–49
architecture, 14–15
data storage, retrieval and sharing.

See data storage, retrieval and
sharing

defi ned, 46
externalizing resources, 52–59
life-cycle, 50–51
Manifest Editor, 49–50
overview, 45
priority and process states, 51–52
resources for different languages and

hardware, 63–64

running/debugging, 26–27
runtime confi guration changes, 64–65
skinning with themes, 372–373
summary, 73
to-do list example, 37–41
to-do list resources example, 62–63
types, 44
using resources, 59–62

applying tweened animations, 364
arc drawing, 374
Array List of Strings, 300
ArrayAdapter

creating earthquake viewer, 152
defi ned, 136–141
Emergency Responder example,

300–301
setting preferences, 168–169

artifi cial horizons
creating, 330–333
updating compass example, 385

at (@), 61
attributes

application manifest, 47–49
Intent Filter, 121–122
managing with Manifest Editor, 50
referencing resources, 61
runtime confi guration changes, 65

audio alert Notifi cations, 270–271
audio recording, 317–319
authority, Content Provider, 190, 197
auto-retry functionality, 304–306

B
background animations, 372
background processes, 52
background Services, 249–277

Alarms, 273–274
of Android, 6–7
binding Activities to, 258–259
creating and controlling, 250–252
defi ned, 29–30
earthquake monitoring service

example, 252–258
environment considerations, 34
notifi cations, 265–273
overview, 249–250
summary, 276–277
toasts, 262–264
unique Android features, 10
updating earthquake example with

Alarms, 274–276
worker threads, 259–262

bandwidth, 142
base classes, 27
binding

Activities to Services, 258–259
adapters, 136–141
exposing IPC interface, 360–361
to GTalk Service, 281–282

bitmaps
Bitmap object, 373
Canvas drawing, best practices, 381
externalizing, 56

black theme, 373
blocking contacts, 285
Bluetooth, 339–345
blurring Paint, 377–378
bonding Bluetooth devices, 341–342
Broadcast Intents

communicating with Services, 259
defi ned, 132–136
enforcing permissions, 355
instant messaging, 280
listening for SMS messages, 294–296
P2P communication, 289–291

Broadcast Receivers
Alarms and, 273
automating Emergency Responder, 311
defi ned, 46
Emergency Responder example,

301–302, 305–306
listening for broadcasts with, 133–135
listening for SMS messages, 295–296
monitoring network connectivity,

346–347
OTA Intents, 289–291
permissions, 355
receiver tags, 48
summary, 157
tracking SMS messages, 292–294

Browser Content Provider, 192
button interaction, 396–397

C
caching

Internet resources, 142
mobile device storage, 31

callbacks, 320–321
CallLog Content Provider, 192
calls, phone

Android telephony, 333–339
using Bluetooth, 339–345

cameras
Android features, 6
using, 319–321

canceling Alarms, 274
Canvas drawing

Android, advanced development,
373–374

best practice, 380–381
compass face example, 381–389
controls, 89–90
hardware acceleration for 2D graphics,

380
improving paint quality with

anti-aliasing, 379–380
map Overlays, 389–390
painting, 374–379
SurfaceView , 390–392

categories, Intent, 121
cell location, 336
Chat Listeners

defi ned, 281
managing group chats, 288–289
receiving text messages, 287

chat rooms, 287–288

44712bindex.indd 40044712bindex.indd 400 10/20/08 11:54:49 PM10/20/08 11:54:49 PM

401

data storage, retrieval and sharing

Chat Sessions, 281, 286–289
checkboxes

menu items, 102–103
preferences, 168–169

child threads, 259–262
circle drawing, 374
CLAMP, 377
classes

Activity, 73
animating layouts and View Groups,

370
Animation, 362–364
BluetoothDevice, 339–345
CAMERA, 319–321
Canvas. See Canvas drawing
Content Providers, 192–193
Cursor, 176–177
Dialog, 144–147
extending Activity, 66–67
layout, 79
Linkify, 116–117
map, 224
Overlay. See Overlays
passing custom objects, 356–358
Phone, 338–339
Service. See Services
Vibrator, 350–351
View and SurfaceView, 88

clear text functionality, 86–87
click handling. See Overlays
click listeners

contact example, 127–128
menu items, 103

coarse permissions, 213–214
code

registering Broadcast Receivers in,
134–135

using resources in, 59–60
ColorFilters, 378
colors

creating simple values, 55
updating compass example, 382–384
using translucency, 375

column defi nitions, 176
communication

Bluetooth, 342–344
interapplication, 7
P2P communication. See P2P

(peer-to-peer) communication
compasses

Canvas drawing example, 381–389
Compass View example, 93–98
creating, 330–333
defi ned, 323
determining orientation, 329–330
orientation sensors, 329–330

components, application, 46–49
compound controls, 85–87
condensed titles, 103
confi gurations, Wi-Fi, 350
confi rmation of SMS delivery, 292–294
connectivity

Bluetooth, 339–345

GTalk Connections, 281, 282–286
Internet resources, 141–143
mobile device limitations, 32–33
monitoring mobile data, 337–338
network and Wi-Fi, 345–350

consistency
externalizing strings to maintain, 54
with themes, 372–373

contacts
Content Provider, 192–194
example, 124–129
roster, 283–286

Content Providers
contact roster, 283–286
creating earthquake, 197–205
creating new, 194–197
defi ned, 7, 46, 160
introducing, 189–192
Media Store, 318
native, 192–194
permissions, 355
provider tags, 48
updating with Services, 256–258

Content Resolvers
creating new Content Provider, 195
defi ned, 190
using earthquake Content Provider,

203–204
Content Values, 176–177
ContentSlider Activity, 365–370
Context Menus

defi ned, 105–107
to-do list example, 107–112

Controller, Map, 227–228
controls

Android widgets, 78–79
background Services, 250–252
Bluetooth, 340
creating compound, 85–87
creating custom, 88
device vibration, 350–351
interactive, 393–398
Map View, 224–226
phone, 338–339
specialist Dialog boxes, 146
SurfaceView , 390–393
using custom, 98–99
Views. See Views

costs
fi nding Location Providers based on,

212–213
mobile device limitations, 33

Criteria
fi nding Location Providers based on,

212–213
updating location example, 217–218

current themes, 62
Cursors

binding Views to, 136, 141
Content Values and, 176–177
extracting results, 181–182
querying Content Providers, 190
querying databases, 181

custom actions, 290
custom class objects, 356–358
custom controls

Compass View example, 93–98
creating, 88
using, 98–99

custom link strings, 116–117
custom Toasts, 263–264

D
Dalvik, 11–12
Dalvik Debug Monitoring Service

(DDMS)
ADT features, 22
defi ned, 42–43

Dalvik Virtual Machine (VM), 14
data

AIDL support types, 356
binding, 136–141
monitoring connectivity, 337–338
tags, 122
transmitting with Bluetooth, 343–344

data messaging
with Google Talk, 8
handling SMS, 296–297
sending and receiving, 289–291
sending SMS, 294

data sources
Content Providers as, 189
exposing access to, 195–197
playing media, 316–317

data storage, retrieval and sharing,
159–206

Content Providers, 189–192
Content Providers, creating

earthquake, 197–205
Content Providers, creating new,

194–197
Cursors and content values, 176–177
database design considerations, 180
database querying, 181
databases, 175
databases, working with, 177–179
developing for mobile devices, 31
extracting Cursor results, 181–182
native Content Providers, 192–194
overview, 159–160
preferences, creating and saving, 161
preferences, creating for earthquake

viewer, 165–174
retrieving Shared Preferences,

161–162
rows, adding/updating/removing,

182–183
saving Activity state, 162–165
saving and loading fi les, 174–175
saving application data, 160–161
saving techniques, 160
saving to-do list example, 183–189
SQLite, 7, 176
SQLiteOpenHelper, 179–180
summary, 205–206

44712bindex.indd 40144712bindex.indd 401 10/20/08 11:54:50 PM10/20/08 11:54:50 PM

402

databases

databases
creating earthquake Content Provider,

199–200
Cursors and Content Values, 176–177
design considerations, 180
extracting Cursor results, 181–182
introducing, 175
querying, 181
rows, adding/updating/removing,

182–183
saving to-do list example, 183–189
SQLite, 176
SQLiteOpenHelper, 179–180
working with, 177–179

DatePickerDialog, 146
DDMS (Dalvik Debug Monitoring

Service)
ADT features, 22
defi ned, 42–43

debugging
ADT features, 22
Android applications, 26–27
launch confi gurations, 25–26
SDK tools, 42–43
simulating SMS messages, 296
to-do list example, 38

declaring permissions, 355
defi nitions, AIDL, 358–359
deleteFile, 175
deleting

Content Providers, 191
creating earthquake Content Provider,

201–203
rows, 183

delivery, SMS message, 292–294, 305
design

database considerations, 180
hardware-imposed considerations,

30–31
UI, 76

development
advanced Android. See Android,

advanced development
for Android, 9–11, 30–37
Android as open platform for mobile, 4
Android framework, 11–16
tools, 42–43

device vibration control, 350–351
dialers, 333–334
Dialog boxes

creating earthquake viewer, 154–156
introducing, 143–147
toasts, 262–264
using background worker threads,

259–262
digital cameras

Android features, 6
using, 319–321

dimensions
creating simple values, 55
determining orientation, 329–330

direction monitoring, 323
discovering Bluetooth devices,

340–341

dismissing calls, 339
documentation, SDK, 12
downloading what you need to begin,

20–24
D-pad

interactive controls, 396–397
wiring up, 369–370

drawables
externalizing, 56
frame-by-frame animations, 59, 372

drawing
Canvas. See Canvas drawing
controls, 89–90
current location, 235–236
customizing to-do list, 84–85
on Overlay Canvas, 233

dx, 42

E
earthquake example

adding Notifi cations, 267–270
creating Content Providers, 197–205
creating preference page for, 165–174
creating viewer, 148–156
IPC support with AIDL, 356–361
mapping, 242–247
monitoring service example, 252–258
updating with alarms, 274–276

Eclipse IDE (integrated development
environment)

ADT plug-in, 21–24
developing with, 21
getting started, 19
SDK and, 12

editors, 161
effi ciency, 31, 35
element access, 28–29
embossing Paint, 377–378
Emergency Responder example

automating, 306–314
creating SMS application, 297–306
creating Speedometer, 326–329

empty processes, 52
Emulators

ADT features, 22
audio playback, 317
defi ned, 42–43
Emergency Responder testing, 306
mobile device limitations, 32–33
recording media, 318
SDK contents, 12
setting up with Test Providers,

208–211
SMS messages, 296
vibrating Notifi cations, 271

ending calls, 339
enforcing permissions, 355
environment considerations, 33–34
event broadcasting, 132–136
event handlers

Context Menu selections, 106–107
Dialog boxes, 146–147
interactive controls, 393–398

map taps, 234
menu item selections, 104
MenuItemClickListener, 103
modifying existing Views, 81–82
monitoring state changes, 69–71
phone state, 335
saving and restoring instance states,

162–163
saving application data, 160–161
Shared Preferences, 170
sub-Activity results, 119–120
user interaction, 92–93

events, system
broadcasting with Intents, 114
native broadcast actions, 135–136

ExpandableListActivity, 73
expanded menu, 100–101
explicit Intents

defi ned, 114
starting new Activities, 115

exposing IPC interface, 358–359
extensibility

using Intent Filters for, 130–132
using SQLiteOpenHelper, 179–180

eXtensible Markup Language (XML)
layouts, 79–80

eXtensible Markup Language (XML)
resources

Android project, 28
using, 59–62

Extensible Messaging and Presence
Protocol (XMPP), 7

externalizing resources, 52–59
extras

defi ned, 133
transmitting data messages, 290

F
feedback with vibration, 350–351
fi leList, 175
fi les

accessing in Content Providers, 192
database design considerations, 180
loading and saving, 174–175
media APIs, 316–319
saving data, 160

FILL, 374
fi lters

Intent. See Intent Filters
Mask and Color, 377–378
Match and Transform, 117

fi ne permissions, 213–214
fi nger input, 393–396
fl ashing light Notifi cations, 272
fontscale, 65
foreground Activities

defi ned, 29–30
environment considerations, 34

format support, 316
Forward Geocoding, 220–222
frame-by-frame animations

creating and using, 372
defi ned, 362
externalizing, 57, 59

44712bindex.indd 40244712bindex.indd 402 10/20/08 11:54:50 PM10/20/08 11:54:50 PM

403

interactive controls

FrameLayout class, 79
Fry, Stephen, 75
full Activity lifetime, 71–72
functions

Cursor class, 176–177
geocoding, 220–223

future of Android, 3

G
gData Services, 361
geocoding, 6, 220–223
global positioning services (GPS).

See also LBS (location-based
Services)

Android features, 6
“Where Am I?” example, 214–216

Google
Android and, 3
Internet Services, 361

Google Maps
in Android, 6
map-based Activities, 224–226
unique Android features, 10

Google Talk. See GTalk Service
GPS (global positioning services). See

also LBS (location-based Services)
Android features, 6
“Where Am I?” example, 214–216

GPX (GPS Exchange Format), 209
gradient Shaders, 376–377
graphical user interfaces (GUIs)

creating Speedometer, 328
synchronizing threads for, 260–261

graphics
Android, 8
controls, 32
hardware acceleration for 2D, 380
with SurfaceView , 392–393

gravity and acceleration, 324
group chats

GTalk Service, 281
managing, 287–289

Groups, View. See View Groups
GTalk Connections

defi ned, 281
GTalk Service, 282–286

GTalk Service, 7–8
binding to, 281–282
Chat Sessions, 286–289
GTalk Connections, 282–286
introducing, 280
sending and receiving data messages,

289–291
using, 280–281

GUIs (graphical user interfaces)
creating Speedometer, 328
synchronizing threads for, 260–261

H
handling events. See event handlers
handsets, 9

haptic feedback, 350–351
hardware

acceleration for 2D graphics, 380
Android features, 6
Android security, 36
imposed design considerations,

30–31
resources for different, 63–64
runtime confi guration changes, 64–65

hardware APIs, 315–351
accelerometers, 324–325
accelerometers and compasses, 323
Bluetooth, 339–345
cameras, 319–321
creating compass and artifi cial

horizon, 330–333
creating Speedometer, 326–329
device vibration control, 350–351
media APIs, 316–319
network and Wi-Fi connections,

345–350
orientation sensors, 329–330
overview, 315
Sensor Manager, 321–323
summary, 351
telephony, 333–339

heading
adding to Compass View, 332
compass face example, 388
orientation sensors, 329

headsets, Bluetooth, 344–345
Hello World template, 27–29
helper classes

creating for SQLite, 177–179
using SQLiteOpenHelper, 179–180

history of Android, 2–3
horizons, artifi cial

creating, 330–333
updating compass example, 385

hotspots, 349
hyperlinks

adding to earthquake viewer, 156
creating with Linkify, 116–117

hyphen (-), 63

I
icons

creating Notifi cations, 266–267
menu, 99–100
menu items, 103
resources, 62–63

IDE (integrated development
environment), Eclipse. See
Eclipse IDE (integrated
development environment)

identifi ers
dimension, 55
menu items, 102–104
URIs. See URIs (Uniform Resource

Identifi ers)
idle phones, 336
IM (instant messaging), 7–8

binding to GTalk Service, 281–282

Chat Sessions, 286–289
GTalk Service, 280–281
sending and receiving data messages,

289–291
starting sessions, 282–286

images
creating, 62
externalizing, 56
taking pictures, 320–321

implicit Intents
defi ned, 114
late runtime binding and, 115
servicing with Intent Filters, 121–129

inactive state, 69
infl ating layouts, 86
input

Android security, 36
defi ning sources, 318
touch screen, 393–396

inserting
creating earthquake Content Provider,

201–203
methods, 191
rows, 182

insistent Notifi cations, 272–273
instances

binding Activities to Services,
258–259

creating, 60
getting provider, 212
saving and restoring state, 162–163

instant messaging (IM). See IM
(instant messaging)

instrumentation classes, 48–49
integrated development environment

(IDE), Eclipse. See Eclipse
IDE (integrated development
environment)

Intent Filters
listening for SMS messages, 296
populating Context Menus, 106
servicing implicit Intents with,

121–129
using for plug-ins and extensibility,

130–132
Intents

broadcasting events, 132–136
broadcasting OTA, 289–291
broadcasting with Services, 256
communicating with Services, 259
creating Activity, 67
defi ned, 7, 46
enforcing permissions, 355
instant messaging, 280
making phone calls, 334
menu items, 104
monitoring Wi-Fi connectivity, 348
proximity alerts, 219–220
servicing implicit, 121–129
summary, 157
using Alarms to fi re, 273–274
using to launch Activities, 114–121

interactive controls, 393–398

44712bindex.indd 40344712bindex.indd 403 10/20/08 11:54:50 PM10/20/08 11:54:50 PM

404

interapplication communication

interapplication communication, 7
interfaces

APIs. See APIs (Application
Programming Interfaces)

GTalk Service, 280–281
implementing AIDL, 356–361
user. See UIs (user interfaces)

intermittent Activities, 29–30
Internet

monitoring connectivity, 345–346
services, 361

Internet resources
creating earthquake viewer, 153
introducing, 141–143
summary, 157

interprocess communication (IPC)
support with AIDL, 356–361
uniqueness of Android, 11

Invitation Listener, 288
IPC (interprocess communication)

support with AIDL, 356–361
uniqueness of Android, 11

iPhone, 3
ItemizedOverlays, 224, 239–240

J
Java, 20
Java IDE (integrated development

environment), 21
Java ME, 3
Java MIDlets, 2–3
JDK (Java Development Kit)

downloading, 20
getting started, 19

K
keyboardHidden, 65
keys

interactive controls, 396–397
shortcut, 103

KML (Keyhole Markup Language), 209

L
languages

resources for different, 63–64
runtime confi guration changes, 64–65

latency, 32–33
lateral sensor changes, 325
latitude

extracting, 215–216
geocoding, 220–223
MapController, 227

launch confi gurations, 25–26
Layout Managers, 79
layouts

animating, 370–372
compound controls, 86
creating Activity, 66–67
creating Activity UIs, 77–78
creating UIs, 79–80
externalizing resources with, 52, 57
Map Views, 225–226

referencing resources, 61
using adapters, 136–141
using custom controls, 98–99

LBS (location-based Services),
207–247

in Android, 6
creating map-based Activity, 224–226
fi nding location, 213–219
Geocoder, 220–223
ItemizedOverlays/OverlayItems,

239–240
Map Controller, 227–228
Map Views, 226–227
mapping earthquakes example,

242–247
mapping “Where Am I?”, 228–231
maps-based Activities, 224
My Location Overlay, 239
Overlays, 231–238
overview, 207–208
pinning Views to maps, 240–242
proximity alerts, 219–220
selecting Location Provider, 212–213
setting up Emulator with Test

Providers, 208–211
summary, 247

LED (light-emitting diode)
Notifi cations, 272

leverage, 143
libraries

Android APIs, 15–16
Android media support, 8
GTalk Service, 280–281
software stack, 12–13
SQLite, 176

life-cycles
Activities, 68–73
application, 50–51

light Notifi cations, 272
light sensors, 322
light theme, 373
light-emitting diode (LED)

Notifi cations, 272
line drawing, 374
LinearLayout, 57, 79
Linkify class, 116–117
Linux Kernel

security, 354
software stack, 12–13

Linux Phone Standards Forum (LiPS), 3
LiPS (Linux Phone Standards Forum), 3
ListActivity, 73
listeners

adding to Compass View, 333
animation, 364–365
Animation, 371
Bluetooth, 343
Chat. See Chat Listeners
click, 103, 127–128
creating Speedometer, 327
Location, 216–217
monitoring acceleration, 325
monitoring network connectivity,

346–347

OnKeyListener, 397
OnTouchListener, 396
orientation sensors, 330
phone state, 335–339
Sensor Manager, 321–322
SMS messages, 294–297

live video, 320
loading fi les, 174–175
Locale

geocoding, 221–222
locale, 65

location
runtime confi guration changes, 64–65
tracking cell, 336

Location Manager, 208
Location Providers

defi ned, 208
managing Test, 209–211
selecting, 212–213

location-based Services (LBS). See
LBS (location-based services);
LBS (location-based Services)

longitude
extracting, 215–216
geocoding, 220–223
MapController, 227
sensor changes, 325

M
magnetic fi eld sensor, 322
magnitude fi lter, 167, 172–173
Managers

Activity, 35–36
Layout, 79
Location, 208
Notifi cation, 266
Sensor. See Sensor Manager
Telephony, 334–339
Wi-Fi, 347–350
Window, 35–36

Manifest Editor, 49–50
Map Views

confi guring and using, 226–227
defi ned, 224
Overlays. See Overlays

MapActivity, 73, 224
MapController

defi ned, 224
using, 227–228

maps
based Activities, 224
creating Activity, 224–226
earthquakes example, 242–247
geocoding, 220–223
ItemizedOverlays/OverlayItems,

239–240
Map Controller, 227–228
Map Views, 226–227
My Location Overlay, 239
Overlays, 231–238
pinning Views to, 240–242
“Where Am I?”, 228–231

44712bindex.indd 40444712bindex.indd 404 10/20/08 11:54:50 PM10/20/08 11:54:50 PM

405

Parcels

markers
creating with Overlays, 239–240
pinning Views to maps, 240–242

MaskFilters, 377–378
Match Filter, 117
matching URIs, 195, 200
measuring Views, 90–92
media

Android support, 8
APIs, 316–319

Media Player, 316–317
Media Store Content Provider

defi ned, 193
recording media, 318

memory
optimization and management, 8
speed and effi ciency, 35

MenuItemClickListener, 103
menus

Activity, 101–104
adding preferences, 171
Android, 99–101
creating earthquake viewer, 153–154
dynamic updating and handling

selections, 104
mapping earthquakes example,

243–244
populating with Intent Filters,

130–132
submenus and context menus,

105–107
to-do list example, 107–112

mesh drawing, 374
messaging

instant. See IM (instant messaging)
with Intents. See Intents
P2P communication. See P2P

(peer-to-peer) communication
SMS. See SMS (short messaging

service)
Toasts, 262–264

metadata, 47–49
methods

Activity lifetimes, 71–73
adding hyperlinks, 116–117
adding menus to to-do list example,

107–112
advanced development. See Android,

advanced development
background Services. See background

Services
broadcasting with Intents, 132–136
creating earthquake viewer, 148–156
creating new visual interface, 88–92
creating submenus and Context

Menus, 105–107
data storage, retrieval and sharing. See

data storage, retrieval and sharing
defi ning Activity menus, 101–104
Dialog class, 144–147
hardware. See hardware APIs
of location-based Services. See LBS

(location-based Services)
modifying existing Views, 81–82

P2P communication. See P2P
(peer-to-peer) communication

returning results from Activities,
117–120

runtime confi guration changes, 65
understanding Hello World, 27–29
using resources in code, 60

MIDlets, 2–3
MIRROR, 377
MkSDCard, 42
mobile development, 4
mobile devices, 30–37
mobile phone handsets, 3
mobile phones, 1–2
mode values, 91
monitoring phone calls, 335–336
monitoring SMS messages, 294
movement, tracking. See tracking

movement
multimedia

APIs, 316–319
Media Store Content Provider, 193

MyLocationOverlay, 224, 239
MyView, 67

N
name/value pair (NVP) mechanism, 160
native actions

Activity, 120–121
broadcast, 135–136

native applications
of Android, 4–5
Internet resources, 141–143
uniqueness of Android, 11

native Content Providers, 192–194
native Internet resources, 142
native link types, 116
navigation

confi guration changes, 65
menu, 99–101

nested submenus, 105
network connections. See also

connectivity
Internet resources, 142–143
managing, 345–350
mobile device limitations, 32–33

Network Providers, 212
networks, phone, 338
Nine Patches, 381
NinePatch (stretchable PNG) images,

56
Notifi cation Manager, 266
notifi cations

background Services, 265–273
defi ned, 7, 46
Sensor Manager, 322

NVP (name/value pair) mechanism, 160

O
objects

binding Views to arrays, 136–141
creating static, 381

Cursors and Content Values, 176–177
drawing, 374
passing custom class, 356–358

off the hook phones, 336
OHA (Open Handset Alliance), 8–9
OMA (Open Mobile Alliance), 3
ongoing Notifi cations, 272–273
OnKeyListener, 397
online support, 12
OnTouchListener, 396
opacity, 375
Open Handset Alliance (OHA), 8–9
Open Mobile Alliance (OMA), 3
open platforms, 4
opening databases, 179–180
opening socket connections, 342–343
orientation, 65
orientation sensors

accelerometers and compasses, 323
adding to Compass View, 330–332
constants, 322
defi ned, 329–330

OTA (over the air), 289
outgoing phone calls, 335–336
output sources, 318
oval drawing, 374
over the air (OTA), 289
OverlayItems, 224, 239–240
Overlays

bringing to life, 389–390
defi ned, 231–238
ItemizedOverlays/OverlayItems,

239–240
map, 224
mapping earthquakes example, 246
My Location Overlay, 239

P
P2P (peer-to-peer) communication,

279–314
automating SMS Emergency

Responder, 306–314
binding to GTalk Service, 281–282
Chat Sessions, 286–289
GTalk Connections, 282–286
GTalk Service, 280–281
instant messaging, 280
overview, 279
sending and receiving data messages,

289–291
Services, 7–8, 11
SMS, 291–297
SMS Emergency Responder example,

297–306
summary, 314

Paint, 373
painting

Canvas drawing, 374–379
improving quality with anti-aliasing,

379–380
pairing Bluetooth devices, 341–342
panning, 227–228
Parcels, 356–358

44712bindex.indd 40544712bindex.indd 405 10/20/08 11:54:50 PM10/20/08 11:54:50 PM

406

passing custom class objects

passing custom class objects, 356–358
passing responsibility, 124
patches, nine, 381
path drawing, 374
PathEffects, 378–379
paused state, 69
peer-to-peer (P2P) communication. See

P2P (peer-to-peer) communication
Pending Intents, 292–293
permissions

adding to Emergency Responder, 298
advanced development, 354–355
CAMERA, 319
Content Providers, 189
creating earthquake viewer, 150
developing for Android, 36
listening for SMS messages, 295
Location Manager access, 213–214
maps, 225
permission tags, 48
sending SMS messages, 292
VIBRATE, 350

persistence techniques, data. See data
storage, retrieval and sharing

phones
Android telephony, 333–339
smartphones, 10
using Bluetooth, 339–345

picture taking, 320–321
pinning Views to maps, 240–242
pipe (|), 65
Pipes, 361
pitch

adding to Compass View, 330–332
compass face example, 385–386
orientation sensors, 329

platforms, Android support, 20
playback in Android, 316–317
plug-ins

ADT, 21–24
using Intent Filters for, 130–132

politeness, 34
“pop-in” animations, 370–371
power effi ciency

defi ned, 31
fi nding Location Providers based on,

212–213
preferences

automating Emergency Responder,
308–310

confi guring network, 346
creating and saving, 161
creating for earthquake viewer,

165–174
defi ned, 159–160
retrieving Shared Preferences,

161–162
presence

defi ned, 283–286
notifi cation, 8

presentation layer
decoupling with layouts, 57
using layouts in, 79–80

previews, camera, 320
primitives, drawing, 374
priority and process states, 51–52
private databases, 183–189
private Shared Preferences, 162
process management, 8
process states, 51–52
processor speed, 31
ProgressDialog, 146
Projections, 232–233
properties, phone, 338
provider tags, 48
Providers, Content. See Content

Providers
Providers, Location. See Location

Providers
proximity alerts, 219–220
proximity sensor, 322

Q
qualifi ers, 64
querying

Content Providers, 190
creating earthquake Content Provider,

201
Cursors and Content Values, 176–177
databases, 181
exposing, 195–197

R
R class fi le

defi ned, 53
using resources in code, 59–60

radio buttons, 102–103
radiofrequency communications

(RFCOMM), 342–344
raw fi les, 174–175, 270–271
Read Only fi le resources, 174–175
receiver tags, 48
receiving messages

data, 289–291
text, 287

recording media, 317–319
rectangle drawing, 374
referencing resources, 61
refreshing earthquake viewer, 150
registration

Broadcast Receiver, 134–135
Content Provider, 197
listener, 335
Wi-Fi confi gurations, 350

relational database management
system (RDBMS), 176. See also
SQLite

RelativeLayout class, 79
remote devices, 339–345
removing

contacts, 285
Overlays, 234
rows, 182–183

REPEAT, 377

repeating animations, 364
requirements, Location Providers,

212–213
resolution, Intent, 123
Resolvers, Content. See Content

Resolvers
resources

Android project, 28
for different languages and hardware,

63–64
externalizing, 52–59
fi les as, 174–175
Internet, 141–143
playing media, 316–317
to-do list example, 62–63
using application, 59–62

responding to SMS messages
automating, 306–314
Emergency Responder example,

302–303
responsibility, passing, 124
responsiveness, 34–36
restarting behavior, 64–65
results

extracting from Cursors, 181–182
returning from Activities, 117–120

retrieval. See data storage, retrieval
and sharing

returning results, 117–120
Reverse Geocoding, 220–221
RFCOMM (radiofrequency

communications), 342–344
rich UIs (user interfaces). See UIs (user

interfaces), building rich
ringing

audio alert Notifi cations, 270–271
monitoring phones, 336

roaming, 337
roll

adding to Compass View, 330–332
compass face example, 385–387
orientation sensors, 329

roster, contact, 283–286
Roster Listeners, 281, 284
rotation of tweened animations, 57–58,

362
rows

adding/updating/removing, 182–183
Cursors and Content Values, 176–177

running
Android, 9
Android applications, 26–27
to-do list example, 38

runtime
Activity life cycle, 68
Android application life cycle, 50
confi guration changes, 64–65
late binding and implicit Intents, 115
launch confi gurations, 25–26
resolving Intent Filters, 123
software stack, 13–14

44712bindex.indd 40644712bindex.indd 406 10/20/08 11:54:50 PM10/20/08 11:54:50 PM

407

Symbian

S
S60, 3
sandboxing

data storage and retrieval with SQLite, 7
security, 354

saving
Activity state, 162–165
application data, 160–161
loading fi les and, 174–175
preferences, 161
techniques, 160

scale, 57–58
scanning for Wi-Fi hotspots, 349
screens

creating application using Activities.
See Activities

creating UIs. See UIs (user interfaces)
creating with layouts, 57
developing for size, 31–32
Dialog boxes, 144–147
sliding user interfaces, 368

SDK (software development kit)
contents, 12
features, 5–8
getting started, 19–20
layouts, 79

seamless user experience
Activity states, 69
developing for Android, 36

security
advanced development, 354–355
of Android, 36
Android telephony, 334
Google Talk and, 8
permission tags, 48

sending
data messages, 289–291
SMS messages, 292–294
text messages, 286–287

Sensor Manager
accelerometers. See accelerometers
compasses. See compasses
defi ned, 321–323

service tags, 47
Services

binding Activities to, 258–259
Bluetooth, 339–345
Camera, 319–321
creating and controlling, 250–252
defi ned, 46
earthquake example, 252–258
GTalk. See GTalk Service
Internet, 361
IPC support with AIDL, 356–361
location-based. See LBS

(location-based Services)
network and Wi-Fi, 345–350
permissions, 355
Sensor, 321–323
tracking telephony changes, 336–337

Sessions, Chat, 281, 286–289
Sessions, IM, 281, 282–286

set tags, 58
Settings Content Provider, 193
Shaders

compass face example, 382–383
defi ned, 375–377

shapes, drawing, 374
shared data. See also data storage,

retrieval and sharing
Android features, 7
uniqueness of Android, 11

Shared Preferences
adding to earthquake viewer, 165–174
creating and saving, 161
defi ned, 159–160
retrieving, 161–162
saving application data, 160–161

short messaging service (SMS). See
SMS (short messaging service)

shortcut keys, 103
simple values, 53–55
SimpleCursorAdapter, 136–141
simulating SMS messages, 296
sizing

controls, 90–92
SMS messages, 294
Views and Overlays, 381

skinning applications with themes,
372–373

sliding user interfaces, 365–370
smartphones, 10
SMS (short messaging service)

automating Emergency Responder,
306–314

defi ned, 291–297
Emergency Responder example,

297–306
socket connections, 342–343
software development kit (SDK). See

SDK (software development kit)
software stack, 12–15
sound Notifi cations, 270–271
specialist Dialog boxes, 146
speed

Android development, 35
determining with accelerometers. See

accelerometers
fi nding Location Providers based on,

212–213
mobile device limitations, 32–33

Speedometers, 326–329
Spinner controls

automating Emergency Responder,
308–309

preferences, 168–169
SQLite

Android features, 7
Cursors and Content Values, 176–177
design considerations, 180
extracting Cursor results, 181–182
introducing, 176
querying, 181
rows, adding/updating/removing,

182–183

saving data, 160
saving to-do list example, 183–189
SDK tools, 42
SQLiteOpenHelper, 179–180
working with, 177–179

SQLiteOpenHelper
creating earthquake Content Provider,

199–200
defi ned, 179–180

stacks
Activity, 68
Android software, 12–15

started service processes, 52
starting Services, 251–252
states

Activity, 68–71
data persistence techniques. See data

storage, retrieval and sharing
monitoring phone, 334–337
monitoring Wi-Fi connectivity, 348
priority and process, 51–52
saving Activity, 162–165

static fi les, 174–175
static objects, 381
status

accessing phone, 338
monitoring Wi-Fi connectivity, 348
native broadcast actions, 135–136

status bar icons
adding Notifi cations to earthquake,

267–270
Notifi cations, 265–266

stopped state, 69
stopping Services, 251–252
storage. See also data storage,

retrieval and sharing
developing for mobile devices, 31
with SQLite, 7

street address geocoding, 220–223
strings

action, 132–133
custom link, 116–117
externalizing, 54
extras, 290

STROKE, 374
structure

application manifest, 46–49
submenu, 105

styles
externalizing, 55–56
referencing resources, 61
referring to in current theme, 62

sub-Activities
contact example, 124–129
returning results from Activities,

117–120
submenus, 101, 105–107
subscription requests, 285
Surfaces, 320
SurfaceView

defi ned, 88
developing with, 390–393

Symbian, 2

44712bindex.indd 40744712bindex.indd 407 10/20/08 11:54:50 PM10/20/08 11:54:50 PM

408

synchronizing threads

synchronizing threads, 260–261
system events

broadcasting with Intents, 114
native broadcast actions, 135–136

system resources, 59–62

T
TableLayout class, 79
tables, 180
tags

animation, 58
application manifest, 47–49
Intent Filter, 121–122
uses-permission.

See uses-permission tags
taps, map, 234
target emulators, 294
telephony, 333–339
Telephony Manager, 334–339
temperature sensor, 322
termination behavior, 64–65
Test Providers, 208–211
testing

with Android Emulator, 42–43
Emergency Responder example, 306

text drawing, 374
text editors, 21
text messaging. See also SMS

(short messaging service)
Chat Sessions, 286–287
sending, 292

text resources
clearing functionality, 86–87
creating, 62–63

TextViews
creating hyperlinks in, 116–117
extending, 82–85

themes
creating new, 62–63
Dialog-themed Activities, 144
externalizing, 55–56
referring to styles in, 62
skinning applications with, 372–373

third-party applications, 11
threads, background, 259–262
three-dimensional graphics

of Android, 8
with SurfaceView , 392–393

TileModes, 377
TimePickerDialog, 146
T-Mobile G1, 9
toasts

creating, 262–264
defi ned, 144

To-Do list example
applications, 37–41
customizing with ArrayAdapter,

137–141
extending TextView, 82–85
menus, 107–112
resources, 62–63

saving, 163–165, 183–189
tools

Android widgets, 78–79
development, 42–43
SDK contents, 12

touchscreen, 65
touchscreens

interaction with Overlays, 389–390
interactive controls, 393–396
support, 32

Traceview, 42
trackball interaction, 397–398
tracking movement, 216–217

with accelerometers. See
accelerometers

cell location, 336
with compasses. See compasses
touch screens, 395–396

tracking service changes, 336–337
tracking SMS message delivery,

292–294, 305
transactions

creating earthquake Content
Provider, 201

exposing, 195–197
Transform Filter, 117
transforms, 381
transient Dialog boxes, 262–264
translate, 57–58
translucency

defi ned, 375
themes, 373

transmitting data
with Bluetooth, 343–344
messages, 290

transparency
animations, 362
themes, 373

triggers
Alarms, 273–274
Notifi cations, 267
proximity alerts, 219–220
Sensor Manager, 321–322

tweened animations
defi ned, 362–364
externalizing, 57–59

two-dimensional graphics
of Android, 8
hardware acceleration for, 380

U
UIQ, 3
UIs (user interfaces)

Activity menu, 101–104
Android menu system, 99–101
Compass View example, 93–98
compound controls, 85–87
creating resources for different

languages and hardware, 63–64
custom widgets and controls, 88
Dialog boxes, 144–147

functionality with Activities.
See Activities

fundamental design, 76
handling user interaction events,

92–93
layouts, 79–80
menus, dynamic updating and

handling selections, 104
new visual interface, 88–92
overview, 75–76
state persistence. See data storage,

retrieval and sharing
submenus and Context Menus,

105–107
summary, 112
to-do list example, 107–112
using custom controls, 98–99
Views, 76–79
Views, existing, 81–85
Views, new, 80–81

UIs (user interfaces), building rich
animating layouts and View Groups,

370–372
animating sliding example, 365–370
animations, 361–365
Canvas drawing, 373–374
Canvas drawing, best practices,

380–381
compass face example, 381–389
hardware acceleration for 2D graphics,

380
improving paint quality with anti-

aliasing, 379–380
interactive controls, 393–398
map Overlays, 389–390
painting, 374–379
skinning applications with themes,

372–373
SurfaceView, 390–393

UIs (user interfaces) layout
defi ned, 28–29
environment considerations, 34
externalizing resources with, 57
to-do list example, 39–40

updating
ADT plug-in, 24
Content Providers, 191
creating earthquake Content Provider,

201–203
current location Overlay, 237–238
dynamic menu, 104
earthquake example with Alarms,

274–276
earthquake example with Services,

255–258
location, 217–219
preferences, 166–167
rows, 182–183
Sensor Manager, 322–323
Test Providers, 211

upgrading databases, 179–180

44712bindex.indd 40844712bindex.indd 408 10/20/08 11:54:50 PM10/20/08 11:54:50 PM

409

zooming

URIs (Uniform Resource Identifi ers)
authority, 190
creating earthquake Content Provider,

199–200
matching, 195

user interfaces (UIs). See UIs
(user interfaces)

users
availability, 283
environment considerations, 33–34
handing interaction, 92–93
ID, 354
techniques for seamless

experience, 36
tracking movement, 216–217

uses-permission tags
accessing Internet resources, 142
advanced security, 354
defi ned, 48
GTalk Service, 280
Location Manager, 213–214

V
values, simple, 53–55
vector graphics, 90
velocity

creating Speedometer, 326–327
defi ned, 324

vertical sensor changes, 325
vibration

device control, 350–351
Notifi cations, 271

video
live with camera, 320
recording, 317–319

View class, 88
View Groups

animating, 370–372
compound controls, 85–87

defi ned, 66–67, 76
Layout Managers, 79

Views
adapters, 136–141
applying tweened animations, 364
Compass View example, 93–98
controls, 37–41
creating Activity, 66–67
creating Compass and artifi cial

horizon, 330–333
creating new, 80–81
creating new visual interface, 88–92
creating UIs, 76–79
defi ned, 27–29, 76
Map, 224, 226–227
modifying existing, 81–85
SurfaceView class, 390–393
tweened animations, 362

visible Activity lifetime, 72
visible processes

Activity states, 69
defi ned, 52

visual components, 27–29
visual interface

creating new, 88–92
creating UIs. See UIs (user interfaces)
Manifest Editor, 49–50

VM (Dalvik Virtual Machine), 14

W
waking up Alarms, 273–274
Web Services, 361
“Where Am I?” example

Activities, 214–216
annotating, 234–238
geocoding, 222–223
mapping, 228–231
updating location in, 217–219

widgets
Android toolbox, 78–79
Android-supplied adapters, 136
compound controls, 85–87
custom, 88
leveraging Internet resources, 143
modifying existing Views, 81–85
Views, 76–77

Wi-Fi connections, 345–350
Wi-Fi Manager, 347–350
Window Manager, 35–36
Windows Mobile, 3
worker threads, background

defi ned, 259–262
using Toasts in, 264

X
Xfermode, 379
XML (eXtensible Markup Language)

layouts, 79–80
XML (eXtensible Markup Language)

resources
Android project, 28
using, 59–62

XMPP (Extensible Messaging and
Presence Protocol), 7

Y
Yahoo! Pipes, 361

Z
zooming

in maps, 227–228
tweened animations, 362

44712bindex.indd 40944712bindex.indd 409 10/20/08 11:54:50 PM10/20/08 11:54:50 PM

44712badvert.indd 41044712badvert.indd 410 10/20/08 4:09:17 PM10/20/08 4:09:17 PM

Professional

Android™ Application Development

 Enhance Your Knowledge
Advance Your Career

Professional Android Application Development
978-0-470-34471-2
A hands-on guide to building mobile applications, this book
features concise and compelling examples that show you how
to quickly construct real-world mobile applications for Android
phones. Fully up-to-date for version 1.0 of the Android SDK, it
covers all the essential features, and explores the advanced
capabilities of Android.

Professional Java JDK 6 Edition
978-0-471-77710-6
Building upon Ivor Horton’s Beginning Java 2, this resource shows
you how to use the core features of the latest JDK as well as
powerful open source tools such as Ant, JUnit, and Hibernate. It
will arm you with a well-rounded understanding of the professional
Java development landscape.

Expert One-on-OneTM
J2EETM Development without EJBTM
978-0-7645-5831-3
This hands-on guide shows you alternatives to EJB that can be
used to create higher quality applications faster and at lower
cost, and demonstrates how to leverage practical techniques and
tools, including the popular open source Spring Framework and
Hibernate.

spine=.864"

Get more out of
WROX.com

Programmer to Programmer™

Interact
Take an active role online by participating in
our P2P forums

Wrox Online Library
Hundreds of our books are available online
through Books24x7.com

Wrox Blox
Download short informational pieces and
code to keep you up to date and out of
trouble!

Chapters on Demand
Purchase individual book chapters in pdf
format

Join the Community
Sign up for our free monthly newsletter at
newsletter.wrox.com

Browse
Ready for more Wrox? We have books and
e-books available on .NET, SQL Server, Java,
XML, Visual Basic, C#/ C++, and much more!

Contact Us.
 We always like to get feedback from our readers. Have a book idea?
Need community support? Let us know by e-mailing wrox-partnerwithus@wrox.com

Professional

Android™ Application Development

www.wrox.com

$44.99 USA
$48.99 CANADA

Wrox Professional guides are planned and written by working programmers to meet the real-world needs of programmers, developers,
and IT professionals. Focused and relevant, they address the issues technology professionals face every day. They provide examples,
practical solutions, and expert education in new technologies, all designed to help programmers do a better job.

Recommended
Computer Book

Categories

Programming Languages

Java

ISBN: 978-0-470-34471-2

Offering an open development environment, Android represents an exciting
new opportunity to write innovative applications for mobile devices. This book
provides you with a hands-on guide to building these applications using the
Android software development kit. It takes you through a series of sample
projects, each introducing new features and techniques to get the most out of
Android. You’ll learn all about the basic functionality as well as discover how to
utilize the advanced features with the help of concise and useful examples.

Beginning with an introduction to the Android software stack, the author
examines the philosophy behind creating robust, consistent, and appealing
applications for mobile phones. You’ll get the grounding and knowledge that is
needed to write customized mobile applications using the current Android 1.0
SDK. Plus, you’ll also gain the flexibility to quickly adapt to future enhancements
in order to build the most cutting-edge solutions.

What you will learn from this book
● Best practices for Android mobile development
● An introduction to Activities, Intents, the manifest, and resources
● How to create user interfaces with layouts and custom views
● Techniques to store and share your application data
● Instructions for creating map-based applications, using location-based

services including GPS, and geocoding locations
● How to create and use background Services and Notifications
● Working with the accelerometers, compass, and camera hardware
● All about phone and networking hardware such as telephony APIs, SMS, and

network management
● Advanced development topics, including security, IPC, and some advanced

graphics and user interface techniques

Who this book is for
This book is for anyone interested in creating applications for the Android mobile phone platform. It includes information that will be
valuable whether you’re an experienced mobile developer or just starting out writing mobile applications.

 Enhance Your Knowledge
Advance Your Career

A
ndroid

™ A
pplication D

evelopm
ent

Meier

Professional

subtitle

spine=.864"

Updates, source code, and Wrox technical support at www.wrox.com

Reto Meier

Wrox Programmer to Programmer TMWrox Programmer to Programmer TM

Professional

Android™
Application
Development

	Professional Android Application Development
	About the Author
	About the Tech Editor
	Credits
	Acknowledgments
	Contents
	Introduction
	Whom This Book Is For
	What This Book Covers
	How This Book Is Structured
	What You Need to Use This Book
	Conventions
	Source Code
	Errata
	p2p.wrox.com

	Chapter 1: Hello, Android
	A Little Background
	What It Isn’t
	An Open Platform for Mobile Development
	Native Android Applications
	Android SDK Features
	Introducing the Open Handset Alliance
	What Does Android Run On?
	Why Develop for Android?
	Introducing the Development Framework
	Summary

	Chapter 2: Getting Started
	Developing for Android
	Developing for Mobile Devices
	To-Do List Example
	Android Development Tools
	Summary

	Chapter 3: Creating Applications and Activities
	What Makes an Android Application?
	Introducing the Application Manifest
	Using the Manifest Editor
	The Android Application Life Cycle
	Understanding Application Priority and Process States
	Externalizing Resources
	A Closer Look at Android Activities
	Summary

	Chapter 4: Creating User Interfaces
	Fundamental Android UI Design
	Introducing Views
	Introducing Layouts
	Creating New Views
	Creating and Using Menus
	Summary

	Chapter 5: Intents, Broadcast Receivers, Adapters, and the Internet
	Introducing Intents
	Introducing Adapters
	Using Internet Resources
	Introducing Dialogs
	Creating an Earthquake Viewer
	Summary

	Chapter 6: Data Storage, Retrieval, and Sharing
	Android Techniques for Saving Data
	Saving Simple Application Data
	Saving and Loading Files
	Databases in Android
	Introducing Content Providers
	Summary

	Chapter 7: Maps, Geocoding, and Location-Based Services
	Using Location-Based Services
	Setting up the Emulator with Test Providers
	Selecting a Location Provider
	Finding Your Location
	Using Proximity Alerts
	Using the Geocoder
	Creating Map-Based Activities
	Mapping Earthquakes Example
	Summary

	Chapter 8: Working in the Background
	Introducing Services
	Using Background Worker Threads
	Let’s Make a Toast
	Introducing Notifications
	Using Alarms
	Using Alarms to Update Earthquakes
	Summary

	Chapter 9: Peer-to-Peer Communication
	Introducing Android Instant Messaging
	Introducing SMS
	Summary

	Chapter 10: Accessing Android Hardware
	Using the Media APIs
	Using the Camera
	Introducing the Sensor Manager
	Using the Accelerometer and Compass
	Android Telephony
	Using Bluetooth
	Managing Network and Wi-Fi Connections
	Controlling Device Vibration
	Summary

	Chapter 11: Advanced Android Development
	Paranoid Android
	Using AIDL to Support IPC for Services
	Using Internet Services
	Building Rich User Interfaces
	Summary

	Index

