
Unit –IV Pointers and Polymorphism in C++

Concepts of Pointer:

A pointer is a variable that holds a memory address of another variable where a value

lives. A pointer is declared using the * operator before an identifier.

Pointer declaration

General syntax of pointer declaration is,

datatype *pointer_name;

Data type of a pointer must be same as the data type of the variable to which the pointer
variable is pointing.

Here are a few examples:

int *ip // pointer to integer variable

float *fp; // pointer to float variable

double *dp; // pointer to double variable

char *cp; // pointer to char variable

Initialization of Pointer variable

Pointer Initialization is the process of assigning address of a variable to a pointer variable.

Pointer variable can only contain address of a variable of the same data type.

Pointer operator

In order to create pointer to a variable we use “*” operator and to find the address of variable we

use “&” operator.

1. ‘&’ operator is called as address Operator

2. ‘*’ is called as ‘Value at address’ Operator

3. ‘Value at address’ Operator gives ‘Value stored at Particular address.

4. ‘Value at address’ is also called as ‘Indirection Operator’

For example,

#include<stdio.h>

Operator Operator Name Purpose

* Value at Operator Gives Value stored at Particular address

& Address Operator Gives Address of Variable

int main()

{

int n = 20;

cout<< “\nThe address of n is "<<&n;

cout<< “\nThe Value of n is "<<n;

cout<< “\nThe Value of n is "<<*(&n);

}

Output:

The address of n is 1002

The Value of n is 20

The Value of n is 20

How *(&n) is same as printing the value of n ?

So Ccompiler must provide space for it in memory.Below is Step by Step Calculation to compute

the value –

m = * (&n)

 = * (Address of Variable 'n')

 = * (1000)

 = Value at Address 1000

 = 20

Another example,

#include<stdio.h>

int main()

{

int a = 3;

int *ptr,**pptr;

&n Gives address of the memory location whose name is ‘n’

* means value at Operator gives value at address specified by &n.

m = &n Address of n is stored in m , but remember that m is not ordinary variable like ‘n’

ptr = &a;

pptr = &ptr;

return(0);

}

Explanation of Example

With reference to above program –

We have following associated points –

Point Variable 'a' Variable 'ptr' Variable 'pptr'

Name of Variable a ptr pptr

Type of Value that it holds Integer Address of 'a' Address of 'ptr'

Value Stored 3 2001 4001

Address of Variable 2001 4001 6001

 Pointer arithmetic.

‘this’ pointer

• C++ provides a keyword 'this', which represents the current object and passed as a

hidden argument to all member functions.

• The this pointer is a constant pointer that holds the memory address of the current

object.

• The this pointer is an implicit parameter to all member functions. Therefore, inside a

member function, this may be used to refer to the invoking object.

• Friend functions do not have a this pointer, because friends are not members of a

class. Only member functions have a this pointer.

C++ program using this pointer

#include<iostream.h>

#include<conio.h>

class sample

{

 int a,b;

 public:

 void input(int a,int b)

 {

 this->a=a+b;

 this->b=a-b;

 }

 void output()

 {

 cout<<"a = "<<a<<endl<<"b = "<<b;

 }

};

int main()

{

 sample x;

 x.input(5,8);

 x.output();

 getch();

 return 0;

}

Output:
A=13

B= -3

Write a program to declare a class test having data members name and marks of student.

Accept and display data using ‘this’ pointer.

#include<iostream.h>

#include<conio.h>

class test

{

 Char name[30];

 int mark;

 public:

void get()

{

Cout<<”\n Enter name and marks”;

Cin>>name>>mark;

}

Void display()

{

Cout<<”\n Name=”<<this - >name;

Cout<<”\n Marks=”<<this - >mark;

}

};

Void main()

{

Test t1;

T1.get();

T1.display();

Getch();

}

Output:

Enter name and marks

Pragati 83

Name= Pragati

Marks=83

Pointer to derived class

• Pointers can be declared to the point base or derived class.

• A base class pointer can point to object of both the base and derived class.

• Derived class pointer can point to only derived class.

Fig: Type Compatibility of base and derived class

Program 4.6: Pointer to derived classes.

#include<iostream.h>

class base

{

 public:

 int n1;

 void show()

 {

 cout<<”\nn1 = “<<n1;

 }

};

class derive : public base

{

 public:

 int n2;

 void show()

 {

 cout<<”\nn1 = “<<n1;

 cout<<”\nn2 = “<<n2;

 }

};

int main()

{

 base b;

 base *bptr; //base pointer

 cout<<”Pointer of base class points to it”;

 bptr=&b; //address of base class

 bptr->n1=44; //access base class via base pointer

 bptr->show();

 derive d;

 cout<<”\n”;

 bptr=&d; //address of derive class

 bptr->n1=66; //access derive class via base pointer

 bptr->show();

 return 0;

}

Output:

Pointer of base class points to it

n1 = 44

Pointer of base class points to derive class

n1=66

Introduction of Polymorphism

• Polymorphism it is the ability to form more than one form.

• Polymorphism is the ability of a message to be processed in more than one way. A

different member function can be invoked at different instances depending on the

object which is invoking the function.

Polymorphism is of two types:

1) Compile-time polymorphism

2) Run-time polymorphism

Compile-time polymorphism / Early Binding / Static Binding

• In this polymorphism objects are created at the time of compilation.

• Its further divide into two parts function overloading and operator overloading.

Function overloading

Two or more functions having same name but different argument(s) are known as overloaded

functions.

Program 4.7: Program for function overloading

#include <iostream>

using namespace std;

long add(long, long);

float add(float, float);

 int main()

{

 long a, b, x;

 float c, d, y;

 cout << "Enter two integers\n";

 cin >> a >> b;

 x = add(a, b);

 cout << "Sum of integers: " << x << endl;

 cout << "Enter two floating point numbers\n";

 cin >> c >> d;

 y = add(c, d);

 cout << "Sum of floats: " << y << endl;

 return 0;

}

 long add(long x, long y)

{

 long sum;

 sum = x + y;

 return sum;

}

float add(float x, float y)

{

 float sum;

 sum = x + y;

 return sum;

}

Enter two integers

10 20

Sum of integers: 30

Enter two floating point numbers

1.1 2.2

Sum of floats: 3.3

Program 4.7: Write a program to print area of circle, rectangle and triangle using function

overloading

#include<iostream.h>

#include<stdlib.h>

#include<conio.h>

#define pi 3.14

class fn {

public:

 void area(int); //circle

 void area(int, int); //rectangle

 void area(float, int, int); //triangle

};

void fn::area(int a) {

 cout << "Area of Circle:" << pi * a*a;

}

void fn::area(int a, int b) {

 cout << "Area of rectangle:" << a*b;

}

void fn::area(float t, int a, int b) {

 cout << "Area of triangle:" << t * a*b;

}

void main() {

 int ch;

 int a, b, r;

 clrscr();

 fn obj;

 cout << "\n\t\tFunction Overloading";

 cout << "\n1.Area of Circle\n2.Area of Rectangle\n3.Area of Triangle\n4.Exit\n:?;

 cout << ?Enter your Choice : ";

 cin>>ch;

 switch (ch) {

 case 1:

 cout << "Enter Radious of the Circle:";

 cin>>r;

 obj.area(r);

 break;

 case 2:

 cout << "Enter Sides of the Rectangle:";

 cin >> a>>b;

 obj.area(a, b);

 break;

 case 3:

 cout << "Enter Sides of the Triangle:";

 cin >> a>>b;

 obj.area(0.5, a, b);

 break;

 case 4:

 exit(0);

 }

 getch();

}

Output:

Function Overloading

1. Area of Circle

2. Area of Rectangle

3. Area of Triangle

4. Exit

Enter Your Choice: 2

Enter the Sides of the Rectangle: 5 5

Area of Rectangle is: 25

1. Area of Circle

2. Area of Rectangle

3. Area of Triangle

4. Exit

Enter Your Choice: 4

Operator overloading

Almost all arithmetic operator can be overloaded to perform arithmetic operation on user-

defined data type.

Operator overloading is a way of providing new implementation of existing operators to

work with user-defined data types.

An operator can be overloaded by defining a function to it. The function for operator is

declared by using the operator keyword followed by the operator.

There are two types of operator overloading in C++

• Binary Operator Overloading

• Unary Operator Overloading

Program 4.8: C++ program for unary minus (-) operator overloading.

#include<iostream.h>

class NUM

{

 private:

 int n;

 public:

 //function to get number

 void getNum(int x)

 {

 n=x;

 }

 //function to display number

 void dispNum(void)

 {

 cout << "value of n is: " << n;

 }

 //unary - operator overloading

 void operator - (void)

 {

 n=-n;

 }

};

int main()

{

 NUM num;

 num.getNum(10);

 -num;

 num.dispNum();

 cout << endl;

 return 0;

 }

Output:

value of n is: -10

Program 4.9: C++ program for unary increment (++) and decrement (--) operator

overloading.

 #include<iostream.h>

 class NUM

{

 private:

 int n;

 public:

 //function to get number

 void getNum(int x)

 {

 n=x;

 }

 //function to display number

 void dispNum(void)

 {

 cout << "value of n is: " << n;

 }

 //unary ++ operator overloading

 void operator ++ (void)

 {

 n=++n;

 }

 //unary -- operator overloading

 void operator -- (void)

 {

 n=--n;

 }

};

int main()

{

 NUM num;

 num.getNum(10);

 ++num;

 cout << "After increment - ";

 num.dispNum();

 cout << endl;

 --num;

 cout << "After decrement - ";

 num.dispNum();

 cout << endl;

 return 0;

}

Output:

After increment - value of n is: 11

After decrement - value of n is: 10

Program 4.10: C++ Program to Add Two Objects using Operator Overloading

#include<conio.h>

#include<iostream.h>

class sum {

 public:

 int x, y, z;

 void getdata(int a, int b)

 {

 x=a;

 y=b;

 }

 void display()

 {

 cout<<"\nSum of X:"<<x;

 cout<<"\nSum of Y:"<<y;

 }

 void operator+(sum &);

};

void sum::operator+(sum &ob) {

 x=x+ob.x;

 y=y+ob.y;

 display();

}

void main()

{

 sum ob1, ob2;

 clrscr();

 ob1.getdata(10,20);

 ob2.getdata(20,30);

 ob1+ob2;

 getch();

}

Output

Sum of X:30

Sum of Y:50

Overloading of binary operators

Program 4.11: Binary Operator Overloading Example Program to add two complex numbers

#include<iostream.h>

#include<conio.h>

class complex {

 int a, b;

public:

 void getvalue() {

 cout << "Enter the value of Complex Numbers a,b:";

 cin >> a>>b;

 }

 complex operator+(complex ob) {

 complex t;

 t.a = a + ob.a;

 t.b = b + ob.b;

 return (t);

 }

 complex operator-(complex ob) {

 complex t;

 t.a = a - ob.a;

 t.b = b - ob.b;

 return (t);

 }

 void display() {

 cout << a << "+" << b << "i" << "\n";

 }

};

void main() {

 clrscr();

 complex obj1, obj2, result, result1;

 obj1.getvalue();

 obj2.getvalue();

 result = obj1 + obj2;

 result1 = obj1 - obj2;

 cout << "Input Values:\n";

 obj1.display();

 obj2.display();

 cout << "Result:";

 result.display();

 result1.display();

 getch();

}

Output:

Enter the value of Complex Numbers a, b

4 5

Enter the value of Complex Numbers a, b

2 2

Input Values

4 + 5i

2 + 2i

Result

6 + 7i

2 + 3i

Function Overriding

When a base class and sub class contains a function with the same signature, and the function is

called with base class object, then the function in derived class executes and the function in base

class is said to be overridden. This is known as function overriding. Following program

demonstrates function overriding:

Program 4.11: program demonstrates function overriding:

#include<iostream>

class A

{

protected:

int x;

public:

void show()

{

cout<<“x = “<<x<<endl;

}

};

class B : public A

{

protected:

int y;

public:

B(int x, int y)

{

this->x = x;

this->y = y;

}

void show()

{

cout<<“x = “<<x<<endl;

cout<<“y = “<<y<<endl;

}

};

int main()

{

A objA;

B objB(30, 20);

objB.show();

return 0;

}

Output for the above program is:

x = 30

y = 20

Function Overloading VS Function Overriding

 Function Overloading Function Overriding

Inheritance Overloading can occur without inheritance. Overriding of functions occurs when

one class is inherited from another

class.

Function

Signature

Overloaded functions must differ in

function signature ie either number of

parameters or type of parameters should

differ.

In overriding, function signatures

must be same.

Scope of

functions

Overloaded functions are in same

scope.

Overridden functions are in different

scopes

Behaviour of

functions

Overloading is used to have same name

functions which behave differently

depending upon parameters passed to them.

Overriding is needed when derived

class function has to do some added

or different job than the base class

function.

Rules for operator overloading.

Every programmer knows the concept of operation overloading in C++. Although it looks simple

to redefine the operators in operator overloading, there are certain restrictions and limitation in

overloading the operators. Some of them are listed below:

1. Only existing operators can be overloaded. New operators cannot be overloaded.

2. The overloaded operator must have at least one operand that is of user defined type.

3. We cannot change the basic meaning of an operator. That is to say, We cannot redefine the

plus(+) operator to subtract one value from the other.

1. Overloaded operators follow the syntax rules of the original operators. They cannot be

overridden.

2. There are some operators that cannot be overloaded like

a. size of operator(sizeof)

b. membership operator(.)

c. pointer to member operator(.*)

d. scope resolution operator(::)

e. conditional operators(?:)

6. We cannot use “friend” functions to overload certain operators. However, member function

can be used to overload them. Friend Functions cannot be used with

a. assignment operator(=)

b. function call operator(())

c. subscripting operator([])

d. class member access operator(->)

7. Unary operators, overloaded by means of a member function, take no explicit arguments and

return no explicit values, but, those overloaded by means of a friend function, take one reference

argument (the object of the relevent class).

8. Binary operators overloaded through a member function take one explicit argument and those

which are overloaded through a friend function take two explicit arguments.

9. When using binary operators overloaded through a member function, the left hand operand

must be an object of the relevant class.

10. Binary arithmetic operators such as +,-,* and / must explicitly return a value. They must not

attempt to change their own arguments.

Run time polymorphism/ Late Binding/ Dynamic Binding

• In Late Binding function call is resolved at runtime. Hence, now compiler determines the

type of object at runtime, and then binds the function call. Late Binding is also

called Dynamic Binding or Runtime Binding.

• Runtime Polymorphism is a form of polymorphism at which function binding occurs at

runtime.

• You can have a parameter in subclass, same as the parameters in its super classes with the

same name. Virtual keyword is used in superclass to call the subclass. The function call

takes place on the run time, not on the compile time.

Figure: Mechanism of late binding

Virtual functions

• Virtual Function is a function in base class, which is overrided in the derived class,

and which tells the compiler to perform Late Binding on this function.

• Virtual Keyword is used to make a member function of the base class Virtual.

class Base

{

 public:

 virtual void show()

 {

 cout << "Base class";

 }

};

class Derived:public Base

{

 public:

 void show()

 {

 cout << "Derived Class";

 }

}

int main()

{

 Base* b; //Base class pointer

 Derived d; //Derived class object

 b = &d;

 b->show(); //Late Binding Ocuurs

}

Output:

Derived Class

Difference between Runtime Polymorphism and Compile time Polymorphism

Sr. No. Compile time Polymorphism Run time Polymorphism

1 In Compile time Polymorphism, call is

resolved by the compiler.

In Run time Polymorphism, call

is not resolved by the compiler.

2 It is also known as Static binding, Early

binding and overloading as well.

It is also known as Dynamic binding,

Late binding and overriding as well.

3 Overloading is compile time polymorphism

where more than one methods share the same

name with different parameters or signature

and different return type.

Overriding is run time polymorphism

having same method with same

parameters or signature, but associated

in a class & its subclass.

4 It is achieved by function overloading

and operator overloading.

It is achieved by virtual

functions and pointers.

5 It provides fast execution because known

early at compile time.

It provides slow execution as compare

to early binding because it is known at

runtime.

6 Compile time polymorphism is less flexible as

all things execute at compile time.

Run time polymorphism is more

flexible as all things execute at run

time.

Rules for virtual functions

� Virtual functions must be members of a class.

� Virtual functions must be created in public section so that objects can access them.

� When virtual function is defined outside the class, virtual keyword is required only in the

function declaration. Not necessary in the function definition.

� Virtual functions cannot be static members.

� Virtual functions must be accessed using a pointer to the object.

� A virtual function cannot be declared as a friend of another class.

� Virtual functions must be defined in the base class even though it does not have any

significance.

� The signature of virtual function in base class and derived class must be same.

� A class must have a virtual destructor but it cannot have a virtual constructor.

Pure virtual function

Pure virtual Functions are virtual functions with no definition. They start with virtual keyword

and ends with = 0. Here is the syntax for a pure virtual function,

virtual void f() = 0;

class Base //Abstract base class

{

 public:

 virtual void show() = 0; //Pure Virtual Function

};

class Derived:public Base

{

 public:

 void show()

 { cout << "Implementation of Virtual Function in Derived class"; }

};

int main()

{

 Base obj; //Compile Time Error

 Base *b;

 Derived d;

 b = &d;

 b->show();

}

Output :

Implementation of Virtual Function in Derived class

Question Bank:

2 Marks

1. State two pointer operators.

2. What is a pointer? Write down the general syntax of it’s declaration.

3. Enlist any four operators which can not be overloaded.

4. List types of polymorphism

4 Marks

1. Explain the concept of pointer to object with suitable example.

2. Distinguish between run-time polymorphism & compile-time polymorphism.

3. State any four rules for operator overloading.

4. Write a program using function overloading to swap 2 integer numbers & swap

2 float numbers.

5. Explain the concept of ‘this’ pointer.

6. Explain virtual function with suitable example.

7. Write a program to declare a class distance having data members feet & inches.

Overload unary '_' operator so that when it is used with object of this class, it

will decrement values of inches by 1.

