
Unit-V File operations

What is stream?

• C++ IO are based on streams, which are sequence of bytes flowing in and out of

the programs. A C++ stream is a flow of data into or out of a program, such as the

data written to cout or read from cin.

• C++ provides standard iostream library to operate with streams.

• The iostream is an object-oriented library which provides Input/Output

functionality using streams.

In the above figure, ios is the base class. The iostream class is derived

from istream and ostream classes. The ifstream and ofstream are derived

from istream and ostream, respectively. These classes handle input and output with the

disk files.

The fstream.h header file contains a declaration of ifstream,

ofstream and fstream classes. The iostream.h file contains istream,

ostream and iostream classes and included in the program while doing disk I/O

operations.

The filebuf class contains input and output operations with files. The streambuf class

does not organize streams for input and output operations, only derived classes

of streambuf performs I/O operations. These derived classes arrange a space for

keeping input data and for sending output data.

C++ stream classes

In input operations, data bytes flow from an input source (such as keyboard, file,

network or another program) into the program. In output operations, data bytes flow

from the program to an output sink (such as console, file, network or another program).

Streams acts as an intermediaries between the programs and the actual IO devices, in

such the way that frees the programmers from handling the actual devices, so as to

archive device independent IO operations.

C++ provides both the formatted and unformatted IO functions. In formatted or high-

level IO, bytes are grouped and converted to types such as int, double, string or user-

defined types. In unformatted or low-level IO, bytes are treated as raw bytes and

unconverted. Formatted IO operations are supported via overloading the stream

insertion (<<) and stream extraction (>>) operators, which presents a consistent public

IO interface.

The istream and ostream invokes the filebuf functions to perform the insertion or

extraction on the streams.

I/O Stream Meaning Description

istream Input Stream It reads and interprets input.

ostream Output stream It can write sequences of characters and represents other

kinds of data.

ifstream Input File

Stream

The ifstream class is derived from fstreambase and

istream by multiple inheritance.

This class accesses the member functions such as get(),

getline(), seekg(), tellg() and read().

It provides open() function with the default input mode

and allows input operations.

ofstream Output File

Stream

The ofstream class is derived from fstreambase and

ostream classes.

This class accesses the member functions such as put(),

seekp(), write() and tellp().

It provides the member function open() with the default

output mode.

fstream File Stream The fstream allows input and output operations

simultaneous on a filebuf.

It invokes the member function istream::getline() to read

characters from the file.

This class provides the open() function with the default

input mode.

fstreambase File Stream

Base

It acts as a base class for fstream, ifstream and ofstream.

The open() and close() functions are defined in

fstreambase.

Advantages of Stream Classes

• Stream classes have good error handling capabilities.

• These classes work as an abstraction for the user that means the internal operation is

encapsulated from the user.

• These classes are buffered and do not uses the memory disk space.

• These classes have various functions that make reading or writing a sequence of bytes

easy for the programmer.

Classes for file stream operations

In Files we store data i.e. text or binary data permanently and use these data to read or

write in the form of input output operations by transferring bytes of data. So we use the

term File Streams/File handling. We use the header file <fstream.h>

• ofstream: It represents output Stream and this is used for writing in files.

• ifstream: It represents input Stream and this is used for reading from files.

• fstream: It represents both output Stream and input Stream. So it can read from

files and write to files.

Input/Output Streams

• The iostream standard library provides cin and cout object.

• Input stream uses cin object for reading the data from standard input and Output

stream uses cout object for displaying the data on the screen or writing to standard

output.

• The cin and cout are pre-defined streams for input and output data.

Syntax:

cin>>variable_name;

cout<<variable_name;

• The cin object uses extraction operator (>>) before a variable name while

the cout object uses insertion operator (<<) before a variable name.

• The cin object is used to read the data through the input device like keyboard etc. while

the cout object is used to perform console write operation.

Operations in File Handling:

• Creating a file: open()

• Reading data: read()

• Writing new data: write()

• Closing a file: close()

Creating/Opening a File

We create/open a file by specifying new path of the file and mode of operation.

Operations can be reading, writing, appending and truncating. Syntax for file

creation: FilePointer.open("Path",ios::mode);

• Example of file opened for writing: st.open("E:\study.txt",ios::out);

• Example of file opened for reading: st.open("E:\study.txt",ios::in);

• Example of file opened for appending: st.open("E:\study.txt",ios::app);

• Example of file opened for truncating: st.open("E:\study.txt",ios::trunc);

#include<iostream.h>

#include<conio.h>

#include <fstream.h>

using namespace std;

int main()

{

 fstream st; // Step 1: Creating object of fstream class

 st.open("E:\study.txt",ios::out); // Step 2: Creating new file

 if(!st) // Step 3: Checking whether file exist

 {

 cout<<"File creation failed";

 }

 else

 {

 cout<<"New file created";

 st.close(); // Step 4: Closing file

 }

 getch();

 return 0;

}

Writing to a File

#include <iostream.h>

#include<conio.h>

#include <fstream.h>

using namespace std;

int main()

{

 fstream st; // Step 1: Creating object of fstream class

 st.open("E:\study.txt",ios::out); // Step 2: Creating new file

 if(!st) // Step 3: Checking whether file exist

 {

 cout<<"File creation failed";

 }

 else

 {

 cout<<"New file created";

 st<<"Hello"; // Step 4: Writing to file

 st.close(); // Step 5: Closing file

 }

 getch();

 return 0;

}

Here we are sending output to a file. So, we use ios::out. As given in the program,

information typed inside the quotes after "FilePointer <<" will be passed to output file.

Reading from a File

#include <iostream.h>

#include<conio.h>

#include <fstream.h>

using namespace std;

int main()

{

 fstream st; // step 1: Creating object of fstream class

 st.open("E:\study.txt",ios::in); // Step 2: Creating new file

 if(!st) // Step 3: Checking whether file exist

 {

 cout<<"No such file";

 }

 else

 {

 char ch;

 while (!st.eof())

 {

 st >>ch; // Step 4: Reading from file

 cout << ch; // Message Read from file

 }

 st.close(); // Step 5: Closing file

 }

 getch();

 return 0;

}

Here we are reading input from a file. So, we use ios::in. As given in the program,

information from the output file is obtained with the help of following

syntax "FilePointer >>variable".

Close a File

It is done by FilePointer.close().

#include <iostream.h>

#include<conio.h>

#include <fstream.h>

using namespace std;

int main()

{

 fstream st; // Step 1: Creating object of fstream class

 st.open("E:\study.txt",ios::out); // Step 2: Creating new file

 st.close(); // Step 4: Closing file

 getch();

 return 0;

}

File Modes - Reading and Writing Files

In order to open a file with a stream object open() member function is used.

open (filename, mode);

Where filename is a null-terminated character sequence of type const char * (the same

type that string literals have) representing the name of the file to be opened, and mode

is an optional parameter with a combination of the following flags:

Mode Description

ios::ate Write all output to the end of file (even if file position

pointer is moved with seekp)

ios::app Open a file for output and move to the end of the

existing data (normally used to append data to a file, but

data can be written anywhere in the file

ios::in The original file (if it exists) will not be truncated

ios::out Open a file for output (default for ofstream objects)

ios::trunc Discard the file's contents if it exists (this is also the

default action for ios::out, if ios::ate, ios::app,

or ios::in are not specified)

ios::binary Opens the file in binary mode (the default is text mode)

ios::nocreate Open fails if the file does not exist

ios::noreplace Open files if the file already exists.

Detection of end of file

C++ provides a special function, eof(), that returns nonzero (meaning TRUE) when

there are no more data to be read from an input file stream, and zero (meaning FALSE)

otherwise.

Rules for using end-of-file (eof()):

1. Always test for the end-of-file condition before processing data read from an input

file stream.

 a. use a priming input statement before starting the loop

 b. repeat the input statement at the bottom of the loop body

2. Use a while loop for getting data from an input file stream. A for loop is desirable

only when you know the exact number of data items in the file, which we do not know.

Special operations in a File

There are few important functions to be used with file streams like:

• tellp() - It tells the current position of the put pointer.

Syntax: filepointer.tellp()

• tellg() - It tells the current position of the get pointer.

Syntax: filepointer.tellg()

• seekp() - It moves the put pointer to mentioned location.

Syntax: filepointer.seekp(no of bytes ,reference mode)

• seekg() - It moves get pointer(input) to a specified location.

Syntax: filepointer.seekg((no of bytes, reference point)

• put() - It writes a single character to file.

• get() - It reads a single character from file.

Note: For seekp and seekg three reference points are passed:

ios::beg - beginning of the file

ios::cur - current position in the file

ios::end - end of the file

Below is a program to show importance of tellp, tellg, seekp and seekg:

#include <iostream.h>

#include<conio.h>

#include <fstream.h>

using namespace std;

int main()

{

 fstream st; // Creating object of fstream class

 st.open("E:\study.txt",ios::out); // Creating new file

 if(!st) // Checking whether file exist

 {

 cout<<"File creation failed";

 }

 else

 {

 cout<<"New file created"<<endl;

 st<<"Hello Friends"; //Writing to file

 // Checking the file pointer position

 cout<<"File Pointer Position is "<<st.tellp()<<endl;

 st.seekp(-1, ios::cur); // Go one position back from current position

 //Checking the file pointer position

 cout<<"As per tellp File Pointer Position is "<<st.tellp()<<endl;

 st.close(); // closing file

 }

 st.open("E:\study.txt",ios::in); // Opening file in read mode

 if(!st) //Checking whether file exist

 {

 cout<<"No such file";

 }

 else

 {

 char ch;

 st.seekg(5, ios::beg); // Go to position 5 from begning.

 cout<<"As per tellg File Pointer Position is "<<st.tellg()<<endl; //Checking file

pointer position

 cout<<endl;

 st.seekg(1, ios::cur); //Go to position 1 from beginning.

 cout<<"As per tellg File Pointer Position is "<<st.tellg()<<endl; //Checking file

pointer position

 st.close(); //Closing file

 }

 getch();

 return 0;

}

New file created

File Pointer Position is 13

As per tellp File Pointer Position is 12

As per tellg File Pointer Position is 5

As per tellg File Pointer Position is 6

C++ write() function

The write() function is used to write object or record (sequence of bytes) to the file.
A record may be an array, structure or class.

Syntax of write() function

 fstream fout;

 fout.write((char *) &obj, sizeof(obj));

The write() function takes two arguments.
&obj : Initial byte of an object stored in memory.
sizeof(obj) : size of object represents the total number of bytes to be written from
initial byte.

Example of write() function

 #include<fstream.h>

 #include<conio.h>

 class Student

 {

 int roll;

 char name[25];

 float marks;

 void getdata()

 {

 cout<<"\n\nEnter Roll : ";

 cin>>roll;

 cout<<"\nEnter Name : ";

 cin>>name;

 cout<<"\nEnter Marks : ";

 cin>>marks;

 }

 public:

 void AddRecord()

 {

 fstream f;

 Student Stu;

 f.open("Student.dat",ios::app|ios::binary);

 Stu.getdata();

 f.write((char *) &Stu, sizeof(Stu));

 f.close();

 }

 };

 void main()

 {

 Student S;

 char ch='n';

 do

 {

 S.AddRecord();

 cout<<"\n\nDo you want to add another data (y/n) : ";

 ch = getche();

 } while(ch=='y' || ch=='Y');

 cout<<"\nData written successfully...";

 }

 Output :

 Enter Roll : 1

 Enter Name : Ashish

 Enter Marks : 78.53

 Do you want to add another data (y/n) : y

 Enter Roll : 2

 Enter Name : Kaushal

 Enter Marks : 72.65

 Do you want to add another data (y/n) : y

 Enter Roll : 3

 Enter Name : Vishwas

 Enter Marks : 82.65

 Do you want to add another data (y/n) : n

 Data written successfully...

C++ read() function

The read() function is used to read object (sequence of bytes) to the file.

Syntax of read() function

 fstream fin;

 fin.read((char *) &obj, sizeof(obj));

The read() function takes two arguments.
&obj : Initial byte of an object stored in file.
sizeof(obj) : size of object represents the total number of bytes to be read from
initial byte.

The read() function returns NULL if no data read.

Example of read() function

 #include<fstream.h>

 #include<conio.h>

 class Student

 {

 int roll;

 char name[25];

 float marks;

 void putdata()

 {

 cout<<"\n\t"<<roll<<"\t"<<name<<"\t"<<marks;

 }

 public:

 void Display()

 {

 fstream f;

 Student Stu;

 f.open("Student.dat",ios::in|ios::binary);

 cout<<"\n\tRoll\tName\tMarks\n";

 while((f.read((char*)&Stu,sizeof(Stu))) != NULL)

 Stu.putdata();

 f.close();

 }

 };

 void main()

 {

 Student S;

 S.Display();

 }

 Output :

 Roll Name Marks

 1 Ashish 78.53

 2 Kaushal 72.65

 3 Vishwas 82.65

