Unit -IV Pointers and Polymorphism in C++

Concepts of Pointer:
A pointer is a variable that holds a memory address of another variable where a value
lives. A pointer is declared using the * operator before an identifier.

Pointer declaration
General syntax of pointer declaration is,

datatype *pointer_name;

Data type of a pointer must be same as the data type of the variable to which the pointer
variable is pointing.

Here are a few examples:

int *ip // pointer to integer variable

float *fp; // pointer to float variable
double *dp; // pointer to double variable
char *cp; // pointer to char variable

Initialization of Pointer variable

Pointer Initialization is the process of assigning address of a variable to a pointer variable.
Pointer variable can only contain address of a variable of the same data type.

Pointer operator

Operator Operator Name Purpose
* Value at Operator Gives Value stored at Particular address
& Address Operator Gives Address of Variable

In order to create pointer to a variable we use “*” operator and to find the address of variable we

use “&” operator.

1. ‘&’ operator is called as address Operator
2. “*is called as ‘Value at address’ Operator
3. ‘Value at address’ Operator gives ‘Value stored at Particular address.

4. ‘Value at address’ is also called as ‘Indirection Operator’

For example,

#tinclude<stdio.h>

int main()

{

int n = 20;

cout<< “\nThe address of n is "<<&n;
cout<< “\nThe Value of n is "<<n;

cout<< “\nThe Value of n is "<<*(&n);

}

Output:

The address of n is 1002
The Value of n is 20
The Value of n is 20

How *(&n) is same as printing the value of n ?

&n Gives address of the memory location whose name is ‘n’

* means value at Operator gives value at address specified by &n.

m = &n | Address of n is stored in m , but remember that m is not ordinary variable like ‘n’

So Ccompiler must provide space for it in memory.Below is Step by Step Calculation to compute

the value —

=
|

* (&)

* (Address of Variable 'n')

* (1000)

Value at Address 1000
= 20

Another example,

#include<stdio.h>

int main()
{
int a = 3;

int *ptr,**pptr;

ptr = &a;

pptr = &ptr;
return(9);
}

Explanation of Example

With reference to above program
2001 7 4001 6001
Value Value Value

3 2001 4001
a ptr pptr

We have following associated points —

Point Variable 'a’ Variable 'ptr’ Variable 'pptr'

Name of Variable a ptr pptr

Type of Value that it holds Integer Address of 'a' Address of 'ptr'

Value Stored 3 2001 4001

Address of Variable 2001 4001 6001

Pointer arithmetic.

Arithmetic Operations With Pointers

We can perform different arithmetic operations by using pointers.
Increment, decrement, prefix, and postfix operations can be performed with
pointers. The effects of these operations are shown in Table.

Table: Pointers and Arithmetic Operations

Initial . Address After Required
Data Type Operation .

Address Operations Bytes
inti=2 4046 ++ - 4048 4044 2
charc="x" | 4053 ++ - 4054 4052 1
float f=2.2 | 4058 ++ - 4062 4054 4
longl=2 4060 4 - 4064 4056 4

From the above table, while referring to the first entry, we can observe that
on increment of the pointer variable for integers, the address is
incremented by two; that is, 4046 is the original address and on increment,
its value will be 4048, because integers require two bytes. Similarly, when
the pointer variable for integer is decreased, its address 4048 becomes
4046.

Similarly, for characters, floating point numbers and long integers require 1,
4, and 4 bytes, respectively. After the effect of increment and decrement,

the memory locations are shown in Table.

The following program explains the increase and decrease of pointers:

The following program explains the increase and decrease of pointers:

13.4 Program on pointer incrementation and decrementation.

#include<iostream.h>
#include<conio.h>
int main()
{
clrscr();
int x=10;
int *p;
p=&X;
cout<<“\n Address of p:"<<unsigned(p);
p=p+4;
cout<<“\n Address of p:"<<unsigned(p);
p=p-2;
cout<<“\n Address of p:"<<unsigned(p);
return O;

}

OUTPUT

Address of p:65524
Address of p:65532
Address of p:65528

Explanation: In the above program, p holds the address of x. The initial
address of x is 65524. When p is incremented by 4, it means that the
address is increased by 8, because each integer needs two bytes. Here, the
address obtained is 65532. Similarly, when the address of x is decreased to
2, the address finally obtained is 65528.

13.5 Program on changing the values of variables using pointer.

#include<iostream.h>
#include<conio.h>
int main()
{
clrscr();
int x=10;
int *p;
p=&X;
cout<<“\n Value of x:"<<*p;
*p=*p+10;
cout<<“\n Value of x:"<<*p;
*p=*p'2;
cout<<“\n Value of x:"<<*p;
return 0;

}

OUTPUT

Value of x:10
Value of x:20
Value of x:18

Explanation: In the above program using pointers, the value of the variable x
is first increased and then decreased.

Pointer To Object

Similar to variables, objects also have an address. A pointer can point to a
specified object. The following program illustrates this:

13.11 Write a program to declare an object and pointer to the class.
Invoke the member functions using pointer.

Zinclude<iostream.h>
Zinclude<conio.h>
class Bill
{
int qty;
float price;
float amount;
public :
void getdata (int a, float b, float ¢)
{
qty=a;
price=b;
amount=c;
)
void show()
{
cout<<"Quantity : " <<qty <<"\n";
cout<<“Price : " <<price <<"\n";
cout<<“Amount : " <<amount <<“\n";
}
int main()
{
cirscr();
Bill s;
Bill *ptr =&s;
ptr->getdata(45,10.25,45%10.25);
(*ptr).show();
return O;

OuUTPUT

Quantity : 45
Price:10.25
Amount : 461.25

Explanation: In the above program, the class Bill contains two float and one
int members. The class Bill also contains the member function getdata()
and show() to read and display the data. In function main(), s is an object of
class Bill, and ptr is a pointer of the same class. The address of object s is
assigned to pointer ptr. Using pointer ptr with arrow operator (->) and dot
operator (.), members and functions are invoked. The statements used for
invoking functions are as given below.

ptr->getdata (45,10.25,45*10.25);
(*ptr).show();

Here, both the pointer declarations are valid. In the second statement, ptr is
enclosed in brackets, because the dot operator (.) has higher precedence
as compared with the indirection operator (*). The output of the program is
as shown above.

13.12 Write a program to create dynamically an array of objects of class
type. Use new operator.
#Zinclude<iostream.h>
#include<conio.h>
class Bill
{
int qty;
float price;
float amount;
public :
void getdata (int a, float b, float ¢)
{
qty=a;
price=b;
amount=c;
)
void show()
{
cout<<“Quantity : " <<qty <<"\n";
cout<<“Price : " <<price <<“\n”;
cout<<"Amount : " <<amount <<"\n";
}
>
int main()
{
cirscr();
Bill *s= new Bill[2];
Bill *d =s;
int x,i;
floaty,
for (1=0;i<2;i++)
{
cout<<“\nEnter Quantity and Price : ”;

Cin>>X >>Y;
s->getdata(x,y,x*y);
S++;

)
for (1=0;i<2;i++)
{
cout<<endl;
d->show();
d++;
)
return O;

}

OuUTPUT

Enter Quantity and Price : 553
Enter Quantity and Price : 895
Quantity - 5

Price:5.3

Amount : 26.5

Quantity - 8

Price:9.5

Amount : 76

Explanation: In the above program, the class Bill is similar to that in the
previous example. In main(), using new memory allocation operator, the
memory required for two objects is allocated to pointer s, that is, 10 bytes.
The first for loop accepts the data through the keyboard. Immediately after
this, the data are sent to the member function getdata(). The pointer s is
incremented. After incrimination, it points to the next memory location of
its type. Thus, two records are read through the keyboard. The second for
loop is used to display the contents on the screen. Here, the function
show() is invoked. The logic used is similar to that used in the first loop.
The functions are invoked using pointers, and this has been explained in
the previous example.

‘this’ pointer
e C++ provides a keyword 'this', which represents the current object and passed as a
hidden argument to all member functions.
e The this pointer is a constant pointer that holds the memory address of the current
object.
¢ The this pointer is an implicit parameter to all member functions. Therefore, inside a

member function, this may be used to refer to the invoking object.

® Friend functions do not have a this pointer, because friends are not members of a
class. Only member functions have a this pointer.

C++ program using this pointer
#include<iostream.h>

#include<conio.h>
class sample
{
int a,b;
public:
void input(int a,int b)
{
this->a=a+b;
this->b=a-b;
}
void output()

{
cout<<"a = "<<a<<endl<<"b = "<<b;
}
|5

int main()

{
sample Xx;
x.input(5,8);
x.output();
getch();
return O;

}

Output:
A=13
B=-3

Write a program to declare a class test having data members name and marks of student.
Accept and display data using ‘this’ pointer.

#include<iostream.h>
#include<conio.h>
class test
{
Char name|[30];
int mark;
public:
void get()
{
Cout<<”\n Enter name and marks”’;
Cin>>name>>mark;
}
Void display()
{
Cout<<”\n Name="<<this - >name;
Cout<<”\n Marks=""<<this - >mark;

}
};

Void main()
{

Test t1;
T1.get();
T1.display();
Getch();

}

Output:
Enter name and marks
Pragati 83

Name= Pragati
Marks=83

13.14 Write a program to enter name and age of two persons. Find the
elder person. Use this pointer.

#Zinclude<iostream_h>
#include<conio.h>

class name

{
char str[15];
int age;
public:

void input()

{
cout<<“\n Enter Name and age - ”;
cin>>str;
cin>>age;

)

void show()

{
cout<<“\n\nElder person ”;
cout<<"\n Name: "<<str;
cout<<"\n Age: "<<age;

)

name display(name x)

{
cout<<“\n\n Contents of object n1 (this pointer)”;
cout<<“\n Name:” <<this->str;
cout<<"\n Age:” <<this->age;
cout<<“\n\n Contents of object n2 (x)";
cout<<"\n Name: ” <<x_.str;
cout<<"\n Age: " <<x.age;

if (this->age=x.age)
return *this;

else

return x;

void main()

{

clrscr();

name n,n1,n2;
n1.input();
n2.input();
n=n1._display(n2);
n.show();

}

OuUTPUT

Enter Name and age : Mahesh 25
Enter Name and age : Suresh 30
Contents of object n1(this pointer)
Name : Mahesh

Age : 25

Contents of object n2 (x)

Name : Suresh

Age : 30

Elder person

Name : Suresh

Age : 30

Explanation: The above program is similar to the previous one. Here,
contents of explicitly and implicitly passed objects are displayed. The
this pointer points to the hidden argument (implicit argument). The if
statement compares the member variable age of both the objects and
returns the greater one. The object n collects the return value of function
display() and calls the function show(). The function show() displays the
contents of object n. Working of this pointer is illustrated in Figure.

name display(name x) // Function definition

{

*this // Hidden pointer (this)

if(this-s>ages>x.age)
-

return this;

else

return x;

}

maini()

(I ¥

n = nl.display (n2); //function call

Fig: Working of this pointer
Pointer to derived class

e Pointers can be declared to the point base or derived class.
e A base class pointer can point to object of both the base and derived class.
e Derived class pointer can point to only derived class.

Base class pointer object

N

Base class object Derived class object

Derived class pointer object

Fig: Type Compatibility of base and derived class

Program 4.6: Pointer to derived classes.

#include<iostream.h>
class base
{
public:
intnl;
void show()
{
cout<<\nnl = “<<nl;
}
K
class derive : public base
{
public:
int n2;
void show()
{
cout<<\nnl = “<<nl;
cout<<\nn2 = “<<n?2;
}
15
int main()
{
base b;
base *bptr; //base pointer
cout<<”Pointer of base class points to it”;

bptr=&b; //address of base class

bptr->n1=44; /laccess base class via base pointer
bptr->show();

derive d;

cout<<’\n”’;

bptr=&d; //address of derive class

bptr->n1=66; /laccess derive class via base pointer
bptr->show();
return O;

}

Output:

Pointer of base class points to it

nl =44

Pointer of base class points to derive class
nl=66

Introduction of Polymorphism

e Polymorphism it is the ability to form more than one form.

e Polymorphism is the ability of a message to be processed in more than one way. A
different member function can be invoked at different instances depending on the
object which is invoking the function.

Polymorphism is of two types:
1) Compile-time polymorphism
2) Run-time polymorphism

Polymorphism

/\

Compile-time Polymorphism Run-time Polymorphism
(Static Polymorphism) (Dynamic Polymorphism)

Function Overloading
Or Operator Overloading Virtual Functions
Constructor Overloading |

Compile-time polymorphism / Early Binding / Static Binding

¢ In this polymorphism objects are created at the time of compilation.
e [ts further divide into two parts function overloading and operator overloading.

Function overloading

Two or more functions having same name but different argument(s) are known as overloaded
functions.

Program 4.7: Program for function overloading

#include <iostream>
using namespace std;
long add(long, long);
float add(float, float);
int main()
{

long a, b, x;

float c, d, y;

cout << "Enter two integers\n";

cin >> a >> b;

x = add(a, b);

cout << "Sum of integers: " << x << end];
cout << "Enter two floating point numbers\n";
cin >>c¢ >>d;
y = add(c, d);
cout << "Sum of floats: " << y << endl;
return 0;
}
long add(long x, long y)
{
long sum;
sum =X +y;

return sum;

float add(float x, float y)
{

float sum;

sum =X +y;

return sum;

}
Enter two integers
10 20

Sum of integers: 30

Enter two floating point numbers
1.1 2.2

Sum of floats: 3.3

Program 4.7: Write a program to print area of circle, rectangle and triangle using function
overloading

#include<iostream.h>
#include<stdlib.h>
#include<conio.h>

#define pi 3.14

class fn {

public:
void area(int); //circle
void area(int, int); //rectangle
void area(float, int, int); //triangle

};

void fn::area(int a) {

cout << "Area of Circle:" << pi * a*a;

void fn::area(int a, int b) {

cout << "Area of rectangle:" << a*b;

void fn::area(float t, int a, int b) {

cout << "Area of triangle:" << t * a*b;

void main() {
int ch;
inta, b, r;
clrser();
fn obj;
cout << "\n\t\tFunction Overloading";
cout << "\nl.Area of Circle\n2.Area of Rectangle\n3.Area of Triangle\n4.Exit\n:?;
cout << ?Enter your Choice : ";

cin>>ch;

switch (ch) {

case 1:
cout << "Enter Radious of the Circle:";
cin>>r;
obj.area(r);
break;

case 2:
cout << "Enter Sides of the Rectangle:";
cin >> a>>b;
obj.area(a, b);
break;

case 3:
cout << "Enter Sides of the Triangle:";
cin >> a>>b;
obj.area(0.5, a, b);
break;

case 4:

exit(0);

}

getch();
}
Output:
Function Overloading
1. Area of Circle
2. Area of Rectangle
3. Area of Triangle
4. Exit
Enter Your Choice: 2

Enter the Sides of the Rectangle: 5 5

Area of Rectangle is: 25

1. Area of Circle

2. Area of Rectangle
3. Area of Triangle
4. Exit

Enter Your Choice: 4

Operator overloading

Almost all arithmetic operator can be overloaded to perform arithmetic operation on user-
defined data type.

Operator overloading is a way of providing new implementation of existing operators to
work with user-defined data types.

An operator can be overloaded by defining a function to it. The function for operator is
declared by using the operator keyword followed by the operator.

There are two types of operator overloading in C++

e Binary Operator Overloading
e Unary Operator Overloading

Program 4.8: C++ program for unary minus (-) operator overloading.

#include<iostream.h>

class NUM

{
private:

int n;

public:
//function to get number
void getNum(int x)
{
n=Xx;
}
//function to display number
void dispNum(void)
{
cout << "value of nis: " << n;
}
/lunary - operator overloading

void operator - (void)

int main()

{
NUM num;
num.getNum(10);
-num;
num.dispNum();
cout << endl;

return O;

}
Output:

value of nis: -10

Program 4.9: C++ program for unary increment (++) and decrement (--) operator
overloading.

#include<iostream.h>

class NUM

{
private:

int n;

public:
//function to get number
void getNum(int x)
{
n=x;
}
//function to display number
void dispNum(void)
{
cout << "value of nis: " << n;
}
/lunary ++ operator overloading
void operator ++ (void)
{
n=++n;
}
//lunary -- operator overloading
void operator -- (void)

{

n=--n;

B

int main()

{
NUM num;
num.getNum(10);

++num;
cout << "After increment - ";
num.dispNum();

cout << endl;

--num;
cout << "After decrement - ";
num.dispNum();
cout << endl;
return O;

}

Output:

After increment - value of nis: 11

After decrement - value of n is: 10

Program 4.10: C++ Program to Add Two Objects using Operator Overloading
#include<conio.h>

#include<iostream.h>

class sum {
public:
intx,y, z;
void getdata(int a, int b)

{

void display()

{
cout<<"\nSum of X:"<<x;
cout<<"\nSum of Y:"<<y;

}

void operator+(sum &);

};

void sum::operator+(sum &ob) {
X=X+0b.X;
y=y+ob.y;
display();

void main()

{
sum obl, ob2;
clrser();
obl.getdata(10,20);
ob2.getdata(20,30);
obl+ob2;
getch();

}

Output

Sum of X:30

Sum of Y:50

Overloading of binary operators

Program 4.11: Binary Operator Overloading Example Program to add two complex numbers
#include<iostream.h>

#include<conio.h>

class complex {
int a, b;

public:

void getvalue() {
cout << "Enter the value of Complex Numbers a,b:";

cin >> a>>b;

complex operator+(complex ob) {
complex t;
t.a=a+ ob.a;
tb=b+ ob.b;

return (t);

complex operator-(complex ob) {
complex t;
t.a=a-ob.a;
tb=Db - ob.b;

return (t);

void display() {

nsn

cout<<a<<"+"<<b<<"i"<<"\n";

void main() {
clrscr();
complex objl, obj2, result, resultl;
objl.getvalue();
obj2.getvalue();
result = obj1 + obj2;

resultl = obj1 - obj2;

cout << "Input Values:\n";
obj1.display();
obj2.display();

cout << "Result:";
result.display();
resultl.display();

getch();
}
Output:
Enter the value of Complex Numbers a, b
4 5
Enter the value of Complex Numbers a, b
2 2
Input Values
4+ 5i
2 +2i
Result
6+ 7i
24+ 3i

Function Overriding

When a base class and sub class contains a function with the same signature, and the function is
called with base class object, then the function in derived class executes and the function in base
class is said to be overridden. This is known as function overriding. Following program
demonstrates function overriding:

Program 4.11: program demonstrates function overriding:
#include<iostream>

class A

{
protected:
int x;
public:

void show()

{
cout<<“x = “<<x<<endl;
}
b

class B : public A
{
protected:
inty;

public:

B(int x, int y)
{
this->x = x;
this->y = y;
}
void show()
{
cout<<“x = “<<x<<endl;
cout<<“y = “<<y<<endl;
}
b

int main()
{
A objA;

B objB(30, 20);
objB.show();

return O;

}

Output for the above program is:

x =30
y =20

Function Overloading VS Function Overriding

Function Overloading

Function Overriding

Inheritance | Overloading can occur without inheritance.

Overriding of functions occurs when
one class is inherited from another

class.
Function Overloaded functions must differ in In overriding, function signatures
Signature function signature ie either number of must be same.
parameters or type of parameters should
differ.
Scope of Overloaded functions are in same Overridden functions are in different
functions scope. scopes
Behaviour of | Overloading is used to have same name Overriding is needed when derived
functions functions which behave differently class function has to do some added
depending upon parameters passed to them. | or different job than the base class
function.

Rules for operator overloading.

Every programmer knows the concept of operation overloading in C++. Although it looks simple
to redefine the operators in operator overloading, there are certain restrictions and limitation in
overloading the operators. Some of them are listed below:

1. Only existing operators can be overloaded. New operators cannot be overloaded.
2. The overloaded operator must have at least one operand that is of user defined type.

3. We cannot change the basic meaning of an operator. That is to say, We cannot redefine the
plus(+) operator to subtract one value from the other.

1. Overloaded operators follow the syntax rules of the original operators. They cannot be
overridden.

2. There are some operators that cannot be overloaded like

size of operator(sizeof)

membership operator(.)

pointer to member operator(.*)

scope resolution operator(::)

conditional operators(?:)

opooe

6. We cannot use “friend” functions to overload certain operators. However, member function
can be used to overload them. Friend Functions cannot be used with

a. assignment operator(=)

b. function call operator(())

c. subscripting operator([])

d. class member access operator(->)

7. Unary operators, overloaded by means of a member function, take no explicit arguments and
return no explicit values, but, those overloaded by means of a friend function, take one reference
argument (the object of the relevent class).

8. Binary operators overloaded through a member function take one explicit argument and those
which are overloaded through a friend function take two explicit arguments.

9. When using binary operators overloaded through a member function, the left hand operand
must be an object of the relevant class.

10. Binary arithmetic operators such as +,-,* and / must explicitly return a value. They must not
attempt to change their own arguments.

Run time polymorphism/ Late Binding/ Dynamic Binding

¢ In Late Binding function call is resolved at runtime. Hence, now compiler determines the
type of object at runtime, and then binds the function call. Late Binding is also
called Dynamic Binding or Runtime Binding.

¢ Runtime Polymorphism is a form of polymorphism at which function binding occurs at
runtime.

® You can have a parameter in subclass, same as the parameters in its super classes with the
same name. Virtual keyword is used in superclass to call the subclass. The function call
takes place on the run time, not on the compile time.

Objects of Derived Classes,

class Derivedl1 and Derived2
\L VTABLEs

Base Class's

Pointers Derived1 object ,_—-/'__; &Derivedl::show
/ | vptr @1 |

Ble— |

B2e—___|

DEXIRESE aapers __/_/_} &Derived2::show
[votr e

vptr, is the vpointer, which points to the Virtual Function for that object.

VTABLE, is the table containing address of Virtual Functions of each class.

Figure: Mechanism of late binding

Virtual functions
e Virtual Function is a function in base class, which is overrided in the derived class,

and which tells the compiler to perform Late Binding on this function.

¢ Virtual Keyword is used to make a member function of the base class Virtual.

class Base

{

public:
virtual void show()
{
cout << "Base class";
}
I
class Derived:public Base
{
public:
void show()
{
cout << "Derived Class";
}
}

int main()
{
Base* b; //Base class pointer
Derived d; //Derived class object
b = &d;

b->show(); //Late Binding Ocuurs
}
Output:
Derived Class

Difference between Runtime Polymorphism and Compile time Polymorphism

Sr. No. Compile time Polymorphism Run time Polymorphism
In Compile time Polymorphism, call is In Run time Polymorphism, call
resolved by the compiler. is not resolved by the compiler.
It is also known as Static binding, Early It is also known as Dynamic binding,
binding and overloading as well. Late binding and overriding as well.
Overloading is compile time polymorphism Overriding is run time polymorphism
where more than one methods share the same having same method with same
name with different parameters or signature parameters or signature, but associated
and different return type. in a class & its subclass.

It is achieved by function overloading It is achieved by virtual

and operator overloading. functions and pointers.

It provides fast execution because known It provides slow execution as compare

early at compile time. to early binding because it is known at
runtime.

Compile time polymorphism is less flexible as | Run time polymorphism is more

all things execute at compile time. flexible as all things execute at run
time.

Rules for virtual functions

= Virtual functions must be members of a class.

= Virtual functions must be created in public section so that objects can access them.

= When virtual function is defined outside the class, virtual keyword is required only in the
function declaration. Not necessary in the function definition.

» Virtual functions cannot be static members.

= Virtual functions must be accessed using a pointer to the object.

= A virtual function cannot be declared as a friend of another class.

= Virtual functions must be defined in the base class even though it does not have any
significance.

= The signature of virtual function in base class and derived class must be same.

» A class must have a virtual destructor but it cannot have a virtual constructor.

Pure virtual function

Pure virtual Functions are virtual functions with no definition. They start with virtual keyword
and ends with = 0. Here is the syntax for a pure virtual function,

virtual void f() = 0;

class Base /[Abstract base class

{

public:

virtual void show() = 0; //Pure Virtual Function

|5

class Derived:public Base

{
public:
void show()

{ cout << "Implementation of Virtual Function in Derived class"; }

int main()

{

Base obj; //Compile Time Error
Base *b;

Derived d;

b = &d;

b->show();

}

Output :

Implementation of Virtual Function in Derived class

Question Bank:

2 Marks

1.

2.
3.
4.

State two pointer operators.

What is a pointer? Write down the general syntax of it’s declaration.
Enlist any four operators which can not be overloaded.

List types of polymorphism

4 Marks

sl S

9,

Explain the concept of pointer to object with suitable example.

Distinguish between run-time polymorphism & compile-time polymorphism.
State any four rules for operator overloading.

Write a program using function overloading to swap 2 integer numbers & swap
2 float numbers.

Explain the concept of ‘this’ pointer.

Explain virtual function with suitable example.

Write a program to declare a class distance having data members feet & inches.
Overload unary '_' operator so that when it is used with object of this class, it
will decrement values of inches by 1.

