
Chapter 1. Principles of Object Oriented Programming

Procedure Oriented Programming Vs Object Oriented Programming

Procedure Oriented

Programming

Object Oriented Programming

Divided

Into
In POP, program is divided into
small parts called functions.

In OOP, program is divided into
parts called objects.

Importance In POP, Importance is not given
to data but to functions as well
as sequence of actions to be
done.

In OOP, Importance is given to
the data rather than procedures
or functions because it works as
a real world.

Approach POP follows Top Down approach. OOP follows Bottom Up
approach.

Access
Specifiers

POP does not have any access
specifier.

OOP has access specifiers named
Public, Private, Protected, etc.

Data
Moving

In POP, Data can move freely from
function to function in the system.

In OOP, objects can move and
communicate with each other
through member functions.

Expansion To add new data and function in
POP is not so easy.

OOP provides an easy way to add
new data and function.

Data Access In POP, Most function uses Global
data for sharing that can be
accessed freely from function to
function in the system.

In OOP, data cannot move easily
from function to function, it can
be kept public or private so we
can control the access of data.

Data Hiding POP does not have any proper way
for hiding data so it is less
secure.

OOP provides Data Hiding so
provides more security.

Overloading In POP, Overloading is not
possible.

In OOP, overloading is possible in
the form of Function Overloading
and Operator Overloading.

Examples Examples of POP are: C, VB,
FORTRAN, Pascal.

Examples of OOP are: C++, JAVA,
VB.NET, C#.NET.

Basic concepts of object oriented programming in C++

Object Oriented programming is associated with the concept of Class, Objects,
Inheritance, Polymorphism, Abstraction, Encapsulation etc.

Objects

Objects are the basic unit of OOP. They are instances of class, in which data
members and various member functions that operate on data are bundled as a unit
called as object.

Class

It is similar to structures in C language. Class can also be defined as user defined
data type that contains data members and member functions in it. So, class is a
blueprint for object. that is, it defines what an object of the class will consist of and
what operations can be performed on such an object.

For example, lets say we have a class Car which has data members (variables)
such as speed, weight, price and functions such as gearChange(), slowDown(),
brake() etc. Now lets say I create a object of this class named FordFigo which uses
these data members and functions and give them its own values. Similarly we can
create as many objects as we want using the blueprint (class).

class Car
{
 //Data members
 char name[20];
 int speed;
 int weight;

public:
 //Functions
 void brake(){
 }
 void slowDown(){
 }
};

int main()
{

 //ford is an object
 Car ford;
}

Abstraction

Abstraction refers to showing only the essential features of the application and
hiding the details. In C++, classes can provide methods to the outside world to
access & use the data variables, keeping the variables hidden from direct access, or
classes can even declare everything accessible to everyone, or maybe just to the
classes inheriting it. This can be done using access specifiers.

For example, When you send an sms you just type the message, select the contact
and click send, the phone shows you that the message has been sent, what actually
happens in background when you click send is hidden from you as it is not relevant
to you.

Encapsulation

It can also be said data binding. Encapsulation is all about combining the data
variables and functions together in class. This is to avoid the access of private data
members from outside the class.

Inheritance

Inheritance is a way to reuse once written code again and again. As the name
suggests Inheritance is the process of forming a new class from an existing class,
the existing class is called as base class, new class is called as derived class. They
are also called parent and child class.

So when, a derived class inherits a base class, the derived class can use all the
functions which are defined in base class, hence making code reusable.

Polymorphism

It is a feature, which lets us create functions with same name but different
arguments, which will perform different actions. That means, functions with same
name, but functioning in different ways. Or, it also allows us to redefine a function
to provide it with a completely new definition. Poly refers to many. That is a single
function or an operator functioning in many ways different upon the usage is called
polymorphism.

Difference between C and C++

Sr.

No
C C++

1
C was developed by Dennis Ritchie
between 1969 and 1973 at AT&T
Bell Labs.

C++ was developed by Bjarne
Stroustrup in 1979 with C++'s
predecessor "C with Classes".

2 When compared to C++, C is a C++ is a superset of C. C++ can

subset of C++. run most of C code while C cannot
run C++ code.

3
C supports procedural programming

paradigm for code development.

C++ supports both procedural and
object oriented programming

paradigms; therefore C++ is also

called a hybrid language.

4

C does not support object oriented
programming; therefore it has no
support for polymorphism,

encapsulation, and inheritance.

Being an object oriented
programming language C++
supports polymorphism,

encapsulation, and inheritance.

5
In C, data and functions are
separate and free entities.

In C++, data and functions are
encapsulated together in form of an
object. For creating objects class
provides a blueprint of structure of

the object.

6

In C, data are free entities and can

be manipulated by outside code.
This is because C does not support
information hiding.

In C++, Encapsulation hides the

data to ensure that data structures
and operators are used as intended.

7
C, being a procedural programming,
it is a function driven language.

While, C++, being an object
oriented programming, it is an

object driven language.

8
C does not support function and

operator overloading.

C++ supports both function and

operator overloading.

9
C does not allow functions to be
defined inside structures.

In C++, functions can be used
inside a structure.

10
C uses functions for input/output.
For example scanf and printf.

C++ uses objects for input output.
For example cin and cout.

11
C does not support reference

variables.
C++ supports reference variables.

12
C has no support for virtual and

friend functions.

C++ supports virtual and friend

functions.

13

C provides malloc() and calloc()
functions for dynamic memory
allocation, and free() for memory
de-allocation.

C++ provides new operator for

memory allocation and delete
operator for memory de-allocation.

14
C does not provide direct support
for error handling (also called

exception handling)

C++ provides support for exception
handling. Exceptions are used for

"hard" errors that make the code
incorrect.

Structure of C++ Program

C++ is first Object oriented programming language.We have summarize
structure of C++ Program in the following Picture –

Structure of C++ Program

Section 1 : Header File Declaration Section

1. Header files used in the program are listed here.
2. Header File provides Prototype declaration for different library

functions.
3. We can also include user define header file.

4. Basically all preprocessor directives are written in this section.

Section 2 : Global Declaration Section

1. Global Variables are declared here.

2. Global Declaration may include –
o Declaring Structure

o Declaring Class
o Declaring Variable

Section 3 : Class Declaration Section

1. Actually this section can be considered as sub section for the global
declaration section.

2. Class declaration and all methods of that class are defined here.

Section 4 : Main Function

1. Each and every C++ program always starts with main function.
2. This is entry point for all the function. Each and every method is called

indirectly through main.

3. We can create class objects in the main.
4. Operating system call this function automatically.

Section 5 : Method Definition Section

1. This is optional section . Generally this method was used in C

Programming.

Simple C++ Program

#include<iostream> // Header Files

#include<conio.h> // Header Files

int main() //Main Function

{

 cout<<"Hello World"; //Standard Ouput Statement

 getch(); // Wait For Output Screen

 return 0; //Main Function return Statement

}

Simple Program for read user Input (Integer) Using cin

/* Add Two Integers Programs, Addition Programs,C++ Examples */

#include<iostream> // Header Files

#include<conio.h> // Header Files

//Main Function

int main()

{

 int a; // Local Variable 'a' Declaration

 cout << "Simple Program for Read user Input (Integer) Using cin \n";

 cout << "Enter Number : ";

 cin >> a;

 cout << "Entered Input Is = " << a;

 getch();

 return 0;

}

C++ Basic Elements

Programming language is a set of rules, symbols, and special words used to
construct programs. There are certain elements that are common to all

programming languages. Now, we will discuss these elements in brief :

C++ Character Set

Character set is a set of valid characters that a language can recognize.

Letters A-Z, a-z

Digits 0-9

Special

Characters

Space + -

 * / ^ \ () [] {} = != <> ‘ “ $, ; : % ! &
? _ # <= >= @

Formatting
characters

backspace, horizontal tab, vertical tab, form feed,
and carriage return

Tokens

A token is a group of characters that logically belong together. The
programmer can write a program by using tokens. C++ uses the following
types of tokens.

Keywords, Variables, Literals, Punctuators, Operators.

1. Keywords

These are some reserved words in C++ which have predefined meaning to

compiler called keywords. It is discussed in previous section.

2. Variables

Symbolic names can be used in C++ for various data items used by a
programmer in his program. Variable are used in C++, where we need
storage for any value, which will change in program. The variable is a
sequence of characters taken from C++ character set. Variable is the name

of memory location allocated by the compiler depending upon the datatype
of the variable. The rule for the formation of an variable are:

• An variable can consist of alphabets, digits and/or underscores.

• It must not start with a digit

• C++ is case sensitive that is upper case and lower case letters are
considered different from each other.

• It should not be a reserved word.

3. Constants / Literals

Literals (often referred to as constants) are data items that never change
their value during the execution of the program. The following types of

literals are available in C++.

• Integer-Constants
• Character-constants

• Floating-constants
• Strings-constants

Integer Constants

Integer constants are whole number without any fractional part. C++ allows
three types of integer constants.
Decimal integer constants : It consists of sequence of digits and should

not begin with 0 (zero). For example 124, - 179, +108.
Octal integer constants: It consists of sequence of digits starting with 0

(zero). For example. 014, 012.
Hexadecimal integer constant: It consists of sequence of digits preceded

by ox or OX.

Character constants

A character constant in C++ must contain one or more characters and must

be enclosed in single quotation marks. For example 'A', '9', etc. C++ allows
nongraphic characters which cannot be typed directly from keyboard, e.g.,

backspace, tab, carriage return etc. These characters can be represented by
using an escape sequence. An escape sequence represents a single

character.

Floating constants

They are also called real constants. They are numbers having fractional
parts. They may be written in fractional form or exponent form. A real

constant in fractional form consists of signed or unsigned digits including a
decimal point between digits. For example 3.0, -17.0, -0.627 etc.

String Literals

A sequence of character enclosed within double quotes is called a string
literal. String literal is by default (automatically) added with a special
character ‘\0' which denotes the end of the string. Therefore the size of the
string is increased by one character. For example "COMPUTER" will re

represented as "COMPUTER\0" in the memory and its size is 9 characters.

4. Punctuators

The following characters are used as punctuators in C++.

Brackets [] Opening and closing brackets indicate single and
multidimensional array subscript.

Parentheses
()

Opening and closing brackets indicate functions
calls,; function parameters for grouping expressions

etc.

Braces { } Opening and closing braces indicate the start and
end of a compound statement.

Comma , It is used as a separator in a function argument list.

Semicolon ; It is used as a statement terminator.

Colon : It indicates a labeled statement or conditional
operator symbol.

Asterisk * It is used in pointer declaration or as multiplication
operator.

Equal sign = It is used as an assignment operator.

Pound sign # It is used as pre-processor directive.

5. Operators

Operators are special symbols used for specific purposes. C++ provides six
types of operators. Arithmetical operators, Relational operators, Logical

operators, Unary operators, Assignment operators, Conditional operators,

Comma operator

Data Types in C++

Basic C++ data types −

Type Keyword Typical Bit Width

Character char 1byte

Integer int 2bytes

Floating point float 4bytes

Double floating point double 8bytes

Example :

char a = 'A'; // character type

int a = 1; // integer type

float a = 3.14159; // floating point type

double a = 10098.98899; // double type

Modifiers
Specifiers modify the meanings of the predefined built-in data types and

expand them to a much larger set. There are four data type modifiers in
C++, they are :

1. long

2. short

3. signed

4. unsigned

Below mentioned are some important points you must know about the

modifiers,

• long and short modify the maximum and minimum values that a data

type will hold.

• A plain int must have a minimum size of short.

• Size hierarchy : short int < int < long int

• Size hierarchy for floating point numbers is : float < double < long double

• long float is not a legal type and there are no short floating

point numbers.

• Signed types includes both positive and negative numbers and is the

default type.

• Unsigned, numbers are always without any sign, that is always positive.

User-defined data types
We have three types of user-defined data types in C++

1. struct
2. enum

Structures in C++

Structure is a compound data type that contains different variables of

different types. For example, you want to store Student details like student

name, student roll num, student age.

For example,

struct Student
{

 char stuName[30];
 int stuRollNo;
 int stuAge;
};

Now these three members combined will act like a separate variable and you
can create structure variable like this:

 structure_name variable_name;

So if you want to hold the information of two students using this structure
then you can do it like this:

 Student s1, s2;

Then we can access the members of Student structure like this:

s1.stuName = "Aksha"; //Assigning name to first student
s2.stuAge = 8; //Assigning age to the second student

Example in C++

#include <iostream>
struct Student

{

 char stuName[30];
 int stuRollNo;

 int stuAge;
};
int main()
{

 Student s;
 cout<<"Enter Student Name: ";
 cin.getline(s.stuName, 30);
 cout<<"ENter Student Roll No: ";

 cin>>s.stuRollNo;
 cout<<"Enter Student Age: ";
 cin>>s.stuAge;
 cout<<"Student Record:"<<endl;

 cout<<"Name: "<<s.stuName<<endl;
 cout<<"Roll No: "<<s.stuRollNo<<endl;

 cout<<"Age: "<<s.stuAge;
 return 0;
}

Output:
Enter Student Name: Aksha
ENter Student Roll No: 006

Enter Student Age: 8
Student Record:
Name: Aksha
Roll No: 006

Age: 8

Enumeration in C++

Enum is a user defined data type where we specify a set of values for a
variable and the variable can only take one out of a small set of possible

values. We use enum keyword to define a Enumeration.

 enum direction {East, West, North, South}dir;

Here Enumeration name is direction which can only take one of the four
specified values, the dir at the end of the declaration is an enum variable.

Simple enum Example

#include <iostream>

enum direction {East, West, North, South};

int main()
{

 direction dir;
 dir = South;

 cout<<dir;
 return 0;
}

Output:

3

How to change default values of Enum

#include <iostream>
enum direction {East=11, West=22, North=33, South=44};
int main()

{

 direction dir;
 dir = South;

 cout<<dir;
 return 0;

}

Output:

44

Typecasting in C++

Typecasting is making a variable of one type, such as an int, act like another

type, a char, for one single operation. To typecast something, simply put the

type of variable you want the actual variable to act as inside parentheses in

front of the actual variable. (char)a will make 'a' function as a char.

#include <iostream>
int main()
{

 for (int x = 0; x < 128; x++)
 {

 cout<< x <<". "<< (char)x <<" ";
 }

 return 0;
}

Operators in C++

Operator represents an action. For example + is an operator that represents

addition. An operator works on two or more operands and produce an
output. For example 3+4+5 here + operator works on three operands and

produce 12 as output.

Types of Operators in C++

1) Basic Arithmetic Operators
2) Assignment Operators
3) Auto-increment and Auto-decrement Operators
4) Logical Operators

5) Comparison (relational) operators
6) Bitwise Operators
7) Ternary Operator

1) Basic Arithmetic Operators

Basic arithmetic operators are: +, -, *, /, %

Consider that we have A = 20 and B = 10

Operator Description Example

+
Adds two operands or

variables
A + B = 30

-
Subtracts second operand

from the first
A – B = 10

* Multiplies both operands A * B = 200

/
Divides numerator by

denominator
A / B = 2

%
After dividing the numberator
by denominator remainder will

be returned after division
A % B = 0

 Note: Modulo operator returns remainder, for example 20 % 5 would

return 0

Example of Arithmetic Operators
#include <iostream>

int main()
{
 int num1 = 240;

 int num2 = 40;
 cout<<"num1 + num2: "<<(num1 + num2)<<endl;
 cout<<"num1 - num2: "<<(num1 - num2)<<endl;
 cout<<"num1 * num2: "<<(num1 * num2)<<endl;

 cout<<"num1 / num2: "<<(num1 / num2)<<endl;
 cout<<"num1 % num2: "<<(num1 % num2)<<endl;
 return 0;
}

Output:

num1 + num2: 280
num1 - num2: 200

num1 * num2: 9600
num1 / num2: 6
num1 % num2: 0

2) Assignment Operators

Assignments operators in C++ are: =, +=, -=, *=, /=, %=

num2 = num1 would assign value of variable num1 to the variable.

num2+=num1 is equal to num2 = num2+num1

num2-=num1 is equal to num2 = num2-num1

num2*=num1 is equal to num2 = num2*num1

num2/=num1 is equal to num2 = num2/num1

num2%=num1 is equal to num2 = num2%num1

Example of Assignment Operators
#include <iostream>

int main()
{

 int num1 = 240;
 int num2 = 40;

 num2 = num1;
 cout<<"= Output: "<<num2<<endl;
 num2 += num1;
 cout<<"+= Output: "<<num2<<endl;

 num2 -= num1;
 cout<<"-= Output: "<<num2<<endl;
 num2 *= num1;
 cout<<"*= Output: "<<num2<<endl;

 num2 /= num1;
 cout<<"/= Output: "<<num2<<endl;
 num2 %= num1;
 cout<<"%= Output: "<<num2<<endl;

 return 0;
}

Output:

= Output: 240

+= Output: 480
-= Output: 240

*= Output: 57600

/= Output: 240
%= Output: 0
3) Auto-increment and Auto-decrement Operators

++ and --

Operator Description Example

++
Increment operator will

increases integer value by one
A++ = 21

--
Decrement operator will

decreases integer value by one
A-- = 20

Example of Auto-increment and Auto-decrement Operators

#include <iostream>

int main()

{
 int num1 = 240;
 int num2 = 40;
 num1++; num2--;

 cout<<"num1++ is: "<<num1<<endl;
 cout<<"num2-- is: "<<num2;

 return 0;
}

Output:

num1++ is: 241
num2-- is: 39

4) Logical Operators

Logical Operators are used with binary variables. They are mainly used in
conditional statements and loops for evaluating a condition.

Logical operators in C++ are: &&, ||, !

Consider that A = 0 and B = 0

Operator Description Example

Logical AND (&&)
If both the operands are non-zero

then only condition becomes true

(A && B) is

false.

Logical OR (||)
If both the operands are zero
then only condition becomes false

(A || B) is
true.

Logical NOT (!)
It will reverses the state of its
operand i.e true will become false

(!A) is true.

Example of Logical Operators

#include <iostream>

int main()

{
 bool b1 = true;

 bool b2 = false;
 cout<<"b1 && b2: "<<(b1&&b2)<<endl;

 cout<<"b1 || b2: "<<(b1||b2)<<endl;
 cout<<"!(b1 && b2): "<<!(b1&&b2);
 return 0;
}

Output:

b1 && b2: 0
b1 || b2: 1
!(b1 && b2): 1

5) Relational operators

We have six relational operators in C++: ==, !=, >, <, >=, <=

Consider that A = 40 and B = 20

Symbol Meaning Example

> Greater than A > B returns true

< Less than A < B returns false

>= Greater than equal to A >= B returns false

<= Less than equal to A <= B returns false

== Equal to A == B returns false

!= Not equal to A != B returns true

 Example of Relational operators

#include <iostream>

int main()

{
 int num1 = 240;

 int num2 =40;
 if (num1==num2)
 {

 cout<<"num1 and num2 are equal"<<endl;
 }
 else
 {

 cout<<"num1 and num2 are not equal"<<endl;
 }
 if(num1 != num2)
 {

 cout<<"num1 and num2 are not equal"<<endl;
 }
 else
 {

 cout<<"num1 and num2 are equal"<<endl;

 }
 if(num1 > num2)

 {

 cout<<"num1 is greater than num2"<<endl;
 }

 else
 {
 cout<<"num1 is not greater than num2"<<endl;
 }

 if(num1 >= num2)
 {
 cout<<"num1 is greater than or equal to num2"<<endl;
 }

 else
 {
 cout<<"num1 is less than num2"<<endl;
 }

 if(num1 < num2)
 {

 cout<<"num1 is less than num2"<<endl;
 }
 else

 {
 cout<<"num1 is not less than num2"<<endl;
 }
 if(num1 <= num2)

 {
 cout<<"num1 is less than or equal to num2"<<endl;
 }
 else

 {
 cout<<"num1 is greater than num2"<<endl;
 }
 return 0;

}

Output:

num1 and num2 are not equal
num1 and num2 are not equal

num1 is greater than num2
num1 is greater than or equal to num2

num1 is not less than num2
num1 is greater than num2

6) Bitwise Operators

There are six bitwise Operators: &, |, ^, ~, <<, >>

p q p & q p | q p ^ q

0 0 0 0 0

0 1 0 1 1

1 1 1 1 0

1 0 0 1 1

Assume if A = 60; and B = 13; now in binary format they will be as follows

−

A = 0011 1100

B = 0000 1101

Operator Description Example

& Binary AND Operator copies a bit to

the result if it exists in both
operands.

(A & B) will give 12 which

is 0000 1100

| Binary OR Operator copies a bit if it
exists in either operand.

(A | B) will give 61 which
is 0011 1101

^ Binary XOR Operator copies the bit

if it is set in one operand but not
both.

(A ^ B) will give 49 which

is 0011 0001

~ Binary Ones Complement Operator
is unary and has the effect of

'flipping' bits.

(~A) will give -61 which
is 1100 0011 in 2's

complement form due to
a signed binary number.

<< Binary Left Shift Operator. The left

operands value is moved left by the
number of bits specified by the

right operand.

A << 2 will give 240

which is 1111 0000

>> Binary Right Shift Operator. The

left operands value is moved right
by the number of bits specified by

the right operand.

A >> 2 will give 15 which

is 0000 1111

~num1 is a complement operator that just changes the bit from 0 to 1 and
1 to 0. In our example it would return -12 which is signed 8 bit equivalent to

11110100

num1 << 2 is left shift operator that moves the bits to the left, discards the
far left bit, and assigns the rightmost bit a value of 0. In our case output is

44 which is equivalent to 00101100

Note: In the example below we are providing 2 at the right side of this shift
operator that is the reason bits are moving two places to the left side. We

can change this number and bits would be moved by the number of bits
specified on the right side of the operator. Same applies to the right side
operator.

num1 >> 2 is right shift operator that moves the bits to the right, discards
the far right bit, and assigns the leftmost bit a value of 0. In our case output

is 2 which is equivalent to 00000010

Example of Bitwise Operators

#include <iostream>

int main()

{
 int num1 = 11; /* 11 = 00001011 */

 int num2 = 22; /* 22 = 00010110 */
 int result = 0;

 result = num1 & num2;
 cout<<"num1 & num2: "<<result<<endl;

 result = num1 | num2;
 cout<<"num1 | num2: "<<result<<endl;

 result = num1 ^ num2;
 cout<<"num1 ^ num2: "<<result<<endl;
 result = ~num1;

 cout<<"~num1: "<<result<<endl;
 result = num1 << 2;
 cout<<"num1 << 2: "<<result<<endl;
 result = num1 >> 2;

 cout<<"num1 >> 2: "<<result;
 return 0;
}

Output:

num1 & num2: 2

num1 | num2: 31

num1 ^ num2: 29
~num1: -12

num1 << 2: 44 num1 >> 2: 2

7) Ternary Operator

This operator evaluates a boolean expression and assign the value based on
the result.

Syntax:

variable num1 = (expression) ? value if true : value if false
If the expression results true then the first value before the colon (:) is

assigned to the variable num1 else the second value is assigned to the

num1.

Example of Ternary Operator

#include <iostream>

int main()

{
 int num1, num2; num1 = 99;

 /* num1 is not equal to 10 that's why
 * the second value after colon is assigned
 * to the variable num2

 */
 num2 = (num1 == 10) ? 100: 200;
 cout<<"num2: "<<num2<<endl;
 /* num1 is equal to 99 that's why

 * the first value is assigned
 * to the variable num2
 */
 num2 = (num1 == 99) ? 100: 200;

 cout<<"num2: "<<num2;
 return 0;
}

Output:

num2: 200
num2: 100

Miscellaneous Operators

sizeof operator.

• sizeof is a compile-time operator used to calculate the size of data

type or variable.

• sizeof operator will return the size in integer format.

• sizeof is a keyword.

• sizeof operator can be nested.

Syntax of sizeof Operator:

sizeof(data type)

Data type include variables, constants, classes, structures, unions, or any

other user defined data type.

Example of sizeof operator:

#include <iostream>

int main()

{

 int i;

 char c;

 cout << "Size of variable i : " << sizeof(i) << endl;

 cout << "Size of variable c : " << sizeof(c) << endl;

 return 0;

}

Output:

Size of variable i : 4

Size of variable c : 1

Operator Precedence in C++

This determines which operator needs to be evaluated first if an expression

has more than one operator. Operator with higher precedence at the top and
lower precedence at the bottom.

Unary Operators

++ – – ! ~

Multiplicative
* / %

Additive
+ –

Shift
<< >> >>>

Relational

> >= < <=

Equality
== !=

Bitwise AND

&
Bitwise XOR

^

Bitwise OR

|

Logical AND
&&

Logical OR
||

Ternary
?:

Assignment

= += -= *= /= %= > >= < <= &= ^= |=

C++ Decision Making Statements

Decision-making is an important concept in any programming language and

to accomplish this, C++ uses the following decision making statements:

• if statement
• if..else statement
• switch statement

• conditional operator

if statement

An if statement consists of a boolean expression followed by one or more
statements.

Syntax

The syntax of an if statement in C++ is −

if(boolean_expression)
{

 // statement(s) will execute if the boolean expression is true
}

If the boolean expression evaluates to true, then the block of code inside the
if statement will be executed. If boolean expression evaluates to false, then

the first set of code after the end of the if statement (after the closing curly
brace) will be executed.

For example,

#include <iostream.h>
#include<conio.h>

int main ()

{
 int a = 10; // local variable declaration:

 if(a < 20) // check the boolean condition

 {
 cout << "a is less than 20;" << endl;

 }
 cout << "value of a is : " << a << endl;

 getch();
 return 0;
}

Output:

a is less than 20;

value of a is : 10

if...else statement

An if statement can be followed by an optional else statement, which
executes when the boolean expression is false.

Syntax

The syntax of an if...else statement in C++ is −

if(boolean_expression)

{
 // statement(s) will execute if the boolean expression is true
}
else

{
 // statement(s) will execute if the boolean expression is false
}

If the boolean expression evaluates to true, then the if block of code will be

executed, otherwise else block of code will be executed.

For example,

#include <iostream.h>

#include<conio.h>

int main ()
{

 int a = 100;
 if(a < 20)
 {
 cout << "a is less than 20;" << endl;

 }
 else

 {
 cout << "a is not less than 20;" << endl;

 }
 cout << "value of a is : " << a << endl;

 getch();
 return 0;

}

Output:

a is not less than 20;

value of a is : 100

if...else if...else Statement

An if statement can be followed by an optional else if...else statement, which

is very usefull to test various conditions using single if...else if statement.

When using if, else if, else statements there are few points to keep in mind.

• An if can have zero or one else's and it must come after any else if's.
• An if can have zero to many else if's and they must come before the

else.
• Once an else if succeeds, none of the remaining else if's or else's will

be tested.

Syntax

The syntax of an if...else if...else statement in C++ is −

if(boolean_expression 1)

{
 // Executes when the boolean expression 1 is true
}

else if(boolean_expression 2)
{
 // Executes when the boolean expression 2 is true
}

else if(boolean_expression 3)
{
 // Executes when the boolean expression 3 is true
}

else
{
 // executes when the none of the above condition is true.
}

For example,

#include <iostream.h>
#include<conio.h>

int main ()

{
 int a = 100;

 if(a == 10)
 {
 cout << "Value of a is 10" << endl;
 }

 else if(a == 20)
 {
 cout << "Value of a is 20" << endl;
 }

 else if(a == 30)
 {
 cout << "Value of a is 30" << endl;
 }

 else

 {
 // if none of the conditions is true

 cout << "Value of a is not matching" << endl;
 }
 cout << "Exact value of a is : " << a << endl;

 getch();
 return 0;
}

Output:

Value of a is not matching
Exact value of a is : 100

switch statement

A switch statement allows a variable to be tested for equality against a list of
values. Each value is called a case, and the variable being switched on is
checked for each case.

Syntax

The syntax for a switch statement in C++ is as follows −

switch(expression)

{
 case constant-expression :

 statement(s);
 break; //optional
 case constant-expression :
 statement(s);

 break; //optional

 // you can have any number of case statements.
 default : //Optional

 statement(s);

}

For example,

#include <iostream.h>
#include<conio.h>

int main ()

{
 char grade = 'D';

 switch(grade)

 {
 case 'A' :

 cout << "Excellent!" << endl;
 break;
 case 'B' :
 cout << "Very Good!" << endl;

 break;

 case 'C' :
 cout << "Good" << endl;

 break;
 case 'D' :
 cout << "You passed" << endl;
 break;

 case 'F' :
 cout << "Better try again" << endl;

 break;
 default :
 cout << "Invalid grade" << endl;

 }
 cout << "Your grade is " << grade << endl;

 getch();

 return 0;
}

Output:

You passed
Your grade is D

The conditional Operator- ? :

Conditional operator “? :” can be used to replace if...else statements. It has

the following general form −

 Exp1 ? Exp2 : Exp3;

Exp1, Exp2, and Exp3 are expressions. The value of a ‘?’ expression is
determined like this: Exp1 is evaluated. If it is true, then Exp2 is evaluated
and becomes the value of the entire ‘?’ expression. If Exp1 is false, then

Exp3 is evaluated and its value becomes the value of the expression.

For example,

#include <iostream.h>
#include<conio.h>

int main ()
{
 int x, y = 10;

 x = (y < 10) ? 30 : 40;
 cout << "value of x: " << x << endl;

 getch();
 return 0;
}

Output:

value of x: 40

Looping Statements

There may be a situation, when you need to execute a block of code several

numbers of times. Programming languages provide various loop statements

that allows us to execute a statement or group of statements multiple times.

In C++ we have three types of basic loops:

1. For

2. while

3. do-while

For loop

Syntax of for loop

for(initialization; condition ; increment/decrement)

{
 C++ statement(s);

}

Flow of Execution of the for Loop

For example,

Display elements of array using for loop

#include <iostream.h>
#include<conio.h>
int main()
{

 int arr[]={21,9,56,99, 202};
 for(int i=0; i<5; i++)
 {
 cout<<arr[i]<<endl;

 }

 getch();
 return 0;
}

Output:

21
9

56
99

202

While loop

Syntax of while loop

while(condition)
{
 statement(s);
}

In while loop, condition is evaluated first and if it returns true then the

statements inside while loop execute, this happens repeatedly until the

condition returns false. When condition returns false, the control comes out

of loop and jumps to the next statement in the program after while loop.

Flow Diagram of While loop

For example,

Displaying the elements of array using while loop

#include <iostream.h>
#include<conio.h>

int main()

{
 int arr[]={21,87,15,99, -12};

 int i=0;
 while(i<5)

 {

 cout<<arr[i]<<endl;
 i++;

 }

 getch();
 return 0;

}

Output:

21

87
15
99
-12

do-while loop

do-while loop is similar to while loop, however there is a difference between

them: In while loop, condition is evaluated first and then the statements

inside loop body gets executed, on the other hand in do-while loop,

statements inside do-while gets executed first and then the condition is

evaluated.

Syntax of do-while loop

do
{

 statement(s);
} while(condition);

First, the statements inside loop execute and then the condition gets

evaluated, if the condition returns true then the control jumps to the “do” for

further repeated execution of it, this happens repeatedly until the condition

returns false. Once condition returns false control jumps to the next

statement in the program after do-while.

Flow Diagram of do-While loop

For example,

Displaying array elements using do-while loop

#include <iostream.h>

#include<conio.h>

int main()
{
 int arr[]={21,99,15,109};
 int i=0;

 do
 {
 cout<<arr[i]<<endl;

 i++;
 }while(i<4);

 getch();

 return 0;
}

Output:

21
99

15
109

Continue Statement

Continue statement is used inside loops. Whenever a continue statement is
encountered inside a loop, control directly jumps to the beginning of the loop
for next iteration, skipping the execution of statements inside loop’s body for
the current iteration.

Syntax of continue statement

continue;

For example,

#include <iostream.h>

#include<conio.h>

int main()
{

 for (int num=0; num<=6; num++)
 {

 /* This means that when the value of num is equal to 3 this continue
 * statement would be encountered, which would make the control to

 * jump to the beginning of loop for next iteration, skipping the current
 * iteration

 */

 if (num==3)

 {
 continue;
 }
 cout<<num<<" ";

 }

 getch();
 return 0;

}

Output:

0 1 2 4 5 6

Flow Diagram of Continue Statement

Break statement

The break statement is used in following two scenarios:

a) Use break statement to come out of the loop instantly. Whenever a break

statement is encountered inside a loop, the control directly comes out of
loop terminating it. It is used along with if statement, whenever used inside

loop(see the example below) so that it occurs only for a particular condition.

b) It is used in switch case control structure after the case blocks. Generally

all cases in switch case are followed by a break statement to avoid the
subsequent cases (see the example below) execution. Whenever it is

encountered in switch-case block, the control comes out of the switch-case
body.

Syntax of break statement

break;

break statement flow diagram

For example,

#include <iostream.h>

#include<conio.h>

int main()

{
 int num =10;

 while(num<=200)
 {

 cout<<"Value of num is: "<<num<<endl;
 if (num==12)

 {
 break;

 }
 num++;

 }
 cout<<"Hey, I'm out of the loop";

 getch();

 return 0;
}

Output:

Value of num is: 10
Value of num is: 11

Value of num is: 12
Hey, I'm out of the loop

Scope resolution operator

• In C++ language the scope resolution operator is written "::".
• C++ supports to the global variable from a function, Local variable is

to define the same function name.
• Identify variables with use of scope resolution operator when we use

the same name for local variable and global variable (or in class or
namespace)

• Resolution operator is placed between the in front of the variable name
then the global variable is affected. If no resolution operator is placed
between the local variable is affected.

Scope Resolution Operator Syntax

:: identifier // for Global Scope
class-name :: identifier // for Class Scope

namespace :: identifier // for Namespace Scope

//simple syntax

:: global variable name

For example,

// Example program for Scope Resolution Operator Global Variable

#include<iostream.h>

#include<conio.h>

int n = 12; //global variable

int main()
{
 int n = 13; //local variable

 cout << ::n << endl; //print global variable:12
 cout << n << endl; //print the local variable:13

 getch();

 return 0;
}
Output:
12

13

Scope Resolution Operator Example Program: For Function

/* Simple scope resolution operator Example for Function defined in C++*/

#include <iostream.h>
#include<conio.h>

class ScopeFn
{
 public:
 void print(); //function declaration

};

void ScopeFn::print()
{
 cout << "Function defined using scope resolution operator.\n";

}

int main()
{

 ScopeFn obj;
 obj.print();

 getch();

 return 0;

}

Output:

Function defined using scope resolution operator

Memory Management Operators in C++

C++ has new operator to allocate memory and delete operator to release

the memory.

new operator

The new operator allocates memory dynamically to a variable and returns

the base address of that memory to a pointer.

Syntax

pointer_name = new datatype;

Delete operator

Delete operator is used to release the memory allocated in the heap using

new operator.

Syntax

delete pointer_name;

Example,

#include<iostream.h>

#include<conio.h>

void main()
{

 int size,i;
 int *ptr;

 cout<<"\n\tEnter size of Array : ";
 cin>>size;

 ptr = new int[size];

 for(i=0;i<5;i++)

 {
 cout<<"\nEnter any number : ";

 cin>>ptr[i];
 }

 for(i=0;i<5;i++)
 {

 cout<<ptr[i]<<", ";
 }

 delete[] ptr;

 getch();
 return 0;

}

Output :

Enter size of Array : 5

Enter any number : 78

Enter any number : 45

Enter any number : 12
Enter any number : 89

Enter any number : 56

78, 45, 12, 89, 56,

Arrays

Array is a group of similar types of elements that have contiguous memory

location. Array index starts from 0. We can store only fixed set of elements
in array.

Declaring an array in C++

There are couple of ways to declare an array.

Method 1:

int arr[5];
arr[0] = 10;
arr[1] = 20;

arr[2] = 30;
arr[3] = 40;
arr[4] = 50;

Method 2:

int arr[] = {10, 20, 30, 40, 50};

Method 3:

int arr[5] = {10, 20, 30, 40, 50};

For example,

#include <iostream.h>
#include <conio.h>

int main()

{
 int arr[] = {11, 22, 33, 44, 55};

 int n=0;

 while(n<=4)
 {

 cout<<arr[n]<<endl;

 n++;
 }

 getch();
 return 0;

}

Strings

Strings are known as sequence of characters. In C++ we have two ways to
create and use strings: 1) By creating char arrays and treat them as string
2) By creating string object

Getting user input as string

#include <iostream.h>

#include <conio.h>

int main()

{
 char book[50];

 cout<<"Enter your favorite book name:";
 //reading user input

 cin>>book;

 cout<<"You entered: "<<book;

 getch();
 return 0;

}

Output:

Enter your favorite book name:The Murder of Roger Ackroyd

You entered: The

Correct way of capturing user input string using cin.get

#include <iostream.h>
#include <conio.h>

int main()

{
 char book[50];

 cout<<"Enter your favorite book name:";

 //reading user input
 cin.get(book, 50);
 cout<<"You entered: "<<book;

 getch();
 return 0;

}

Output:

Enter your favorite book name:The Murder of Roger Ackroyd

You entered: The Murder of Roger Ackroyd

Drawback of this method

1) Size of the char array is fixed, which means the size of the string created
through it is fixed in size, more memory cannot be allocated to it during

runtime.

String object in C++

#include<iostream.h>
#include <conio.h>

int main()
{
 string str;

 cout<<"Enter a String:";

 getline(cin,str);
 cout<<"You entered: ";

 cout<<str<<endl;

 getch();
 return 0;

}

Output:

Enter a String:XYZ

You entered: XYZ

